SlideShare a Scribd company logo
1 of 41
 Study of various analytical models for prediction of shear
strength of SFRC beams.
 Shear strength predictions using various models available
in literature.
 comparative study of various models
1
Objective of the thesis
2
Introduction
3
Fig.Beam failure modes (from ACI-ASCE Committee 426, 1973)
Types of Failure In Beam
Behavior of beam in Shear
4
Fig.Typical example of Shear tension failure of reinforced
concrete beam. (Nilson 2005)
Type of steel fibers
5
Fig.Types of steel fibres (Dinh,2010)
6
Steel Fibrous Reinforced Concrete (SFRC)
Enhance shear resistance and ductility in reinforced
concrete beams.
Enhance post-cracking strength of concrete.
Uniform cracking distribution.
Shear strength prediction models
bd
a
d
kfVu ct
4
1







7
Sharma (1986)
Where,
k = 2/3,
fct - Split cylinder strength of
SFRC
a - Shear span.
d - Effective depth of beam
'
0.79 ( )ct cf f MPa
If fct is unknown, then
Fig. a/d, Shear span to depth ratio
f’c - crushing strength of
concrete
'
0.16 17.2 tn uc
Vd
V f bd
M
 
  
    
  
8
maxMM
d a d
V V
   
0.41tu F 
,
τ -the fiber-matrix bond strength was taken to be 4.15
σtu - the post-cracking tensile strength.
Mansur et al. (1986)
F-Fiber factor
max
/ 2
2
MM a
for a d
V V
  
max
/ 2
MM
d for a d
V V
  
Where
f
f
f
V
D
L
F 
e = 1.0 for a/d > 2.8 and e = 2.8d/a when a/d ≤ 2.8;
fspfc=computed value of spited cylinder strength of fiber concrete
9
 MPav
a
d
fevu bspfc 











 8024.0
FCB
F
f
f cu
spfc 


20
vb - fiber pullout strength
Narayanan & Darwish (1987)
B= 0.7 C = 1
fcu= cube compressive strength
where
Ashour(1992)
  )()711.2(
3/13 ,
MPaFfv a
d
cu 
10
  )(25.0167.0 ,
MPafFev cu 
5.2/ dafor
5.2/ dafor
Khuntia et al. (1999)
11
 0.167 0.25 'n cV e F f bd 
Where,
e = 1.0 for a/d > 2.5 and
e = 2.5d/a when a/d ≤ 2.5.
Dinh et al.(2011)
n cc FRCV V V 
12
Where,
c- Depth of compression zone
1 3 10.85k k 
(σt )avg - the average tensile stress of SFRC
Where, β1 = 0.85 for fc
’ ≤ 27.6 MPa and
β1 = 0.65 for fc
’≥ 55.1 MPa,
yScc fAV 13.0
)(cot)()(  ancdbV avgtFRC 
bfkk
fA
c
c
ys
,
31

)()0075.0*(*5.1*8.0)( 4/1
MPaVfavgt 
13
Kwak et al.(2002)
bdv
a
d
feV bspfcn ]8.0)(7.3[
3/1
3/2






 
BEAM DATA TAKEN FROM FOLLOWING INVESTIGATORS
• Swamy (1985)
• Mansur (1986)
• Lim (1987)
• Ashour et al. (1989)
• Li (1992)
• Schantz (1993)
• Swamy (1993)
• Tan (1993)
• Imam et al. (1998)
• Casanov and Rossi (1999)
• Noghabai (2000)
• Kwak (2002)
• Rosenbusch (2002)
• Cucchiara (2004)
• Parra-Montesinos (2006)
• Dinh (2011)
• Jain & singh (2013)
14
15
Table A-1 : Details of beams from various investigators
Investigator
Beam
ID
b
(mm)
h
(mm)
d (mm) a/d
ρ
(%)
fy
(MPa)
Fiber
type
Lf
(mm)
Df
(mm)
Lf/Df
Vf
(%)
f'c
(MPa)
vu(exp.)
(MPa)
Swamy
(1985) B52 175 250 210 4.5 4.00 415 C 50 0.5 100 .4 35.5 2.16
B53 175 250 210 4.5 4.00 415 C 50 0.5 100 .8 37.4 3.1
B54 175 250 210 4.5 4.00 415 C 50 0.5 100 1.2 39.8 3.13
B55 175 250 210 4.5 3.05 415 C 50 0.5 100 .8 38.2 3.21
B56 175 250 210 4.5 1.95 415 C 50 0.5 100 .8 41.8 2.62
B63R 175 250 210 4.5 1.95 415 C 50 0.5 100 .8 35.1 2.05
16
R² = 0.0311
150
250
350
450
550
650
0.00 3.50 7.00 10.50 14.00
Overalldepth,h(mm)
Experimental shear strength, MPa
Fig. Effect of depth of beam on experimental shear strength
Effect of various parameters on shear strength of SFRC
17
R² = 0.1853
1
2
3
4
5
6
0.00 3.50 7.00 10.50 14.00
Shearspantodepthratio,a/d
Experimental shear strength, MPa
fig, Effect of (a/d) ratio on experimental shear strength
18
R² = 0.1369
0
1
2
3
4
5
0.00 3.50 7.00 10.50 14.00
Flexuralreinforcementratio,(%)
Experimental shear strength, MPa
Fig. : Effect of flexural reinforcement ratio on experimental shear strength
19
R² = 0.3051
0
20
40
60
80
100
120
0.00 3.50 7.00 10.50 14.00
Compressivestrength,f'c(MPa)
Experimental shear strength, MPa
Fig. Effect of compressive strength on experimental shear strength
20
R² = 0.0112
50
60
70
80
90
100
0.00 3.50 7.00 10.50 14.00
Aspectratio,Lf/Df
Experimental shear strength, MPa
Fig. : Effect of aspect ratio on experimental shear strength
21
R² = 0.0349
0.0
0.5
1.0
1.5
2.0
0.00 3.50 7.00 10.50 14.00
Volumefraction,Vf(%)
Experimental shear strength, MPa
Fig. : Effect of volume fraction of steel fibers on experimental shear strength
22
Analytical investigation
GRAPHICAL REPRESENTATION
23
0.00
3.50
7.00
10.50
14.00
0.00 3.50 7.00 10.50 14.00
Experimentshearstrength(MPa)
Proposed shear strength (MPa)
Sharma (1986)
Swamy (1985)
Mansur (1986)
Lim (1987)
Ashour et al. (1989)
Li (1992)
Schantz (1993)
Swamy (1993)
Tan (1993)
Imam et al. (1998)
Casanov and Rossi (1999)
Noghabai (2000)
Kwak (2002)
Rosenbusch (2002)
Cucchiara (2004)
Parra-Montesinos (2006)
Dinh (2011)
Jain & Singh (2013)
Fig. : Proposed shear strength values by Sharma (1986) versus Experimental shear strength
24
0.00
3.50
7.00
10.50
14.00
0.00 3.50 7.00 10.50 14.00
Experimentshearstrength(MPa)
Proposed shear strength (MPa)
Swamy (1985)
Mansur (1986)
Lim (1987)
Ashour et al. (1989)
Li (1992)
Schantz (1993)
Swamy (1993)
Tan (1993)
Imam et al. (1998)
Casanov and Rossi (1999)
Noghabai (2000)
Kwak (2002)
Rosenbusch (2002)
Cucchiara (2004)
Parra-Montesinos (2006)
Dinh (2011)
Jain & Singh (2013)
Masur et al. (1986)
Fig. Proposed shear strength values by Mansur et al. (1986) versus Experimental shear strength
25
0.00
3.50
7.00
10.50
14.00
0.00 3.50 7.00 10.50 14.00
Experimentshearstrength(MPa)
Proposed shear strength (MPa)
Narayanan & Darwish (1987) Swamy (1985)
Mansur (1986)
Lim (1987)
Ashour et al. (1989)
Li (1992)
Schantz (1993)
Swamy (1993)
Tan (1993)
Imam et al. (1998)
Casanov and Rossi (1999)
Noghabai (2000)
Kwak (2002)
Rosenbusch (2002)
Cucchiara (2004)
Parra-Montesinos (2006)
Dinh (2011)
Jain & Singh (2013)
Fig. Proposed shear strength values by Narayanan and Darwish (1987) versus Experimental shear strength
26
0.00
3.50
7.00
10.50
14.00
0.00 3.50 7.00 10.50 14.00
Experimentshearstrength(MPa)
Proposed shear strength (MPa)
Khuntia et al. (1999) Swamy (1985)
Mansur (1986)
Lim (1987)
Ashour et al. (1989)
Li (1992)
Schantz (1993)
Swamy (1993)
Tan (1993)
Imam et al. (1998)
Casanov and Rossi (1999)
Noghabai (2000)
Kwak (2002)
Rosenbusch (2002)
Cucchiara (2004)
Parra-Montesinos (2006)
Dinh (2011)
Jain & Singh (2013)
Fig. : Proposed shear strength values by Khuntia et al. (1999) versus Experimental shear strength
27
0.00
3.50
7.00
10.50
14.00
0.00 3.50 7.00 10.50 14.00
Experimentshearstrength(MPa)
Proposed shear strength (MPa)
Kwak et al. (2002) Swamy (1985)
Mansur (1986)
Lim (1987)
Ashour et al. (1989)
Li (1992)
Schantz (1993)
Swamy (1993)
Tan (1993)
Imam et al. (1998)
Casanov and Rossi (1999)
Noghabai (2000)
Kwak (2002)
Rosenbusch (2002)
Cucchiara (2004)
Parra-Montesinos (2006)
Dinh (2011)
Jain & Singh (2013)
Fig.: Proposed shear strength values by Kwak et al. (2002) versus Experimental shear strength
28
0.00
3.50
7.00
10.50
14.00
0.00 3.50 7.00 10.50 14.00
Experimentshearstrength(MPa)
Proposed shear strength (MPa)
Dinh et al. (2011)
Swamy (1985)
Mansur (1986)
Lim (1987)
Ashour et al. (1989)
Li (1992)
Schantz (1993)
Swamy (1993)
Tan (1993)
Imam et al. (1998)
Casanov and Rossi (1999)
Noghabai (2000)
Kwak (2002)
Rosenbusch (2002)
Cucchiara (2004)
Parra-Montesinos (2006)
Dinh (2011)
Jain & Singh (2013)
Fig. : Proposed shear strength values by Dinh et al. (2011) versus Experimental shear strength
29
0.00
3.50
7.00
10.50
14.00
0.00 3.50 7.00 10.50 14.00
Experimentshearstrength(MPa)
Proposed shear strength (MPa)
Ashour et al. (1992)
Swamy (1985)
Mansur (1986)
Lim (1987)
Ashour et al. (1989)
Li (1992)
Schantz (1993)
Swamy (1993)
Tan (1993)
Imam et al. (1998)
Casanov and Rossi (1999)
Noghabai (2000)
Kwak (2002)
Rosenbusch (2002)
Cucchiara (2004)
Parra-Montesinos (2006)
Dinh (2011)
Jain & Singh (2013)
Fig. : Proposed shear strength values by Ashour et al. (1992) versus Experimental shear strength
30
Table A-2 : Shear strength predictions using available models in literature
Investigator Beam ID
vu(exp.)
(MPa)
vu(the.)/vu(exp.)
Sharma
(1986)
Mansur et.
al. (1986)
Narayanan
& Darwish
(1987)
Ashour
et.
al.(1992)
Khuntia
et.
al.(1999)
Kwak et
al. (2002)
Dinh et
al.(2011)
Swamy
(1985)
B52 2.16 1.00 0.90 0.96 0.87 0.67 1.01 1.18
B53 3.1 0.71 0.86 0.86 0.76 0.63 0.88 0.86
B54 3.13 0.73 1.10 1.04 0.90 0.79 1.03 0.88
B55 3.21 0.70 0.82 0.78 0.67 0.61 0.80 0.75
B56 2.62 0.89 1.01 0.91 0.72 0.78 0.91 0.81
B63R 2.05 1.05 1.19 1.11 0.89 0.92 1.11 1.00
31
Investigators MV SD COV
Proposedshearstrength/Experimentshearstrength
Sharma (1986) 0.92 0.29 31.58
Mansur et al. (1986) 0.89 0.31 35.25
Narayanan & Darwish (1987) 0.97 0.24 24.62
Ashour et al.(1992) 0.93 0.29 30.96
Khuntia et al.(1999) 0.73 0.21 29.11
Kwak et al. (2002) 1.11 0.26 23.63
Dinh et al.(2011) 0.89 0.30 33.63
Comparison of predictions
32
 It is concluded that the proposed model of Narayanan &
Darwish (1987) is in good agreement with the test results. It
provides better results than seven different predictions, when
compared with test data for beams without stirrups.
CONCLUSION
33
References
•ACI-ASCE Committee 426 (1973), "The Shear Strength of Reinforced Concrete Members," ACI Journal Proceedings,
70(7), 471- 473.
•ACI Committee 318 (2008), “Building Code Requirements for Reinforced Concrete and Commentary,” American
Concrete Institute, Detroit, MI, USA, 465 pp.
•ACI Committee 318 (2011), “Building Code Requirements for Reinforced Concrete and Commentary,” American
Concrete Institute, Detroit, MI, USA, 487 pp.
•Adebar, P., Mindess, S., St-Pierre, D., and Olund, B. (1997), “Shear Tests of Fibre Concrete Beams Without Stirrups,”
ACI Structural Journal, 94(1), 68–76.
•Al-Ta’an, S.A., and Al-Feel, J.R. (1990), “Evaluation of Shear Strength of Fibre Reinforced Concrete Beams. Cement
Concrete Composites, 12(2), 87–94.
•Angelakos, D., Bentz, E.C., and Collins, M.P. (2001), “Effect of Concrete Strength and Minimum Stirrups on Shear
Strength of Large Members,” 98(3), 290-300.
•ASCE-ACI Joint Committee 445 (1999), “Recent Approaches to Shear Design of Structural Concrete,” Journal of Structural Division,
ASCE, 124 (12), pp.1375-1417.
•Ashour, S. A., Hasanain, G. S., and Wafa, F. F. (1992), "Shear Behaviour of High-Strength Fiber Reinforced Concrete Beams," ACI
Structural Journal, 89(2), 176-184.
34
•Brown, M. D., Bayrak, O., and Jirsa, J. O. (2006), "Design for Shear Based on Loading Conditions," ACI Structural Journal, 103(4),
541-550.
•Campione, G., La Mendola, L., and Zingone, G. (2000), “Flexural-Shear Interaction in Light Strength Fibre Reinforced Concrete
Beams. In, Rossi P, Chanvillard G, Editors. Fibre-Reinforced Concretes (FRC) BEFIB’. Proc of the Fight Int Rilem Symp, Lyon,
France, 451– 460
•Dinh, H.H. (2009), “ Shear Behaviour of Steel Fiber Reinforced Concrete Beams without Stirrup Reinforcement,” Doctoral Dissertation,
Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 285 pp.
•Dinh, H.H., Parra-Montesinos, G.J., and Wight, J.K., (2010), “Shear Behaviour of Steel Fibre-Reinforced Concrete Beams Without
Stirrup Reinforcement,” ACI Structural Journal, 107(5), 597-606.
•Di Prisco, M., and Romero, J.A. (1996), “Diagonal Shear in Thin-Webbed Reinforced Concrete Beams, Fibre and Stirrup Roles at Shear
Collapse. Magazine of Concrete Research, 48(174), 59–76.
•El-Niema, E.I. (1991), “Reinforced concrete beams with steel fibers under shear,” ACI Structural Journal, 88(2), 178–83.
•Furlan, Jr.S., and de Hanai, J.B. (1997), “Shear Behaviour of Fiber Reinforced Concrete Beams”. Cement and Concrete Composite,
19(4), 359–66.
•Iguro, M., Shioya, T., Nojiri, Y., and Akiyama, H. (1984), “Experimental Studies on Shear Strength of Large Reinforced Concrete
Beams under Uniformly Distributed Load,” Translation from Proceeding of JSCE, 1(345), 18 pp.
•Johnson, M.K., and Ramirez, J.A. (1989), “Minimum Shear Reinforcement in Beams with Higher Strength Concrete,” ACI Structural
Journal, 86(4), 376-382.
•Kang, TH-K., Kim, W., Kwak, Y.K., and Hong, S.G. (2011), “Shear Testing of Steel Fibre-Reinforced Lightweight Concrete Beams
without Web Reinforcement,” ACI Structural Journal, 108(5), 553-561.
•Kani, G. N. J. (1967), “How Safe Are Our Large Concrete Beams?” ACI Journal Proceedings, 64(3), 128-141.
35
•Khuntia, M., Stojadinovic, B., and Goel, S. C. (1999), “Shear Strength of Normal and High-Strength Fiber Reinforced Concrete Beams
without Stirrups,” ACI Structural Journal, 96(2), 282–289.
•Kwak, Y.-K., Eberhard, M. O., Kim, W.-S., and Kim, J. (2002), "Shear Strength of Steel Fiber-reinforced Concrete Beams without
Stirrups," ACI Structural Journal, 99(4), 530-538.
•Leonhardt, F., and Walther, R. (1964), “The Stuttgart Shear Tests, 1961,” Translation No. 111, Cement and Concrete Association, London,
134 pp.
•Lee, J. and Kim, U. (2008), “Effect of Longitudinal Tensile Reinforcement Ratio and Shear Span-Depth Ratio on Minimum Shear
Reinforcement in Beams,” ACI Structural Journal, 105(2), 134-144.
•Li, V. C. (2000), “Large Volume, High Performance Application of Fibers in Civil Engineering,” Journal of Applied Polymer Science, 83,
660-686
•Mansur, M. A., Ong, K. C. G., and Paramasivam, P. (1986), "Shear Strength of Fibrous Concrete Beams without Stirrups," ASCE Journal
of Structural Engineering, 112(9), 2066-2079.
•Minelli, F. and Plizzari, G.A. (2013), “On the Effectiveness of Steel Fibers as Shear Reinforcement,” ACI Structural Journal, 110(3), 379-
38
•9. Narayanan, R., and Darwish, I. Y. S. (1987), "Use of Steel Fibers as Shear Reinforcement." ACI Structural Journal, 84(3), 216-227.
•Noghabai, K. (2000), “Beams of Fibrous Concrete in Shear and Bending, Experiment and Model,” Journal of Structural Engineering,
ASCE, 126(2), 243–251.
•Oh, B.H., Lim, D.H., Yoo, S.W., and Kim, E.S. (1998), “Shear Behaviour and Shear Analysis of Reinforced Concrete Beams Containing
Steel Fibres,” Magazine of Concrete Research, 50(4), 283–91.
•Ozcebe, G. Ersoy, U. and Tankut, T. (1999), “Evaluation of Minimum Shear Reinforcement Requirements for Higher Strength Concrete,”
ACI Structural Journal 96(3), 361-368.
Thank You
36
37
38
Steel fibres as minimum shear reinforcement
39
Normalized shear stress at failure versus fiber volume fraction.
(Adopted from Parra-Montesinos et al. 2006)
40
41
parameter Effect Investigator
d [Kani 1967] shear stress at failure decreases with an
increase in the member depth
Ashour et al. 1992
and Swamy et al.
1993
It is generally concluded that a higher ratio
of tensile reinforcement results in a higher
shear stress at failure because of increased
dowel action and a deeper compression zone
Vf Adebar et al.
[1997]
concluded with at low fibre volumes, the increase
in shear strength was proportional to the amount
of fibre, but the rate of increase was reduced at
higher fibre volumes.
[Kwak et al.
2002].
Generally, an increase in SFRC compressive
strength leads to an increase in beam shear
strength
a/d Ashour et al.
[1992]
observed that the beam shear strength increases
rapidly when the shear span-to-effective depth
ratio is less than 2.0.

,
cf

More Related Content

What's hot

2013session4 3
2013session4 32013session4 3
2013session4 3acvq
 
Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...
Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...
Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...Marshal Fulford
 
1018 Steel and PLA Tensile Test and Hardness Report
1018 Steel and PLA Tensile Test and Hardness Report1018 Steel and PLA Tensile Test and Hardness Report
1018 Steel and PLA Tensile Test and Hardness ReportTobyBarrons
 
Lab report engineering materials lab - tensile test
Lab report   engineering materials lab - tensile testLab report   engineering materials lab - tensile test
Lab report engineering materials lab - tensile testMuhammad Yossi
 
Universal testing machines
Universal testing machinesUniversal testing machines
Universal testing machinesShivam Tiwari
 
Design of MEMS capacitive accelerometer with different perforated proof- mass...
Design of MEMS capacitive accelerometer with different perforated proof- mass...Design of MEMS capacitive accelerometer with different perforated proof- mass...
Design of MEMS capacitive accelerometer with different perforated proof- mass...IOSR Journals
 
Torsion testing experiment (instructor)
Torsion testing experiment (instructor)Torsion testing experiment (instructor)
Torsion testing experiment (instructor)Sulaiman Dawood Barry
 
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...JudithLandrys
 
TENSILE TEST REPORT
TENSILE TEST REPORTTENSILE TEST REPORT
TENSILE TEST REPORTmusadoto
 
Group presentation for tensile testing a4
Group presentation for tensile testing   a4Group presentation for tensile testing   a4
Group presentation for tensile testing a4Prajwal Vc
 
Mechanics of solids_1_lab_report
Mechanics of solids_1_lab_report Mechanics of solids_1_lab_report
Mechanics of solids_1_lab_report HammadShoaib4
 
Tensile test newyh
Tensile test newyhTensile test newyh
Tensile test newyhYanie Hadzir
 
91751123 solucionario-capitulo-13-paul-e-tippens
91751123 solucionario-capitulo-13-paul-e-tippens91751123 solucionario-capitulo-13-paul-e-tippens
91751123 solucionario-capitulo-13-paul-e-tippensMaitriSamayoa
 
Effect of Membrane Switch Construction on Metal Domes
Effect of Membrane Switch Construction on Metal DomesEffect of Membrane Switch Construction on Metal Domes
Effect of Membrane Switch Construction on Metal DomesPhil Heft
 

What's hot (20)

Tensile test
Tensile testTensile test
Tensile test
 
2013session4 3
2013session4 32013session4 3
2013session4 3
 
Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...
Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...
Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...
 
exp no.1 tensile test
exp no.1 tensile test  exp no.1 tensile test
exp no.1 tensile test
 
Tensile testing experiment
Tensile testing experimentTensile testing experiment
Tensile testing experiment
 
1018 Steel and PLA Tensile Test and Hardness Report
1018 Steel and PLA Tensile Test and Hardness Report1018 Steel and PLA Tensile Test and Hardness Report
1018 Steel and PLA Tensile Test and Hardness Report
 
Lab report engineering materials lab - tensile test
Lab report   engineering materials lab - tensile testLab report   engineering materials lab - tensile test
Lab report engineering materials lab - tensile test
 
Universal testing machines
Universal testing machinesUniversal testing machines
Universal testing machines
 
Tensile
TensileTensile
Tensile
 
3 bending test
3  bending test3  bending test
3 bending test
 
Design of MEMS capacitive accelerometer with different perforated proof- mass...
Design of MEMS capacitive accelerometer with different perforated proof- mass...Design of MEMS capacitive accelerometer with different perforated proof- mass...
Design of MEMS capacitive accelerometer with different perforated proof- mass...
 
Torsion testing experiment (instructor)
Torsion testing experiment (instructor)Torsion testing experiment (instructor)
Torsion testing experiment (instructor)
 
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
 
TENSILE TEST REPORT
TENSILE TEST REPORTTENSILE TEST REPORT
TENSILE TEST REPORT
 
Group presentation for tensile testing a4
Group presentation for tensile testing   a4Group presentation for tensile testing   a4
Group presentation for tensile testing a4
 
Bo Shan_Glubam and Concrete composite beams
Bo Shan_Glubam and Concrete composite beamsBo Shan_Glubam and Concrete composite beams
Bo Shan_Glubam and Concrete composite beams
 
Mechanics of solids_1_lab_report
Mechanics of solids_1_lab_report Mechanics of solids_1_lab_report
Mechanics of solids_1_lab_report
 
Tensile test newyh
Tensile test newyhTensile test newyh
Tensile test newyh
 
91751123 solucionario-capitulo-13-paul-e-tippens
91751123 solucionario-capitulo-13-paul-e-tippens91751123 solucionario-capitulo-13-paul-e-tippens
91751123 solucionario-capitulo-13-paul-e-tippens
 
Effect of Membrane Switch Construction on Metal Domes
Effect of Membrane Switch Construction on Metal DomesEffect of Membrane Switch Construction on Metal Domes
Effect of Membrane Switch Construction on Metal Domes
 

Viewers also liked

Reinforced concrete beams
Reinforced concrete beamsReinforced concrete beams
Reinforced concrete beamsShivkumar Yadav
 
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionCE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionFawad Najam
 
Building Failures and its Causes- Theory of structures
Building Failures and its Causes- Theory of structuresBuilding Failures and its Causes- Theory of structures
Building Failures and its Causes- Theory of structuresRithika Ravishankar
 
Top 10 bridge interview questions with answers
Top 10 bridge interview questions with answersTop 10 bridge interview questions with answers
Top 10 bridge interview questions with answerslombardnick
 
FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE SHEAR CAPACITY OF RC ...
FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE SHEAR CAPACITY OF RC ...FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE SHEAR CAPACITY OF RC ...
FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE SHEAR CAPACITY OF RC ...Md. Shahadat Hossain
 
Earthquake tip no.22
Earthquake tip no.22Earthquake tip no.22
Earthquake tip no.22ketan Abhani
 
seismic behaviour of beam column joint
seismic behaviour of beam column jointseismic behaviour of beam column joint
seismic behaviour of beam column jointsaurabh gehlod
 
rectangular and section analysis in bending and shear
rectangular and section analysis in bending and shearrectangular and section analysis in bending and shear
rectangular and section analysis in bending and shearqueripan
 
Columns and struts
Columns and strutsColumns and struts
Columns and strutsnell0511
 
Tuyển tập các bài toán giải sẵn môn sức bền vật liệu đặng viết cương. tập 1....
Tuyển tập các bài toán giải sẵn môn sức bền vật liệu  đặng viết cương. tập 1....Tuyển tập các bài toán giải sẵn môn sức bền vật liệu  đặng viết cương. tập 1....
Tuyển tập các bài toán giải sẵn môn sức bền vật liệu đặng viết cương. tập 1....haychotoi
 
Design of compression members
Design of compression membersDesign of compression members
Design of compression membersSabna Thilakan
 
fibre reinforced concrete
fibre reinforced concretefibre reinforced concrete
fibre reinforced concreteVenkatesh Ca
 
ppt on high performance concrete (steel fibre)
ppt on high performance concrete (steel fibre)ppt on high performance concrete (steel fibre)
ppt on high performance concrete (steel fibre)9597639444
 
fiber reinforced concrete
fiber reinforced concretefiber reinforced concrete
fiber reinforced concretegopichand's
 
Singly Reinforce Concrete
Singly Reinforce ConcreteSingly Reinforce Concrete
Singly Reinforce Concreteguest00bb06
 
Steel structures practical_design_studies_mac_ginley_2nd_ed
Steel structures practical_design_studies_mac_ginley_2nd_edSteel structures practical_design_studies_mac_ginley_2nd_ed
Steel structures practical_design_studies_mac_ginley_2nd_edThomas Britto
 
Modes of failure of retaining walls
Modes of failure of retaining wallsModes of failure of retaining walls
Modes of failure of retaining wallsRitesh Chinchawade
 

Viewers also liked (20)

Reinforced concrete beams
Reinforced concrete beamsReinforced concrete beams
Reinforced concrete beams
 
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionCE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
 
Building Failures and its Causes- Theory of structures
Building Failures and its Causes- Theory of structuresBuilding Failures and its Causes- Theory of structures
Building Failures and its Causes- Theory of structures
 
Presentarion
PresentarionPresentarion
Presentarion
 
Top 10 bridge interview questions with answers
Top 10 bridge interview questions with answersTop 10 bridge interview questions with answers
Top 10 bridge interview questions with answers
 
FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE SHEAR CAPACITY OF RC ...
FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE SHEAR CAPACITY OF RC ...FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE SHEAR CAPACITY OF RC ...
FINITE ELEMENT MODELING, ANALYSIS AND VALIDATION OF THE SHEAR CAPACITY OF RC ...
 
Rc04 bending2
Rc04 bending2Rc04 bending2
Rc04 bending2
 
Earthquake tip no.22
Earthquake tip no.22Earthquake tip no.22
Earthquake tip no.22
 
seismic behaviour of beam column joint
seismic behaviour of beam column jointseismic behaviour of beam column joint
seismic behaviour of beam column joint
 
rectangular and section analysis in bending and shear
rectangular and section analysis in bending and shearrectangular and section analysis in bending and shear
rectangular and section analysis in bending and shear
 
Columns and struts
Columns and strutsColumns and struts
Columns and struts
 
Tuyển tập các bài toán giải sẵn môn sức bền vật liệu đặng viết cương. tập 1....
Tuyển tập các bài toán giải sẵn môn sức bền vật liệu  đặng viết cương. tập 1....Tuyển tập các bài toán giải sẵn môn sức bền vật liệu  đặng viết cương. tập 1....
Tuyển tập các bài toán giải sẵn môn sức bền vật liệu đặng viết cương. tập 1....
 
Design of compression members
Design of compression membersDesign of compression members
Design of compression members
 
fibre reinforced concrete
fibre reinforced concretefibre reinforced concrete
fibre reinforced concrete
 
ppt on high performance concrete (steel fibre)
ppt on high performance concrete (steel fibre)ppt on high performance concrete (steel fibre)
ppt on high performance concrete (steel fibre)
 
fiber reinforced concrete
fiber reinforced concretefiber reinforced concrete
fiber reinforced concrete
 
Singly Reinforce Concrete
Singly Reinforce ConcreteSingly Reinforce Concrete
Singly Reinforce Concrete
 
Steel structures practical_design_studies_mac_ginley_2nd_ed
Steel structures practical_design_studies_mac_ginley_2nd_edSteel structures practical_design_studies_mac_ginley_2nd_ed
Steel structures practical_design_studies_mac_ginley_2nd_ed
 
Fibre Reinforced Concrete
Fibre Reinforced ConcreteFibre Reinforced Concrete
Fibre Reinforced Concrete
 
Modes of failure of retaining walls
Modes of failure of retaining wallsModes of failure of retaining walls
Modes of failure of retaining walls
 

Similar to Final pp COMPARATIVE INVESTIGATION ON SHEAR STRENGTH PREDICTION MODELS FOR SFRC MEMBERSt

Established a relationship between weld splice length and diameter of the rei...
Established a relationship between weld splice length and diameter of the rei...Established a relationship between weld splice length and diameter of the rei...
Established a relationship between weld splice length and diameter of the rei...NUR
 
Ping Du's Research Highlight
Ping Du's Research HighlightPing Du's Research Highlight
Ping Du's Research HighlightPing Du
 
Consolidated Drained (CD) Triaxial Test.pdf
Consolidated Drained (CD) Triaxial Test.pdfConsolidated Drained (CD) Triaxial Test.pdf
Consolidated Drained (CD) Triaxial Test.pdfA K
 
Page 6 of 8Engineering Materials ScienceMetals LabLEEDS .docx
Page 6 of 8Engineering Materials ScienceMetals LabLEEDS .docxPage 6 of 8Engineering Materials ScienceMetals LabLEEDS .docx
Page 6 of 8Engineering Materials ScienceMetals LabLEEDS .docxbunyansaturnina
 
Laterite Concrete
Laterite ConcreteLaterite Concrete
Laterite ConcreteNikilq Cb
 
Stub_Column_Proposal_report_9_sept_2016
Stub_Column_Proposal_report_9_sept_2016Stub_Column_Proposal_report_9_sept_2016
Stub_Column_Proposal_report_9_sept_2016Bharath Surendra
 
Project report on simulink analysis of tool chtter vibration on lathe.
Project report on simulink analysis of tool chtter vibration on lathe.Project report on simulink analysis of tool chtter vibration on lathe.
Project report on simulink analysis of tool chtter vibration on lathe.Devanshu Yadav
 
Thesis Presentation presentation
Thesis Presentation presentationThesis Presentation presentation
Thesis Presentation presentationTausif Patel
 
2229198m_Merchant_ENG5059P_Thesis_2016
2229198m_Merchant_ENG5059P_Thesis_20162229198m_Merchant_ENG5059P_Thesis_2016
2229198m_Merchant_ENG5059P_Thesis_2016Laura Merchant
 
Flexural Fatigue of Steel SAE 1040 and GFRP Automotive Anti Roll Bars
Flexural Fatigue of  Steel SAE 1040 and  GFRP Automotive Anti Roll BarsFlexural Fatigue of  Steel SAE 1040 and  GFRP Automotive Anti Roll Bars
Flexural Fatigue of Steel SAE 1040 and GFRP Automotive Anti Roll BarsPadmanabhan Krishnan
 
Spot welding basic parameters setting - basic calculations / equations
Spot welding basic parameters setting  - basic calculations / equationsSpot welding basic parameters setting  - basic calculations / equations
Spot welding basic parameters setting - basic calculations / equationsRashidi Asari
 
tribology presentation Final2 [Autosaved]
tribology presentation Final2 [Autosaved]tribology presentation Final2 [Autosaved]
tribology presentation Final2 [Autosaved]Atul Verma
 
Sachpazis_PILE Analysis_Design to EC2
Sachpazis_PILE Analysis_Design to EC2Sachpazis_PILE Analysis_Design to EC2
Sachpazis_PILE Analysis_Design to EC2Dr.Costas Sachpazis
 
XrayStress&CapillaryOptics_Janting
XrayStress&CapillaryOptics_JantingXrayStress&CapillaryOptics_Janting
XrayStress&CapillaryOptics_JantingJakob Janting
 
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSUMARDIONO .
 

Similar to Final pp COMPARATIVE INVESTIGATION ON SHEAR STRENGTH PREDICTION MODELS FOR SFRC MEMBERSt (20)

Established a relationship between weld splice length and diameter of the rei...
Established a relationship between weld splice length and diameter of the rei...Established a relationship between weld splice length and diameter of the rei...
Established a relationship between weld splice length and diameter of the rei...
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
Ping Du's Research Highlight
Ping Du's Research HighlightPing Du's Research Highlight
Ping Du's Research Highlight
 
Consolidated Drained (CD) Triaxial Test.pdf
Consolidated Drained (CD) Triaxial Test.pdfConsolidated Drained (CD) Triaxial Test.pdf
Consolidated Drained (CD) Triaxial Test.pdf
 
Page 6 of 8Engineering Materials ScienceMetals LabLEEDS .docx
Page 6 of 8Engineering Materials ScienceMetals LabLEEDS .docxPage 6 of 8Engineering Materials ScienceMetals LabLEEDS .docx
Page 6 of 8Engineering Materials ScienceMetals LabLEEDS .docx
 
Laterite Concrete
Laterite ConcreteLaterite Concrete
Laterite Concrete
 
10180 toughness of metals
10180 toughness of metals10180 toughness of metals
10180 toughness of metals
 
Solid mechanics 1 BDA 10903
Solid mechanics 1 BDA 10903Solid mechanics 1 BDA 10903
Solid mechanics 1 BDA 10903
 
Stub_Column_Proposal_report_9_sept_2016
Stub_Column_Proposal_report_9_sept_2016Stub_Column_Proposal_report_9_sept_2016
Stub_Column_Proposal_report_9_sept_2016
 
G012334650
G012334650G012334650
G012334650
 
Project report on simulink analysis of tool chtter vibration on lathe.
Project report on simulink analysis of tool chtter vibration on lathe.Project report on simulink analysis of tool chtter vibration on lathe.
Project report on simulink analysis of tool chtter vibration on lathe.
 
Thesis Presentation presentation
Thesis Presentation presentationThesis Presentation presentation
Thesis Presentation presentation
 
2229198m_Merchant_ENG5059P_Thesis_2016
2229198m_Merchant_ENG5059P_Thesis_20162229198m_Merchant_ENG5059P_Thesis_2016
2229198m_Merchant_ENG5059P_Thesis_2016
 
Flexural Fatigue of Steel SAE 1040 and GFRP Automotive Anti Roll Bars
Flexural Fatigue of  Steel SAE 1040 and  GFRP Automotive Anti Roll BarsFlexural Fatigue of  Steel SAE 1040 and  GFRP Automotive Anti Roll Bars
Flexural Fatigue of Steel SAE 1040 and GFRP Automotive Anti Roll Bars
 
Spot welding basic parameters setting - basic calculations / equations
Spot welding basic parameters setting  - basic calculations / equationsSpot welding basic parameters setting  - basic calculations / equations
Spot welding basic parameters setting - basic calculations / equations
 
tribology presentation Final2 [Autosaved]
tribology presentation Final2 [Autosaved]tribology presentation Final2 [Autosaved]
tribology presentation Final2 [Autosaved]
 
G05813848
G05813848G05813848
G05813848
 
Sachpazis_PILE Analysis_Design to EC2
Sachpazis_PILE Analysis_Design to EC2Sachpazis_PILE Analysis_Design to EC2
Sachpazis_PILE Analysis_Design to EC2
 
XrayStress&CapillaryOptics_Janting
XrayStress&CapillaryOptics_JantingXrayStress&CapillaryOptics_Janting
XrayStress&CapillaryOptics_Janting
 
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
 

Recently uploaded

Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesRAJNEESHKUMAR341697
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 

Recently uploaded (20)

Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 

Final pp COMPARATIVE INVESTIGATION ON SHEAR STRENGTH PREDICTION MODELS FOR SFRC MEMBERSt

  • 1.  Study of various analytical models for prediction of shear strength of SFRC beams.  Shear strength predictions using various models available in literature.  comparative study of various models 1 Objective of the thesis
  • 3. 3 Fig.Beam failure modes (from ACI-ASCE Committee 426, 1973) Types of Failure In Beam
  • 4. Behavior of beam in Shear 4 Fig.Typical example of Shear tension failure of reinforced concrete beam. (Nilson 2005)
  • 5. Type of steel fibers 5 Fig.Types of steel fibres (Dinh,2010)
  • 6. 6 Steel Fibrous Reinforced Concrete (SFRC) Enhance shear resistance and ductility in reinforced concrete beams. Enhance post-cracking strength of concrete. Uniform cracking distribution.
  • 7. Shear strength prediction models bd a d kfVu ct 4 1        7 Sharma (1986) Where, k = 2/3, fct - Split cylinder strength of SFRC a - Shear span. d - Effective depth of beam ' 0.79 ( )ct cf f MPa If fct is unknown, then Fig. a/d, Shear span to depth ratio f’c - crushing strength of concrete
  • 8. ' 0.16 17.2 tn uc Vd V f bd M              8 maxMM d a d V V     0.41tu F  , τ -the fiber-matrix bond strength was taken to be 4.15 σtu - the post-cracking tensile strength. Mansur et al. (1986) F-Fiber factor max / 2 2 MM a for a d V V    max / 2 MM d for a d V V    Where f f f V D L F 
  • 9. e = 1.0 for a/d > 2.8 and e = 2.8d/a when a/d ≤ 2.8; fspfc=computed value of spited cylinder strength of fiber concrete 9  MPav a d fevu bspfc              8024.0 FCB F f f cu spfc    20 vb - fiber pullout strength Narayanan & Darwish (1987) B= 0.7 C = 1 fcu= cube compressive strength where
  • 10. Ashour(1992)   )()711.2( 3/13 , MPaFfv a d cu  10   )(25.0167.0 , MPafFev cu  5.2/ dafor 5.2/ dafor
  • 11. Khuntia et al. (1999) 11  0.167 0.25 'n cV e F f bd  Where, e = 1.0 for a/d > 2.5 and e = 2.5d/a when a/d ≤ 2.5.
  • 12. Dinh et al.(2011) n cc FRCV V V  12 Where, c- Depth of compression zone 1 3 10.85k k  (σt )avg - the average tensile stress of SFRC Where, β1 = 0.85 for fc ’ ≤ 27.6 MPa and β1 = 0.65 for fc ’≥ 55.1 MPa, yScc fAV 13.0 )(cot)()(  ancdbV avgtFRC  bfkk fA c c ys , 31  )()0075.0*(*5.1*8.0)( 4/1 MPaVfavgt 
  • 13. 13 Kwak et al.(2002) bdv a d feV bspfcn ]8.0)(7.3[ 3/1 3/2        
  • 14. BEAM DATA TAKEN FROM FOLLOWING INVESTIGATORS • Swamy (1985) • Mansur (1986) • Lim (1987) • Ashour et al. (1989) • Li (1992) • Schantz (1993) • Swamy (1993) • Tan (1993) • Imam et al. (1998) • Casanov and Rossi (1999) • Noghabai (2000) • Kwak (2002) • Rosenbusch (2002) • Cucchiara (2004) • Parra-Montesinos (2006) • Dinh (2011) • Jain & singh (2013) 14
  • 15. 15 Table A-1 : Details of beams from various investigators Investigator Beam ID b (mm) h (mm) d (mm) a/d ρ (%) fy (MPa) Fiber type Lf (mm) Df (mm) Lf/Df Vf (%) f'c (MPa) vu(exp.) (MPa) Swamy (1985) B52 175 250 210 4.5 4.00 415 C 50 0.5 100 .4 35.5 2.16 B53 175 250 210 4.5 4.00 415 C 50 0.5 100 .8 37.4 3.1 B54 175 250 210 4.5 4.00 415 C 50 0.5 100 1.2 39.8 3.13 B55 175 250 210 4.5 3.05 415 C 50 0.5 100 .8 38.2 3.21 B56 175 250 210 4.5 1.95 415 C 50 0.5 100 .8 41.8 2.62 B63R 175 250 210 4.5 1.95 415 C 50 0.5 100 .8 35.1 2.05
  • 16. 16 R² = 0.0311 150 250 350 450 550 650 0.00 3.50 7.00 10.50 14.00 Overalldepth,h(mm) Experimental shear strength, MPa Fig. Effect of depth of beam on experimental shear strength Effect of various parameters on shear strength of SFRC
  • 17. 17 R² = 0.1853 1 2 3 4 5 6 0.00 3.50 7.00 10.50 14.00 Shearspantodepthratio,a/d Experimental shear strength, MPa fig, Effect of (a/d) ratio on experimental shear strength
  • 18. 18 R² = 0.1369 0 1 2 3 4 5 0.00 3.50 7.00 10.50 14.00 Flexuralreinforcementratio,(%) Experimental shear strength, MPa Fig. : Effect of flexural reinforcement ratio on experimental shear strength
  • 19. 19 R² = 0.3051 0 20 40 60 80 100 120 0.00 3.50 7.00 10.50 14.00 Compressivestrength,f'c(MPa) Experimental shear strength, MPa Fig. Effect of compressive strength on experimental shear strength
  • 20. 20 R² = 0.0112 50 60 70 80 90 100 0.00 3.50 7.00 10.50 14.00 Aspectratio,Lf/Df Experimental shear strength, MPa Fig. : Effect of aspect ratio on experimental shear strength
  • 21. 21 R² = 0.0349 0.0 0.5 1.0 1.5 2.0 0.00 3.50 7.00 10.50 14.00 Volumefraction,Vf(%) Experimental shear strength, MPa Fig. : Effect of volume fraction of steel fibers on experimental shear strength
  • 23. GRAPHICAL REPRESENTATION 23 0.00 3.50 7.00 10.50 14.00 0.00 3.50 7.00 10.50 14.00 Experimentshearstrength(MPa) Proposed shear strength (MPa) Sharma (1986) Swamy (1985) Mansur (1986) Lim (1987) Ashour et al. (1989) Li (1992) Schantz (1993) Swamy (1993) Tan (1993) Imam et al. (1998) Casanov and Rossi (1999) Noghabai (2000) Kwak (2002) Rosenbusch (2002) Cucchiara (2004) Parra-Montesinos (2006) Dinh (2011) Jain & Singh (2013) Fig. : Proposed shear strength values by Sharma (1986) versus Experimental shear strength
  • 24. 24 0.00 3.50 7.00 10.50 14.00 0.00 3.50 7.00 10.50 14.00 Experimentshearstrength(MPa) Proposed shear strength (MPa) Swamy (1985) Mansur (1986) Lim (1987) Ashour et al. (1989) Li (1992) Schantz (1993) Swamy (1993) Tan (1993) Imam et al. (1998) Casanov and Rossi (1999) Noghabai (2000) Kwak (2002) Rosenbusch (2002) Cucchiara (2004) Parra-Montesinos (2006) Dinh (2011) Jain & Singh (2013) Masur et al. (1986) Fig. Proposed shear strength values by Mansur et al. (1986) versus Experimental shear strength
  • 25. 25 0.00 3.50 7.00 10.50 14.00 0.00 3.50 7.00 10.50 14.00 Experimentshearstrength(MPa) Proposed shear strength (MPa) Narayanan & Darwish (1987) Swamy (1985) Mansur (1986) Lim (1987) Ashour et al. (1989) Li (1992) Schantz (1993) Swamy (1993) Tan (1993) Imam et al. (1998) Casanov and Rossi (1999) Noghabai (2000) Kwak (2002) Rosenbusch (2002) Cucchiara (2004) Parra-Montesinos (2006) Dinh (2011) Jain & Singh (2013) Fig. Proposed shear strength values by Narayanan and Darwish (1987) versus Experimental shear strength
  • 26. 26 0.00 3.50 7.00 10.50 14.00 0.00 3.50 7.00 10.50 14.00 Experimentshearstrength(MPa) Proposed shear strength (MPa) Khuntia et al. (1999) Swamy (1985) Mansur (1986) Lim (1987) Ashour et al. (1989) Li (1992) Schantz (1993) Swamy (1993) Tan (1993) Imam et al. (1998) Casanov and Rossi (1999) Noghabai (2000) Kwak (2002) Rosenbusch (2002) Cucchiara (2004) Parra-Montesinos (2006) Dinh (2011) Jain & Singh (2013) Fig. : Proposed shear strength values by Khuntia et al. (1999) versus Experimental shear strength
  • 27. 27 0.00 3.50 7.00 10.50 14.00 0.00 3.50 7.00 10.50 14.00 Experimentshearstrength(MPa) Proposed shear strength (MPa) Kwak et al. (2002) Swamy (1985) Mansur (1986) Lim (1987) Ashour et al. (1989) Li (1992) Schantz (1993) Swamy (1993) Tan (1993) Imam et al. (1998) Casanov and Rossi (1999) Noghabai (2000) Kwak (2002) Rosenbusch (2002) Cucchiara (2004) Parra-Montesinos (2006) Dinh (2011) Jain & Singh (2013) Fig.: Proposed shear strength values by Kwak et al. (2002) versus Experimental shear strength
  • 28. 28 0.00 3.50 7.00 10.50 14.00 0.00 3.50 7.00 10.50 14.00 Experimentshearstrength(MPa) Proposed shear strength (MPa) Dinh et al. (2011) Swamy (1985) Mansur (1986) Lim (1987) Ashour et al. (1989) Li (1992) Schantz (1993) Swamy (1993) Tan (1993) Imam et al. (1998) Casanov and Rossi (1999) Noghabai (2000) Kwak (2002) Rosenbusch (2002) Cucchiara (2004) Parra-Montesinos (2006) Dinh (2011) Jain & Singh (2013) Fig. : Proposed shear strength values by Dinh et al. (2011) versus Experimental shear strength
  • 29. 29 0.00 3.50 7.00 10.50 14.00 0.00 3.50 7.00 10.50 14.00 Experimentshearstrength(MPa) Proposed shear strength (MPa) Ashour et al. (1992) Swamy (1985) Mansur (1986) Lim (1987) Ashour et al. (1989) Li (1992) Schantz (1993) Swamy (1993) Tan (1993) Imam et al. (1998) Casanov and Rossi (1999) Noghabai (2000) Kwak (2002) Rosenbusch (2002) Cucchiara (2004) Parra-Montesinos (2006) Dinh (2011) Jain & Singh (2013) Fig. : Proposed shear strength values by Ashour et al. (1992) versus Experimental shear strength
  • 30. 30 Table A-2 : Shear strength predictions using available models in literature Investigator Beam ID vu(exp.) (MPa) vu(the.)/vu(exp.) Sharma (1986) Mansur et. al. (1986) Narayanan & Darwish (1987) Ashour et. al.(1992) Khuntia et. al.(1999) Kwak et al. (2002) Dinh et al.(2011) Swamy (1985) B52 2.16 1.00 0.90 0.96 0.87 0.67 1.01 1.18 B53 3.1 0.71 0.86 0.86 0.76 0.63 0.88 0.86 B54 3.13 0.73 1.10 1.04 0.90 0.79 1.03 0.88 B55 3.21 0.70 0.82 0.78 0.67 0.61 0.80 0.75 B56 2.62 0.89 1.01 0.91 0.72 0.78 0.91 0.81 B63R 2.05 1.05 1.19 1.11 0.89 0.92 1.11 1.00
  • 31. 31 Investigators MV SD COV Proposedshearstrength/Experimentshearstrength Sharma (1986) 0.92 0.29 31.58 Mansur et al. (1986) 0.89 0.31 35.25 Narayanan & Darwish (1987) 0.97 0.24 24.62 Ashour et al.(1992) 0.93 0.29 30.96 Khuntia et al.(1999) 0.73 0.21 29.11 Kwak et al. (2002) 1.11 0.26 23.63 Dinh et al.(2011) 0.89 0.30 33.63 Comparison of predictions
  • 32. 32  It is concluded that the proposed model of Narayanan & Darwish (1987) is in good agreement with the test results. It provides better results than seven different predictions, when compared with test data for beams without stirrups. CONCLUSION
  • 33. 33 References •ACI-ASCE Committee 426 (1973), "The Shear Strength of Reinforced Concrete Members," ACI Journal Proceedings, 70(7), 471- 473. •ACI Committee 318 (2008), “Building Code Requirements for Reinforced Concrete and Commentary,” American Concrete Institute, Detroit, MI, USA, 465 pp. •ACI Committee 318 (2011), “Building Code Requirements for Reinforced Concrete and Commentary,” American Concrete Institute, Detroit, MI, USA, 487 pp. •Adebar, P., Mindess, S., St-Pierre, D., and Olund, B. (1997), “Shear Tests of Fibre Concrete Beams Without Stirrups,” ACI Structural Journal, 94(1), 68–76. •Al-Ta’an, S.A., and Al-Feel, J.R. (1990), “Evaluation of Shear Strength of Fibre Reinforced Concrete Beams. Cement Concrete Composites, 12(2), 87–94. •Angelakos, D., Bentz, E.C., and Collins, M.P. (2001), “Effect of Concrete Strength and Minimum Stirrups on Shear Strength of Large Members,” 98(3), 290-300. •ASCE-ACI Joint Committee 445 (1999), “Recent Approaches to Shear Design of Structural Concrete,” Journal of Structural Division, ASCE, 124 (12), pp.1375-1417. •Ashour, S. A., Hasanain, G. S., and Wafa, F. F. (1992), "Shear Behaviour of High-Strength Fiber Reinforced Concrete Beams," ACI Structural Journal, 89(2), 176-184.
  • 34. 34 •Brown, M. D., Bayrak, O., and Jirsa, J. O. (2006), "Design for Shear Based on Loading Conditions," ACI Structural Journal, 103(4), 541-550. •Campione, G., La Mendola, L., and Zingone, G. (2000), “Flexural-Shear Interaction in Light Strength Fibre Reinforced Concrete Beams. In, Rossi P, Chanvillard G, Editors. Fibre-Reinforced Concretes (FRC) BEFIB’. Proc of the Fight Int Rilem Symp, Lyon, France, 451– 460 •Dinh, H.H. (2009), “ Shear Behaviour of Steel Fiber Reinforced Concrete Beams without Stirrup Reinforcement,” Doctoral Dissertation, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 285 pp. •Dinh, H.H., Parra-Montesinos, G.J., and Wight, J.K., (2010), “Shear Behaviour of Steel Fibre-Reinforced Concrete Beams Without Stirrup Reinforcement,” ACI Structural Journal, 107(5), 597-606. •Di Prisco, M., and Romero, J.A. (1996), “Diagonal Shear in Thin-Webbed Reinforced Concrete Beams, Fibre and Stirrup Roles at Shear Collapse. Magazine of Concrete Research, 48(174), 59–76. •El-Niema, E.I. (1991), “Reinforced concrete beams with steel fibers under shear,” ACI Structural Journal, 88(2), 178–83. •Furlan, Jr.S., and de Hanai, J.B. (1997), “Shear Behaviour of Fiber Reinforced Concrete Beams”. Cement and Concrete Composite, 19(4), 359–66. •Iguro, M., Shioya, T., Nojiri, Y., and Akiyama, H. (1984), “Experimental Studies on Shear Strength of Large Reinforced Concrete Beams under Uniformly Distributed Load,” Translation from Proceeding of JSCE, 1(345), 18 pp. •Johnson, M.K., and Ramirez, J.A. (1989), “Minimum Shear Reinforcement in Beams with Higher Strength Concrete,” ACI Structural Journal, 86(4), 376-382. •Kang, TH-K., Kim, W., Kwak, Y.K., and Hong, S.G. (2011), “Shear Testing of Steel Fibre-Reinforced Lightweight Concrete Beams without Web Reinforcement,” ACI Structural Journal, 108(5), 553-561. •Kani, G. N. J. (1967), “How Safe Are Our Large Concrete Beams?” ACI Journal Proceedings, 64(3), 128-141.
  • 35. 35 •Khuntia, M., Stojadinovic, B., and Goel, S. C. (1999), “Shear Strength of Normal and High-Strength Fiber Reinforced Concrete Beams without Stirrups,” ACI Structural Journal, 96(2), 282–289. •Kwak, Y.-K., Eberhard, M. O., Kim, W.-S., and Kim, J. (2002), "Shear Strength of Steel Fiber-reinforced Concrete Beams without Stirrups," ACI Structural Journal, 99(4), 530-538. •Leonhardt, F., and Walther, R. (1964), “The Stuttgart Shear Tests, 1961,” Translation No. 111, Cement and Concrete Association, London, 134 pp. •Lee, J. and Kim, U. (2008), “Effect of Longitudinal Tensile Reinforcement Ratio and Shear Span-Depth Ratio on Minimum Shear Reinforcement in Beams,” ACI Structural Journal, 105(2), 134-144. •Li, V. C. (2000), “Large Volume, High Performance Application of Fibers in Civil Engineering,” Journal of Applied Polymer Science, 83, 660-686 •Mansur, M. A., Ong, K. C. G., and Paramasivam, P. (1986), "Shear Strength of Fibrous Concrete Beams without Stirrups," ASCE Journal of Structural Engineering, 112(9), 2066-2079. •Minelli, F. and Plizzari, G.A. (2013), “On the Effectiveness of Steel Fibers as Shear Reinforcement,” ACI Structural Journal, 110(3), 379- 38 •9. Narayanan, R., and Darwish, I. Y. S. (1987), "Use of Steel Fibers as Shear Reinforcement." ACI Structural Journal, 84(3), 216-227. •Noghabai, K. (2000), “Beams of Fibrous Concrete in Shear and Bending, Experiment and Model,” Journal of Structural Engineering, ASCE, 126(2), 243–251. •Oh, B.H., Lim, D.H., Yoo, S.W., and Kim, E.S. (1998), “Shear Behaviour and Shear Analysis of Reinforced Concrete Beams Containing Steel Fibres,” Magazine of Concrete Research, 50(4), 283–91. •Ozcebe, G. Ersoy, U. and Tankut, T. (1999), “Evaluation of Minimum Shear Reinforcement Requirements for Higher Strength Concrete,” ACI Structural Journal 96(3), 361-368.
  • 37. 37
  • 38. 38
  • 39. Steel fibres as minimum shear reinforcement 39 Normalized shear stress at failure versus fiber volume fraction. (Adopted from Parra-Montesinos et al. 2006)
  • 40. 40
  • 41. 41 parameter Effect Investigator d [Kani 1967] shear stress at failure decreases with an increase in the member depth Ashour et al. 1992 and Swamy et al. 1993 It is generally concluded that a higher ratio of tensile reinforcement results in a higher shear stress at failure because of increased dowel action and a deeper compression zone Vf Adebar et al. [1997] concluded with at low fibre volumes, the increase in shear strength was proportional to the amount of fibre, but the rate of increase was reduced at higher fibre volumes. [Kwak et al. 2002]. Generally, an increase in SFRC compressive strength leads to an increase in beam shear strength a/d Ashour et al. [1992] observed that the beam shear strength increases rapidly when the shear span-to-effective depth ratio is less than 2.0.  , cf