SlideShare a Scribd company logo
1 of 18
Download to read offline
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 224 
TESTING THE FLEXURAL FATIGUE BEHAVIOR OF E-GLASS EPOXY LAMINATES Vijaykiran Bura1, Praveen.Dvr2 1Assistant professor, Mechanical Engineering, BVRIT Engineering college, Andhrapradesh, India. 2Assistant professor, Mechanical Engineering, BVRIT Engineering college, Andhrapradesh, India Abstract With the advent of fiber reinforced composite materials the application of polymer composite materials is increasing in aerospace, marine and automobile fields, and non-conventional energy harvesting sectors in view of deriving advantages of polymer composites towards enhancing the equipment performance. Composites are replacing the conventional materials almost in every application. Due to their high specific strength, stiffness, better fatigue life, wear resistance and corrosion resistance. So polymer composites play a vital role in weight reduction with better functional characteristics of critical components like leaf spring, wheel drum, crash bumper etc. The tailor-designing capability with composite materials provides large scope of mechanical properties by adopting advanced design techniques. The tailored properties of laminated composite throws a challenge on design engineers to arrive at optimum design solutions. The flexural fatigue failure is common in rotating components such as wind turbine rotors and aero plane wing structures. The present work is focusing on flexural fatigue failure behavior with the help of flexural fatigue test rig established in the mechanical engineering department of JNTU. The explicit work publishes the experimental test results to understand the influence of frequency on the fatigue failure behavior due to cyclic flexing loads on the glass epoxy laminates Keywords: fiber, flexure, matrix, composite, lamina, polymer 
--------------------------------------------------------------------***------------------------------------------------------------------ 1. INTRODUCTION 1.1 Need of Composite Materials 
Many of modern technologies require materials with unusual combinations of properties that cannot be met by the conventional metal alloys, and metals. This is especially true for material that are needed for aerospace, underwater, and transportation application. for example aircraft engineers are increasingly searching for structural materials that have low densities, strong, stiff, abrasion and impact resistant, and not easily corroded. This is rather formidable combination of characters. Frequently strong materials are dense also increasing the strength generally results in a decrease in impact strength. Material property combination materials, generally speaking, a composite considered to be a multi phase material that exhibits a significant proportion of properties of both constituent phases such that a better combination of property is realized, according to the principle of combined action, better property combinations are fashioned by the judicious combination of two or more distinct materials. Composite material is a material system composed of two or more dissimilar materials, differing in forms, and insoluble in each other, physically distinct and chemically inhomogeneous. The resulting products‘ properties are much different from the properties of constituent materials. A composite is combination of two materials in which one of the materials is called reinforcement, in the form of fiber, woven fabric sheets, or particles, embedded in the other materials called matrix. Composites are used because the overall properties of the composite are superior to those of the individual components. These are the following reasons why composites are selected for certain applications 
1.2 Properties of Composite Materials 
 High strength to weight ratio (low density, high tensile strength) 
 High creep resistance 
 High tensile strength at elevated temperatures 
 High toughness 
 High stiffness 
 Non-flammable 
 Good chemical resistant 
 Relatively insensitive to moisture 
 Good electrical insulation 
 Able to maintain strength properties over wide range of conditions. 
Typically, reinforcing materials are strong with low densities while the matrix is usually ductile, or tough, material. If the composite is designed and fabricated correctly, it exhibits the strength of the reinforcement with toughness of the matrix to achieve a combination of desirable properties not available in any single material. 2. MATERIALS USED 2.1 Composites 
The idea is that by combining two or more distinct materials one can engineer a new material with desired combination of properties i.e. light in weight and strong. The idea that a
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 225 
better combination of properties can be achieved is called the principle of combined action. New high tech materials engineered to specific applications. Usually composites are having two phases: 1. Matrix phase 2. Dispersed phase Properties of composites depends on 1. Properties of phases 2. Geometry of dispersed phase i.e. particle size, distribution, orientation. 3. Amount of phase. 2.2 Material Major constitutes in fiber reinforced composite materials are reinforcing fibers, and a matrix, which acts as a binder to the fibers. Other constituents that may also be found are coupling agents, coating and fillers. Coupling agents and coatings are applied on the fibers to improve their wetting with the matrix as well as to promote bonding across the fiber/matrix interface. Both in turn promote a better load transfer between the fibers and matrix. Fillers are used with some polymeric matrices primarily to reduce cost and improve the dimensional stability. Manufacturing of composite structure starts with the incorporation of a large number of fibers in to a thin layer of matrix to form a lamina (ply). The thickness of the lamina is usually in the range of 0.1 - 1.2mm. If continuous fibers are used in making the lamina, they may be arranged either in a unidirectional orientation (i.e., fibers in one direction) or in a bi-directional orientation (i.e., fibers in two directions, usually normal to each other) . For a lamina containing unidirectional fibers, the composite material has the high strength and modulus in the direction of the fibers. However, in the transverse direction, its strength and modulus can vary by employing various quantities as well as different types of fibers in the longitudinal and transverse directions. For a balanced lamina these properties are the same in both directions. A lamina can also be constructed using discontinuous fibers in a matrix. The fibers can be arranged either in unidirectional discontinuous or random discontinuous orientation. Constituents In a composite 
Fibres + Matrix + Coupling Agents or Coatings + Fillers 
2.2.1 Lamina 
(a) Unidirectional Continuous 
(b) Bidirectional Continuous 
Unidirectional Discontinuous 
(c) Random Discontinuous 
(d) Laminate 
2.2.2 Fiber Fibers are the principal constituent in a fiber-reinforced composite material. They occupy the largest volume fraction in a composite laminate and share the major portion of the load acting on a composite structure. Proper selection of the type, amount, and orientation of fibers is very important, since it influences the following characteristics of laminate: 
 Specific gravity 
 Tensile strength and modulus 
 Compressive strength and modulus 
 Fatigue strength as well as fatigue failure mechanisms 
 Electrical and thermal conductivity 
 Cost 
Glass fibers are the most common of the all-reinforcing fibers for polymeric matrix composites (PMC). The principal advantage of glass fibers is low cost, high tensile strength, high chemical resistance and excellent insulating properties. The disadvantages are low tensile modulus, relatively high specific gravity and sensitivity to abrasion with handling (which frequently decreases its tensile strength). 
 Typical properties of E-Glass: 
 Typical diameter – 10 m 
 Specific gravity – 2.54 
 Tensile modulus – 73.4 Gpa 
 Tensile strength – 3.45 Gpa 
 Co efficient of thermal expansion – 5e-6/oC 
 Poisson‘s ratio – 0.2 
2.2.3 Matrix 
The role of the matrix in a fiber-reinforced composite is (1) to transfer stresses between the fibers, (2) to provide a
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 226 
barrier against an adverse environment, and (3) to protect the surface of the fibers from mechanical abrasion. The matrix plays a minor role in the tensile load-carrying capacity of a composite structure. However, selection of a matrix has a major influence on the interlaminar shear as well as in-plane shear properties of the composite material. Among various matrix materials, thermoset polymers, such as epoxies (principally used in aerospace and aircraft applications) and polyesters (commonly used in automotive, marine, chemical and electrical applications), are in greatest commercial use, mainly because of the ease of processing with these materials. Epoxy is one of the thermoset matrices. Starting materials for epoxy matrix are low-molecular-weight organic liquid resins containing a number of epoxide groups, which are three membered rings of one oxygen (o) and two carbon (C- C) atoms. Epoxy matrix, as a class, has the following advantages over other thermoset matrices: 
 Wide variety of properties, since a large number of starting materials, curing agents and modifiers are available 
 Absence of volatile matters during curve 
 Low shrinkage during cure 
 Excellent resistance to chemicals and solvents 
 Excellent adhesion to a wide variety of fillers, fibers and other substrates 
The principal disadvantages are its relatively high cost and long cure time, when compared to polyester resin which has low viscosity, fast cure time, low cost and high volumetric shrinkage. 2.4 E-Glass Fiber 2.4.1 Composition E-Glass is a low alkali glass with a typical nominal composition of SIC---54%wt At20i—19%wt Cao+Mgo—12%wt BO-------10%wt Na20+K20 –less than 2%wt And some other materials also present at impurity levels. 2.4.2 Key Properties Properties that have made E-Glass so popular in fiber glass and other glass fiber reinforced composite include. 1. Low cost 2. High production rates 3. High strength 4. High stiffness 5. Relatively low density 6. Non-flammable 7. resistant to heat 8. Good chemical resistant 9. Relatively insensitive to moisture 10. Good electrical insulation 11. Able to maintain strength properties over wide range of conditions. 3. EXPERIMENTAL SETUP Introduction 
The flexural fatigue failure in laminated composite materials is a very common failure mode in most of the FRP components. As reinforced polymers used in weight critical applications, often over designing to compensate fatigue failure lead to the increase in weight which in turn hampers the objective of designer. In this connection the investigation on flexural fatigue failure behaviour of laminate to be used in the component is very important. As standard equipment and test procedures are not available the need for custom built flexural fatigue testing equipment arises. The design of flexural fatigue test rig is discussed in detail in the following sections. 3.1 Flexural Fatigue Test-Rig Design FRP components like windmill blades, leaf spring and most of the components used in automobile industry are generally subjected to flexural fatigue. The present research work considers flexural fatigue is a critical property to be understood, while designing laminated composite components. In this connection efforts are in to designing and development of computer interfaced flexural fatigue test rig which is capable of storing the data related to the dynamic response of the laminate subjected to flexural fatigue. the schematic diagram furnished in the figure .This indigenous design consists few important components developed to test the composite laminates made as per the NASA contractors report specifications. These specifications of the laminate are made as per the same aspect ratio reported in the above mentioned reference. 
Fig 3.1: Schematic diagram of Test Rig 3.1.1 Specifications of the Test-Rig Bending load capacity -----------------0to1000N Frequency--------------------------------1.57to10RPS Specimen specifications Length of Specimen--------100to 500mm Width of Specimen---------30to50mm Thickness of Specimen----2.5to10mm Eccentricity-----------------------------0to200mm 3.1.2 Basic Components of Test Rig: These are the following important components of test rig:
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 227 
1 Load cell 
2 Specimen holding beam 
3 Dovetail assembly 
4 Induction motor 
5 Adjustable columns(sliding ) 
6 Electronic circuit(signal conditioning system) 
7 Data acquisition system 
3.1.3 Load Cell Load cell is a component which senses load and delivers a voltage analog signal which is proportional to the intensity of load. This consists of a metallic body designed to meet the requirements of the working load range, generally made of aluminum alloy. The foil type Strain gauges are fixed to the body of the load cell. When the body of the load cell is subjected to load, the strain induced is transmitted to the strain gauge. Dynamic load sensor (LOAD CELL) is an important component of the test rig. 
Fig 3.2: Load cell 3.2 Data Acquisition System The data acquisition software is designed to sample the wave form to build the graphical representation of the analog signal arrived from the load cell based sensor circuit. In addition, provides the facility of storing the data facilitating the final analysis of observation. 
Fig 3.3: Signal Conditioning System for the Voltage Output from the Load Cell 
In the above mentioned details of flexural fatigue-test rig the design of the load cell is a critical component of the test rig system. The design approach adopted in this work is furnished in the following sections. 
3.2.1. Specifications of the Data Acquisition System 
NI USB 6009: (National Instruments Make) 
Specifications: 8 Inputs, 14 bit Multifunctional DAC Analog Input 
 Channels: 8 Single-ended input channels with 14- bit resolution. 
 Range: Bipolar ± 5 V. 
 Conversion Speed: 25 ì S. 
 Accuracy: 0.015 % of reading ± 1 bit. 
 Linearity: ± 1 bit. 
 Trigger Modes: Software trigger. 
 Data transfer: By program control. 
Analog Output DAC. Channel with 14-Bit Resolution. 
 Ranges: 0 to + 5 V, 0 to +10V. 
 Setting time: 30 S. 
 Linearity: ± ½ bits. 
 Output drive: ± 5 mV max. 
The data logging system is an M/s National Instrument make data acquisition card which is capable of sensing 750 samples per millisecond. The test rig is being run at 190 rpm, so a NI USB series 6009 student edition card has been selected which is capable of acquiring 45000 samples per second. This card acquires the data in form of voltage from the signal conditioning system to a magnitude of 10V and plots a graph which is sinusoidal because of the alternating tensile and compressive loads acting on the specimen. 
Fig 3.4: NI DAC USB 6009 
The NI 6009 data logger stores the data in the system hard disk in the ‗lab-view‘ format. By converting this data into compatible excel format will provide the excel graph sheets which can be read to understand the failure behaviour of the specimen. From these graphs failure behaviors can be
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 228 
modeled. There is a facility in the system that enables review of the logged data. In case the data generated is of large size then the data can be picked as per the programmed schedule in order to handle the data easily. 3.3 Design and Fabrication of Load Simulating Mechanism (Induction Motor): The 3H.P motor is incorporated in the test rig to provide sufficient torque and in turn provides sufficient bending load on the specimen. 3.4 Power Transmission Device: The power transmission device used here is a heavy lathe head stock which is separated and supplied with power from a 3HP induction motor. The motor and the lathe head stock are connected using sufficient length V-belts which transmit the power from the motor to the head stock. The head stock is properly clamped to the bed on which it is placed to avoid any vibrations due to the applied load. 3.5 Eccentric Mechanism: The eccentric mechanism is a system mounted on the head stock to convert the rotary motion of the head stock into translatory motion. The specimen is subjected to evenly distributed compressive and tensile loads, by this mechanism. One end cover holding the load cell is fixed to the eccentric mechanism. The eccentric mechanism is used to apply and gradually remove loads from the specimen during test procedures. The load being applied is displayed on the display provided on the signal conditioning system. A eccentricity locking mechanism has been provided on the king pin of the eccentric to prevent the sliding of king pin due to dynamic loads applied by the load cell. The explicit figure is furnished in the figure 4.2. 
Fig 3.5: The Eccentric Mechanism to converts the rotary motion of the head-stock into translator motion 3.6. Working principle of Test Rig: 
The schematic diagram of test is furnished in figure 3.2. The eccentric mechanism used is shown in the figure. The eccentric mechanism is driven by independent drive at speeds varying from 94RPM to 600RPM. The hinge eccentricity from the center of the crank is equivalent to the deflection induced in the composite specimen. This deflection resisting force is experienced by the linkage which is the dynamic load sensing sensor (strain gauge based load cell). The strain gauge bonded to the linkage (load cell) elongates and contracts along with the load cell which in turn imbalances the balanced bridge circuit connected to the strain gauge. The output voltage of the bridge circuit is directly proportional to the deflecting load of the composite specimen. As eccentric mechanism rotates with the constant speed of 94 RPM, the strain measuring system develops voltage proportional to the degree of deflection. The voltage is in sinusoidal wave form. The cyclic load applied to the composite specimen generates a fatigue crack at the fixed end, which in turn reduces the stiffness of the composite specimen and that is been clearly reflected on the voltage output from the strain measuring bridge circuit. The amplitude of wave form decreases as the damage progresses in the due course as the cyclic loading proceeds from 0 cycles to n number of cycles. This diminishing wave form reveals the health of the laminate as the time progresses. The recorded data is analyzed to understand the fatigue failure behavior of the laminate. 
The objective of the test rig is simulating desired reversed cyclic bending load on the composite laminate which is fixed vertically as shown in figure 4.2. The bending load is measured from the signals of load cell. The eccentric mechanism is rotated through the head stock–pulley system by 3 horse power induction motor. Through this pulley system the rotating speed obtained is 1.57 RPS. The signal continuously coming from load cell is fed to signal conditioning system to amplify the signal to a readable extent. The signal conditioning system is capable of amplifying and conditioning the signal precisely. This analog signal is proportional to the load applied on the composite specimen. The signal is fed to the NI 6009, data logger with 8 channels. The lab view software continuously logs the data and stores the data in hard disk, as the data generated and logged is very huge. The lab view software provides a facility to capture the data in the form of snap shots. As the data logging system has the capability of sampling frequency of 48 kilo samples per second. As the frequency of loading cycles is 1.57 RPS, a 3.33 seconds snap shot could not be plotted as a complete cycle of loading, the sampling frequency has been reduced to 300 samples per second. The snap shot data can be exported to excel format. The typical sample in excel format is furnished below in the table 3.1.The sample front end of the lab view soft ware during experiment is furnished in the figure 3.8 and the snap shot data exported to excel could be plotted as shown in the figure 3.9. The data represented in this figure has to be further processed i.e. conversion from
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 229 
time vs. voltage data should be converted into load in Newton vs. number of cycles of load application. Table 3.1: The sampled data in the form of time vs. voltage 
Date 
######## 
Time 
12:07:42 
Y_Unit_Label 
Voltage (V) 
X_Dimension 
Time (s) 
X0 
0.00E+00 
Delta_X 
0.003333 
***End_of_Header*** 
X_Value 
12/1/2008 : 12:07:36 PM – Voltage - Dev1_ai0 
0 
-0.97709 
0.003333 
-0.99495 
0.006667 
-1.02173 
0.01 
-1.03958 
0.013333 
-1.06254 
0.016667 
-1.07146 
0.02 
-1.08804 
0.023333 
-1.09569 
0.026667 
-1.11227 
0.03 
-1.11865 
0.033333 
-1.1314 
0.036667 
-1.13395 
0.04 
-1.1365 
0.043333 
-1.13905 
0.046667 
-1.13905 
0.05 
-1.1416 
0.053333 
-1.1416 
0.056667 
-1.12885 
Fig 3.6: The front end of lab view soft ware 
Fig 3.7: Excel plot of snap shot data voltage vs. time for 3.33 seconds 4. FLEXURAL FATIGUE EXPERIMENTATION 4.1. Experimental Procedure These days lot of research is directed to understand the fatigue failure behavior of laminated composites. These materials usage is increasing in all sorts of engineering applications due to high specific strength and stiffness. Fibre reinforced composite materials are selected for weight critical applications and these materials have good rating as per the fatigue failure is concerned. Composite materials are anisotropic in nature and their failure behaviour is different from that of isotropic materials. Present research work is aimed at analyzing the flexural fatigue behavior of laminated composites at varying speeds i.e., at 90 RPM, 127 RPM and 200 RPM . The design of flexural fatigue test rig is discussed in detail in the chapter No.3. The data generated from the test rig is logged and analyzed for further investigation, to understand the failure behaviour of laminated composites of Glass- epoxy. From the literature, most of the research work is reported on specimens made by resign transfer moulding technique. This process has a constraint in, achieving beyond 50% and higher volume fraction of reinforcement. It is difficult for this reason the present work is aimed at establishing flexural fatigue characteristics of higher volume fraction of reinforcement loading in the ranges of 68% to 75%volume fraction. The volume fraction of reinforcement is one of the important parameters which influence the flexural fatigue failure characteristics. In view of further optimizing the designs, during this work, an attempt is made to establish the flexural fatigue characteristics of laminates with higher reinforcement usage of 65%to75% volume fraction of reinforcement. 4.2. Loading Criteria for Flexural Fatigue Analysis of Glass Epoxy Laminate 
For simulating high cycle flexural fatigue on the test coupons, the coupons are made as per NASA contractor‘s report. The calculations were made to estimate the bending loads considered to simulate stresses of the order of 50% of maximum tensile strength. To estimate the bending load, tensile tests were carried out on laminates made as per 
-0.8 
-0.6 
-0.4 
-0.2 
0 
0.2 
0.4 
0.6 
0 
1 
2 
3 
4
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 230 
ASTM D-638 specifications. The tensile test results of specimens of [±0]8, [±20]8, [±30]8, [±40]8,[ ±45]8,[ ± 55]8 & [±60]8 degree orientation are furnished and only given the results because of the space constraints. And the corresponding bending loads to be applied are calculated with reference to the beam bending equation. M/I =F/Y The specimen is fixed to fatigue testing rig in cantilever mode, then the Maximum bending moment M=WL where W is the bending load applied on the specimen. The distance from the neutral axis to the surface of specimen is Y, which is equal to half the thickness of the specimen. Y=t/2 Moment of Inertia of the specimen I=bh3/12 and Bending stresses induced in the specimen F=1/2(Ultimate Tensile strength of the specimen) Form the above theory; bending load for each specimen is obtained. 4.3. Tensile Test and its Significance to Perform Flexural Fatigue Experiment Tensile tests were performed on balanced symmetric laminates of [±0]8, [±20]8, [±30]8, [±40]8,[ ±45]8,[ ± 55]8 & [±60]8 degree orientation. The tensile test were performed on the laminates which are made as per the ASTM D-638 specifications The test was performed in the CIPET, Hyderabad laboratories and saint GOBAIN VETROTEX India private Ltd. quality control laboratories, Hyderabad and DRDL Hyderabad laboratory. The consolidated test results are furnished in table 5.1. The modulus of elasticity has been calculated at 0.5% strain 4.4. Methodology Adopted to Conduct Flexural Fatigue Analysis In the present work, close aspect is ratio is maintained in the specimen manufacture following NASA contractor‘s report. Most of researchers discussed about flexural fatigue behaviour of [±0]8, [±45]8 & [±90] 8degree orientation. In the present work tests were performed on [±0]8, [±20]8, [±30] 8,[ ±40] 8,[ ±45] 8,[ ± 55] 8 & [±60] 8 degree orientation. In view of having a broad spectrum of data bank regarding flexural fatigue failure behaviour, the flexural loading aspects are derived from the calculations with reference to the tensile test results. 4.5 Criterion for Conducting Flexural Fatigue Test 
The specimen of 140mm long 35mm width and 5.85mm thick are subjected to flexural fatigue test. The fluxing load to be applied on the specimen is considered from the tensile test results conducted on the specimens prepared from the same laminate used for the fatigue test. The tensile test results are furnished in the table 5.1. The maximum tensile strength is the basis for the bending load to be applied on the specimen. The bending load to be applied on the specimen is arrived from the calculations based on bending equation, such that, the stresses due to bending are equivalent to 50% of the stresses of maximum tensile strength of the laminate. The deflection to be simulated is estimated by conducting deflection test on the specimens in the following section 5.5.1. Table 4.1: Tensile Test Results. 
Sample orientation sequence in deg (CROSSPLY) with eight layers 
Max Tensile strength in (MPa) 
Modulus at 0.50% Strain in(GPa) 
[±00]8 
358 
37.96 
[±200]8 
288 
30.22 
[±300]8 
170 
18.9 
[±400]8 
162 
10.21 
[±450]8 
65 
10.54 
[±550]8 
74.3 
10.89 
[±600]8 
113. 
10.86 
Fig 4.1: Orientation Sequence of Stacking versus Failure Stress. 4.5.1 Experimental Setup for Deflection Test 
The deflection to be induced in the specimen is estimated by conducting the deflection tests on the specimens of laminates [±0]8,[±20]8,[±30]8,[±40]8,[±45]8,[±55]8 and [±60]8. The photograph of the experimental setup is shown in Figure 5.2 and the schematic diagram is shown in the Fig.No.5.3.The experimental set up is instrumental in estimating the deflection to be induced to simulate the
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 231 
required bending stress in the specimen subjected to flexural bending. 
Fig 4.2: Experimental setup for deflection test. 
Fig 4.3: Schematic representation of deflection experimental set up. 
Making use of the Experimental setup, deflection test is performed on the [±0]8, [±20]8, [±30] 8,[ ±40] 8,[ ±45]8,[±55]8 and [±60]8 specimens. As the total load could not be simulated on deflection test due to experimental setups‘ geometrical constraints, the experimental results were extrapolated to estimate actual deflection. This is done origin lab software. The deflection test results and estimated deflection are furnished in the following sections 5.5.1 (a) to (g) on the specimens .The specifications of these specimens are furnished in the table 4.2. Table 4.2: Specification with respect to the orientation of stacking 
Deflection and eccentricity induced in the test-rig with respective to the specimen is furnished in the Table No.4.3. This table consists of deflection to be induced on the specimen by considering the effective length of 210mm which is the sum of effective length of the specimen 100mm and the 110mm length from the centre of the pivoting pin to the specimen fixed end, as shown in the Fig. No 5.12. The consolidated statement of specimen‘s mechanical properties and load to be simulated as per the considerations are furnished in the Table No.4.4. Table 4.3: Deflection and eccentricity induced in the specimen 
S.No ofTest 
Sample orientation sequence in deg (CROSSPLY) 
effective length of specimen in mm. 
thickness of specimen in mm 
number of layers 
a 
[± 00] 
100 mm 
5.85 mm 
8 
b 
[ ± 200 ] 
100 mm 
5.85 mm 
8 
c 
[± 300 ] 
100 mm 
5.85 mm 
8 
d 
[ ±400 ] 
100 mm 
5.85 mm 
8 
e 
[ ± 450 ] 
100 mm 
5.85 mm 
8 
f 
[ ± 550 ] 
100 mm 
5.85 mm 
8 
g 
[± 600 ] 
100 mm 
5.85 mm 
8 
Sample orientation sequence in Deg. (Crossply) 
Bending Load F0=WinNewton 
Bending Stresses to be inducedMPa. 
Max Tensile strength in (MPa) 
EffectiveDeflection δ induced at on specimen in mm 
Tensile modulus Exx GPa. 
[± 00 ]8 
320 
179 
358 
20.517 
37.96 
[± 200]8 
318 
144 
288 
21.735 
30.33 
[± 300]8 
175 
85 
170 
14.64 
18.9 
[± 400]8 
171 
81 
162 
14.16 
10.21 
[± 450]8 
80 
32.5 
65 
10.07 
10.54 
[± 550]8 
80 
37.15 
74.3 
10 
10.89 
[± 600]8 
120 
56.5 
113 
20.44 
10.86
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 232 
Table 4.4: The consolidated statement of specimen‘s mechanical properties and load simulated on by the test rig. 
4.6 Load Simulation on Test Rig The assembly of eccentric mechanism is provided in such a way that complete reversible bending on the test specimen fixed in cantilever mode is applied. The specification of the specimen is shown in figure 5.11. The schematic diagram of Flexural Fatigue Bending Loading mechanism is shown in figure 5.12. By rotating the eccentric mechanism with the help of electric motor, cyclic bending is applied on the specimen of a frequency of 1.57 cycles/sec. The bending load is sensed by the sensor (load cell).The signal generated from the load cell is amplified to an extent of fraction of mille volts to volts, which is proportion to the load. The sensor strain gauges used in the setup are of Iso-elastic type. This type of strain gauges instantaneously responds to the load applied on the load cell. The voltage generated is sent to the USB compatible National Instruments made 6009 data logger through signal conditioning system, which is capable of sampling 1000 samples per second. With this capacity the data is logged and fed to the computer hard disk with the help of LAB VIEW software. The large quantity of data generated from the test coupons could not be handled because of limitations of windows based excel software which could not handle more than 64,000 numbers of data points. In this situation, snapshots were collected at regular time intervals. Each snapshot consists of 1000 data points for a period of 3.33 seconds. The test is performed continuously for a period of more than 4hrs depending on the specimen‘s specifications (orientation sequence of reinforcement in the laminate). As the test is conducted for hours together; it has been observed that there is creep in the data generation. The creep is normally due to heating of strain gauges. In order to remove that creep dynamic calibration technique has been adopted. 
The present experimental work is focusing on flexural fatigue analysis of 0.73 volume fraction glass fiber loaded test coupons, as this grade of fibre loading is generally achieved in filament wound products and Vacuum Bag cured products. The following sections briefly discusses about the design of the test rig and also discusses the method of data processing and interpreting the data by presenting the data in the form of stiffness degradation curves. Before proceeding to the flexural fatigue experimentation, calibration and testing of the load cell was carried out and the information related to system terminology, the details related to electrical wiring were discussed in detail in the Chapeter-4 Under section 4.3and 4.4. 4.7 Working of the Test Rig System The present work is aimed at establishing a standard test procedure for analyzing and understanding the flexural fatigue failure behaviour of composite laminates. Composite materials‘ failure behaviour is very complex when compared to the conventional isotropic materials due to the influence of matrix-reinforcement interfacial relations and the polymer matrix fracture behaviour. Considering these factors, the test-rig is designed to continuously monitor the health of the laminate throughout the test. The capability of the test-rig critically depends on the dynamic load sensing transducer and data logging system. The data generated from the test rig‘s data logger could be analyzed to predict fatigue life characteristics of composite laminates. The strain measuring sensing element in the load cell is of Electrical type. The Strain gauge is glued to the Load cell. The Resistance of the strain gauge is 350 ohms under unstrained conditions. These strain gauges are incorporated in the Bridge circuit. This Bridge is excited by 10Volts DC supply. Under no load condition the bridge is under balanced condition. When load is applied on the load cell, the dimensions of strain gauge gets changed thereby its resistance is varied. The amount of strain applied on the load cell proportionally changes the resistance of the strain gauge. This change in resistance causes the bridge unbalance. This unbalanced voltage is proportional to the load applied on the specimen. 
Sample orientation sequence in deg (CROSSPLY) 
Maximum Tensile Strength In MPA 
Load Applied In Kgs To Induce 50% Bending Stresses With Respect To Maximum Tensile Strength 
Thickness Of Specimen In mm 
Volume Fraction Of Glass Reinforcement 
[±00]8 
358 
32.5 kgs 
5.85 mm 
0.73 
[±200]8 
288 
31.8 kgs 
5.85 mm 
0.73 
[±300]8 
170 
16.1 kgs 
5.85 mm 
0.73 
[±400]8 
162 
17.15 kgs 
5.85 mm 
0..73 
[±450]8 
65 
5.3 kgs 
5.85 mm 
0.73 
[±550]8 
74.3 
8 kgs 
5.85 mm 
0.73 
[± 600]8 
113. 
12 kgs 
5.85 mm 
0.73
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 233 
The unbalanced voltage from bridge is of low magnitude which is very difficult to sense, which is fed to Instrumentation amplifier. The advantage of Instrumentation amplifier over a general amplifier is that it eliminates offset voltages from the signal voltage. A general Instrumentation amplifier amplifies both signal and offset voltages whereas Instrumentation amplifier nullifies the offset and amplifies the signal alone. The amplified signal will be disturbed by the power line pickups (i.e., 50Hz) and other electromagnetic interferences. The effects of noise are filtered by a low pass filter whose higher cutoff frequency is less than 50Hz. The filtered signal is an analog one and it is to be converted into digital mode. 4.8 Flexural Fatigue Test Rig Interfacing with Data Logging System The specimens are fixed vertically to a rigid platform as shown in Figure 5.12. The dynamic load sensor is fixed to the specimen through a hinge as represented in the schematic diagram 4.2.The dynamic load sensor‘s other end is assembled to the pivot of the eccentric mechanism. The eccentricity is provided based on the deflection load calculations made from the experimental results. On rotating the eccentric mechanism by one revolution, a complete symmetrical reversible bending about the neutral axis of the laminate is induced. The deflection force is measured from the signal condition system digital display. The induced load is estimated in view of providing bending stress on the laminate, the stresses were kept 50% below the yield strength of the individual laminates. The bending loads are estimated from the tensile test results of the respective laminates [±0]8, [±20]8, [±30] 8,[ ±40] 8,[ ±45] 8,[ ± 55] 8 and [±60] 8 the frequency of cyclic loading is of 1.57 HZ. As the eccentric mechanism is rotating the bending load is measured in the indirect from of voltage generated from the dynamic load sensor. The NI 6009 data logger with 8 channel analog and digital signal receiving capability has been used to log the data generated from the load sensor. The voltage generated from the load sensor is conditioned by a signal condition system and then the analog output from the signal condition systems is fed through the date logger to PC. The LAB VIEW software provided by‘ National Instruments‘ is used to log the data in the form of time versus voltage. As the cyclic loading is applied on specimen is converted in the form of a perfect sinusoidal voltage wave form is stored in the PC in the LAB VIEW file format. As the test is continuously performed on the specimen the continuous data points of voltage and time are stored in the PC. The LAB VIEW software has the provision of collection of snapshot for a period of 3.33 sec. And then there is a provision of exporting the data into EXCEL format in the form of time versus voltage data points. Number of such snap shots in regular intervals of one snap shot for 30 second‘s are taken and exported to EXCEL file format, from the beginning of the test to end of the test. 
The test is stopped when the residual stiffness of the laminates is almost constant after number of cycles of fatigue loading. It has been observed from the test that the stiffness of the test coupon is continuously degrading due to the failure of the top and bottom layers because of cyclic loading. Once few layers of the top and bottom layers of laminate are damaged, the continuous redistribution of stresses lead to the prevention of further damage due to pivoting effect occurrence in the laminate. Once this state is reached further reduction in stiffens observed is almost zero. 4.9 Specifications of the Flexural Fatigue Specimen Flexural fatigue specimens are prepared as per specifications mentioned in reference [94]. Flexural fatigue specimens are made by compression moulding technique. The methodology of moulding the specimens is mentioned in the chapter No.3. With reference to the NASA report the thickness of the specimen is 2.5mm, the width is 35mm and the effective length is 50mm. In the present experimental work for holding the specimen in the flexural fatigue test rig, the effective length is increased to 100mm and in the same proportion the thickness is increased to 6mm. The geometry of the specimen is shown in figure 5.11. 
Fig 4.4 Specifications of flexural fatigue specimen To prevent the specimen slipping from the specimen holder due to dynamic loads, a 6mm bolt is passed through the specimen holding clamp. The bolt will passes through the specimen. 4.10 Estimation of Bending Load to be Simulated for Conducting Flexural Fatigue Analysis The basic definition of high cyclic fatigue is that the stresses induced due to cyclic loading should be well below the 50% of the ultimate tensile stresses (strength) in the specimen subjected to fatigue loading. The present work is focusing on flexural fatigue analysis of glass epoxy balanced symmetric laminates. In view of simulating such stresses the following calculations provide the estimation of bending loads to be simulated on specimens. Let M = Bending Moment = W*L (Where W is the bending load and L is the effective length of the specimen) f = Bending Stresses
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 234 
And I = Moment of Inertia of the specimen = bt3/12, where ‗b‘ is the width of the specimen and‗t‘ is the thickness of the specimen. The load to be simulated is estimated from classical bending beam equation i.e., M/I = f/Y, Where f is the bending stresses to be simulated as per the definitions of high cyclic fatigue loading. And ‗Y‘ is the half the thickness of the specimen. The bending load could be estimated by the following formula, W= f I/LY. The table 4.3 provides the necessary bending load to be simulated on the specimen and also the required deflection to be induced in the flexural fatigue analysis. 
Fig 4.5: Flexural Fatigue Bending Loading mechanism 
Fig 4.6: Specimen and load cell assembly 4.11 Data Processing The data collected in the EXCEL format (files) are further processed, as there are constraints in the electronic equipment functional behaviour such as ―creeping of strain gauge resister‘s resistance‖ and overheating of the signal condition system‘s electronic circuits, over a period of time lead to a faulty data generation in the form of offset voltage. This offset voltage is subtracted from data collected in each snapshot, this task is dynamic calibration. 
one data point is collected pertaining to the first peek of the sinusoidal wave form from each snap shot data, then from all these points time versus voltage curve is obtained by plotting all these data points. As the voltage is proportional to the load falling on the specimen, the voltage has been converted into load in Newton‘s and plotted in the form of time versus load which is representing the instantaneous stiffness of the laminate corresponding to the time, then this curve once again converted onto no of cycles versus time by converting time into number of cycles by multiplying with the frequency of cyclic load application. The following figures 1, 2, 3, 4, 5,6and 7 represents the stiffness degradation curve of lamina subjected to flexural fatigue. The specifications of the lamina tested were arrived with reference to the NASA research report Ref No.[94] The specimen‘s specifications were with similar aspect ratio mentioned in the NASA research report i.e., similar L: t ratio. 4.12 Stiffness Degradation Curve Plotting and Fitting Flexural fatigue failure behaviour of laminates exhibit stiffness decay with respect to number of cycles of load application. In this work ORIGIN LAB curve fitting tool is used to plot the data, number of cycles versus instantaneous maximum bending load within the cycle. Exponential decay first order curves were fitted to the experimental data in order to understand the failure behaviour. The model equation is as follows Y = Y0 +A1e -x/t Where, Y is the deflection load at any fatigue loading cycle, X is Number of fatigue cycle, A1 is a suitable constant arrived from curve fitting tool, t is considered as decay constant, Y0 is considered as the residual bending load after pivoting state occurrence in the sample after considerable number of fatigue cycles. The data generated from fatigue test rig is the instantaneous bending load of the given specimen in the form of voltage is processed and plotted as number of fatigue cycles versus instantaneous bending load. The data were plotted for the specimens with orientation sequence of reinforcement staking of [±0]8, [±20]8, [±30] 8,[ ±40] 8,[ ±45] 8,[ ± 55] 8 and [±60] 8 cross ply laminates. The failure behavior of each specimen is discussed referring to the plots obtained in chapter 6 
Similarly in the same way we have to conduct the experimentation especially on some specimens [±0]8, [± 55] 8 and [±60] 8 cross ply laminates at different frequencies i.e., at 94, 127, 200 RPM. At these three frequencies we have to take the readings and compare the stiffness degradation of different specimens with respect to speed of the machine.
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 235 
And at how many cycles particular specimen is getting 
Pivoting state (Y0 ) Occurrence. Y0 is considered as the 
residual bending load after pivoting state occurrence in the 
sample after considerable number of fatigue cycles. 
4.12.1 Flexural Fatigue Failure Behavior of [±00]8 
Laminate 
For the laminate [±00]8 exhibits increasing stiffness-reduction 
up to 10,000 cycles and then a steadily reduction 
in stiffness up to 30,000 cycles then the reduction is zero 
due to the pivoting state occurrence. From the Table no. 6.1 
it is clear that the bending resisting force is dropped from 
320 Newton to 65.93524 Newton and attained pivoting state 
were further reduction in stiffness is almost zero. After 
reaching pivoting state the retained stiffness in the specimen 
is 9.62% of the virgin specimen at 90 RPM. For 127 RPM 
the bending resisting force is dropped from 320 Newton to 
3.81612 in 9713 cycles. And At 200 rpm for 0 degree 
orientation specimen the failure is taking place at very early 
stage. So that it is not possible to take the reading. And from 
the graphs we can clearly say that as the speed increases the 
no. of cycles needed to break the specimen decreases i.e., 
the stiffness degradation is taking place very fastly and 
pivoting state has occurred after 20000 cycles for 90 RPM 
and before 1000 cycles for 127 RPM. 
Fig 6.1. [±0]8 test specimen 
525.95 114.767 324.36 62.88 146.6652 20.52857 
717.49 112.639 368.88 41.88 189.9981 19.44015 
882.34 111.929 409.16 23.37 229.9977 18.03485 
1033.06 111.486 443.08 16.02 273.3306 17.11173 
1212.04 111.131 506.68 13.08 316.6635 16.54685 
1403.58 110.155 542.72 11.75 363.3297 14.89354 
1579.42 110.067 583 11.08 406.6626 12.59269 
1758.4 105.366 633.88 10.39 446.6622 9.768304 
1956.22 105.011 669.92 10.12 489.9951 5.910577 
2199.57 104.834 712.32 9.88 529.9947 2.755501 
In the above spread sheet 
Table No. 6.1 Stiffness degradation data of [±0] orientation 
with cross ply orientation sequence of stacking at 90 rpm. 
Table No. 6.2 Stiffness degradation data of [±0] orientation 
with cross ply orientation sequence of stacking at 127 rpm. 
Table No. 6.3 Stiffness degradation data of [±55] orientation 
with cross ply orientation sequence of stacking at 90 rpm. 
Table No. 6.4 and 6.5 are the Stiffness degradation data of 
[±55] orientation with cross ply orientation sequence of 
stacking at 127 and 200 rpm. 
Table No. 6.6, 6.7, and 6.8 are the Stiffness degradation data 
of [±60] orientation with cross ply orientation sequence of 
stacking at 90,127 and 200 rpm. 
Fig 6.2 Stiffness degradation behavior of [ ± 0] orientation with cross ply orientation sequence of stacking at 90 and 127 rpm
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 236 
0 5000 10000 15000 20000 25000 
-0.04 
-0.03 
-0.02 
-0.01 
0.00 
Stiffness reduction rate 
Number of fatigue cycles 
First order differential curve of 0 degree specimen at 90 rpm 
0 100 200 300 400 500 
-1.0 
-0.5 
0.0 
Stiffness reduction rate 
Number of fatigue Cycles 
First order differential curve of 0 degree specimen at 127 rpm 
Fig 6.21 Fig 6.22 
Fig 6.21 and 6.22 are the First order differential curves of [±00]8 orientation derived from fig. no.6.2 
0 10000 20000 30000 
0.000000 
0.000002 
0.000004 
0.000006 
Stiffness reduction rate 
Number of fatigue Cycles 
Second order differential curve of 0 degree specimen at 90 rpm 
0 1000 2000 3000 4000 5000 
0.000 
0.001 
0.002 
0.003 
Stiffness reduction rate 
Number of fatigue cycles 
Second order differential curve of 0 degree specimen at 127 RPM 
Fig .6.23 Fig 6.24 
Fig 6.23 and 6.24 are the Second order differential curves of [±00]8 orientation derived from fig. no.6.2 
4.12.2 Flexural Fatigue Failure Behavior of [±550]8 
Laminate: 
The following curve Fig no.6.4 which is drawn with 
reference to the laminate [±550]8 exhibits in increasing 
stiffness reduction up to 1300 cycles and then the reduction 
in stiffness steadily reduces with reference to the number of 
cycles up to 30,000 cycles then the reduction is constant due 
to the pivoting state occurrence. From the Fig no. 6.3 it is 
clearly evident that the bending resisting force is dropped 
from 80 Newton to 61 Newton and attained pivoting state 
where further reduction in stiffness is almost zero. From this 
result it is clearly evident that the test coupon retained 
71.66% stiffness of the virgin specimen even after 30,000 of 
fatigue cycles for 90 RPM. And at 127 RPM the stiffness is 
reduced to 4.684831 Newton from 80 newton in 9646 
cycles. And for 200 RPM the stiffness is reduced to 
2.350713 Newton from 80 Newton in 2645 cycles. From the 
results it is clear that the stiffness of this specimen is 
degrading very slowly when compared to other orientation 
specimens. For 55 degree specimen pivoting state will occur 
at large number of cycles why because this specimen stands 
on the test-rig after many no. of cycles with some internal 
layers failure. 
Fig 6.3 [±55]8 test specimen
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 237 
0 5000 10000 15000 20000 25000 30000 
0 
5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
Bending load in Newtons 
Number of fatigue cycles 
55 degree specimen at 90 rpm 
55 degree specimen at 127 rpm 
55 degree specimen at 200 rpm 
Fitted curve for 55 degree specimen at 90 rpm 
Fitted curve for 55 degree specimen at 127 rpm 
Fitted curve for 55 degree specimen at 200 rpm 
Model ExpDec1 
Equation y = A1*exp(-x/t1) + y0 
Reduced Chi-S 
qr 
1.50735 19.229 73.8906 
Adj. R-Square 0.93725 0.95378 0.49936 
Value Standard Error 
B y0 60.76483 0.97548 
B A1 16.666 0.88234 
B t1 9657.51868 1403.92857 
C y0 3.12923 0.81815 
C A1 80.93536 2.5437 
C t1 412.25776 23.07986 
D y0 1.96027E6 5.26962E7 
D A1 -1.96024E6 5.26962E7 
D t1 -1.49032E9 4.00638E10 
Fig 6.4 Stiffness degradation behavior of [ ± 55] orientation Laminate with cross ply orientation sequence of stacking 
0 10000 20000 30000 
-0.0020 
-0.0015 
-0.0010 
-0.0005 
0.0000 
Stiffness reduction rate 
Number of fatigue cycles 
First order differential curve of 55 degree at 90 RPM 
0 5000 10000 15000 20000 25000 
-1.32E-003 
-1.32E-003 
-1.32E-003 
-1.32E-003 
-1.32E-003 
Stiffness reduction rate 
Number of fatugue cycles 
First order differential curve of 55 degree specimen at 127 rpm 
Fig 6.42 Stiffness degradation behavior of [ ± 55] Fig 6.41 Stiffness degradation behavior of [ ± 55] 
orientation Laminate with cross ply orientation orientation Laminate with cross ply orientation 
sequence of stacking at 127 RPM sequence of stacking at 90 RPM 
0 500 1000 1500 2000 2500 
-0.15 
-0.10 
-0.05 
0.00 
Stiffness reduction rate 
Number of fatigue cycles 
First order differential curve of 55 degree at 200 rpm 
0 10000 20000 
0.00E+000 
5.00E-008 
1.00E-007 
1.50E-007 
2.00E-007 
Stiffness reduction rate 
Number of fatigue cycles 
Second order differential curve of 55 degree specimen at 90 rpm 
Fig. 6.43 Stiffness degradation behavior of Fig. 6.44 Second order differential curve of 
[ ± 55] orientation Laminate with cross ply [ ± 55] orientation Laminate with cross ply 
orientation sequence of stacking at 90 RPM orientation sequence of stacking at 200 RPM
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 238 
0 500 1000 1500 2000 2500 3000 
0.00000 
0.00005 
0.00010 
0.00015 
0.00020 
Stiffness reduction rate 
Number of fatigue cycles 
Second order differential curve of 55 degree specimen at 200 rpm 
0 200 400 600 800 1000 
-1.00E-012 
-8.00E-013 
-6.00E-013 
-4.00E-013 
Stiffness reduction rate 
Number of fatigue cycles 
Second order differential curve of 55 degree specimen at 127 rpm 
Fig. no.6.45 Second order differential curve of Fig. no.6.46 Second order differential curve of 
[ ± 55] orientation Laminate with cross ply [ ± 55] orientation Laminate with cross ply 
orientation sequence of stacking at 127 RPM orientation sequence of stacking at 200 RPM 
4.12.3 Flexural Fatigue Failure Behaviour of [±600]8 
Laminate 
The following curve Fig no.6.6 which is the laminate 
[±600]8 exhibits in increasing stiffness reduction up to 1250 
cycles and then the reduction in stiffness steadily reduces 
with reference to number of cycles up to 55,000 cycles then 
the reduction is constant due to the pivoting state 
occurrence. From the Table 6.6 and Fig 6.6 clearly evident 
that the bending resisting force is dropped from 120 Newton 
to 48.56 Newton and attained pivoting state. Then the 
further reduction in stiffness is almost zero. the reduction 
rate is almost zero after the pivoting state. From this it can 
be concluded that the pivoting state is attained at 40.5% 
stiffness of the virgin stiffness of the specimen. For 127 
RPM the stiffness reduction is from 120 Newton to 4.938 
Newton in 24432 cycles and for 200 RPM the stiffness 
reduction is from 120 Newton to 7.150554 in 21146 cycles. 
Fig. 6.5 [±60]8 test Specimen 
0 5000 10000 15000 20000 25000 30000 
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
Bending load in Newtons 
Number of fatigue cycles 
60 degree specimen at 90 rpm 
60 degree sepcimen at 127 rpm 
60 degree specimen at 200 rpm 
fitted curve for the 60 degree specimen at 90 rpm 
fitted curve for the 60 degree specimen at 127 rpm 
fitted curve for the 60 degree specimen at 200 rpm 
Model ExpDec1 
Equation y = A1*exp(-x/t1) + y0 
Reduced Chi-S 
qr 
4.38875 36.71107 20.38142 
Adj. R-Square 0.98096 0.9483 0.93919 
Value Standard Error 
B y0 63.54977 2.93209 
B A1 51.3345 2.67435 
B t1 15817.33682 1816.12617 
C1 y0 5.61847 0.87737 
C1 A1 122.08987 4.0994 
C1 t1 282.55037 16.19568 
D y0 7.70914 0.64056 
D A1 112.50526 4.39856 
D t1 25.80647 1.86313 
Fig. 6.6 Stiffness degradation behavior of [ ± 60] orientation Laminate with cross ply orientation sequence of stacking at 90, 127 
and 200 rpm
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 07 | July-2014, Available @ http://www.ijret.org 239 
0 10000 20000 30000 
-0.003 
-0.002 
-0.001 
0.000 
Siffness reduction rate 
Number of fatigue cycles 
First order differential curve of 60 degree specimen at 90 rpm 
0 500 1000 1500 2000 2500 
-0.6 
-0.4 
-0.2 
0.0 
Stiffness reduction rate 
Number of fatigue cycles 
First order differental curve of 60 degree specimen at 127 rp m 
Fig.6.61 Stiffness degradation behavior of Fig.6. 62 Stiffness degradation behavior of 
[ ± 60] orientation Laminate with cross ply [ ± 60] orientation Laminate with cross ply 
orientation sequence of stacking at 90 RPM orientation sequence of stacking at 127 rpm 
0 500 1000 1500 2000 2500 3000 
-0.3 
-0.2 
-0.1 
0.0 
Stiffness reduction rate 
Number of fatigue cycles 
First order differential curve of 60 degree specimen at 200 rpm 
0 10000 20000 30000 
0.00E+000 
5.00E-008 
1.00E-007 
1.50E-007 
2.00E-007 
Stiffness reducton rate 
Number of fatigue cycles 
Second order differential curve of 60 degree specimen at 90 rpm 
Fig.6.64 Second order differential curve of Fig. 6.63 Stiffness degradation behavior of 
[ ± 60] orientation Laminate with cross ply [ ± 55] orientation Laminate with cross ply 
orientation sequence of stacking at 90 RPM orientation sequence of stacking 200 RPM 
0 500 1000 1500 2000 2500 
0.0000 
0.0005 
0.0010 
0.0015 
Stiffness reduction rate 
Number of fatigue cycles 
Second order differential curve of 60 degree specimen at 127 RPM 
0 500 1000 1500 2000 2500 3000 
0.0000 
0.0002 
0.0004 
Stiffness reduction rate 
Number of fatigue cycles 
Second order differential curve of 60 degree specimen at 200 rpm 
Fig. 6.65, 6.66 are the Second order differential curve of [ ± 60] orientation Laminate with cross ply orientation sequence of 
stacking at 127 and 200 RPM
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 07 | July-2014, Available @ http://www.ijret.org 240 
5. CONCLUSIONS After experimentation finally we are concluding that, at different frequencies degradation takes place differently. If speed increases (frequency) the time required for failure or damage decreases. If speed decreases (frequency) the time required for failure or damage increases. If we increase the speed of the machine i.e., the frequency then the deterioration also take place very fastly. The specimen degraded quickly layer by layer.For 0 degree specimen it takes approximately 3-5 hours at 90 rpm, for the same at 127 rpm it takes 2 hour, for the same at 200 rpm it breaks in a few minutes. With respect to frequency the specimen layers are degrading. For different orientation of specimens (0,55,60) the degradation is taking place differently.0 degree specimen is not able to withstand for high frequencies 55 degree specimen is standing for long time even though the speed is varying and load is increasing. 60 degree specimen is also standing but for a lower number of cycles, if the numbers of cycles are increasing then it did not withstand. It is getting failed before the 55 degree specimen at the same frequency. So we are Concluding that, at different frequencies also 55 degree specimen is better then 0, 20,30,45,60 all these fiber orientations. From the above graphs we are concluding that for 0 degree specimen at 90 rpm, to get pivoting state is 900-1000 cycles, For 0 degree specimen at 127 rpm, the number of the number of cycles required to get pivoting state is 25000 cycles. For 0 degree specimen at 200 rpm, the number of fatigue cycles required cycles required to get pivoting state is not determined because the specimen had broken in the early stage of experimentation. For 55 degree specimen at 90 rpm, the number of cycles required to get pivoting state is 100000 cycles, For 55 degree specimen at 127 rpm, the number of cycles required to get pivoting state is 20000 cycles, for 55 degree specimen at 200 rpm, the number of cycles required to get pivoting state is 2500 cycle. For 60 degree specimen at 90 rpm, the number of cycles required to get pivoting state is 20000 cycle, For 60 degree specimen at 127 rpm, the number of cycles required to get pivoting state is 500-600 cycle For 60 degree specimen at 200 rpm, the number of cycles required to get pivoting state is below 500 cycle. REFERENCES [1] Levon Minnetyan, Computational Simulation of Composite Structural Fatigue, NASA/CR—2005- 213573, February 2005. [2] Van Paepegem, W. and Degrieck, J. (2002). Coupled Residual Stiffness and Strength Model for Fatigue of Fibre-reinforced Composite Materials. Composites Science and Technology, 62(5), 687- 696. [3] Van Paepegem, W. and Degrieck, J. (2001), Experimental Setup for and Numerical Modelling of Bending Fatigue Experiments on Plain Woven Glass/epoxy Composites. Composite Structures, 51(1), 1-8. 
[4] Van Paepegem, W., Dechaene, R. and Degrieck, J. (2005). Nonlinear correction to the bending stiffness of a damaged composite beam. Composite Structures, 67(3), 359-364. 
[5] Van Paepegem, W., De Geyter, K., Vanhooymissen, P. and Degrieck, J. (2006). Effect Of friction on the hysteresis loops from three-point bending fatigue tests of fibre-reinforced composites.Composite Structures, 72(2), 212-217. [6] Van Paepegem, W., Degrieck, J. and De Baets, P. (2001). Finite Element Approach for Modelling Fatigue Damage in Fibre-reinforced Composite Materials. Composites Part B, 32(7), 575-588. [7] Van Paepegem, W. and Degrieck, J. (2001). Fatigue Degradation Modelling of Plain Woven Glass/epoxy Composites. Composites Part A, 32(10), 1433-1441. [8] Van Paepegem, W. and Degrieck, J. (2002). Coupled Residual Stiffness and Strength Model for Fatigue of Fibre-reinforced Composite Materials. Composites Science and Technology, 62(5), 687- 696. [9] Van Paepegem, W. and Degrieck, J. (2002). Tensile and Compressive Damage Coupling for Fully- reversed Bending Fatigue of Fibre- reinforced Composites. Fatigue and Fracture of Engineering Materials & Structures, 25(6), 547-562. [10] Van Paepegem, W. and Degrieck, J. (2002). A New Coupled Approach of Residual Stiffness and Strength for Fatigue of Fibre-reinforced Composites. International Journal of Fatigue, 24(7), 747-762. [11] A. Bernasconi a, , S. Foletti a I.V. Papadopoulos b , Multiaxial Fatigue Tests Under Combined Torsion And Axial Load With Different Frequencies, Xxxiv Convegno Nazionale — 14–17 September 2005, POLITECNICO DI MILANO. [12] Leihong Li, structural design of composite rotor blades with consideration of manufacturability, durability, and manufacturing uncertainties, A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Aerospace Engineering Georgia Institute of Technology August 2008. [13] Darris White,New Method for Dual-Axis Fatigue Testing of Large Wind Turbine Blades Using Resonance Excitation and Spectral Loading, NREL/TP-500-35268, April 2004. [14] Levon Minnetyan, Computational Simulation of Composite Structural Fatigue, NASA/CR—2005- 213573, February 2005. [15] Sanjay Mathur2 Prakash Chandra Gope1 and J. K. Sharma1, Prediction of Fatigue Lives of Composites Material by Artificial Neural Network, Paper 260, Proceedings of the SEM 2007 Annual Conference and Exposition, Springfield, Massachusetts, USA, June 4-6, 2007, Copyright Society for Experimental Mechanics, Inc., Bethel, CT USA (2007).
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 
_______________________________________________________________________________________ 
Volume: 03 Issue: 07 | July-2014, Available @ http://www.ijret.org 241 
BIOGRAPHIES 
Vijaykiran Bura, Asstant Professor, Padmashri Dr.B.V.Raju Institute of Technology (BVRIT), Narsapur. 
Praveen.Dvr, Asstant Professor, Padmashri Dr.B.V.Raju Institute of Technology (BVRIT), Narsapur.

More Related Content

What's hot

Polymer composite
Polymer compositePolymer composite
Polymer compositeirfan afsar
 
IRJET- Design and Analysis of CNC Cabinet by using Glass Fibre Material
IRJET- Design and Analysis of CNC Cabinet by using Glass Fibre MaterialIRJET- Design and Analysis of CNC Cabinet by using Glass Fibre Material
IRJET- Design and Analysis of CNC Cabinet by using Glass Fibre MaterialIRJET Journal
 
Characterization of natural fiber reinforced composites bamboo and sisal a re...
Characterization of natural fiber reinforced composites bamboo and sisal a re...Characterization of natural fiber reinforced composites bamboo and sisal a re...
Characterization of natural fiber reinforced composites bamboo and sisal a re...eSAT Publishing House
 
A Survey on Mechanical Activities on Coir Fiber Resistant Polymer Matrix Comp...
A Survey on Mechanical Activities on Coir Fiber Resistant Polymer Matrix Comp...A Survey on Mechanical Activities on Coir Fiber Resistant Polymer Matrix Comp...
A Survey on Mechanical Activities on Coir Fiber Resistant Polymer Matrix Comp...IJARIIE JOURNAL
 
Study on effect of reinforcement of keratin fiber
Study on effect of reinforcement of keratin fiberStudy on effect of reinforcement of keratin fiber
Study on effect of reinforcement of keratin fiberShubham Kumar Gautam
 
Natural fiber textile composite engineering
Natural fiber textile composite engineering Natural fiber textile composite engineering
Natural fiber textile composite engineering Magdy El Messiry
 
Short fiber reinforcements
Short fiber reinforcementsShort fiber reinforcements
Short fiber reinforcementssayan baidya
 
IRJET- Mechanical Characterization of Cissus Quadrangularis Stem/Glass Fiber ...
IRJET- Mechanical Characterization of Cissus Quadrangularis Stem/Glass Fiber ...IRJET- Mechanical Characterization of Cissus Quadrangularis Stem/Glass Fiber ...
IRJET- Mechanical Characterization of Cissus Quadrangularis Stem/Glass Fiber ...IRJET Journal
 
Modal analysis of hybrid sisaljute natural fiber polymer composite beam
Modal analysis of hybrid sisaljute natural fiber polymer composite beamModal analysis of hybrid sisaljute natural fiber polymer composite beam
Modal analysis of hybrid sisaljute natural fiber polymer composite beameSAT Journals
 
Study on properties of sisal fiber reinforced concrete with different mix pro...
Study on properties of sisal fiber reinforced concrete with different mix pro...Study on properties of sisal fiber reinforced concrete with different mix pro...
Study on properties of sisal fiber reinforced concrete with different mix pro...eSAT Journals
 
IRJET-Study of Properties of Banana Fiber Reinforced with Jute Fiber
IRJET-Study of Properties of Banana Fiber Reinforced with Jute FiberIRJET-Study of Properties of Banana Fiber Reinforced with Jute Fiber
IRJET-Study of Properties of Banana Fiber Reinforced with Jute FiberIRJET Journal
 
Thermal conductivity Characterization of Bamboo fiber reinforced in Epoxy Resin
Thermal conductivity Characterization of Bamboo fiber reinforced in Epoxy ResinThermal conductivity Characterization of Bamboo fiber reinforced in Epoxy Resin
Thermal conductivity Characterization of Bamboo fiber reinforced in Epoxy ResinIOSR Journals
 
IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...
IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...
IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...IRJET Journal
 
Matrix materials 4
Matrix materials 4Matrix materials 4
Matrix materials 4Naga Muruga
 
Mechanical Properties Of Sisal And Pineapple Fiber Hybrid Composites Reinforc...
Mechanical Properties Of Sisal And Pineapple Fiber Hybrid Composites Reinforc...Mechanical Properties Of Sisal And Pineapple Fiber Hybrid Composites Reinforc...
Mechanical Properties Of Sisal And Pineapple Fiber Hybrid Composites Reinforc...IJMER
 
Damping Of Composite Material Structures with Riveted Joints
Damping Of Composite Material Structures with Riveted JointsDamping Of Composite Material Structures with Riveted Joints
Damping Of Composite Material Structures with Riveted JointsIJMER
 
Mechanical properties of polymer composite materials
Mechanical properties of polymer composite materialsMechanical properties of polymer composite materials
Mechanical properties of polymer composite materialseSAT Publishing House
 

What's hot (20)

Polymer composite
Polymer compositePolymer composite
Polymer composite
 
Natural Fibers Polymeric Composites with Particulate Fillers – A review report
Natural Fibers Polymeric Composites with Particulate Fillers – A review reportNatural Fibers Polymeric Composites with Particulate Fillers – A review report
Natural Fibers Polymeric Composites with Particulate Fillers – A review report
 
IRJET- Design and Analysis of CNC Cabinet by using Glass Fibre Material
IRJET- Design and Analysis of CNC Cabinet by using Glass Fibre MaterialIRJET- Design and Analysis of CNC Cabinet by using Glass Fibre Material
IRJET- Design and Analysis of CNC Cabinet by using Glass Fibre Material
 
Characterization of natural fiber reinforced composites bamboo and sisal a re...
Characterization of natural fiber reinforced composites bamboo and sisal a re...Characterization of natural fiber reinforced composites bamboo and sisal a re...
Characterization of natural fiber reinforced composites bamboo and sisal a re...
 
A Survey on Mechanical Activities on Coir Fiber Resistant Polymer Matrix Comp...
A Survey on Mechanical Activities on Coir Fiber Resistant Polymer Matrix Comp...A Survey on Mechanical Activities on Coir Fiber Resistant Polymer Matrix Comp...
A Survey on Mechanical Activities on Coir Fiber Resistant Polymer Matrix Comp...
 
Study on effect of reinforcement of keratin fiber
Study on effect of reinforcement of keratin fiberStudy on effect of reinforcement of keratin fiber
Study on effect of reinforcement of keratin fiber
 
Natural fiber textile composite engineering
Natural fiber textile composite engineering Natural fiber textile composite engineering
Natural fiber textile composite engineering
 
[IJET-V2I5P1] Authors: Muthuraj, Ravi kumar.M, Keerthiprasad.K.S
[IJET-V2I5P1] Authors: Muthuraj, Ravi kumar.M, Keerthiprasad.K.S[IJET-V2I5P1] Authors: Muthuraj, Ravi kumar.M, Keerthiprasad.K.S
[IJET-V2I5P1] Authors: Muthuraj, Ravi kumar.M, Keerthiprasad.K.S
 
Short fiber reinforcements
Short fiber reinforcementsShort fiber reinforcements
Short fiber reinforcements
 
IRJET- Mechanical Characterization of Cissus Quadrangularis Stem/Glass Fiber ...
IRJET- Mechanical Characterization of Cissus Quadrangularis Stem/Glass Fiber ...IRJET- Mechanical Characterization of Cissus Quadrangularis Stem/Glass Fiber ...
IRJET- Mechanical Characterization of Cissus Quadrangularis Stem/Glass Fiber ...
 
Modal analysis of hybrid sisaljute natural fiber polymer composite beam
Modal analysis of hybrid sisaljute natural fiber polymer composite beamModal analysis of hybrid sisaljute natural fiber polymer composite beam
Modal analysis of hybrid sisaljute natural fiber polymer composite beam
 
Study on properties of sisal fiber reinforced concrete with different mix pro...
Study on properties of sisal fiber reinforced concrete with different mix pro...Study on properties of sisal fiber reinforced concrete with different mix pro...
Study on properties of sisal fiber reinforced concrete with different mix pro...
 
IRJET-Study of Properties of Banana Fiber Reinforced with Jute Fiber
IRJET-Study of Properties of Banana Fiber Reinforced with Jute FiberIRJET-Study of Properties of Banana Fiber Reinforced with Jute Fiber
IRJET-Study of Properties of Banana Fiber Reinforced with Jute Fiber
 
Thermal conductivity Characterization of Bamboo fiber reinforced in Epoxy Resin
Thermal conductivity Characterization of Bamboo fiber reinforced in Epoxy ResinThermal conductivity Characterization of Bamboo fiber reinforced in Epoxy Resin
Thermal conductivity Characterization of Bamboo fiber reinforced in Epoxy Resin
 
Seminar report
Seminar reportSeminar report
Seminar report
 
IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...
IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...
IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...
 
Matrix materials 4
Matrix materials 4Matrix materials 4
Matrix materials 4
 
Mechanical Properties Of Sisal And Pineapple Fiber Hybrid Composites Reinforc...
Mechanical Properties Of Sisal And Pineapple Fiber Hybrid Composites Reinforc...Mechanical Properties Of Sisal And Pineapple Fiber Hybrid Composites Reinforc...
Mechanical Properties Of Sisal And Pineapple Fiber Hybrid Composites Reinforc...
 
Damping Of Composite Material Structures with Riveted Joints
Damping Of Composite Material Structures with Riveted JointsDamping Of Composite Material Structures with Riveted Joints
Damping Of Composite Material Structures with Riveted Joints
 
Mechanical properties of polymer composite materials
Mechanical properties of polymer composite materialsMechanical properties of polymer composite materials
Mechanical properties of polymer composite materials
 

Viewers also liked

Effects of non ionized electromagnetic radiation on satellites
Effects of non ionized electromagnetic radiation on satellitesEffects of non ionized electromagnetic radiation on satellites
Effects of non ionized electromagnetic radiation on satelliteseSAT Publishing House
 
A vm scheduling algorithm for reducing power consumption of a virtual machine...
A vm scheduling algorithm for reducing power consumption of a virtual machine...A vm scheduling algorithm for reducing power consumption of a virtual machine...
A vm scheduling algorithm for reducing power consumption of a virtual machine...eSAT Publishing House
 
Seismic behavior of intake tower of dam
Seismic behavior of intake tower of damSeismic behavior of intake tower of dam
Seismic behavior of intake tower of dameSAT Publishing House
 
Contribution to the valorization of moroccan wood in industry of laminated wo...
Contribution to the valorization of moroccan wood in industry of laminated wo...Contribution to the valorization of moroccan wood in industry of laminated wo...
Contribution to the valorization of moroccan wood in industry of laminated wo...eSAT Publishing House
 
Survey on sensor protocol for information via negotiation (spin) protocol
Survey on sensor protocol for information via negotiation (spin) protocolSurvey on sensor protocol for information via negotiation (spin) protocol
Survey on sensor protocol for information via negotiation (spin) protocoleSAT Publishing House
 
Response sensitivity of the structure using vibration
Response sensitivity of the structure using vibrationResponse sensitivity of the structure using vibration
Response sensitivity of the structure using vibrationeSAT Publishing House
 
Three dimensional finite element modeling of pervious
Three dimensional finite element modeling of perviousThree dimensional finite element modeling of pervious
Three dimensional finite element modeling of perviouseSAT Publishing House
 
An exact solution of the dirac oscillator problem in
An exact solution of the dirac oscillator problem inAn exact solution of the dirac oscillator problem in
An exact solution of the dirac oscillator problem ineSAT Publishing House
 
Study on soundness of reinforced concrete structures by ndt approach
Study on soundness of reinforced concrete structures by ndt approachStudy on soundness of reinforced concrete structures by ndt approach
Study on soundness of reinforced concrete structures by ndt approacheSAT Publishing House
 
Design of fuzzy logic controller for starch
Design of fuzzy logic controller for starchDesign of fuzzy logic controller for starch
Design of fuzzy logic controller for starcheSAT Publishing House
 
Analysis of methane diffusion flames
Analysis of methane diffusion flamesAnalysis of methane diffusion flames
Analysis of methane diffusion flameseSAT Publishing House
 
Analysis and design of zero sewage discharge systemfor
Analysis and design of zero sewage discharge systemforAnalysis and design of zero sewage discharge systemfor
Analysis and design of zero sewage discharge systemforeSAT Publishing House
 
The effect of fiber orientation and laminate stacking
The effect of fiber orientation and laminate stackingThe effect of fiber orientation and laminate stacking
The effect of fiber orientation and laminate stackingeSAT Publishing House
 
Securing the cloud computing systems with matrix vector and multi-key using l...
Securing the cloud computing systems with matrix vector and multi-key using l...Securing the cloud computing systems with matrix vector and multi-key using l...
Securing the cloud computing systems with matrix vector and multi-key using l...eSAT Publishing House
 
Resource potential appraisal assessment and to
Resource potential appraisal  assessment and toResource potential appraisal  assessment and to
Resource potential appraisal assessment and toeSAT Publishing House
 
A novel approach for efficient skull stripping using
A novel approach for efficient skull stripping usingA novel approach for efficient skull stripping using
A novel approach for efficient skull stripping usingeSAT Publishing House
 
Study and implementation of dc drive using pic16 f877a microcontroller
Study and implementation of dc drive using pic16 f877a microcontrollerStudy and implementation of dc drive using pic16 f877a microcontroller
Study and implementation of dc drive using pic16 f877a microcontrollereSAT Publishing House
 
Static analysis of c s short cylindrical shell under internal liquid pressure...
Static analysis of c s short cylindrical shell under internal liquid pressure...Static analysis of c s short cylindrical shell under internal liquid pressure...
Static analysis of c s short cylindrical shell under internal liquid pressure...eSAT Publishing House
 
Effect of fly ash on the properties of cement
Effect of fly ash on the properties of cementEffect of fly ash on the properties of cement
Effect of fly ash on the properties of cementeSAT Publishing House
 
Gesture control algorithm for personal computers
Gesture control algorithm for personal computersGesture control algorithm for personal computers
Gesture control algorithm for personal computerseSAT Publishing House
 

Viewers also liked (20)

Effects of non ionized electromagnetic radiation on satellites
Effects of non ionized electromagnetic radiation on satellitesEffects of non ionized electromagnetic radiation on satellites
Effects of non ionized electromagnetic radiation on satellites
 
A vm scheduling algorithm for reducing power consumption of a virtual machine...
A vm scheduling algorithm for reducing power consumption of a virtual machine...A vm scheduling algorithm for reducing power consumption of a virtual machine...
A vm scheduling algorithm for reducing power consumption of a virtual machine...
 
Seismic behavior of intake tower of dam
Seismic behavior of intake tower of damSeismic behavior of intake tower of dam
Seismic behavior of intake tower of dam
 
Contribution to the valorization of moroccan wood in industry of laminated wo...
Contribution to the valorization of moroccan wood in industry of laminated wo...Contribution to the valorization of moroccan wood in industry of laminated wo...
Contribution to the valorization of moroccan wood in industry of laminated wo...
 
Survey on sensor protocol for information via negotiation (spin) protocol
Survey on sensor protocol for information via negotiation (spin) protocolSurvey on sensor protocol for information via negotiation (spin) protocol
Survey on sensor protocol for information via negotiation (spin) protocol
 
Response sensitivity of the structure using vibration
Response sensitivity of the structure using vibrationResponse sensitivity of the structure using vibration
Response sensitivity of the structure using vibration
 
Three dimensional finite element modeling of pervious
Three dimensional finite element modeling of perviousThree dimensional finite element modeling of pervious
Three dimensional finite element modeling of pervious
 
An exact solution of the dirac oscillator problem in
An exact solution of the dirac oscillator problem inAn exact solution of the dirac oscillator problem in
An exact solution of the dirac oscillator problem in
 
Study on soundness of reinforced concrete structures by ndt approach
Study on soundness of reinforced concrete structures by ndt approachStudy on soundness of reinforced concrete structures by ndt approach
Study on soundness of reinforced concrete structures by ndt approach
 
Design of fuzzy logic controller for starch
Design of fuzzy logic controller for starchDesign of fuzzy logic controller for starch
Design of fuzzy logic controller for starch
 
Analysis of methane diffusion flames
Analysis of methane diffusion flamesAnalysis of methane diffusion flames
Analysis of methane diffusion flames
 
Analysis and design of zero sewage discharge systemfor
Analysis and design of zero sewage discharge systemforAnalysis and design of zero sewage discharge systemfor
Analysis and design of zero sewage discharge systemfor
 
The effect of fiber orientation and laminate stacking
The effect of fiber orientation and laminate stackingThe effect of fiber orientation and laminate stacking
The effect of fiber orientation and laminate stacking
 
Securing the cloud computing systems with matrix vector and multi-key using l...
Securing the cloud computing systems with matrix vector and multi-key using l...Securing the cloud computing systems with matrix vector and multi-key using l...
Securing the cloud computing systems with matrix vector and multi-key using l...
 
Resource potential appraisal assessment and to
Resource potential appraisal  assessment and toResource potential appraisal  assessment and to
Resource potential appraisal assessment and to
 
A novel approach for efficient skull stripping using
A novel approach for efficient skull stripping usingA novel approach for efficient skull stripping using
A novel approach for efficient skull stripping using
 
Study and implementation of dc drive using pic16 f877a microcontroller
Study and implementation of dc drive using pic16 f877a microcontrollerStudy and implementation of dc drive using pic16 f877a microcontroller
Study and implementation of dc drive using pic16 f877a microcontroller
 
Static analysis of c s short cylindrical shell under internal liquid pressure...
Static analysis of c s short cylindrical shell under internal liquid pressure...Static analysis of c s short cylindrical shell under internal liquid pressure...
Static analysis of c s short cylindrical shell under internal liquid pressure...
 
Effect of fly ash on the properties of cement
Effect of fly ash on the properties of cementEffect of fly ash on the properties of cement
Effect of fly ash on the properties of cement
 
Gesture control algorithm for personal computers
Gesture control algorithm for personal computersGesture control algorithm for personal computers
Gesture control algorithm for personal computers
 

Similar to Testing the flexural fatigue behavior of e glass epoxy laminates

Fabrication and Testing of Hybrid Composites using Jute and Mango Endocarp
Fabrication and Testing of Hybrid Composites using Jute and Mango EndocarpFabrication and Testing of Hybrid Composites using Jute and Mango Endocarp
Fabrication and Testing of Hybrid Composites using Jute and Mango EndocarpIRJET Journal
 
IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...
IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...
IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...IRJET Journal
 
EXPERIMENTAL CHARACTRIZATION OF HYBRID COMPOSITE MATERIALS FOR TENSION, FLEXU...
EXPERIMENTAL CHARACTRIZATION OF HYBRID COMPOSITE MATERIALS FOR TENSION, FLEXU...EXPERIMENTAL CHARACTRIZATION OF HYBRID COMPOSITE MATERIALS FOR TENSION, FLEXU...
EXPERIMENTAL CHARACTRIZATION OF HYBRID COMPOSITE MATERIALS FOR TENSION, FLEXU...IRJET Journal
 
Fabrication of Composite Material using Jute fiber/Glass fiber
Fabrication of Composite Material using Jute fiber/Glass fiberFabrication of Composite Material using Jute fiber/Glass fiber
Fabrication of Composite Material using Jute fiber/Glass fiberIRJET Journal
 
Comparative study of mechanical and thermal characterization of glasscarbon h...
Comparative study of mechanical and thermal characterization of glasscarbon h...Comparative study of mechanical and thermal characterization of glasscarbon h...
Comparative study of mechanical and thermal characterization of glasscarbon h...eSAT Journals
 
IRJET- Mechanical Behavior and Analysis of Okra and Pineapple Reinforced Comp...
IRJET- Mechanical Behavior and Analysis of Okra and Pineapple Reinforced Comp...IRJET- Mechanical Behavior and Analysis of Okra and Pineapple Reinforced Comp...
IRJET- Mechanical Behavior and Analysis of Okra and Pineapple Reinforced Comp...IRJET Journal
 
Design and Fe Analysis of Composite Grid Structure for Skin Stiffening Applic...
Design and Fe Analysis of Composite Grid Structure for Skin Stiffening Applic...Design and Fe Analysis of Composite Grid Structure for Skin Stiffening Applic...
Design and Fe Analysis of Composite Grid Structure for Skin Stiffening Applic...IRJET Journal
 
Composite materials seminar report
Composite materials seminar reportComposite materials seminar report
Composite materials seminar reportS.N. Veeresh Kumar
 
IRJET- Experimental Investigation and Behaviour of Epoxy Resin Reinforced wit...
IRJET- Experimental Investigation and Behaviour of Epoxy Resin Reinforced wit...IRJET- Experimental Investigation and Behaviour of Epoxy Resin Reinforced wit...
IRJET- Experimental Investigation and Behaviour of Epoxy Resin Reinforced wit...IRJET Journal
 
IRJET- Experimental Study on Effect of Geo-Synthetic Fibre on Concrete St...
IRJET-  	  Experimental Study on Effect of Geo-Synthetic Fibre on Concrete St...IRJET-  	  Experimental Study on Effect of Geo-Synthetic Fibre on Concrete St...
IRJET- Experimental Study on Effect of Geo-Synthetic Fibre on Concrete St...IRJET Journal
 
Polymer composite( Fiber Glass composite Properties)
Polymer composite( Fiber Glass composite Properties)Polymer composite( Fiber Glass composite Properties)
Polymer composite( Fiber Glass composite Properties)Haseeb Ahmad
 
Experimental Investigation and Analysis A Mechanical Properties of Hybrid Pol...
Experimental Investigation and Analysis A Mechanical Properties of Hybrid Pol...Experimental Investigation and Analysis A Mechanical Properties of Hybrid Pol...
Experimental Investigation and Analysis A Mechanical Properties of Hybrid Pol...IJRES Journal
 
14. a review cohesive zone modeling of laminated composite beam
14. a review cohesive zone modeling of laminated composite beam14. a review cohesive zone modeling of laminated composite beam
14. a review cohesive zone modeling of laminated composite beamNEERAJKUMAR1898
 
Mechanical properties of polymer composite materials
Mechanical properties of polymer composite materialsMechanical properties of polymer composite materials
Mechanical properties of polymer composite materialseSAT Journals
 
Design and analysis of composite drive shaft
Design and analysis of composite drive shaftDesign and analysis of composite drive shaft
Design and analysis of composite drive shafteSAT Publishing House
 
COMPOSITES ( as per MGU syllabus)
COMPOSITES ( as per MGU syllabus)COMPOSITES ( as per MGU syllabus)
COMPOSITES ( as per MGU syllabus)Denny John
 

Similar to Testing the flexural fatigue behavior of e glass epoxy laminates (20)

Fabrication and Testing of Hybrid Composites using Jute and Mango Endocarp
Fabrication and Testing of Hybrid Composites using Jute and Mango EndocarpFabrication and Testing of Hybrid Composites using Jute and Mango Endocarp
Fabrication and Testing of Hybrid Composites using Jute and Mango Endocarp
 
IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...
IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...
IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...
 
EXPERIMENTAL CHARACTRIZATION OF HYBRID COMPOSITE MATERIALS FOR TENSION, FLEXU...
EXPERIMENTAL CHARACTRIZATION OF HYBRID COMPOSITE MATERIALS FOR TENSION, FLEXU...EXPERIMENTAL CHARACTRIZATION OF HYBRID COMPOSITE MATERIALS FOR TENSION, FLEXU...
EXPERIMENTAL CHARACTRIZATION OF HYBRID COMPOSITE MATERIALS FOR TENSION, FLEXU...
 
Mechanical properties of composite laminated plates
Mechanical properties of composite laminated platesMechanical properties of composite laminated plates
Mechanical properties of composite laminated plates
 
Fabrication of Composite Material using Jute fiber/Glass fiber
Fabrication of Composite Material using Jute fiber/Glass fiberFabrication of Composite Material using Jute fiber/Glass fiber
Fabrication of Composite Material using Jute fiber/Glass fiber
 
Comparative study of mechanical and thermal characterization of glasscarbon h...
Comparative study of mechanical and thermal characterization of glasscarbon h...Comparative study of mechanical and thermal characterization of glasscarbon h...
Comparative study of mechanical and thermal characterization of glasscarbon h...
 
IRJET- Mechanical Behavior and Analysis of Okra and Pineapple Reinforced Comp...
IRJET- Mechanical Behavior and Analysis of Okra and Pineapple Reinforced Comp...IRJET- Mechanical Behavior and Analysis of Okra and Pineapple Reinforced Comp...
IRJET- Mechanical Behavior and Analysis of Okra and Pineapple Reinforced Comp...
 
Design and Fe Analysis of Composite Grid Structure for Skin Stiffening Applic...
Design and Fe Analysis of Composite Grid Structure for Skin Stiffening Applic...Design and Fe Analysis of Composite Grid Structure for Skin Stiffening Applic...
Design and Fe Analysis of Composite Grid Structure for Skin Stiffening Applic...
 
Composite materials seminar report
Composite materials seminar reportComposite materials seminar report
Composite materials seminar report
 
IRJET- Experimental Investigation and Behaviour of Epoxy Resin Reinforced wit...
IRJET- Experimental Investigation and Behaviour of Epoxy Resin Reinforced wit...IRJET- Experimental Investigation and Behaviour of Epoxy Resin Reinforced wit...
IRJET- Experimental Investigation and Behaviour of Epoxy Resin Reinforced wit...
 
IRJET- Experimental Study on Effect of Geo-Synthetic Fibre on Concrete St...
IRJET-  	  Experimental Study on Effect of Geo-Synthetic Fibre on Concrete St...IRJET-  	  Experimental Study on Effect of Geo-Synthetic Fibre on Concrete St...
IRJET- Experimental Study on Effect of Geo-Synthetic Fibre on Concrete St...
 
Cq33557561
Cq33557561Cq33557561
Cq33557561
 
Cq33557561
Cq33557561Cq33557561
Cq33557561
 
Cq33557561
Cq33557561Cq33557561
Cq33557561
 
Polymer composite( Fiber Glass composite Properties)
Polymer composite( Fiber Glass composite Properties)Polymer composite( Fiber Glass composite Properties)
Polymer composite( Fiber Glass composite Properties)
 
Experimental Investigation and Analysis A Mechanical Properties of Hybrid Pol...
Experimental Investigation and Analysis A Mechanical Properties of Hybrid Pol...Experimental Investigation and Analysis A Mechanical Properties of Hybrid Pol...
Experimental Investigation and Analysis A Mechanical Properties of Hybrid Pol...
 
14. a review cohesive zone modeling of laminated composite beam
14. a review cohesive zone modeling of laminated composite beam14. a review cohesive zone modeling of laminated composite beam
14. a review cohesive zone modeling of laminated composite beam
 
Mechanical properties of polymer composite materials
Mechanical properties of polymer composite materialsMechanical properties of polymer composite materials
Mechanical properties of polymer composite materials
 
Design and analysis of composite drive shaft
Design and analysis of composite drive shaftDesign and analysis of composite drive shaft
Design and analysis of composite drive shaft
 
COMPOSITES ( as per MGU syllabus)
COMPOSITES ( as per MGU syllabus)COMPOSITES ( as per MGU syllabus)
COMPOSITES ( as per MGU syllabus)
 

More from eSAT Publishing House

Likely impacts of hudhud on the environment of visakhapatnam
Likely impacts of hudhud on the environment of visakhapatnamLikely impacts of hudhud on the environment of visakhapatnam
Likely impacts of hudhud on the environment of visakhapatnameSAT Publishing House
 
Impact of flood disaster in a drought prone area – case study of alampur vill...
Impact of flood disaster in a drought prone area – case study of alampur vill...Impact of flood disaster in a drought prone area – case study of alampur vill...
Impact of flood disaster in a drought prone area – case study of alampur vill...eSAT Publishing House
 
Hudhud cyclone – a severe disaster in visakhapatnam
Hudhud cyclone – a severe disaster in visakhapatnamHudhud cyclone – a severe disaster in visakhapatnam
Hudhud cyclone – a severe disaster in visakhapatnameSAT Publishing House
 
Groundwater investigation using geophysical methods a case study of pydibhim...
Groundwater investigation using geophysical methods  a case study of pydibhim...Groundwater investigation using geophysical methods  a case study of pydibhim...
Groundwater investigation using geophysical methods a case study of pydibhim...eSAT Publishing House
 
Flood related disasters concerned to urban flooding in bangalore, india
Flood related disasters concerned to urban flooding in bangalore, indiaFlood related disasters concerned to urban flooding in bangalore, india
Flood related disasters concerned to urban flooding in bangalore, indiaeSAT Publishing House
 
Enhancing post disaster recovery by optimal infrastructure capacity building
Enhancing post disaster recovery by optimal infrastructure capacity buildingEnhancing post disaster recovery by optimal infrastructure capacity building
Enhancing post disaster recovery by optimal infrastructure capacity buildingeSAT Publishing House
 
Effect of lintel and lintel band on the global performance of reinforced conc...
Effect of lintel and lintel band on the global performance of reinforced conc...Effect of lintel and lintel band on the global performance of reinforced conc...
Effect of lintel and lintel band on the global performance of reinforced conc...eSAT Publishing House
 
Wind damage to trees in the gitam university campus at visakhapatnam by cyclo...
Wind damage to trees in the gitam university campus at visakhapatnam by cyclo...Wind damage to trees in the gitam university campus at visakhapatnam by cyclo...
Wind damage to trees in the gitam university campus at visakhapatnam by cyclo...eSAT Publishing House
 
Wind damage to buildings, infrastrucuture and landscape elements along the be...
Wind damage to buildings, infrastrucuture and landscape elements along the be...Wind damage to buildings, infrastrucuture and landscape elements along the be...
Wind damage to buildings, infrastrucuture and landscape elements along the be...eSAT Publishing House
 
Shear strength of rc deep beam panels – a review
Shear strength of rc deep beam panels – a reviewShear strength of rc deep beam panels – a review
Shear strength of rc deep beam panels – a revieweSAT Publishing House
 
Role of voluntary teams of professional engineers in dissater management – ex...
Role of voluntary teams of professional engineers in dissater management – ex...Role of voluntary teams of professional engineers in dissater management – ex...
Role of voluntary teams of professional engineers in dissater management – ex...eSAT Publishing House
 
Risk analysis and environmental hazard management
Risk analysis and environmental hazard managementRisk analysis and environmental hazard management
Risk analysis and environmental hazard managementeSAT Publishing House
 
Review study on performance of seismically tested repaired shear walls
Review study on performance of seismically tested repaired shear wallsReview study on performance of seismically tested repaired shear walls
Review study on performance of seismically tested repaired shear wallseSAT Publishing House
 
Monitoring and assessment of air quality with reference to dust particles (pm...
Monitoring and assessment of air quality with reference to dust particles (pm...Monitoring and assessment of air quality with reference to dust particles (pm...
Monitoring and assessment of air quality with reference to dust particles (pm...eSAT Publishing House
 
Low cost wireless sensor networks and smartphone applications for disaster ma...
Low cost wireless sensor networks and smartphone applications for disaster ma...Low cost wireless sensor networks and smartphone applications for disaster ma...
Low cost wireless sensor networks and smartphone applications for disaster ma...eSAT Publishing House
 
Coastal zones – seismic vulnerability an analysis from east coast of india
Coastal zones – seismic vulnerability an analysis from east coast of indiaCoastal zones – seismic vulnerability an analysis from east coast of india
Coastal zones – seismic vulnerability an analysis from east coast of indiaeSAT Publishing House
 
Can fracture mechanics predict damage due disaster of structures
Can fracture mechanics predict damage due disaster of structuresCan fracture mechanics predict damage due disaster of structures
Can fracture mechanics predict damage due disaster of structureseSAT Publishing House
 
Assessment of seismic susceptibility of rc buildings
Assessment of seismic susceptibility of rc buildingsAssessment of seismic susceptibility of rc buildings
Assessment of seismic susceptibility of rc buildingseSAT Publishing House
 
A geophysical insight of earthquake occurred on 21 st may 2014 off paradip, b...
A geophysical insight of earthquake occurred on 21 st may 2014 off paradip, b...A geophysical insight of earthquake occurred on 21 st may 2014 off paradip, b...
A geophysical insight of earthquake occurred on 21 st may 2014 off paradip, b...eSAT Publishing House
 
Effect of hudhud cyclone on the development of visakhapatnam as smart and gre...
Effect of hudhud cyclone on the development of visakhapatnam as smart and gre...Effect of hudhud cyclone on the development of visakhapatnam as smart and gre...
Effect of hudhud cyclone on the development of visakhapatnam as smart and gre...eSAT Publishing House
 

More from eSAT Publishing House (20)

Likely impacts of hudhud on the environment of visakhapatnam
Likely impacts of hudhud on the environment of visakhapatnamLikely impacts of hudhud on the environment of visakhapatnam
Likely impacts of hudhud on the environment of visakhapatnam
 
Impact of flood disaster in a drought prone area – case study of alampur vill...
Impact of flood disaster in a drought prone area – case study of alampur vill...Impact of flood disaster in a drought prone area – case study of alampur vill...
Impact of flood disaster in a drought prone area – case study of alampur vill...
 
Hudhud cyclone – a severe disaster in visakhapatnam
Hudhud cyclone – a severe disaster in visakhapatnamHudhud cyclone – a severe disaster in visakhapatnam
Hudhud cyclone – a severe disaster in visakhapatnam
 
Groundwater investigation using geophysical methods a case study of pydibhim...
Groundwater investigation using geophysical methods  a case study of pydibhim...Groundwater investigation using geophysical methods  a case study of pydibhim...
Groundwater investigation using geophysical methods a case study of pydibhim...
 
Flood related disasters concerned to urban flooding in bangalore, india
Flood related disasters concerned to urban flooding in bangalore, indiaFlood related disasters concerned to urban flooding in bangalore, india
Flood related disasters concerned to urban flooding in bangalore, india
 
Enhancing post disaster recovery by optimal infrastructure capacity building
Enhancing post disaster recovery by optimal infrastructure capacity buildingEnhancing post disaster recovery by optimal infrastructure capacity building
Enhancing post disaster recovery by optimal infrastructure capacity building
 
Effect of lintel and lintel band on the global performance of reinforced conc...
Effect of lintel and lintel band on the global performance of reinforced conc...Effect of lintel and lintel band on the global performance of reinforced conc...
Effect of lintel and lintel band on the global performance of reinforced conc...
 
Wind damage to trees in the gitam university campus at visakhapatnam by cyclo...
Wind damage to trees in the gitam university campus at visakhapatnam by cyclo...Wind damage to trees in the gitam university campus at visakhapatnam by cyclo...
Wind damage to trees in the gitam university campus at visakhapatnam by cyclo...
 
Wind damage to buildings, infrastrucuture and landscape elements along the be...
Wind damage to buildings, infrastrucuture and landscape elements along the be...Wind damage to buildings, infrastrucuture and landscape elements along the be...
Wind damage to buildings, infrastrucuture and landscape elements along the be...
 
Shear strength of rc deep beam panels – a review
Shear strength of rc deep beam panels – a reviewShear strength of rc deep beam panels – a review
Shear strength of rc deep beam panels – a review
 
Role of voluntary teams of professional engineers in dissater management – ex...
Role of voluntary teams of professional engineers in dissater management – ex...Role of voluntary teams of professional engineers in dissater management – ex...
Role of voluntary teams of professional engineers in dissater management – ex...
 
Risk analysis and environmental hazard management
Risk analysis and environmental hazard managementRisk analysis and environmental hazard management
Risk analysis and environmental hazard management
 
Review study on performance of seismically tested repaired shear walls
Review study on performance of seismically tested repaired shear wallsReview study on performance of seismically tested repaired shear walls
Review study on performance of seismically tested repaired shear walls
 
Monitoring and assessment of air quality with reference to dust particles (pm...
Monitoring and assessment of air quality with reference to dust particles (pm...Monitoring and assessment of air quality with reference to dust particles (pm...
Monitoring and assessment of air quality with reference to dust particles (pm...
 
Low cost wireless sensor networks and smartphone applications for disaster ma...
Low cost wireless sensor networks and smartphone applications for disaster ma...Low cost wireless sensor networks and smartphone applications for disaster ma...
Low cost wireless sensor networks and smartphone applications for disaster ma...
 
Coastal zones – seismic vulnerability an analysis from east coast of india
Coastal zones – seismic vulnerability an analysis from east coast of indiaCoastal zones – seismic vulnerability an analysis from east coast of india
Coastal zones – seismic vulnerability an analysis from east coast of india
 
Can fracture mechanics predict damage due disaster of structures
Can fracture mechanics predict damage due disaster of structuresCan fracture mechanics predict damage due disaster of structures
Can fracture mechanics predict damage due disaster of structures
 
Assessment of seismic susceptibility of rc buildings
Assessment of seismic susceptibility of rc buildingsAssessment of seismic susceptibility of rc buildings
Assessment of seismic susceptibility of rc buildings
 
A geophysical insight of earthquake occurred on 21 st may 2014 off paradip, b...
A geophysical insight of earthquake occurred on 21 st may 2014 off paradip, b...A geophysical insight of earthquake occurred on 21 st may 2014 off paradip, b...
A geophysical insight of earthquake occurred on 21 st may 2014 off paradip, b...
 
Effect of hudhud cyclone on the development of visakhapatnam as smart and gre...
Effect of hudhud cyclone on the development of visakhapatnam as smart and gre...Effect of hudhud cyclone on the development of visakhapatnam as smart and gre...
Effect of hudhud cyclone on the development of visakhapatnam as smart and gre...
 

Recently uploaded

Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Standamitlee9823
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfRagavanV2
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...tanu pandey
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756dollysharma2066
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 

Recently uploaded (20)

Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 

Testing the flexural fatigue behavior of e glass epoxy laminates

  • 1. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 224 TESTING THE FLEXURAL FATIGUE BEHAVIOR OF E-GLASS EPOXY LAMINATES Vijaykiran Bura1, Praveen.Dvr2 1Assistant professor, Mechanical Engineering, BVRIT Engineering college, Andhrapradesh, India. 2Assistant professor, Mechanical Engineering, BVRIT Engineering college, Andhrapradesh, India Abstract With the advent of fiber reinforced composite materials the application of polymer composite materials is increasing in aerospace, marine and automobile fields, and non-conventional energy harvesting sectors in view of deriving advantages of polymer composites towards enhancing the equipment performance. Composites are replacing the conventional materials almost in every application. Due to their high specific strength, stiffness, better fatigue life, wear resistance and corrosion resistance. So polymer composites play a vital role in weight reduction with better functional characteristics of critical components like leaf spring, wheel drum, crash bumper etc. The tailor-designing capability with composite materials provides large scope of mechanical properties by adopting advanced design techniques. The tailored properties of laminated composite throws a challenge on design engineers to arrive at optimum design solutions. The flexural fatigue failure is common in rotating components such as wind turbine rotors and aero plane wing structures. The present work is focusing on flexural fatigue failure behavior with the help of flexural fatigue test rig established in the mechanical engineering department of JNTU. The explicit work publishes the experimental test results to understand the influence of frequency on the fatigue failure behavior due to cyclic flexing loads on the glass epoxy laminates Keywords: fiber, flexure, matrix, composite, lamina, polymer --------------------------------------------------------------------***------------------------------------------------------------------ 1. INTRODUCTION 1.1 Need of Composite Materials Many of modern technologies require materials with unusual combinations of properties that cannot be met by the conventional metal alloys, and metals. This is especially true for material that are needed for aerospace, underwater, and transportation application. for example aircraft engineers are increasingly searching for structural materials that have low densities, strong, stiff, abrasion and impact resistant, and not easily corroded. This is rather formidable combination of characters. Frequently strong materials are dense also increasing the strength generally results in a decrease in impact strength. Material property combination materials, generally speaking, a composite considered to be a multi phase material that exhibits a significant proportion of properties of both constituent phases such that a better combination of property is realized, according to the principle of combined action, better property combinations are fashioned by the judicious combination of two or more distinct materials. Composite material is a material system composed of two or more dissimilar materials, differing in forms, and insoluble in each other, physically distinct and chemically inhomogeneous. The resulting products‘ properties are much different from the properties of constituent materials. A composite is combination of two materials in which one of the materials is called reinforcement, in the form of fiber, woven fabric sheets, or particles, embedded in the other materials called matrix. Composites are used because the overall properties of the composite are superior to those of the individual components. These are the following reasons why composites are selected for certain applications 1.2 Properties of Composite Materials  High strength to weight ratio (low density, high tensile strength)  High creep resistance  High tensile strength at elevated temperatures  High toughness  High stiffness  Non-flammable  Good chemical resistant  Relatively insensitive to moisture  Good electrical insulation  Able to maintain strength properties over wide range of conditions. Typically, reinforcing materials are strong with low densities while the matrix is usually ductile, or tough, material. If the composite is designed and fabricated correctly, it exhibits the strength of the reinforcement with toughness of the matrix to achieve a combination of desirable properties not available in any single material. 2. MATERIALS USED 2.1 Composites The idea is that by combining two or more distinct materials one can engineer a new material with desired combination of properties i.e. light in weight and strong. The idea that a
  • 2. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 225 better combination of properties can be achieved is called the principle of combined action. New high tech materials engineered to specific applications. Usually composites are having two phases: 1. Matrix phase 2. Dispersed phase Properties of composites depends on 1. Properties of phases 2. Geometry of dispersed phase i.e. particle size, distribution, orientation. 3. Amount of phase. 2.2 Material Major constitutes in fiber reinforced composite materials are reinforcing fibers, and a matrix, which acts as a binder to the fibers. Other constituents that may also be found are coupling agents, coating and fillers. Coupling agents and coatings are applied on the fibers to improve their wetting with the matrix as well as to promote bonding across the fiber/matrix interface. Both in turn promote a better load transfer between the fibers and matrix. Fillers are used with some polymeric matrices primarily to reduce cost and improve the dimensional stability. Manufacturing of composite structure starts with the incorporation of a large number of fibers in to a thin layer of matrix to form a lamina (ply). The thickness of the lamina is usually in the range of 0.1 - 1.2mm. If continuous fibers are used in making the lamina, they may be arranged either in a unidirectional orientation (i.e., fibers in one direction) or in a bi-directional orientation (i.e., fibers in two directions, usually normal to each other) . For a lamina containing unidirectional fibers, the composite material has the high strength and modulus in the direction of the fibers. However, in the transverse direction, its strength and modulus can vary by employing various quantities as well as different types of fibers in the longitudinal and transverse directions. For a balanced lamina these properties are the same in both directions. A lamina can also be constructed using discontinuous fibers in a matrix. The fibers can be arranged either in unidirectional discontinuous or random discontinuous orientation. Constituents In a composite Fibres + Matrix + Coupling Agents or Coatings + Fillers 2.2.1 Lamina (a) Unidirectional Continuous (b) Bidirectional Continuous Unidirectional Discontinuous (c) Random Discontinuous (d) Laminate 2.2.2 Fiber Fibers are the principal constituent in a fiber-reinforced composite material. They occupy the largest volume fraction in a composite laminate and share the major portion of the load acting on a composite structure. Proper selection of the type, amount, and orientation of fibers is very important, since it influences the following characteristics of laminate:  Specific gravity  Tensile strength and modulus  Compressive strength and modulus  Fatigue strength as well as fatigue failure mechanisms  Electrical and thermal conductivity  Cost Glass fibers are the most common of the all-reinforcing fibers for polymeric matrix composites (PMC). The principal advantage of glass fibers is low cost, high tensile strength, high chemical resistance and excellent insulating properties. The disadvantages are low tensile modulus, relatively high specific gravity and sensitivity to abrasion with handling (which frequently decreases its tensile strength).  Typical properties of E-Glass:  Typical diameter – 10 m  Specific gravity – 2.54  Tensile modulus – 73.4 Gpa  Tensile strength – 3.45 Gpa  Co efficient of thermal expansion – 5e-6/oC  Poisson‘s ratio – 0.2 2.2.3 Matrix The role of the matrix in a fiber-reinforced composite is (1) to transfer stresses between the fibers, (2) to provide a
  • 3. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 226 barrier against an adverse environment, and (3) to protect the surface of the fibers from mechanical abrasion. The matrix plays a minor role in the tensile load-carrying capacity of a composite structure. However, selection of a matrix has a major influence on the interlaminar shear as well as in-plane shear properties of the composite material. Among various matrix materials, thermoset polymers, such as epoxies (principally used in aerospace and aircraft applications) and polyesters (commonly used in automotive, marine, chemical and electrical applications), are in greatest commercial use, mainly because of the ease of processing with these materials. Epoxy is one of the thermoset matrices. Starting materials for epoxy matrix are low-molecular-weight organic liquid resins containing a number of epoxide groups, which are three membered rings of one oxygen (o) and two carbon (C- C) atoms. Epoxy matrix, as a class, has the following advantages over other thermoset matrices:  Wide variety of properties, since a large number of starting materials, curing agents and modifiers are available  Absence of volatile matters during curve  Low shrinkage during cure  Excellent resistance to chemicals and solvents  Excellent adhesion to a wide variety of fillers, fibers and other substrates The principal disadvantages are its relatively high cost and long cure time, when compared to polyester resin which has low viscosity, fast cure time, low cost and high volumetric shrinkage. 2.4 E-Glass Fiber 2.4.1 Composition E-Glass is a low alkali glass with a typical nominal composition of SIC---54%wt At20i—19%wt Cao+Mgo—12%wt BO-------10%wt Na20+K20 –less than 2%wt And some other materials also present at impurity levels. 2.4.2 Key Properties Properties that have made E-Glass so popular in fiber glass and other glass fiber reinforced composite include. 1. Low cost 2. High production rates 3. High strength 4. High stiffness 5. Relatively low density 6. Non-flammable 7. resistant to heat 8. Good chemical resistant 9. Relatively insensitive to moisture 10. Good electrical insulation 11. Able to maintain strength properties over wide range of conditions. 3. EXPERIMENTAL SETUP Introduction The flexural fatigue failure in laminated composite materials is a very common failure mode in most of the FRP components. As reinforced polymers used in weight critical applications, often over designing to compensate fatigue failure lead to the increase in weight which in turn hampers the objective of designer. In this connection the investigation on flexural fatigue failure behaviour of laminate to be used in the component is very important. As standard equipment and test procedures are not available the need for custom built flexural fatigue testing equipment arises. The design of flexural fatigue test rig is discussed in detail in the following sections. 3.1 Flexural Fatigue Test-Rig Design FRP components like windmill blades, leaf spring and most of the components used in automobile industry are generally subjected to flexural fatigue. The present research work considers flexural fatigue is a critical property to be understood, while designing laminated composite components. In this connection efforts are in to designing and development of computer interfaced flexural fatigue test rig which is capable of storing the data related to the dynamic response of the laminate subjected to flexural fatigue. the schematic diagram furnished in the figure .This indigenous design consists few important components developed to test the composite laminates made as per the NASA contractors report specifications. These specifications of the laminate are made as per the same aspect ratio reported in the above mentioned reference. Fig 3.1: Schematic diagram of Test Rig 3.1.1 Specifications of the Test-Rig Bending load capacity -----------------0to1000N Frequency--------------------------------1.57to10RPS Specimen specifications Length of Specimen--------100to 500mm Width of Specimen---------30to50mm Thickness of Specimen----2.5to10mm Eccentricity-----------------------------0to200mm 3.1.2 Basic Components of Test Rig: These are the following important components of test rig:
  • 4. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 227 1 Load cell 2 Specimen holding beam 3 Dovetail assembly 4 Induction motor 5 Adjustable columns(sliding ) 6 Electronic circuit(signal conditioning system) 7 Data acquisition system 3.1.3 Load Cell Load cell is a component which senses load and delivers a voltage analog signal which is proportional to the intensity of load. This consists of a metallic body designed to meet the requirements of the working load range, generally made of aluminum alloy. The foil type Strain gauges are fixed to the body of the load cell. When the body of the load cell is subjected to load, the strain induced is transmitted to the strain gauge. Dynamic load sensor (LOAD CELL) is an important component of the test rig. Fig 3.2: Load cell 3.2 Data Acquisition System The data acquisition software is designed to sample the wave form to build the graphical representation of the analog signal arrived from the load cell based sensor circuit. In addition, provides the facility of storing the data facilitating the final analysis of observation. Fig 3.3: Signal Conditioning System for the Voltage Output from the Load Cell In the above mentioned details of flexural fatigue-test rig the design of the load cell is a critical component of the test rig system. The design approach adopted in this work is furnished in the following sections. 3.2.1. Specifications of the Data Acquisition System NI USB 6009: (National Instruments Make) Specifications: 8 Inputs, 14 bit Multifunctional DAC Analog Input  Channels: 8 Single-ended input channels with 14- bit resolution.  Range: Bipolar ± 5 V.  Conversion Speed: 25 ì S.  Accuracy: 0.015 % of reading ± 1 bit.  Linearity: ± 1 bit.  Trigger Modes: Software trigger.  Data transfer: By program control. Analog Output DAC. Channel with 14-Bit Resolution.  Ranges: 0 to + 5 V, 0 to +10V.  Setting time: 30 S.  Linearity: ± ½ bits.  Output drive: ± 5 mV max. The data logging system is an M/s National Instrument make data acquisition card which is capable of sensing 750 samples per millisecond. The test rig is being run at 190 rpm, so a NI USB series 6009 student edition card has been selected which is capable of acquiring 45000 samples per second. This card acquires the data in form of voltage from the signal conditioning system to a magnitude of 10V and plots a graph which is sinusoidal because of the alternating tensile and compressive loads acting on the specimen. Fig 3.4: NI DAC USB 6009 The NI 6009 data logger stores the data in the system hard disk in the ‗lab-view‘ format. By converting this data into compatible excel format will provide the excel graph sheets which can be read to understand the failure behaviour of the specimen. From these graphs failure behaviors can be
  • 5. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 228 modeled. There is a facility in the system that enables review of the logged data. In case the data generated is of large size then the data can be picked as per the programmed schedule in order to handle the data easily. 3.3 Design and Fabrication of Load Simulating Mechanism (Induction Motor): The 3H.P motor is incorporated in the test rig to provide sufficient torque and in turn provides sufficient bending load on the specimen. 3.4 Power Transmission Device: The power transmission device used here is a heavy lathe head stock which is separated and supplied with power from a 3HP induction motor. The motor and the lathe head stock are connected using sufficient length V-belts which transmit the power from the motor to the head stock. The head stock is properly clamped to the bed on which it is placed to avoid any vibrations due to the applied load. 3.5 Eccentric Mechanism: The eccentric mechanism is a system mounted on the head stock to convert the rotary motion of the head stock into translatory motion. The specimen is subjected to evenly distributed compressive and tensile loads, by this mechanism. One end cover holding the load cell is fixed to the eccentric mechanism. The eccentric mechanism is used to apply and gradually remove loads from the specimen during test procedures. The load being applied is displayed on the display provided on the signal conditioning system. A eccentricity locking mechanism has been provided on the king pin of the eccentric to prevent the sliding of king pin due to dynamic loads applied by the load cell. The explicit figure is furnished in the figure 4.2. Fig 3.5: The Eccentric Mechanism to converts the rotary motion of the head-stock into translator motion 3.6. Working principle of Test Rig: The schematic diagram of test is furnished in figure 3.2. The eccentric mechanism used is shown in the figure. The eccentric mechanism is driven by independent drive at speeds varying from 94RPM to 600RPM. The hinge eccentricity from the center of the crank is equivalent to the deflection induced in the composite specimen. This deflection resisting force is experienced by the linkage which is the dynamic load sensing sensor (strain gauge based load cell). The strain gauge bonded to the linkage (load cell) elongates and contracts along with the load cell which in turn imbalances the balanced bridge circuit connected to the strain gauge. The output voltage of the bridge circuit is directly proportional to the deflecting load of the composite specimen. As eccentric mechanism rotates with the constant speed of 94 RPM, the strain measuring system develops voltage proportional to the degree of deflection. The voltage is in sinusoidal wave form. The cyclic load applied to the composite specimen generates a fatigue crack at the fixed end, which in turn reduces the stiffness of the composite specimen and that is been clearly reflected on the voltage output from the strain measuring bridge circuit. The amplitude of wave form decreases as the damage progresses in the due course as the cyclic loading proceeds from 0 cycles to n number of cycles. This diminishing wave form reveals the health of the laminate as the time progresses. The recorded data is analyzed to understand the fatigue failure behavior of the laminate. The objective of the test rig is simulating desired reversed cyclic bending load on the composite laminate which is fixed vertically as shown in figure 4.2. The bending load is measured from the signals of load cell. The eccentric mechanism is rotated through the head stock–pulley system by 3 horse power induction motor. Through this pulley system the rotating speed obtained is 1.57 RPS. The signal continuously coming from load cell is fed to signal conditioning system to amplify the signal to a readable extent. The signal conditioning system is capable of amplifying and conditioning the signal precisely. This analog signal is proportional to the load applied on the composite specimen. The signal is fed to the NI 6009, data logger with 8 channels. The lab view software continuously logs the data and stores the data in hard disk, as the data generated and logged is very huge. The lab view software provides a facility to capture the data in the form of snap shots. As the data logging system has the capability of sampling frequency of 48 kilo samples per second. As the frequency of loading cycles is 1.57 RPS, a 3.33 seconds snap shot could not be plotted as a complete cycle of loading, the sampling frequency has been reduced to 300 samples per second. The snap shot data can be exported to excel format. The typical sample in excel format is furnished below in the table 3.1.The sample front end of the lab view soft ware during experiment is furnished in the figure 3.8 and the snap shot data exported to excel could be plotted as shown in the figure 3.9. The data represented in this figure has to be further processed i.e. conversion from
  • 6. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 229 time vs. voltage data should be converted into load in Newton vs. number of cycles of load application. Table 3.1: The sampled data in the form of time vs. voltage Date ######## Time 12:07:42 Y_Unit_Label Voltage (V) X_Dimension Time (s) X0 0.00E+00 Delta_X 0.003333 ***End_of_Header*** X_Value 12/1/2008 : 12:07:36 PM – Voltage - Dev1_ai0 0 -0.97709 0.003333 -0.99495 0.006667 -1.02173 0.01 -1.03958 0.013333 -1.06254 0.016667 -1.07146 0.02 -1.08804 0.023333 -1.09569 0.026667 -1.11227 0.03 -1.11865 0.033333 -1.1314 0.036667 -1.13395 0.04 -1.1365 0.043333 -1.13905 0.046667 -1.13905 0.05 -1.1416 0.053333 -1.1416 0.056667 -1.12885 Fig 3.6: The front end of lab view soft ware Fig 3.7: Excel plot of snap shot data voltage vs. time for 3.33 seconds 4. FLEXURAL FATIGUE EXPERIMENTATION 4.1. Experimental Procedure These days lot of research is directed to understand the fatigue failure behavior of laminated composites. These materials usage is increasing in all sorts of engineering applications due to high specific strength and stiffness. Fibre reinforced composite materials are selected for weight critical applications and these materials have good rating as per the fatigue failure is concerned. Composite materials are anisotropic in nature and their failure behaviour is different from that of isotropic materials. Present research work is aimed at analyzing the flexural fatigue behavior of laminated composites at varying speeds i.e., at 90 RPM, 127 RPM and 200 RPM . The design of flexural fatigue test rig is discussed in detail in the chapter No.3. The data generated from the test rig is logged and analyzed for further investigation, to understand the failure behaviour of laminated composites of Glass- epoxy. From the literature, most of the research work is reported on specimens made by resign transfer moulding technique. This process has a constraint in, achieving beyond 50% and higher volume fraction of reinforcement. It is difficult for this reason the present work is aimed at establishing flexural fatigue characteristics of higher volume fraction of reinforcement loading in the ranges of 68% to 75%volume fraction. The volume fraction of reinforcement is one of the important parameters which influence the flexural fatigue failure characteristics. In view of further optimizing the designs, during this work, an attempt is made to establish the flexural fatigue characteristics of laminates with higher reinforcement usage of 65%to75% volume fraction of reinforcement. 4.2. Loading Criteria for Flexural Fatigue Analysis of Glass Epoxy Laminate For simulating high cycle flexural fatigue on the test coupons, the coupons are made as per NASA contractor‘s report. The calculations were made to estimate the bending loads considered to simulate stresses of the order of 50% of maximum tensile strength. To estimate the bending load, tensile tests were carried out on laminates made as per -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0 1 2 3 4
  • 7. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 230 ASTM D-638 specifications. The tensile test results of specimens of [±0]8, [±20]8, [±30]8, [±40]8,[ ±45]8,[ ± 55]8 & [±60]8 degree orientation are furnished and only given the results because of the space constraints. And the corresponding bending loads to be applied are calculated with reference to the beam bending equation. M/I =F/Y The specimen is fixed to fatigue testing rig in cantilever mode, then the Maximum bending moment M=WL where W is the bending load applied on the specimen. The distance from the neutral axis to the surface of specimen is Y, which is equal to half the thickness of the specimen. Y=t/2 Moment of Inertia of the specimen I=bh3/12 and Bending stresses induced in the specimen F=1/2(Ultimate Tensile strength of the specimen) Form the above theory; bending load for each specimen is obtained. 4.3. Tensile Test and its Significance to Perform Flexural Fatigue Experiment Tensile tests were performed on balanced symmetric laminates of [±0]8, [±20]8, [±30]8, [±40]8,[ ±45]8,[ ± 55]8 & [±60]8 degree orientation. The tensile test were performed on the laminates which are made as per the ASTM D-638 specifications The test was performed in the CIPET, Hyderabad laboratories and saint GOBAIN VETROTEX India private Ltd. quality control laboratories, Hyderabad and DRDL Hyderabad laboratory. The consolidated test results are furnished in table 5.1. The modulus of elasticity has been calculated at 0.5% strain 4.4. Methodology Adopted to Conduct Flexural Fatigue Analysis In the present work, close aspect is ratio is maintained in the specimen manufacture following NASA contractor‘s report. Most of researchers discussed about flexural fatigue behaviour of [±0]8, [±45]8 & [±90] 8degree orientation. In the present work tests were performed on [±0]8, [±20]8, [±30] 8,[ ±40] 8,[ ±45] 8,[ ± 55] 8 & [±60] 8 degree orientation. In view of having a broad spectrum of data bank regarding flexural fatigue failure behaviour, the flexural loading aspects are derived from the calculations with reference to the tensile test results. 4.5 Criterion for Conducting Flexural Fatigue Test The specimen of 140mm long 35mm width and 5.85mm thick are subjected to flexural fatigue test. The fluxing load to be applied on the specimen is considered from the tensile test results conducted on the specimens prepared from the same laminate used for the fatigue test. The tensile test results are furnished in the table 5.1. The maximum tensile strength is the basis for the bending load to be applied on the specimen. The bending load to be applied on the specimen is arrived from the calculations based on bending equation, such that, the stresses due to bending are equivalent to 50% of the stresses of maximum tensile strength of the laminate. The deflection to be simulated is estimated by conducting deflection test on the specimens in the following section 5.5.1. Table 4.1: Tensile Test Results. Sample orientation sequence in deg (CROSSPLY) with eight layers Max Tensile strength in (MPa) Modulus at 0.50% Strain in(GPa) [±00]8 358 37.96 [±200]8 288 30.22 [±300]8 170 18.9 [±400]8 162 10.21 [±450]8 65 10.54 [±550]8 74.3 10.89 [±600]8 113. 10.86 Fig 4.1: Orientation Sequence of Stacking versus Failure Stress. 4.5.1 Experimental Setup for Deflection Test The deflection to be induced in the specimen is estimated by conducting the deflection tests on the specimens of laminates [±0]8,[±20]8,[±30]8,[±40]8,[±45]8,[±55]8 and [±60]8. The photograph of the experimental setup is shown in Figure 5.2 and the schematic diagram is shown in the Fig.No.5.3.The experimental set up is instrumental in estimating the deflection to be induced to simulate the
  • 8. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 231 required bending stress in the specimen subjected to flexural bending. Fig 4.2: Experimental setup for deflection test. Fig 4.3: Schematic representation of deflection experimental set up. Making use of the Experimental setup, deflection test is performed on the [±0]8, [±20]8, [±30] 8,[ ±40] 8,[ ±45]8,[±55]8 and [±60]8 specimens. As the total load could not be simulated on deflection test due to experimental setups‘ geometrical constraints, the experimental results were extrapolated to estimate actual deflection. This is done origin lab software. The deflection test results and estimated deflection are furnished in the following sections 5.5.1 (a) to (g) on the specimens .The specifications of these specimens are furnished in the table 4.2. Table 4.2: Specification with respect to the orientation of stacking Deflection and eccentricity induced in the test-rig with respective to the specimen is furnished in the Table No.4.3. This table consists of deflection to be induced on the specimen by considering the effective length of 210mm which is the sum of effective length of the specimen 100mm and the 110mm length from the centre of the pivoting pin to the specimen fixed end, as shown in the Fig. No 5.12. The consolidated statement of specimen‘s mechanical properties and load to be simulated as per the considerations are furnished in the Table No.4.4. Table 4.3: Deflection and eccentricity induced in the specimen S.No ofTest Sample orientation sequence in deg (CROSSPLY) effective length of specimen in mm. thickness of specimen in mm number of layers a [± 00] 100 mm 5.85 mm 8 b [ ± 200 ] 100 mm 5.85 mm 8 c [± 300 ] 100 mm 5.85 mm 8 d [ ±400 ] 100 mm 5.85 mm 8 e [ ± 450 ] 100 mm 5.85 mm 8 f [ ± 550 ] 100 mm 5.85 mm 8 g [± 600 ] 100 mm 5.85 mm 8 Sample orientation sequence in Deg. (Crossply) Bending Load F0=WinNewton Bending Stresses to be inducedMPa. Max Tensile strength in (MPa) EffectiveDeflection δ induced at on specimen in mm Tensile modulus Exx GPa. [± 00 ]8 320 179 358 20.517 37.96 [± 200]8 318 144 288 21.735 30.33 [± 300]8 175 85 170 14.64 18.9 [± 400]8 171 81 162 14.16 10.21 [± 450]8 80 32.5 65 10.07 10.54 [± 550]8 80 37.15 74.3 10 10.89 [± 600]8 120 56.5 113 20.44 10.86
  • 9. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 232 Table 4.4: The consolidated statement of specimen‘s mechanical properties and load simulated on by the test rig. 4.6 Load Simulation on Test Rig The assembly of eccentric mechanism is provided in such a way that complete reversible bending on the test specimen fixed in cantilever mode is applied. The specification of the specimen is shown in figure 5.11. The schematic diagram of Flexural Fatigue Bending Loading mechanism is shown in figure 5.12. By rotating the eccentric mechanism with the help of electric motor, cyclic bending is applied on the specimen of a frequency of 1.57 cycles/sec. The bending load is sensed by the sensor (load cell).The signal generated from the load cell is amplified to an extent of fraction of mille volts to volts, which is proportion to the load. The sensor strain gauges used in the setup are of Iso-elastic type. This type of strain gauges instantaneously responds to the load applied on the load cell. The voltage generated is sent to the USB compatible National Instruments made 6009 data logger through signal conditioning system, which is capable of sampling 1000 samples per second. With this capacity the data is logged and fed to the computer hard disk with the help of LAB VIEW software. The large quantity of data generated from the test coupons could not be handled because of limitations of windows based excel software which could not handle more than 64,000 numbers of data points. In this situation, snapshots were collected at regular time intervals. Each snapshot consists of 1000 data points for a period of 3.33 seconds. The test is performed continuously for a period of more than 4hrs depending on the specimen‘s specifications (orientation sequence of reinforcement in the laminate). As the test is conducted for hours together; it has been observed that there is creep in the data generation. The creep is normally due to heating of strain gauges. In order to remove that creep dynamic calibration technique has been adopted. The present experimental work is focusing on flexural fatigue analysis of 0.73 volume fraction glass fiber loaded test coupons, as this grade of fibre loading is generally achieved in filament wound products and Vacuum Bag cured products. The following sections briefly discusses about the design of the test rig and also discusses the method of data processing and interpreting the data by presenting the data in the form of stiffness degradation curves. Before proceeding to the flexural fatigue experimentation, calibration and testing of the load cell was carried out and the information related to system terminology, the details related to electrical wiring were discussed in detail in the Chapeter-4 Under section 4.3and 4.4. 4.7 Working of the Test Rig System The present work is aimed at establishing a standard test procedure for analyzing and understanding the flexural fatigue failure behaviour of composite laminates. Composite materials‘ failure behaviour is very complex when compared to the conventional isotropic materials due to the influence of matrix-reinforcement interfacial relations and the polymer matrix fracture behaviour. Considering these factors, the test-rig is designed to continuously monitor the health of the laminate throughout the test. The capability of the test-rig critically depends on the dynamic load sensing transducer and data logging system. The data generated from the test rig‘s data logger could be analyzed to predict fatigue life characteristics of composite laminates. The strain measuring sensing element in the load cell is of Electrical type. The Strain gauge is glued to the Load cell. The Resistance of the strain gauge is 350 ohms under unstrained conditions. These strain gauges are incorporated in the Bridge circuit. This Bridge is excited by 10Volts DC supply. Under no load condition the bridge is under balanced condition. When load is applied on the load cell, the dimensions of strain gauge gets changed thereby its resistance is varied. The amount of strain applied on the load cell proportionally changes the resistance of the strain gauge. This change in resistance causes the bridge unbalance. This unbalanced voltage is proportional to the load applied on the specimen. Sample orientation sequence in deg (CROSSPLY) Maximum Tensile Strength In MPA Load Applied In Kgs To Induce 50% Bending Stresses With Respect To Maximum Tensile Strength Thickness Of Specimen In mm Volume Fraction Of Glass Reinforcement [±00]8 358 32.5 kgs 5.85 mm 0.73 [±200]8 288 31.8 kgs 5.85 mm 0.73 [±300]8 170 16.1 kgs 5.85 mm 0.73 [±400]8 162 17.15 kgs 5.85 mm 0..73 [±450]8 65 5.3 kgs 5.85 mm 0.73 [±550]8 74.3 8 kgs 5.85 mm 0.73 [± 600]8 113. 12 kgs 5.85 mm 0.73
  • 10. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 233 The unbalanced voltage from bridge is of low magnitude which is very difficult to sense, which is fed to Instrumentation amplifier. The advantage of Instrumentation amplifier over a general amplifier is that it eliminates offset voltages from the signal voltage. A general Instrumentation amplifier amplifies both signal and offset voltages whereas Instrumentation amplifier nullifies the offset and amplifies the signal alone. The amplified signal will be disturbed by the power line pickups (i.e., 50Hz) and other electromagnetic interferences. The effects of noise are filtered by a low pass filter whose higher cutoff frequency is less than 50Hz. The filtered signal is an analog one and it is to be converted into digital mode. 4.8 Flexural Fatigue Test Rig Interfacing with Data Logging System The specimens are fixed vertically to a rigid platform as shown in Figure 5.12. The dynamic load sensor is fixed to the specimen through a hinge as represented in the schematic diagram 4.2.The dynamic load sensor‘s other end is assembled to the pivot of the eccentric mechanism. The eccentricity is provided based on the deflection load calculations made from the experimental results. On rotating the eccentric mechanism by one revolution, a complete symmetrical reversible bending about the neutral axis of the laminate is induced. The deflection force is measured from the signal condition system digital display. The induced load is estimated in view of providing bending stress on the laminate, the stresses were kept 50% below the yield strength of the individual laminates. The bending loads are estimated from the tensile test results of the respective laminates [±0]8, [±20]8, [±30] 8,[ ±40] 8,[ ±45] 8,[ ± 55] 8 and [±60] 8 the frequency of cyclic loading is of 1.57 HZ. As the eccentric mechanism is rotating the bending load is measured in the indirect from of voltage generated from the dynamic load sensor. The NI 6009 data logger with 8 channel analog and digital signal receiving capability has been used to log the data generated from the load sensor. The voltage generated from the load sensor is conditioned by a signal condition system and then the analog output from the signal condition systems is fed through the date logger to PC. The LAB VIEW software provided by‘ National Instruments‘ is used to log the data in the form of time versus voltage. As the cyclic loading is applied on specimen is converted in the form of a perfect sinusoidal voltage wave form is stored in the PC in the LAB VIEW file format. As the test is continuously performed on the specimen the continuous data points of voltage and time are stored in the PC. The LAB VIEW software has the provision of collection of snapshot for a period of 3.33 sec. And then there is a provision of exporting the data into EXCEL format in the form of time versus voltage data points. Number of such snap shots in regular intervals of one snap shot for 30 second‘s are taken and exported to EXCEL file format, from the beginning of the test to end of the test. The test is stopped when the residual stiffness of the laminates is almost constant after number of cycles of fatigue loading. It has been observed from the test that the stiffness of the test coupon is continuously degrading due to the failure of the top and bottom layers because of cyclic loading. Once few layers of the top and bottom layers of laminate are damaged, the continuous redistribution of stresses lead to the prevention of further damage due to pivoting effect occurrence in the laminate. Once this state is reached further reduction in stiffens observed is almost zero. 4.9 Specifications of the Flexural Fatigue Specimen Flexural fatigue specimens are prepared as per specifications mentioned in reference [94]. Flexural fatigue specimens are made by compression moulding technique. The methodology of moulding the specimens is mentioned in the chapter No.3. With reference to the NASA report the thickness of the specimen is 2.5mm, the width is 35mm and the effective length is 50mm. In the present experimental work for holding the specimen in the flexural fatigue test rig, the effective length is increased to 100mm and in the same proportion the thickness is increased to 6mm. The geometry of the specimen is shown in figure 5.11. Fig 4.4 Specifications of flexural fatigue specimen To prevent the specimen slipping from the specimen holder due to dynamic loads, a 6mm bolt is passed through the specimen holding clamp. The bolt will passes through the specimen. 4.10 Estimation of Bending Load to be Simulated for Conducting Flexural Fatigue Analysis The basic definition of high cyclic fatigue is that the stresses induced due to cyclic loading should be well below the 50% of the ultimate tensile stresses (strength) in the specimen subjected to fatigue loading. The present work is focusing on flexural fatigue analysis of glass epoxy balanced symmetric laminates. In view of simulating such stresses the following calculations provide the estimation of bending loads to be simulated on specimens. Let M = Bending Moment = W*L (Where W is the bending load and L is the effective length of the specimen) f = Bending Stresses
  • 11. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 234 And I = Moment of Inertia of the specimen = bt3/12, where ‗b‘ is the width of the specimen and‗t‘ is the thickness of the specimen. The load to be simulated is estimated from classical bending beam equation i.e., M/I = f/Y, Where f is the bending stresses to be simulated as per the definitions of high cyclic fatigue loading. And ‗Y‘ is the half the thickness of the specimen. The bending load could be estimated by the following formula, W= f I/LY. The table 4.3 provides the necessary bending load to be simulated on the specimen and also the required deflection to be induced in the flexural fatigue analysis. Fig 4.5: Flexural Fatigue Bending Loading mechanism Fig 4.6: Specimen and load cell assembly 4.11 Data Processing The data collected in the EXCEL format (files) are further processed, as there are constraints in the electronic equipment functional behaviour such as ―creeping of strain gauge resister‘s resistance‖ and overheating of the signal condition system‘s electronic circuits, over a period of time lead to a faulty data generation in the form of offset voltage. This offset voltage is subtracted from data collected in each snapshot, this task is dynamic calibration. one data point is collected pertaining to the first peek of the sinusoidal wave form from each snap shot data, then from all these points time versus voltage curve is obtained by plotting all these data points. As the voltage is proportional to the load falling on the specimen, the voltage has been converted into load in Newton‘s and plotted in the form of time versus load which is representing the instantaneous stiffness of the laminate corresponding to the time, then this curve once again converted onto no of cycles versus time by converting time into number of cycles by multiplying with the frequency of cyclic load application. The following figures 1, 2, 3, 4, 5,6and 7 represents the stiffness degradation curve of lamina subjected to flexural fatigue. The specifications of the lamina tested were arrived with reference to the NASA research report Ref No.[94] The specimen‘s specifications were with similar aspect ratio mentioned in the NASA research report i.e., similar L: t ratio. 4.12 Stiffness Degradation Curve Plotting and Fitting Flexural fatigue failure behaviour of laminates exhibit stiffness decay with respect to number of cycles of load application. In this work ORIGIN LAB curve fitting tool is used to plot the data, number of cycles versus instantaneous maximum bending load within the cycle. Exponential decay first order curves were fitted to the experimental data in order to understand the failure behaviour. The model equation is as follows Y = Y0 +A1e -x/t Where, Y is the deflection load at any fatigue loading cycle, X is Number of fatigue cycle, A1 is a suitable constant arrived from curve fitting tool, t is considered as decay constant, Y0 is considered as the residual bending load after pivoting state occurrence in the sample after considerable number of fatigue cycles. The data generated from fatigue test rig is the instantaneous bending load of the given specimen in the form of voltage is processed and plotted as number of fatigue cycles versus instantaneous bending load. The data were plotted for the specimens with orientation sequence of reinforcement staking of [±0]8, [±20]8, [±30] 8,[ ±40] 8,[ ±45] 8,[ ± 55] 8 and [±60] 8 cross ply laminates. The failure behavior of each specimen is discussed referring to the plots obtained in chapter 6 Similarly in the same way we have to conduct the experimentation especially on some specimens [±0]8, [± 55] 8 and [±60] 8 cross ply laminates at different frequencies i.e., at 94, 127, 200 RPM. At these three frequencies we have to take the readings and compare the stiffness degradation of different specimens with respect to speed of the machine.
  • 12. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 235 And at how many cycles particular specimen is getting Pivoting state (Y0 ) Occurrence. Y0 is considered as the residual bending load after pivoting state occurrence in the sample after considerable number of fatigue cycles. 4.12.1 Flexural Fatigue Failure Behavior of [±00]8 Laminate For the laminate [±00]8 exhibits increasing stiffness-reduction up to 10,000 cycles and then a steadily reduction in stiffness up to 30,000 cycles then the reduction is zero due to the pivoting state occurrence. From the Table no. 6.1 it is clear that the bending resisting force is dropped from 320 Newton to 65.93524 Newton and attained pivoting state were further reduction in stiffness is almost zero. After reaching pivoting state the retained stiffness in the specimen is 9.62% of the virgin specimen at 90 RPM. For 127 RPM the bending resisting force is dropped from 320 Newton to 3.81612 in 9713 cycles. And At 200 rpm for 0 degree orientation specimen the failure is taking place at very early stage. So that it is not possible to take the reading. And from the graphs we can clearly say that as the speed increases the no. of cycles needed to break the specimen decreases i.e., the stiffness degradation is taking place very fastly and pivoting state has occurred after 20000 cycles for 90 RPM and before 1000 cycles for 127 RPM. Fig 6.1. [±0]8 test specimen 525.95 114.767 324.36 62.88 146.6652 20.52857 717.49 112.639 368.88 41.88 189.9981 19.44015 882.34 111.929 409.16 23.37 229.9977 18.03485 1033.06 111.486 443.08 16.02 273.3306 17.11173 1212.04 111.131 506.68 13.08 316.6635 16.54685 1403.58 110.155 542.72 11.75 363.3297 14.89354 1579.42 110.067 583 11.08 406.6626 12.59269 1758.4 105.366 633.88 10.39 446.6622 9.768304 1956.22 105.011 669.92 10.12 489.9951 5.910577 2199.57 104.834 712.32 9.88 529.9947 2.755501 In the above spread sheet Table No. 6.1 Stiffness degradation data of [±0] orientation with cross ply orientation sequence of stacking at 90 rpm. Table No. 6.2 Stiffness degradation data of [±0] orientation with cross ply orientation sequence of stacking at 127 rpm. Table No. 6.3 Stiffness degradation data of [±55] orientation with cross ply orientation sequence of stacking at 90 rpm. Table No. 6.4 and 6.5 are the Stiffness degradation data of [±55] orientation with cross ply orientation sequence of stacking at 127 and 200 rpm. Table No. 6.6, 6.7, and 6.8 are the Stiffness degradation data of [±60] orientation with cross ply orientation sequence of stacking at 90,127 and 200 rpm. Fig 6.2 Stiffness degradation behavior of [ ± 0] orientation with cross ply orientation sequence of stacking at 90 and 127 rpm
  • 13. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 236 0 5000 10000 15000 20000 25000 -0.04 -0.03 -0.02 -0.01 0.00 Stiffness reduction rate Number of fatigue cycles First order differential curve of 0 degree specimen at 90 rpm 0 100 200 300 400 500 -1.0 -0.5 0.0 Stiffness reduction rate Number of fatigue Cycles First order differential curve of 0 degree specimen at 127 rpm Fig 6.21 Fig 6.22 Fig 6.21 and 6.22 are the First order differential curves of [±00]8 orientation derived from fig. no.6.2 0 10000 20000 30000 0.000000 0.000002 0.000004 0.000006 Stiffness reduction rate Number of fatigue Cycles Second order differential curve of 0 degree specimen at 90 rpm 0 1000 2000 3000 4000 5000 0.000 0.001 0.002 0.003 Stiffness reduction rate Number of fatigue cycles Second order differential curve of 0 degree specimen at 127 RPM Fig .6.23 Fig 6.24 Fig 6.23 and 6.24 are the Second order differential curves of [±00]8 orientation derived from fig. no.6.2 4.12.2 Flexural Fatigue Failure Behavior of [±550]8 Laminate: The following curve Fig no.6.4 which is drawn with reference to the laminate [±550]8 exhibits in increasing stiffness reduction up to 1300 cycles and then the reduction in stiffness steadily reduces with reference to the number of cycles up to 30,000 cycles then the reduction is constant due to the pivoting state occurrence. From the Fig no. 6.3 it is clearly evident that the bending resisting force is dropped from 80 Newton to 61 Newton and attained pivoting state where further reduction in stiffness is almost zero. From this result it is clearly evident that the test coupon retained 71.66% stiffness of the virgin specimen even after 30,000 of fatigue cycles for 90 RPM. And at 127 RPM the stiffness is reduced to 4.684831 Newton from 80 newton in 9646 cycles. And for 200 RPM the stiffness is reduced to 2.350713 Newton from 80 Newton in 2645 cycles. From the results it is clear that the stiffness of this specimen is degrading very slowly when compared to other orientation specimens. For 55 degree specimen pivoting state will occur at large number of cycles why because this specimen stands on the test-rig after many no. of cycles with some internal layers failure. Fig 6.3 [±55]8 test specimen
  • 14. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 237 0 5000 10000 15000 20000 25000 30000 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 Bending load in Newtons Number of fatigue cycles 55 degree specimen at 90 rpm 55 degree specimen at 127 rpm 55 degree specimen at 200 rpm Fitted curve for 55 degree specimen at 90 rpm Fitted curve for 55 degree specimen at 127 rpm Fitted curve for 55 degree specimen at 200 rpm Model ExpDec1 Equation y = A1*exp(-x/t1) + y0 Reduced Chi-S qr 1.50735 19.229 73.8906 Adj. R-Square 0.93725 0.95378 0.49936 Value Standard Error B y0 60.76483 0.97548 B A1 16.666 0.88234 B t1 9657.51868 1403.92857 C y0 3.12923 0.81815 C A1 80.93536 2.5437 C t1 412.25776 23.07986 D y0 1.96027E6 5.26962E7 D A1 -1.96024E6 5.26962E7 D t1 -1.49032E9 4.00638E10 Fig 6.4 Stiffness degradation behavior of [ ± 55] orientation Laminate with cross ply orientation sequence of stacking 0 10000 20000 30000 -0.0020 -0.0015 -0.0010 -0.0005 0.0000 Stiffness reduction rate Number of fatigue cycles First order differential curve of 55 degree at 90 RPM 0 5000 10000 15000 20000 25000 -1.32E-003 -1.32E-003 -1.32E-003 -1.32E-003 -1.32E-003 Stiffness reduction rate Number of fatugue cycles First order differential curve of 55 degree specimen at 127 rpm Fig 6.42 Stiffness degradation behavior of [ ± 55] Fig 6.41 Stiffness degradation behavior of [ ± 55] orientation Laminate with cross ply orientation orientation Laminate with cross ply orientation sequence of stacking at 127 RPM sequence of stacking at 90 RPM 0 500 1000 1500 2000 2500 -0.15 -0.10 -0.05 0.00 Stiffness reduction rate Number of fatigue cycles First order differential curve of 55 degree at 200 rpm 0 10000 20000 0.00E+000 5.00E-008 1.00E-007 1.50E-007 2.00E-007 Stiffness reduction rate Number of fatigue cycles Second order differential curve of 55 degree specimen at 90 rpm Fig. 6.43 Stiffness degradation behavior of Fig. 6.44 Second order differential curve of [ ± 55] orientation Laminate with cross ply [ ± 55] orientation Laminate with cross ply orientation sequence of stacking at 90 RPM orientation sequence of stacking at 200 RPM
  • 15. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 08 | Aug-2014, Available @ http://www.ijret.org 238 0 500 1000 1500 2000 2500 3000 0.00000 0.00005 0.00010 0.00015 0.00020 Stiffness reduction rate Number of fatigue cycles Second order differential curve of 55 degree specimen at 200 rpm 0 200 400 600 800 1000 -1.00E-012 -8.00E-013 -6.00E-013 -4.00E-013 Stiffness reduction rate Number of fatigue cycles Second order differential curve of 55 degree specimen at 127 rpm Fig. no.6.45 Second order differential curve of Fig. no.6.46 Second order differential curve of [ ± 55] orientation Laminate with cross ply [ ± 55] orientation Laminate with cross ply orientation sequence of stacking at 127 RPM orientation sequence of stacking at 200 RPM 4.12.3 Flexural Fatigue Failure Behaviour of [±600]8 Laminate The following curve Fig no.6.6 which is the laminate [±600]8 exhibits in increasing stiffness reduction up to 1250 cycles and then the reduction in stiffness steadily reduces with reference to number of cycles up to 55,000 cycles then the reduction is constant due to the pivoting state occurrence. From the Table 6.6 and Fig 6.6 clearly evident that the bending resisting force is dropped from 120 Newton to 48.56 Newton and attained pivoting state. Then the further reduction in stiffness is almost zero. the reduction rate is almost zero after the pivoting state. From this it can be concluded that the pivoting state is attained at 40.5% stiffness of the virgin stiffness of the specimen. For 127 RPM the stiffness reduction is from 120 Newton to 4.938 Newton in 24432 cycles and for 200 RPM the stiffness reduction is from 120 Newton to 7.150554 in 21146 cycles. Fig. 6.5 [±60]8 test Specimen 0 5000 10000 15000 20000 25000 30000 0 10 20 30 40 50 60 70 80 90 100 110 120 130 Bending load in Newtons Number of fatigue cycles 60 degree specimen at 90 rpm 60 degree sepcimen at 127 rpm 60 degree specimen at 200 rpm fitted curve for the 60 degree specimen at 90 rpm fitted curve for the 60 degree specimen at 127 rpm fitted curve for the 60 degree specimen at 200 rpm Model ExpDec1 Equation y = A1*exp(-x/t1) + y0 Reduced Chi-S qr 4.38875 36.71107 20.38142 Adj. R-Square 0.98096 0.9483 0.93919 Value Standard Error B y0 63.54977 2.93209 B A1 51.3345 2.67435 B t1 15817.33682 1816.12617 C1 y0 5.61847 0.87737 C1 A1 122.08987 4.0994 C1 t1 282.55037 16.19568 D y0 7.70914 0.64056 D A1 112.50526 4.39856 D t1 25.80647 1.86313 Fig. 6.6 Stiffness degradation behavior of [ ± 60] orientation Laminate with cross ply orientation sequence of stacking at 90, 127 and 200 rpm
  • 16. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 07 | July-2014, Available @ http://www.ijret.org 239 0 10000 20000 30000 -0.003 -0.002 -0.001 0.000 Siffness reduction rate Number of fatigue cycles First order differential curve of 60 degree specimen at 90 rpm 0 500 1000 1500 2000 2500 -0.6 -0.4 -0.2 0.0 Stiffness reduction rate Number of fatigue cycles First order differental curve of 60 degree specimen at 127 rp m Fig.6.61 Stiffness degradation behavior of Fig.6. 62 Stiffness degradation behavior of [ ± 60] orientation Laminate with cross ply [ ± 60] orientation Laminate with cross ply orientation sequence of stacking at 90 RPM orientation sequence of stacking at 127 rpm 0 500 1000 1500 2000 2500 3000 -0.3 -0.2 -0.1 0.0 Stiffness reduction rate Number of fatigue cycles First order differential curve of 60 degree specimen at 200 rpm 0 10000 20000 30000 0.00E+000 5.00E-008 1.00E-007 1.50E-007 2.00E-007 Stiffness reducton rate Number of fatigue cycles Second order differential curve of 60 degree specimen at 90 rpm Fig.6.64 Second order differential curve of Fig. 6.63 Stiffness degradation behavior of [ ± 60] orientation Laminate with cross ply [ ± 55] orientation Laminate with cross ply orientation sequence of stacking at 90 RPM orientation sequence of stacking 200 RPM 0 500 1000 1500 2000 2500 0.0000 0.0005 0.0010 0.0015 Stiffness reduction rate Number of fatigue cycles Second order differential curve of 60 degree specimen at 127 RPM 0 500 1000 1500 2000 2500 3000 0.0000 0.0002 0.0004 Stiffness reduction rate Number of fatigue cycles Second order differential curve of 60 degree specimen at 200 rpm Fig. 6.65, 6.66 are the Second order differential curve of [ ± 60] orientation Laminate with cross ply orientation sequence of stacking at 127 and 200 RPM
  • 17. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 07 | July-2014, Available @ http://www.ijret.org 240 5. CONCLUSIONS After experimentation finally we are concluding that, at different frequencies degradation takes place differently. If speed increases (frequency) the time required for failure or damage decreases. If speed decreases (frequency) the time required for failure or damage increases. If we increase the speed of the machine i.e., the frequency then the deterioration also take place very fastly. The specimen degraded quickly layer by layer.For 0 degree specimen it takes approximately 3-5 hours at 90 rpm, for the same at 127 rpm it takes 2 hour, for the same at 200 rpm it breaks in a few minutes. With respect to frequency the specimen layers are degrading. For different orientation of specimens (0,55,60) the degradation is taking place differently.0 degree specimen is not able to withstand for high frequencies 55 degree specimen is standing for long time even though the speed is varying and load is increasing. 60 degree specimen is also standing but for a lower number of cycles, if the numbers of cycles are increasing then it did not withstand. It is getting failed before the 55 degree specimen at the same frequency. So we are Concluding that, at different frequencies also 55 degree specimen is better then 0, 20,30,45,60 all these fiber orientations. From the above graphs we are concluding that for 0 degree specimen at 90 rpm, to get pivoting state is 900-1000 cycles, For 0 degree specimen at 127 rpm, the number of the number of cycles required to get pivoting state is 25000 cycles. For 0 degree specimen at 200 rpm, the number of fatigue cycles required cycles required to get pivoting state is not determined because the specimen had broken in the early stage of experimentation. For 55 degree specimen at 90 rpm, the number of cycles required to get pivoting state is 100000 cycles, For 55 degree specimen at 127 rpm, the number of cycles required to get pivoting state is 20000 cycles, for 55 degree specimen at 200 rpm, the number of cycles required to get pivoting state is 2500 cycle. For 60 degree specimen at 90 rpm, the number of cycles required to get pivoting state is 20000 cycle, For 60 degree specimen at 127 rpm, the number of cycles required to get pivoting state is 500-600 cycle For 60 degree specimen at 200 rpm, the number of cycles required to get pivoting state is below 500 cycle. REFERENCES [1] Levon Minnetyan, Computational Simulation of Composite Structural Fatigue, NASA/CR—2005- 213573, February 2005. [2] Van Paepegem, W. and Degrieck, J. (2002). Coupled Residual Stiffness and Strength Model for Fatigue of Fibre-reinforced Composite Materials. Composites Science and Technology, 62(5), 687- 696. [3] Van Paepegem, W. and Degrieck, J. (2001), Experimental Setup for and Numerical Modelling of Bending Fatigue Experiments on Plain Woven Glass/epoxy Composites. Composite Structures, 51(1), 1-8. [4] Van Paepegem, W., Dechaene, R. and Degrieck, J. (2005). Nonlinear correction to the bending stiffness of a damaged composite beam. Composite Structures, 67(3), 359-364. [5] Van Paepegem, W., De Geyter, K., Vanhooymissen, P. and Degrieck, J. (2006). Effect Of friction on the hysteresis loops from three-point bending fatigue tests of fibre-reinforced composites.Composite Structures, 72(2), 212-217. [6] Van Paepegem, W., Degrieck, J. and De Baets, P. (2001). Finite Element Approach for Modelling Fatigue Damage in Fibre-reinforced Composite Materials. Composites Part B, 32(7), 575-588. [7] Van Paepegem, W. and Degrieck, J. (2001). Fatigue Degradation Modelling of Plain Woven Glass/epoxy Composites. Composites Part A, 32(10), 1433-1441. [8] Van Paepegem, W. and Degrieck, J. (2002). Coupled Residual Stiffness and Strength Model for Fatigue of Fibre-reinforced Composite Materials. Composites Science and Technology, 62(5), 687- 696. [9] Van Paepegem, W. and Degrieck, J. (2002). Tensile and Compressive Damage Coupling for Fully- reversed Bending Fatigue of Fibre- reinforced Composites. Fatigue and Fracture of Engineering Materials & Structures, 25(6), 547-562. [10] Van Paepegem, W. and Degrieck, J. (2002). A New Coupled Approach of Residual Stiffness and Strength for Fatigue of Fibre-reinforced Composites. International Journal of Fatigue, 24(7), 747-762. [11] A. Bernasconi a, , S. Foletti a I.V. Papadopoulos b , Multiaxial Fatigue Tests Under Combined Torsion And Axial Load With Different Frequencies, Xxxiv Convegno Nazionale — 14–17 September 2005, POLITECNICO DI MILANO. [12] Leihong Li, structural design of composite rotor blades with consideration of manufacturability, durability, and manufacturing uncertainties, A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Aerospace Engineering Georgia Institute of Technology August 2008. [13] Darris White,New Method for Dual-Axis Fatigue Testing of Large Wind Turbine Blades Using Resonance Excitation and Spectral Loading, NREL/TP-500-35268, April 2004. [14] Levon Minnetyan, Computational Simulation of Composite Structural Fatigue, NASA/CR—2005- 213573, February 2005. [15] Sanjay Mathur2 Prakash Chandra Gope1 and J. K. Sharma1, Prediction of Fatigue Lives of Composites Material by Artificial Neural Network, Paper 260, Proceedings of the SEM 2007 Annual Conference and Exposition, Springfield, Massachusetts, USA, June 4-6, 2007, Copyright Society for Experimental Mechanics, Inc., Bethel, CT USA (2007).
  • 18. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 07 | July-2014, Available @ http://www.ijret.org 241 BIOGRAPHIES Vijaykiran Bura, Asstant Professor, Padmashri Dr.B.V.Raju Institute of Technology (BVRIT), Narsapur. Praveen.Dvr, Asstant Professor, Padmashri Dr.B.V.Raju Institute of Technology (BVRIT), Narsapur.