SlideShare a Scribd company logo
1 of 16
Download to read offline
 
	
  
	
  
Composites	
  Extruder	
  
Head	
  Development	
  
	
  
	
  
	
   Colin	
  Biery	
   (720)216-­‐7625	
   handsvod@rams.colostate.edu	
  	
  
	
   Ryan	
  Dunn	
   (303)229-­‐8358	
   rysdunn@gmail.com	
   	
  
	
   Michael	
  Hansen	
   (720)427-­‐1687	
   mikelangelo.mh77@gmail.com	
  
	
   Logan	
  Rutt	
   (303)495-­‐8382	
   lrutt@rams.colostate.edu	
  
	
   Tristan	
  Vesely	
   (925)876-­‐2343	
   tvesely@rams.colostate.edu	
  
Colorado	
  State	
  University,	
  Mechanical	
  Engineering,	
  
Senior	
  Practicum	
  Projects	
  Program	
  
October	
  6,	
  2015	
  
	
  
____________________________	
   ___________________________	
  
	
  
____________________________	
   ___________________________	
  
	
  
____________________________	
  
	
  
____________________________	
   Advisor:	
  Dr.	
  Don	
  Radford	
  
	
  
	
  
	
  
	
  
	
  
  	
  
Composites	
  Extruder	
  Head	
  Development	
  
	
  
	
  
Table	
  of	
  Contents	
  
Introduction	
  ...................................................................................................................................................	
  2	
  
Background	
  ....................................................................................................................................................	
  2	
  
Composites	
  Properties	
  ..........................................................................................................................	
  2	
  
Composites	
  Manufacturing	
  .................................................................................................................	
  3	
  
Additive	
  Manufacturing	
  ........................................................................................................................	
  3	
  
Current	
  Solutions	
  ....................................................................................................................................	
  4	
  
Problem	
  Statement	
  .....................................................................................................................................	
  5	
  
Goals	
  .................................................................................................................................................................	
  6	
  
Design	
  Constraints	
  .......................................................................................................................................	
  7	
  
Work	
  Plan	
  and	
  Design	
  Evaluation	
  ..........................................................................................................	
  7	
  
Design	
  Evaluation	
  .....................................................................................................................................	
  11	
  
Management	
  Plan	
  ....................................................................................................................................	
  11	
  
Meeting	
  times	
  .......................................................................................................................................	
  11	
  
Timeline	
  and	
  Milestones	
  ...................................................................................................................	
  13	
  
Concluding	
  Statement	
  .............................................................................................................................	
  14	
  
Budget	
  Breakdown	
  ...................................................................................................................................	
  14	
  
References	
  ...................................................................................................................................................	
  15	
  
	
  
	
  
	
   	
  
  	
  
Composites	
  Extruder	
  Head	
  Development	
  
	
  
	
  
Introduction	
  
Fiber	
  reinforced	
  thermoplastic	
  composites	
  are	
  incredibly	
  useful	
  materials	
  due	
  to	
  
their	
  impressive	
  specific	
  stiffness	
  as	
  well	
  as	
  their	
  specific	
  strength.	
  Specific	
  stiffness	
  is	
  
measured	
  by	
  Modulus	
  of	
  Elasticity	
  divided	
  by	
  density,	
  and	
  	
  	
  specific	
  strength	
  is	
  
measured	
  by	
  tensile	
  strength	
  divided	
  by	
  density.	
  Unfortunately,	
  composite	
  
manufacturing	
  is	
  a	
  difficult	
  and	
  costly	
  process	
  that	
  makes	
  the	
  practicality	
  of	
  composite	
  
parts	
  unsuitable	
  for	
  many	
  designs.	
  In	
  contrast	
  additive	
  manufacturing	
  is	
  a	
  relatively	
  
simple	
  manufacturing	
  processes,	
  but	
  creates	
  weaker	
  parts.	
  Combining	
  the	
  ease	
  of	
  
additive	
  manufacturing	
  techniques	
  with	
  the	
  strength	
  of	
  composites	
  would	
  enable	
  
designers	
  to	
  rapidly	
  create	
  components	
  that	
  meet	
  structural	
  requirements.	
  This	
  will	
  
eliminate	
  lag	
  time	
  for	
  prototypes	
  and	
  reduce	
  market-­‐level	
  manufacturing	
  times.	
  The	
  
proposed	
  solution	
  to	
  this	
  challenge	
  is	
  a	
  hot	
  end	
  extruder	
  head	
  capable	
  of	
  manufacturing	
  
consolidated	
  thermoplastic	
  composites	
  through	
  3D	
  printing.	
  Advancement	
  of	
  composite	
  
materials	
  in	
  engineering	
  design	
  strongly	
  depends	
  on	
  the	
  availability	
  of	
  new	
  
manufacturing	
  processes	
  [7].	
  	
  
Background	
  
Composites	
  Properties	
  
Composite	
   materials	
   offer	
   mechanical	
   properties	
   for	
   engineering	
   applications	
  
that	
  traditional	
  materials	
  cannot	
  compete	
  with.	
  Their	
  high	
  specific	
  strength	
  can	
  provide	
  
the	
   same	
   capabilities	
   as	
   high-­‐grade	
  
aluminum	
   at	
   five	
   to	
   ten	
   times	
   less	
  
weight	
   [2].	
   Additionally	
   they	
   have	
  
remarkable	
  durability	
  and	
  resistance	
  to	
  
fatigue	
   [2].	
   Thermoplastic	
   fiber	
  
composites	
   function	
   by	
   transmitting	
  
external	
   energy	
   through	
   the	
  
thermoplastic	
   matrix	
   material	
   to	
   the	
  
hard,	
   brittle	
   fiber	
   reinforcements	
  
within.	
  The	
  fibers	
  take	
  the	
  applied	
  load	
  
while	
   the	
   matrix	
   protects	
   them	
   from	
  
damage.	
   Properties	
   of	
   composites	
  
heavily	
  depend	
  on	
  the	
  properties	
  of	
  the	
  matrix,	
  reinforcement,	
  and	
  the	
  ratio	
  of	
  matrix	
  
to	
  reinforcement,	
  which	
  is	
  traditionally	
  stated	
  as	
  the	
  percent	
  weight	
  of	
  fiber	
  [2,8].	
  	
  
Fiber	
  orientation	
  is	
  one	
  factor	
  that	
  determines	
  the	
  properties	
  of	
  a	
  composite.	
  As	
  
seen	
  from	
  Figure	
  1,	
  there	
  are	
  several	
  techniques	
  for	
  fiber	
  and	
  reinforcement	
  placement.	
  
The	
  most	
  widely	
  practiced	
  fiber	
  placement	
  for	
  composites	
  is	
  continuous	
  and	
  
discontinuous	
  (chopped)	
  fiber	
  [8].	
  Fibers	
  are	
  categorized	
  by	
  their	
  aspect	
  ratio	
  (length	
  
divided	
  by	
  the	
  diameter	
  of	
  the	
  fiber),	
  where	
  continuous	
  fibers	
  have	
  long	
  aspect	
  ratios	
  
and	
  discontinuous	
  fibers	
  have	
  short	
  aspect	
  ratios	
  [1].	
  Composites	
  are	
  most	
  effective	
  
when	
  fibers	
  are	
  continuous	
  and	
  parallel,	
  increasing	
  their	
  ultimate	
  tensile	
  strength	
  and	
  
Figure	
  1	
  -­‐	
  Continuous	
  vs.	
  Short	
  Fibers	
  [11]	
  
  	
  
Composites	
  Extruder	
  Head	
  Development	
  
	
  
	
  
stiffness.	
  Continuous	
  fiber	
  composites	
  have	
  anisotropic	
  material	
  characteristics,	
  and	
  fail	
  
at	
  lower	
  stress	
  values	
  when	
  transversely	
  loaded	
  [2,8].	
  In	
  contrast,	
  Discontinuous	
  short	
  
fiber	
  composites	
  tend	
  to	
  possess	
  more	
  isotropic	
  material	
  properties	
  when	
  compared	
  to	
  
continuous	
  fiber	
  [2],	
  but	
  have	
  lower	
  tensile	
  strength	
  and	
  Modulus	
  of	
  Elasticity.	
  
Consolidation	
  is	
  an	
  important	
  issue	
  when	
  dealing	
  with	
  composite	
  materials.	
  
Consolidation	
  describes	
  how	
  effective	
  the	
  matrix/thermoplastic	
  is	
  at	
  reaching	
  and	
  
spreading	
  between	
  all	
  of	
  the	
  fibers.	
  Proper	
  consolidation	
  uniformly	
  arranges	
  the	
  fiber	
  
reinforcement	
  throughout	
  the	
  material	
  with	
  fiber	
  volumes	
  at	
  50%	
  or	
  above.	
  One	
  reason	
  
composites	
  are	
  advantageous	
  over	
  other	
  materials	
  is	
  how	
  the	
  matrix	
  distributes	
  the	
  
external	
  forces	
  experienced	
  by	
  the	
  composite	
  to	
  the	
  stronger	
  (and	
  more	
  brittle)	
  fibers	
  
[5].	
  The	
  transfer	
  of	
  energy	
  between	
  the	
  matrix	
  and	
  fiber	
  is	
  accomplished	
  through	
  proper	
  
wetting	
  of	
  the	
  composite.	
  Proper	
  wetting	
  provides	
  adequate	
  bonding	
  between	
  the	
  
matrix	
  and	
  fibers,	
  and	
  transfers	
  loads	
  through	
  shear	
  to	
  the	
  fibers	
  [2].	
  With	
  inadequate	
  
wetting	
  out	
  of	
  the	
  fiber	
  composite,	
  the	
  structural	
  strength	
  decreases	
  and	
  does	
  not	
  
provide	
  proper	
  mechanical	
  properties	
  for	
  engineering	
  use.	
  	
  Without	
  the	
  stiff,	
  brittle	
  
fibers	
  the	
  thermoplastic	
  alone	
  is	
  far	
  weaker	
  and	
  has	
  a	
  lower	
  modulus	
  of	
  elasticity,	
  
because	
  the	
  matrix	
  has	
  lower	
  tensile/compression	
  strength	
  and	
  modulus	
  of	
  elasticity	
  
than	
  the	
  fibers.	
  Without	
  proper	
  consolidation	
  and	
  wetting	
  of	
  the	
  fibers,	
  these	
  material	
  
advantages	
  can	
  be	
  lost.	
  If	
  the	
  fibers	
  are	
  not	
  distributed	
  evenly	
  through	
  the	
  
thermoplastic	
  matrix	
  and	
  not	
  adequately	
  transferring	
  energy,	
  you	
  do	
  not	
  achieve	
  
consistent	
  material	
  properties	
  throughout	
  the	
  composite.	
  
Composites	
  Manufacturing	
  
Although	
  composites	
  provide	
  strong	
  and	
  stiff	
  engineering	
  materials,	
  the	
  
manufacturing	
  process	
  can	
  be	
  costly	
  and	
  time	
  consuming.	
  Manufacturability	
  is	
  a	
  limiting	
  
factor	
  for	
  commercialization	
  of	
  these	
  materials,	
  where	
  the	
  process	
  involves	
  multiple	
  
steps	
  and	
  require	
  bulky	
  molds	
  [7].	
  	
  The	
  tooling	
  required	
  to	
  create	
  composite	
  
components	
  are	
  expensive	
  to	
  design	
  and	
  manufacture	
  and	
  do	
  not	
  offer	
  adaptability	
  for	
  
design	
  changes.	
  In	
  addition	
  to	
  expensive	
  tooling,	
  the	
  manufacturing	
  process	
  often	
  
requires	
  human	
  intervention	
  [6].	
  With	
  high	
  labor	
  necessities	
  the	
  price	
  of	
  production	
  
increases	
  due	
  to	
  lack	
  of	
  automation,	
  and	
  exposes	
  individuals	
  to	
  unhealthy	
  work	
  
environments	
  containing	
  fumes	
  and	
  high	
  temperatures.	
  	
  
Additive	
  Manufacturing	
  
	
   Additive	
  manufacturing	
  (AM)	
  refers	
  to	
  the	
  process	
  of	
  building	
  3-­‐D	
  objects	
  by	
  
adding	
  layer	
  upon	
  layer	
  of	
  material	
  to	
  create	
  a	
  complete	
  part	
  [10].	
  There	
  are	
  many	
  
different	
  types	
  of	
  additive	
  manufacturing,	
  the	
  most	
  common	
  and	
  commercially	
  available	
  
being	
  Fused	
  Deposition	
  Modeling	
  (FDM).	
  FDM	
  generally	
  uses	
  thermoplastic	
  filament	
  as	
  
the	
  stock	
  material.	
  The	
  filament	
  is	
  fed	
  into	
  a	
  heated	
  extrusion	
  nozzle	
  where	
  it	
  is	
  melted	
  
and	
  then	
  extruded	
  onto	
  a	
  base	
  plate	
  through	
  a	
  hot	
  end	
  extruder	
  head.	
  The	
  rate	
  at	
  which	
  
the	
  filament	
  is	
  extruded	
  is	
  dependent	
  on	
  the	
  specified	
  printing	
  speed	
  of	
  the	
  extruder	
  
head.	
  The	
  faster	
  the	
  printing	
  speed,	
  the	
  faster	
  the	
  filament	
  is	
  extruded	
  [10].	
  The	
  
extruder	
  head	
  and	
  base	
  plate	
  move	
  on	
  a	
  minimum	
  of	
  three	
  axes	
  to	
  outline	
  the	
  geometry	
  
  	
  
Composites	
  Extruder	
  Head	
  Development	
  
	
  
	
  
of	
  the	
  part.	
  Currently,	
  most	
  of	
  these	
  printers	
  move	
  in	
  the	
  x-­‐y	
  plane	
  to	
  create	
  a	
  layer	
  and	
  
then	
  move	
  in	
  the	
  z-­‐direction	
  to	
  begin	
  printing	
  the	
  next	
  layer.	
  	
  
	
   FDM	
  manufacturing	
  requires	
  no	
  tooling	
  or	
  user	
  interaction	
  to	
  create	
  finished	
  
parts.	
  Parts	
  are	
  built	
  up	
  directly	
  on	
  the	
  base	
  plate	
  from	
  the	
  ground	
  up.	
  This	
  is	
  
advantageous	
  as	
  it	
  requires	
  no	
  tooling	
  but	
  disadvantageous	
  because	
  it	
  is	
  limited	
  in	
  what	
  
geometries	
  at	
  can	
  build	
  vertically.	
  They	
  are	
  built	
  up	
  using	
  G-­‐code	
  generated	
  from	
  3D	
  
specific	
  software.	
  This	
  software	
  reads	
  stereolithography	
  (STL)	
  files	
  and	
  generates	
  the	
  
code	
  directly	
  from	
  them.	
  This	
  form	
  of	
  AM	
  is	
  extremely	
  useful	
  for	
  developing	
  geometries,	
  
however	
  it	
  is	
  disadvantaged	
  when	
  developing	
  structural	
  properties	
  for	
  application	
  
purposes.	
  	
  
Current	
  Solutions	
  	
  
	
   There	
  are	
  a	
  few	
  current	
  ways	
  that	
  composites	
  are	
  being	
  implemented	
  into	
  AM.	
  
These	
  include	
  using	
  hot	
  end	
  extruder	
  heads	
  to	
  pull	
  and	
  consolidate	
  fibers,	
  use	
  plastic	
  
filament	
  pre-­‐impregnated	
  with	
  chopped	
  fibers,	
  and	
  using	
  printing	
  plastics	
  and	
  fibers	
  in	
  
series	
  using	
  multiple	
  extruder	
  heads.	
  
	
   A	
  laboratory	
  scale	
  extruder	
  head,	
  developed	
  by	
  engineers	
  in	
  Zurich	
  Switzerland,	
  
is	
  capable	
  of	
  of	
  processing	
  continuous	
  composite	
  lattice	
  structures	
  [7].	
  The	
  method	
  of	
  
manufacturing	
   is	
  
inspired	
   by	
  
conventional	
   3D-­‐
printing,	
   and	
   uses	
   a	
  
novel	
   two-­‐stage	
  
extrusion	
   head	
   to	
  
manufacture	
   the	
  
composite	
   as	
   seen	
  
in	
   Figure	
   2.	
   This	
  
novel	
  
manufacturing	
  
method	
   is	
   currently	
  
patented	
   for	
   a	
  
continuous	
   fiber	
  
lattice	
   fabrication	
  
(CFLF).
CSU	
  currently	
  has	
  two	
  graduate	
  students	
  working	
  with	
  composite	
  additive	
  
manufacturing.	
  They	
  are	
  printing	
  commingled	
  tow,	
  a	
  form	
  of	
  composite	
  stock	
  material,	
  
onto	
  a	
  rotating	
  mandrel	
  using	
  3D	
  extruder	
  heads.	
  This	
  method	
  requires	
  tension	
  on	
  the	
  
stock	
  material	
  in	
  order	
  to	
  achieve	
  good	
  consolidation.	
  
	
   There	
  are	
  multiple	
  companies	
  that	
  are	
  selling	
  thermoplastic	
  filament	
  with	
  short	
  
chopped	
   fibers	
   pre-­‐impregnated	
   into	
   the	
   filament.	
   This	
   composite	
   filament	
   can	
   be	
  
Figure	
  2	
  –	
  Commingled	
  tow	
  extruder	
  head	
  developed	
  by	
  ETHZ	
  Structures	
  [7]	
  
  	
  
Composites	
  Extruder	
  Head	
  Development	
  
	
  
	
  
Figure	
  3	
  -­‐	
  Mark	
  Forged	
  MarkOne	
  Printer	
  [3]	
  
printed	
  in	
  many	
  commercially	
  available	
  printers	
  but	
  does	
  not	
  add	
  the	
  desired	
  benefit	
  to	
  
properties	
  that	
  can	
  be	
  achieved	
  from	
  traditional	
  composite	
  manufacturing	
  methods.	
  	
  
The	
   only	
   commercially	
   available	
   FDM	
   printer	
   that	
   prints	
   continuous	
   fiber	
  
composites	
  is	
  the	
  Mark	
  One©	
  by	
  MarkForged	
  [3].	
  It	
  uses	
  a	
  dual	
  head	
  extruder	
  system	
  to	
  
print	
  nylon	
  out	
  of	
  one	
  head	
  and	
  pre-­‐preg	
  fibers	
  out	
  of	
  the	
  other.	
  This	
  is	
  called	
  follow	
  
behind	
  consolidation	
  
because	
  the	
  matrix	
  is	
  
extruded	
   on	
   top	
   of	
  
the	
   fiber	
   after	
  
extrusion.	
   This	
  
method	
   gives	
   much	
  
higher	
   strength	
  
values	
   than	
   a	
   purely	
  
nylon	
   part	
   would	
  
achieving	
   a	
   tensile	
  
strength	
  of	
  590	
  MPa	
  
for	
   nylon-­‐fiberglass	
  
composite	
  [3].	
  
Problem	
  Statement	
  
	
  
Composite	
  material	
  production	
  is	
  a	
  time-­‐intensive	
  and	
  expensive	
  process	
  when	
  
creating	
  highly	
  complicated	
  parts.	
  Tooling	
  is	
  difficult	
  and	
  must	
  have	
  a	
  high	
  level	
  of	
  
precision	
  to	
  create	
  quality	
  parts.	
  Molds	
  created	
  for	
  a	
  part	
  are	
  specific	
  to	
  that	
  part,	
  they	
  
cannot	
  be	
  used	
  to	
  manufacture	
  anything	
  else.	
  	
  
	
  
Fused	
  deposition	
  modeling	
  is	
  incredibly	
  easy	
  to	
  use	
  and	
  can	
  create	
  unique	
  
shapes	
  for	
  virtually	
  no	
  overhead	
  cost.	
  It	
  is	
  versatile	
  and	
  capable,	
  but	
  the	
  parts	
  created	
  
are	
  weaker	
  than	
  thermoplastic	
  parts	
  created	
  with	
  traditional	
  methods.	
  	
  Being	
  able	
  to	
  
produce	
  composite	
  materials	
  in	
  unique	
  shapes	
  via	
  additive	
  manufacturing	
  is	
  an	
  enabling	
  
technology	
  opening	
  up	
  countless	
  opportunities	
  to	
  save	
  money	
  by	
  avoiding	
  costly	
  
production	
  techniques.	
  Additive	
  manufacturing	
  is	
  a	
  rapidly	
  growing	
  field	
  that	
  keeps	
  
making	
  breakthroughs	
  in	
  the	
  potential	
  it	
  has.	
  Composites	
  are	
  one	
  of	
  the	
  few	
  types	
  of	
  
material,	
  if	
  not	
  the	
  only	
  one	
  left,	
  that	
  is	
  not	
  yet	
  being	
  printed.	
  Research	
  labs	
  are	
  already	
  
starting	
  to	
  experiment	
  with	
  this	
  technology	
  [7].	
  Before	
  additive	
  manufacturing	
  of	
  
composites	
  can	
  become	
  commercial	
  there	
  has	
  to	
  be	
  a	
  reliable	
  foundation	
  built	
  in	
  
research	
  labs.	
  Researchers	
  who	
  make	
  the	
  most	
  strides	
  in	
  composites	
  extrusion	
  stand	
  to	
  
gain	
  a	
  great	
  amount	
  as	
  many	
  commercial	
  companies	
  will	
  undoubtedly	
  begin	
  producing	
  
as	
  many	
  composites	
  as	
  possible	
  this	
  way.	
  Ultimately	
  those	
  manufacturing	
  composites	
  
stand	
  to	
  benefit	
  from	
  composites	
  extrusion	
  because	
  they	
  are	
  paying	
  the	
  outstanding	
  bill	
  
for	
  current	
  production	
  methods.	
  Currently	
  Boeing®	
  requires	
  the	
  use	
  of	
  carbon	
  fiber	
  
thrust	
  reversing	
  cascade	
  baskets	
  for	
  their	
  jet	
  engines.	
  There	
  is	
  only	
  one	
  company	
  in	
  the	
  
  	
  
Composites	
  Extruder	
  Head	
  Development	
  
	
  
	
  
world	
  which	
  produces	
  the	
  baskets	
  and	
  they	
  use	
  an	
  expensive	
  hand-­‐laying	
  process.	
  The	
  
proposed	
  fused	
  deposition	
  modeling	
  method	
  of	
  composite	
  manufacturing	
  has	
  the	
  
potential	
  of	
  being	
  a	
  viable	
  alternative	
  to	
  the	
  current	
  cascade	
  manufacturing	
  process.	
  
	
  
Goals	
  
	
  
The	
  designated	
  task	
  is	
  to	
  design	
  and	
  build	
  a	
  progression	
  of	
  laboratory	
  scale	
  
composite	
  extruder	
  heads	
  capable	
  of	
  being	
  mounted	
  on	
  a	
  conventional	
  or	
  non-­‐
conventional	
  3D	
  printer.	
  The	
  heads	
  developed	
  must	
  successfully	
  print	
  fiber	
  reinforced	
  
composite	
  material.	
  Each	
  extruder	
  head	
  will	
  be	
  capable	
  of	
  printing	
  composites	
  with	
  
different	
  stock	
  material	
  options:	
  
● One	
  head	
  capable	
  of	
  using	
  commingled	
  tow	
  and	
  of	
  wetting	
  out	
  dry	
  continuous	
  
fiber.	
  
● One	
  head	
  that	
  is	
  able	
  to	
  use	
  lower	
  cost	
  forms	
  of	
  plastic	
  feedstock	
  than	
  the	
  
commercial	
  fused	
  deposition	
  plastic	
  filament.	
  
● One	
  head	
  capable	
  of	
  extruding	
  continuous	
  patterns	
  of	
  plastic	
  and	
  reinforcing	
  dry	
  
fiber	
  with	
  plastic	
  pellets	
  as	
  the	
  feedstock.	
  
● Print	
  composites	
  made	
  up	
  of	
  a	
  polypropylene	
  thermoplastic	
  matrix	
  and	
  glass	
  
reinforcing	
  fibers	
  in	
  order	
  to	
  demonstrate	
  capability	
  of	
  printing	
  composites	
  made	
  
up	
  of	
  a	
  Peek	
  thermoplastic	
  matrix	
  and	
  carbon	
  reinforcing	
  fibers	
  	
  
Objectives	
  
Table	
  1	
  -­‐	
  Design	
  Objectives	
  
Objective	
  Name	
   Priority*	
   Method	
  of	
  
Measurement	
  
Objective	
  
Direction	
  
Target	
  
Consolidation	
   5	
   Photo	
  Microscopy	
   Maximize	
   Evenly	
  distributed	
  
fibers	
  
Fiber	
  Volume	
  
Fraction	
  
4	
   Volume	
  of	
  fibers	
  
(cc)	
  
Maximize	
   60%	
  
Hot	
  End	
  
Temperature	
  
Capability	
  
3	
   Head	
  temperature	
  
(degrees	
  C)	
  
Maximize	
   500°C	
  
Operating	
  
Temperature	
  
3	
   Head	
  temperature	
  
(degrees	
  C)	
  
Optimize	
   TBD	
  via	
  
experimentation	
  
Composites	
  Stiffness	
   2	
   Specific	
  Modulus	
  
(GPa)	
  
Maximize	
   26.5	
  GPa	
  [9]**	
  
*	
  	
  	
  Priority	
  is	
  weighed	
  on	
  1-­‐5	
  scale	
  with	
  5	
  most	
  important	
  
**	
  Value	
  provided	
  for	
  60%	
  by	
  volume	
  glass	
  fiber	
  reinforced	
  PP	
  composite.	
  Value	
  	
  	
  will	
  
change	
  based	
  on	
  material	
  produced	
  
	
  
  	
  
Composites	
  Extruder	
  Head	
  Development	
  
	
  
	
  
	
  
Design	
  Constraints	
  
Table	
  2	
  -­‐	
  Design	
  Constraints	
  
Constraint	
   Method	
  of	
  Measurement	
   Limits	
  
Material	
  Stock	
  Form	
   Thermoplastics	
  and	
  
Reinforcing	
  Fibers	
  Stock	
  
Commingled	
  tow,	
  thermoplastic	
  filament,	
  
dry	
  fiber,	
  thermoplastic	
  pellets	
  
Size	
   Dimensions	
  (mm	
  x	
  mm	
  x	
  mm)	
   54	
  x	
  65	
  x	
  65	
  
Commercial	
  Software	
   Compatible	
  slicing	
  and	
  
controls	
  software	
  
Cura,	
  Slic3r,	
  etc.	
  
Manufacturing	
  
Methods	
  
Compatible	
  types	
  of	
  additive	
  
manufacturing	
  
Fused	
  Deposition	
  Modeling	
  
Budget	
   Dollars	
  Spent	
   $2000	
  
Safety	
   Possibility	
  of	
  Serious	
  Injury	
   0	
  
	
  
	
  
	
  
Work	
  Plan	
  and	
  Design	
  Evaluation	
  
	
  
The	
  work	
  plan	
  for	
  our	
  project	
  is	
  crucial	
  to	
  developing	
  a	
  successful	
  product	
  and	
  
will	
  be	
  executed	
  in	
  three	
  iterative	
  design	
  and	
  manufacturing	
  processes,	
  each	
  of	
  which	
  
are	
  determined	
  by	
  the	
  type	
  of	
  material	
  stock	
  to	
  be	
  extruded.	
  These	
  processes	
  are	
  
broken	
  down	
  in	
  detail	
  in	
  tables	
  3-­‐5.	
  
  	
  
Composites	
  Extruder	
  Head	
  Development	
  
	
  
	
  
Table	
  3	
  -­‐	
  1st	
  Extruder	
  Head	
  Iteration	
  -­‐	
  Commingled	
  Tow	
  Design	
  Process	
  
Process	
  step	
   Task	
  Breakdown	
  (with	
  number	
  of	
  hours	
  allocated	
  to	
  
each	
  task)	
  
1. Acquire	
  3D	
  FDM	
  printer,	
  
extruder	
  head,	
  and	
  commingled	
  
tow	
  Polypropylene	
  (PP)	
  Twintex	
  
stock	
  material	
  
• Develop	
  printer	
  criteria	
  to	
  be	
  approved	
  by	
  Dr.	
  
Radford	
  (3	
  hrs.)	
  
• research	
  and	
  buy	
  printer	
  approved	
  by	
  Dr.	
  Radford	
  (8-­‐
10	
  hrs.)	
  
• Communicate	
  with	
  Kent	
  Warlick	
  to	
  receive	
  PP	
  
Twintex	
  material	
  (1-­‐2	
  hrs.)	
  
2.)	
  Attempt	
  extruding	
  commingled	
  
tow	
  through	
  original	
  standard	
  
extruder	
  head	
  
• use	
  small	
  amount	
  of	
  PP	
  Twintex	
  in	
  test	
  extrusion	
  of	
  
commingled	
  tow	
  using	
  the	
  original	
  extruder	
  head	
  
that	
  was	
  purchased	
  with	
  the	
  printer	
  (3	
  hrs.)	
  
3.)	
  Determine	
  Procedure	
  for	
  
effective	
  pultrusion,	
  consolidation,	
  
and	
  extrusion	
  of	
  commingled	
  tow	
  
with	
  extruder	
  head	
  
• Meet	
  with	
  Kevin	
  Hedin	
  and	
  Kent	
  Warlick	
  to	
  
determine	
  current	
  methods	
  of	
  tensioning,	
  
consolidating	
  extruding,	
  commingled	
  tow	
  on	
  spinning	
  
mandrel	
  printer	
  (1-­‐2	
  hrs.)	
  
• identify	
  and	
  isolate	
  most	
  important	
  components	
  of	
  
extruder	
  head	
  for	
  effective	
  tensioning,	
  consolidation,	
  
and	
  extrusion	
  (3-­‐5	
  hrs.)	
  
4.)	
  Develop	
  extrusion	
  angle	
  and	
  flat	
  
plate	
  printing	
  techniques	
  
• Use	
  information	
  acquired	
  from	
  initial	
  testing	
  and	
  
mandrel	
  methods	
  to	
  generate	
  concepts	
  for	
  
tensioning	
  consolidation	
  and	
  extrusion	
  (10-­‐15	
  hrs.)	
  
5.)	
  Design	
  angled	
  extruder	
  head	
  to	
  
consolidate	
  and	
  print	
  Commingled	
  
tow	
  
• Design	
  mechanical	
  components	
  necessary	
  to	
  achieve	
  
goals	
  determined	
  in	
  concept	
  generation,	
  using	
  as	
  
much	
  technology	
  from	
  prior	
  commingled	
  extrusion	
  
process	
  as	
  necessary	
  (	
  10-­‐15	
  hrs.)	
  
6.)	
  Manufacture	
   • Using	
  the	
  I2P	
  lab	
  and	
  the	
  team	
  printer,	
  print	
  any	
  
parts	
  necessary	
  that	
  are	
  not	
  temperature	
  sensitive	
  
(printing	
  time:	
  10-­‐20	
  hrs.)	
  
• Machine	
  any	
  temperature	
  dependent	
  components,	
  
either	
  in	
  house	
  or	
  professionally,	
  depending	
  on	
  
complexity	
  of	
  geometry	
  (5-­‐15	
  hrs.)	
  	
  (up	
  to	
  three	
  
weeks	
  of	
  lead	
  time	
  for	
  professional	
  manufacturing)	
  
7.)	
  Assemble	
  and	
  test	
  extruder	
  head	
   • Test	
  extruder	
  head	
  and	
  parts	
  printed	
  based	
  on	
  
current	
  testing	
  methods	
  used	
  by	
  Kevin	
  Hedin	
  and	
  
Kent	
  Warlick	
  and	
  previously	
  found	
  in	
  research	
  (15-­‐20	
  
hrs.)	
  
8.)	
  Revise	
  design	
  and	
  modify	
  
extruder	
  as	
  necessary	
  based	
  on	
  
testing	
  
• Based	
  on	
  testing,	
  modify	
  or	
  redesign	
  components	
  of	
  
extruder	
  head	
  to	
  increase	
  composite	
  print	
  quality	
  
and	
  use	
  on	
  2nd	
  and	
  3rd	
  iteration	
  of	
  extruder	
  head	
  (5-­‐
20	
  hrs.)	
  
  	
  
Composites	
  Extruder	
  Head	
  Development	
  
	
  
	
  
Table	
  4	
  -­‐	
  2nd	
  Iteration	
  -­‐	
  E-­‐glass	
  fiber	
  tow	
  and	
  thermoplastic	
  filament	
  
Process	
  step	
   Task	
  Breakdown	
  (with	
  number	
  of	
  hours	
  allocated	
  to	
  
each	
  task)	
  
1. Acquire	
  E-­‐glass	
  Fiber	
  feedstock	
  
and	
  PP	
  filament	
  feedstock	
  
• Purchase	
  E-­‐glass	
  fiber	
  tow	
  feedstock	
  (2-­‐3	
  hrs)	
  	
  
• Purchase	
  PP	
  thermoplastic	
  filament	
  feedstock	
  (<1	
  
hr)	
  
2.)	
  Modify	
  1st	
  iteration	
  of	
  extruder	
  
head	
  design	
  to	
  accommodate	
  for	
  
thermoplastic	
  filament	
  feedstock.	
  
• Generate	
  concepts	
  to	
  accommodate	
  for	
  new	
  
feedstock	
  material	
  types	
  (5-­‐10	
  hrs)	
  
• Modify	
  designs	
  of	
  first	
  iteration	
  of	
  head	
  to	
  be	
  
capable	
  of	
  tensioning	
  consolidating,	
  and	
  extruding,	
  
composite	
  as	
  separate	
  feedstocks;	
  dry	
  fiber	
  and	
  PP	
  
filament	
  (14-­‐18	
  hrs.)	
  
3.)	
  Manufacture	
  new	
  components	
  
of	
  extruder	
  head	
  
• Print	
  any	
  parts	
  necessary	
  that	
  are	
  not	
  temperature	
  
sensitive	
  	
  and	
  were	
  not	
  previously	
  manufactured	
  
from	
  1st	
  iteration	
  (printing	
  time:	
  5-­‐10hrs)	
  
• Machine	
  hot	
  end	
  extruder	
  head,	
  either	
  in	
  house	
  or	
  
professionally,	
  depending	
  on	
  complexity	
  of	
  
geometry	
  (5-­‐15	
  hrs)	
  	
  (up	
  to	
  three	
  weeks	
  of	
  lead	
  
time	
  for	
  professional	
  manufacturing)	
  
4.)	
  Assemble	
  and	
  test	
   • Test	
  extruder	
  head	
  and	
  parts	
  printed	
  based	
  on	
  
current	
  testing	
  methods	
  used	
  by	
  Kevin	
  Hedin	
  and	
  
Kent	
  Warlick	
  and	
  previously	
  found	
  in	
  research	
  (15-­‐
20	
  hrs)	
  
5.)	
  Revise	
  design	
  and	
  modify	
  
extruder	
  as	
  necessary	
  based	
  on	
  
testing	
  
• Based	
  on	
  testing,	
  modify	
  or	
  redesign	
  components	
  of	
  
extruder	
  head	
  to	
  increase	
  composite	
  print	
  quality	
  
used	
  on	
  1st	
  and	
  to	
  be	
  used	
  on	
  3rd	
  iteration	
  of	
  
extruder	
  head	
  (5-­‐20	
  hrs)	
  
  	
  
Composites	
  Extruder	
  Head	
  Development	
  
	
  
	
  
Table	
  5	
  -­‐	
  3rd	
  Iteration	
  -­‐	
  E-­‐glass	
  fiber	
  tow	
  and	
  pellet	
  stock	
  Polypropylene	
  feedstock
Process	
  step	
   Task	
  Breakdown	
  (with	
  number	
  of	
  hours	
  allocated	
  to	
  each	
  
task)	
  
1.)	
  Acquire	
  matrix	
  pellet	
  
feedstock	
  
• purchase	
  PP	
  pellet	
  stock,	
  preferably	
  premixed	
  and	
  
ready	
  to	
  be	
  used	
  as	
  is	
  (1-­‐3	
  hrs.)	
  
2.)	
  Develop	
  compact	
  process	
  
for	
  melting	
  and	
  extruding	
  
pellet	
  feedstock	
  
• Working	
  off	
  of	
  existing	
  technology,	
  develop	
  a	
  method	
  
to	
  use	
  thermoplastic	
  feedstock	
  that	
  can	
  be	
  integrated	
  
into	
  3D	
  printing	
  process	
  (8-­‐12	
  hrs.)	
  
3.)	
  Modify	
  2nd	
  iteration	
  of	
  
extruder	
  head	
  design	
  to	
  
incorporate	
  pellet	
  feedstock	
  
system	
  
• Design	
  components	
  to	
  use	
  method	
  developed	
  to	
  use	
  
pellet	
  feedstock	
  (10-­‐15	
  hrs.)	
  
• Modify	
  designs	
  to	
  be	
  capable	
  of	
  dealing	
  with	
  the	
  
addition	
  of	
  components	
  for	
  pellet	
  feedstock	
  (10-­‐15	
  
hrs.)	
  
4.)	
  Manufacture	
  new	
  
components	
  of	
  extruder	
  head	
  
• Print	
  any	
  parts	
  necessary	
  that	
  are	
  not	
  temperature	
  
sensitive	
  	
  and	
  were	
  not	
  previously	
  manufactured	
  from	
  
1st	
  iteration	
  (printing	
  time:	
  5-­‐10hrs)	
  
• Machine	
  any	
  components	
  that	
  are	
  temperature	
  
dependent,	
  either	
  in-­‐house	
  or	
  professionally,	
  
depending	
  on	
  complexity	
  of	
  geometry	
  (5-­‐20	
  hrs.)	
  (	
  up	
  
to	
  three	
  weeks	
  of	
  lead	
  time	
  for	
  professional	
  
manufacturing)	
  
5.)	
  Assemble	
  and	
  test	
   • Test	
  extruder	
  head	
  and	
  parts	
  printed	
  based	
  on	
  current	
  
testing	
  methods	
  used	
  by	
  Kevin	
  Hedin	
  and	
  Kent	
  Warlick	
  
and	
  previously	
  found	
  in	
  research	
  (15-­‐20	
  hrs.)	
  
6.)	
  Revise	
  design	
  and	
  modify	
  
extruder	
  as	
  necessary	
  based	
  
on	
  testing	
  
• Based	
  on	
  testing,	
  modify	
  or	
  redesign	
  components	
  of	
  
extruder	
  head	
  to	
  increase	
  composite	
  print	
  quality	
  used	
  
in	
  1st	
  and	
  2nd	
  iteration	
  of	
  extruder	
  head	
  (5-­‐20	
  hrs.)	
  
	
  
	
  
  	
  
Composites	
  Extruder	
  Head	
  Development	
  
	
  
	
  
Design	
  Evaluation	
  
Our	
  main	
  design	
  objective	
  is	
  to	
  produce	
  a	
  high	
  quality	
  composite	
  so	
  there	
  must	
  
be	
  a	
  way	
  to	
  test	
  for	
  quality.	
  Extrusion	
  temperature,	
  feed	
  rate,	
  and	
  nozzle	
  diameter	
  are	
  
crucial	
  test	
  variables	
  that	
  need	
  structured	
  experiments	
  to	
  determine	
  optimum	
  printing	
  
conditions.	
  Consolidation	
  will	
  be	
  measured	
  with	
  density	
  measurements	
  and	
  fiber	
  
volume	
  fraction	
  will	
  be	
  measured	
  with	
  a	
  resin	
  burnout	
  method.	
  Resin	
  burnout	
  involves	
  
weighing	
  the	
  produced	
  part	
  and	
  then	
  baking	
  it	
  and	
  letting	
  the	
  resin	
  evaporate	
  so	
  only	
  
fibers	
  are	
  left.	
  Those	
  fibers	
  can	
  then	
  be	
  weighed	
  with	
  respect	
  to	
  the	
  original	
  weight	
  to	
  
find	
  the	
  percentage	
  of	
  fiber	
  in	
  the	
  material.	
  	
  
Other	
  engineering	
  analysis	
  tools	
  that	
  will	
  be	
  required	
  for	
  a	
  successful	
  product	
  
involve	
  mathematical	
  consideration	
  and	
  control	
  systems.	
  Mathematical	
  heat	
  transfer	
  
calculations	
  will	
  be	
  required	
  to	
  determine	
  the	
  optimal	
  temperature	
  to	
  extrude	
  the	
  
matrix	
  at	
  to	
  ensure	
  proper	
  wetting	
  out	
  of	
  fibers	
  and	
  solidification	
  upon	
  contact	
  with	
  the	
  
print	
  plate	
  or	
  previous	
  layers.	
  Die	
  swell	
  will	
  be	
  an	
  important	
  variable	
  to	
  take	
  into	
  
consideration	
  when	
  designing	
  and	
  testing.	
  Die	
  swell	
  is	
  determined	
  from	
  the	
  diameter	
  of	
  
the	
  extrudate	
  and	
  the	
  diameter	
  of	
  the	
  extrusion	
  nozzle.	
  	
  
Material	
  selection	
  software	
  such	
  as	
  Cambridge	
  Engineering	
  Selector	
  will	
  be	
  a	
  
valuable	
  asset	
  for	
  any	
  engineering	
  decisions	
  needing	
  to	
  be	
  made	
  regarding	
  material	
  
selection,	
  this	
  is	
  most	
  likely	
  to	
  occur	
  in	
  nozzle	
  design.	
  Control	
  systems	
  will	
  be	
  
implemented	
  in	
  regards	
  to	
  extruder	
  head	
  temperature.	
  Controls	
  should	
  be	
  user	
  defined	
  
and	
  consistent	
  in	
  nature	
  and	
  therefore	
  a	
  system	
  of	
  heat	
  detection	
  is	
  necessary.	
  
	
  
Management	
  Plan	
  
Meeting	
  times	
  
	
  
Team	
  Extruder	
  meets	
  Tuesday	
  and	
  Thursday	
  afternoons	
  starting	
  around	
  1:30pm	
  
(depending	
  on	
  when	
  senior	
  design	
  lecture	
  get	
  out).	
  On	
  Tuesday	
  afternoons	
  Team	
  3D	
  
Contour	
  and	
  Team	
  Extruder	
  Head	
  meet	
  in	
  order	
  to	
  coordinate	
  between	
  the	
  two	
  
projects.	
  Team	
  Cascade	
  joins	
  this	
  collaborative	
  meeting	
  the	
  first	
  Tuesday	
  of	
  every	
  month	
  
to	
  update	
  everyone	
  on	
  current	
  progress	
  and	
  to	
  prepare	
  the	
  interfacing	
  of	
  the	
  three	
  
projects.	
  Cascade’s	
  involvement	
  in	
  the	
  collaborative	
  meetings	
  will	
  increase	
  as	
  the	
  design	
  
process	
  progresses,	
  and	
  the	
  time	
  comes	
  to	
  start	
  interfacing	
  the	
  projects.	
  	
  After	
  the	
  
multi-­‐team	
  meetings	
  are	
  finished	
  Team	
  Extruder	
  continues	
  working	
  on	
  the	
  composite	
  
extruder	
  head	
  specifically.	
  On	
  Thursday	
  the	
  team	
  initially	
  meets	
  with	
  Dr.	
  Radford,	
  along	
  
with	
  the	
  other	
  Boeing	
  composite	
  teams	
  for	
  a	
  short	
  period.	
  Afterwards	
  Team	
  Extruder	
  
has	
  its	
  own	
  meeting	
  to	
  prepare	
  questions	
  and	
  concerns,	
  while	
  the	
  3D	
  contour	
  team	
  
meets	
  with	
  Dr.	
  Radford.	
  After	
  meeting	
  with	
  the	
  team’s	
  advisor	
  there	
  is	
  another	
  short	
  
team	
  meeting	
  to	
  discuss	
  what	
  was	
  just	
  covered	
  and	
  what	
  needs	
  to	
  be	
  done	
  for	
  the	
  next	
  
week,	
  including	
  goals	
  and	
  specific	
  tasks	
  for	
  each	
  team	
  member.	
  
	
  
	
  
  	
  
Composites	
  Extruder	
  Head	
  Development	
  
	
  
	
  
Every	
  Wednesday	
  night	
  before	
  our	
  team	
  meeting	
  with	
  Dr.	
  Radford	
  everyone	
  in	
  
the	
  team	
  completes	
  an	
  individual	
  progress	
  report	
  which	
  details	
  what	
  they	
  accomplished	
  
in	
  the	
  last	
  week	
  and	
  what	
  they	
  hope	
  to	
  accomplish	
  in	
  the	
  upcoming	
  week.	
  The	
  project	
  
manager	
  also	
  completes	
  a	
  progress	
  report	
  for	
  the	
  entire	
  team	
  that	
  is	
  sent	
  to	
  Dr.	
  
Radford.	
  The	
  team	
  progress	
  report	
  also	
  includes	
  questions	
  and	
  concerns	
  that	
  the	
  entire	
  
team	
  would	
  like	
  to	
  discuss	
  and	
  any	
  additional	
  documentation	
  that	
  is	
  separate	
  from	
  the	
  
report.	
  These	
  progress	
  reports	
  are	
  sent	
  to	
  Dr.	
  Radford	
  no	
  later	
  than	
  8:00	
  AM	
  the	
  day	
  of	
  
the	
  meeting	
  and	
  are	
  stored	
  in	
  a	
  folder	
  on	
  the	
  team’s	
  drive	
  for	
  reference.	
  Every	
  other	
  
week	
  the	
  team	
  also	
  gives	
  a	
  PowerPoint	
  presentation	
  to	
  Dr.	
  Radford	
  covering	
  much	
  of	
  
the	
  same	
  information.	
  
Other	
  meetings	
  times	
  are	
  scheduled	
  as	
  needed	
  to	
  complete	
  certain	
  tasks.	
  
	
  
Table	
  6	
  -­‐	
  Team	
  Meeting	
  Times	
  
Tuesday	
   Wednesday	
   Thursday	
   Other	
  Days	
  
1:30pm	
  -­‐	
  Combined	
  
meeting	
  with	
  3D	
  
Contour	
  Team	
  and	
  
Boeing	
  Cascade	
  Basket	
  
team(Cascade-­‐First	
  
Tuesday	
  of	
  the	
  month)	
  
-­‐	
  Separate	
  team	
  
meeting	
  afterwards	
  
Individual	
  and	
  team	
  
progress	
  reports	
  finished	
  
and	
  sent	
  by	
  the	
  end	
  of	
  
the	
  day	
  Bi-­‐weekly	
  
progress	
  report	
  finished	
  
and	
  sent	
  every	
  other	
  
week	
  
2:00pm	
  -­‐	
  
Combined	
  advisor	
  
meeting	
  
2:15pm	
  	
  
-­‐	
  Team	
  meeting	
  
time	
  3:15pm	
  	
  
-­‐	
  Meeting	
  with	
  Dr.	
  
Radford	
  
3:45pm	
  	
  
-­‐	
  Quick	
  team	
  recap	
  
Meetings	
  as	
  
necessary	
  to	
  
complete	
  tasks	
  
	
  
	
  
	
   	
  
  	
  
Composites	
  Extruder	
  Head	
  Development	
  
	
  
	
  
Timeline	
  and	
  Milestones	
  
	
  
The	
  main	
  team	
  schedule	
  is	
  set	
  in	
  a	
  Gantt	
  chart	
  built	
  in	
  Microsoft	
  Project.	
  Important	
  
milestones	
  which	
  are	
  closer	
  to	
  the	
  present	
  have	
  more	
  exact	
  dates	
  assigned	
  to	
  them.	
  In	
  
order	
  to	
  complete	
  three	
  prototypes	
  within	
  the	
  allowed	
  time	
  for	
  this	
  project	
  milestones	
  
are	
  set	
  very	
  close	
  together	
  and	
  sometimes	
  overlap.	
  Some	
  important	
  milestones	
  are:	
  
	
  
● Oct.	
  6th:	
  Turn	
  in	
  project	
  plan	
  document	
  
	
  
● Week	
  of	
  Nov.	
  9th:	
  Complete	
  concept	
  generation	
  and	
  evaluation	
  for	
  fiber-­‐
filament	
  and	
  fiber-­‐pellet	
  extruder	
  heads	
  
	
  
● Week	
  of	
  Nov.	
  16th:	
  Complete	
  testing	
  and	
  evaluation	
  of	
  commingled	
  tow	
  
extruder	
  head	
  
	
  
● Dec.	
  3rd:	
  Critical	
  decision	
  meeting	
  to	
  determine	
  focus	
  on	
  commingled	
  tow	
  or	
  
fiber-­‐filament	
  extruder	
  head	
  development	
  
	
  
● Week	
  of	
  Dec.	
  14th:	
  Complete	
  full	
  3D	
  CAD	
  and	
  2D	
  drawings	
  for	
  fiber-­‐filament	
  and	
  
fiber-­‐pellet	
  extruder	
  heads,	
  begin	
  fiber-­‐filament	
  extruder	
  head	
  manufacturing	
  
	
  
● Week	
  of	
  Jan.	
  18th:	
  Finish	
  fiber-­‐filament	
  extruder	
  head	
  manufacturing	
  
	
  
● Week	
  of	
  Jan.	
  25th:	
  Finish	
  fiber-­‐filament	
  extruder	
  head	
  assembly	
  and	
  begin	
  
testing,	
  begin	
  fiber-­‐pellet	
  extruder	
  head	
  manufacturing	
  
	
  
● Late	
  Feb.:	
  Critical	
  decision	
  meeting	
  to	
  determine	
  focus	
  on	
  fiber-­‐filament	
  or	
  fiber-­‐
pellet	
  extruder	
  head	
  development,	
  finish	
  fiber-­‐pellet	
  extruder	
  head	
  assembly	
  
	
  
● Mid	
  Apr.:	
  E-­‐Days,	
  finish	
  extruder	
  head	
  project	
  and	
  present,	
  begin	
  integration	
  
with	
  other	
  Boeing	
  Composite	
  teams	
  to	
  print	
  composite	
  cascade	
  basket	
  
	
  
● Early	
  May:	
  Finish	
  integration	
  with	
  other	
  Boeing	
  Composite	
  teams	
  and	
  attempt	
  
full	
  composite	
  cascade	
  basket	
  print	
  
	
  
	
   	
  
  	
  
Composites	
  Extruder	
  Head	
  Development	
  
	
  
	
  
Concluding	
  Statement	
  
	
  
This	
  project	
  plan	
  was	
  intended	
  to	
  communicate	
  what	
  the	
  Composites	
  Extruder	
  
Head	
  Development	
  Team	
  will	
  be	
  working	
  on	
  for	
  the	
  academic	
  year.	
  Three	
  iterative	
  
design	
  processes	
  will	
  be	
  used	
  to	
  develop	
  the	
  capability	
  to	
  print	
  with	
  three	
  different	
  
forms	
  of	
  feedstock	
  material.	
  Difficulties	
  of	
  the	
  development	
  lie	
  in	
  achieving	
  wetting	
  
between	
  fibers	
  and	
  matrix	
  as	
  well	
  as	
  between	
  layers	
  and	
  the	
  previously	
  produced	
  layer.	
  
Evaluation	
  of	
  the	
  successes	
  put	
  forth	
  by	
  the	
  team	
  most	
  notably	
  involve	
  producing	
  a	
  
composite	
  material	
  of	
  high	
  quality.	
  
	
  
Budget	
  Breakdown	
  
	
  
Table	
  7	
  -­‐	
  Team	
  Budget	
  Allotment	
  
Item	
  	
   Description	
   Estimated	
  Cost	
  
3D	
  printer	
   A	
  commercially	
  available	
  3D	
  printer	
  which	
  can	
  
fit	
  our	
  extruder	
  head.	
  Will	
  be	
  used	
  to	
  print	
  
test	
  articles	
  for	
  all	
  three	
  prototypes.	
  Split	
  with	
  
Contour	
  Team	
  
$600	
  ($1200	
  split	
  
evenly	
  with	
  contour	
  
team,	
  printer	
  may	
  be	
  
donated/discounted)	
  
Pico	
  B3	
  hot	
  
end	
  
Commercially	
  available	
  hot	
  end	
  for	
  extruder	
  
which	
  will	
  allow	
  printing	
  of	
  commingled	
  tow	
  
$150	
  (includes	
  
shipping,	
  base	
  plate	
  
cost)	
  
Glass	
  fiber	
  
and	
  PP	
  
commingled	
  
tow	
  
Commingled	
  glass	
  fiber	
  inside	
  PP	
  matrix	
  to	
  be	
  
used	
  for	
  first	
  prototype	
  
$0	
  (provided	
  by	
  
advisor)	
  
Glass	
  fiber	
   E-­‐glass	
  fibers	
  used	
  as	
  reinforcing	
  material	
  in	
  
second	
  and	
  third	
  prototypes	
  
$40	
  (6	
  kg	
  of	
  fiber)	
  
PP	
  filament	
   PP	
  matrix	
  in	
  filament	
  stock	
  form,	
  for	
  use	
  in	
  
prototype	
  two	
  
$80	
  (2	
  kg	
  of	
  filament)	
  
PP	
  pellet	
  
stock	
  
PP	
  matrix	
  in	
  pellet	
  stock	
  form	
  for	
  use	
  in	
  
prototype	
  three	
  
$45	
  (10	
  lbs	
  of	
  pellets)	
  
Production	
  of	
  
custom	
  hot	
  
ends	
  
Professional	
  machining	
  for	
  prototype	
  two	
  and	
  
three	
  hot	
  ends	
  
$600	
  ($60	
  per	
  hour)	
  
I2P	
  printer	
  lab	
  
printing	
  
Printing	
  of	
  dual	
  extruder	
  head	
  and	
  prototype	
  
parts	
  for	
  all	
  three	
  prototypes	
  
	
  
	
  
In	
  total	
  the	
  Team	
  was	
  allocated	
  2,000	
  dollars	
  to	
  complete	
  all	
  three	
  prototypes.	
  
This	
  money	
  was	
  granted	
  through	
  our	
  advisor,	
  Dr.	
  Radford,	
  for	
  use	
  on	
  this	
  project.	
  
	
  
	
  
  	
  
Composites	
  Extruder	
  Head	
  Development	
  
	
  
	
  
References	
  
[1]	
  al.,	
  F.	
  N.	
  (2015).	
  Additive	
  Manufacturing	
  Of	
  Carbon	
  Fiber	
  Reinforced	
  thermoplastic	
  
Composites	
  using	
  Fused	
  Deposition	
  Modeling.	
  Composites:	
  Part	
  B,	
  Engineering,	
  80,	
  369-­‐
378.	
  
[2]	
  Campbell,	
  F.	
  (2010).	
  Structural	
  Composite	
  Materials.	
  ASM	
  International.	
  
[3]	
  MarkForged	
  Develops	
  3D	
  Printer	
  For	
  Carbon	
  Fibre.	
  (2015).	
  Reinforced	
  Plastics,	
  1(59).	
  
[4]	
  Michaeli,	
  W.	
  (2004).	
  Processing	
  Polyethelylene	
  Terephthalate	
  on	
  a	
  Single	
  Screw	
  Extruder	
  
Without	
  Predrying	
  Usin	
  Hopper	
  and	
  Melt	
  Degassing.	
  ANTEC,	
  296-­‐298.	
  
[5]	
  Premix	
  Inc.,	
  'Why	
  Composites?',	
  (2015).	
  Available:	
  http://www.premix.com/why-­‐
composites/adv-­‐composites.php.	
  [Accessed:	
  03-­‐	
  Oct-­‐	
  2015].	
  
[6]	
  TWI,	
  'FAQ:	
  How	
  are	
  composites	
  manufactured?',	
  (2015).	
  Available:	
  http://www.twi-­‐
global.com/technical-­‐knowledge/faqs/process-­‐faqs/faq-­‐how-­‐are-­‐composites-­‐
manufactured/.	
  [Accessed:	
  02-­‐	
  Oct-­‐	
  2015].	
  
[7]	
  Eichenhofer,	
  Maldonado,	
  Florian,	
  Ermanni,	
  M.	
  (2015).	
  ANALYSIS	
  OF	
  PROCESSING	
  
CONDITIONS	
  FOR	
  A	
  NOVEL	
  3D-­‐COMPOSITE	
  PRODUCTION	
  TECHNIQUE.	
  20th	
  
International	
  Conference	
  on	
  Composite	
  Materials,	
  20th.	
  
[8]	
  Budinski,	
  K.	
  (1979).	
  Engineering	
  Materials:	
  Properties	
  and	
  Selection	
  (9th	
  ed.,	
  Vol.	
  1,	
  p.	
  773).	
  	
  
Upper	
  Saddle	
  River,	
  New	
  Jersey:	
  Reston	
  Pub.	
  
	
  
[9]"TWINTEX®	
  PP	
  Mechanical	
  Properties	
  (non	
  Standard)."	
  Fiberglass	
  Industries,	
  Inc.	
  	
  
Fiber	
  Glass	
  Industries,	
  Inc,	
  2013.	
  Web.	
  5	
  Oct.	
  2015.	
  
<http://fiberglassindustries.com/twintextechdata.htm>.	
  	
  
	
  
[10]	
  Gibson,	
  I.,	
  Rosen,	
  D.,	
  &	
  Stucker,	
  B.	
  (2010).	
  Additive	
  manufacturing	
  technologies	
  rapid	
  
	
   prototyping	
  to	
  direct	
  digital	
  manufacturing	
  (2nd	
  ed.,	
  Vol.	
  1,	
  p.	
  487).	
  New	
  York:	
  Springer	
  
	
   New	
  York.	
  
	
  
[11]	
  Composite	
  Materials	
  Development.	
  (n.d.).	
  Retrieved	
  October	
  6,	
  2015.	
  
	
  
	
  
	
  

More Related Content

What's hot

Fiber Re-inforced composites introduction
Fiber Re-inforced composites introductionFiber Re-inforced composites introduction
Fiber Re-inforced composites introductionHareesh K
 
composite materials- fundamentals of manufacturing processes
composite materials- fundamentals of manufacturing processescomposite materials- fundamentals of manufacturing processes
composite materials- fundamentals of manufacturing processespuneet8589
 
Application of Composite Materials for different mechanical components
Application of Composite Materials for different mechanical componentsApplication of Composite Materials for different mechanical components
Application of Composite Materials for different mechanical componentsPiyush Mishra
 
Modal analysis of hybrid sisaljute natural fiber polymer composite beam
Modal analysis of hybrid sisaljute natural fiber polymer composite beamModal analysis of hybrid sisaljute natural fiber polymer composite beam
Modal analysis of hybrid sisaljute natural fiber polymer composite beameSAT Journals
 
Composite materials
Composite materialsComposite materials
Composite materialsJokiYagit
 
Composite materials
Composite materialsComposite materials
Composite materialsStudent
 
Chemical modifications of natural fibres for composite applications
Chemical modifications of natural fibres for composite applicationsChemical modifications of natural fibres for composite applications
Chemical modifications of natural fibres for composite applicationsketki chavan
 
Study on properties of sisal fiber reinforced concrete with different mix pro...
Study on properties of sisal fiber reinforced concrete with different mix pro...Study on properties of sisal fiber reinforced concrete with different mix pro...
Study on properties of sisal fiber reinforced concrete with different mix pro...eSAT Journals
 
Composites and it's manufacturing
Composites and it's manufacturingComposites and it's manufacturing
Composites and it's manufacturingHarsh Joshi
 
Ramkaran ppt
Ramkaran pptRamkaran ppt
Ramkaran pptyramkaran
 
Mechanical properties of polymer composite materials
Mechanical properties of polymer composite materialsMechanical properties of polymer composite materials
Mechanical properties of polymer composite materialseSAT Publishing House
 
Particle reinforced composites
Particle reinforced compositesParticle reinforced composites
Particle reinforced compositeshaseeb muhsin
 
Advanced Composite Materials & Technologies for Defence
Advanced Composite  Materials & Technologies for  DefenceAdvanced Composite  Materials & Technologies for  Defence
Advanced Composite Materials & Technologies for DefenceDigitech Rathod
 

What's hot (20)

Natural Fibers Polymeric Composites with Particulate Fillers – A review report
Natural Fibers Polymeric Composites with Particulate Fillers – A review reportNatural Fibers Polymeric Composites with Particulate Fillers – A review report
Natural Fibers Polymeric Composites with Particulate Fillers – A review report
 
Fiber Re-inforced composites introduction
Fiber Re-inforced composites introductionFiber Re-inforced composites introduction
Fiber Re-inforced composites introduction
 
Composite materials lecture
Composite materials lectureComposite materials lecture
Composite materials lecture
 
composite materials- fundamentals of manufacturing processes
composite materials- fundamentals of manufacturing processescomposite materials- fundamentals of manufacturing processes
composite materials- fundamentals of manufacturing processes
 
Application of Composite Materials for different mechanical components
Application of Composite Materials for different mechanical componentsApplication of Composite Materials for different mechanical components
Application of Composite Materials for different mechanical components
 
Modal analysis of hybrid sisaljute natural fiber polymer composite beam
Modal analysis of hybrid sisaljute natural fiber polymer composite beamModal analysis of hybrid sisaljute natural fiber polymer composite beam
Modal analysis of hybrid sisaljute natural fiber polymer composite beam
 
Composite materials
Composite materialsComposite materials
Composite materials
 
Composite materials
Composite materialsComposite materials
Composite materials
 
textile reinforced concrete
textile reinforced concretetextile reinforced concrete
textile reinforced concrete
 
Chemical modifications of natural fibres for composite applications
Chemical modifications of natural fibres for composite applicationsChemical modifications of natural fibres for composite applications
Chemical modifications of natural fibres for composite applications
 
Study on properties of sisal fiber reinforced concrete with different mix pro...
Study on properties of sisal fiber reinforced concrete with different mix pro...Study on properties of sisal fiber reinforced concrete with different mix pro...
Study on properties of sisal fiber reinforced concrete with different mix pro...
 
Composites
CompositesComposites
Composites
 
Composites and it's manufacturing
Composites and it's manufacturingComposites and it's manufacturing
Composites and it's manufacturing
 
Composite introduction
Composite introductionComposite introduction
Composite introduction
 
Ramkaran ppt
Ramkaran pptRamkaran ppt
Ramkaran ppt
 
Mechanical properties of polymer composite materials
Mechanical properties of polymer composite materialsMechanical properties of polymer composite materials
Mechanical properties of polymer composite materials
 
Particle reinforced composites
Particle reinforced compositesParticle reinforced composites
Particle reinforced composites
 
Advanced Composite Materials & Technologies for Defence
Advanced Composite  Materials & Technologies for  DefenceAdvanced Composite  Materials & Technologies for  Defence
Advanced Composite Materials & Technologies for Defence
 
FIBER REINFORCED PLASTICS by sairam
FIBER  REINFORCED  PLASTICS by sairamFIBER  REINFORCED  PLASTICS by sairam
FIBER REINFORCED PLASTICS by sairam
 
Composites murali
Composites muraliComposites murali
Composites murali
 

Similar to Composites Extruder Head Development for 3D Printing

Polymer composite
Polymer compositePolymer composite
Polymer compositeirfan afsar
 
Polymer composite( Fiber Glass composite Properties)
Polymer composite( Fiber Glass composite Properties)Polymer composite( Fiber Glass composite Properties)
Polymer composite( Fiber Glass composite Properties)Haseeb Ahmad
 
Composite materials
Composite materialsComposite materials
Composite materialsmkpq pasha
 
IRJET- Design and Development of Natural Composite Material
IRJET-  	  Design and Development of Natural Composite MaterialIRJET-  	  Design and Development of Natural Composite Material
IRJET- Design and Development of Natural Composite MaterialIRJET Journal
 
IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...
IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...
IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...IRJET Journal
 
Testing the flexural fatigue behavior of e glass epoxy laminates
Testing the flexural fatigue behavior of e glass epoxy laminatesTesting the flexural fatigue behavior of e glass epoxy laminates
Testing the flexural fatigue behavior of e glass epoxy laminateseSAT Publishing House
 
Mechanical properties of polymer composite materials
Mechanical properties of polymer composite materialsMechanical properties of polymer composite materials
Mechanical properties of polymer composite materialseSAT Journals
 
Comparative study of mechanical and thermal characterization of glasscarbon h...
Comparative study of mechanical and thermal characterization of glasscarbon h...Comparative study of mechanical and thermal characterization of glasscarbon h...
Comparative study of mechanical and thermal characterization of glasscarbon h...eSAT Journals
 
An approach of composite materials in industrial
An approach of composite materials in industrialAn approach of composite materials in industrial
An approach of composite materials in industrialeSAT Publishing House
 
A study on flexural strength of hybrid polymer composite materials e glass fib
A study on flexural strength of hybrid polymer composite materials   e glass fibA study on flexural strength of hybrid polymer composite materials   e glass fib
A study on flexural strength of hybrid polymer composite materials e glass fibIAEME Publication
 
An approach of composite materials in industrial machinery
An approach of composite materials in industrial machineryAn approach of composite materials in industrial machinery
An approach of composite materials in industrial machineryeSAT Journals
 
IRJET- Analysis of Alsi10Mg-Quartz Composite Material for a Connecting Rod
IRJET- Analysis of Alsi10Mg-Quartz Composite Material for a Connecting RodIRJET- Analysis of Alsi10Mg-Quartz Composite Material for a Connecting Rod
IRJET- Analysis of Alsi10Mg-Quartz Composite Material for a Connecting RodIRJET Journal
 
14. a review cohesive zone modeling of laminated composite beam
14. a review cohesive zone modeling of laminated composite beam14. a review cohesive zone modeling of laminated composite beam
14. a review cohesive zone modeling of laminated composite beamNEERAJKUMAR1898
 
Composite materials seminar report
Composite materials seminar reportComposite materials seminar report
Composite materials seminar reportS.N. Veeresh Kumar
 
Introduction to composite_materials in aerospace_applications
Introduction to composite_materials in aerospace_applicationsIntroduction to composite_materials in aerospace_applications
Introduction to composite_materials in aerospace_applicationsR.K. JAIN
 
IRJET- Experimental Investigation of Mechanical Properties for Multilayer GFR...
IRJET- Experimental Investigation of Mechanical Properties for Multilayer GFR...IRJET- Experimental Investigation of Mechanical Properties for Multilayer GFR...
IRJET- Experimental Investigation of Mechanical Properties for Multilayer GFR...IRJET Journal
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...
IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...
IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...IRJET Journal
 
COMPOSITES ( as per MGU syllabus)
COMPOSITES ( as per MGU syllabus)COMPOSITES ( as per MGU syllabus)
COMPOSITES ( as per MGU syllabus)Denny John
 

Similar to Composites Extruder Head Development for 3D Printing (20)

Polymer composite
Polymer compositePolymer composite
Polymer composite
 
Polymer composite( Fiber Glass composite Properties)
Polymer composite( Fiber Glass composite Properties)Polymer composite( Fiber Glass composite Properties)
Polymer composite( Fiber Glass composite Properties)
 
Composite materials
Composite materialsComposite materials
Composite materials
 
IRJET- Design and Development of Natural Composite Material
IRJET-  	  Design and Development of Natural Composite MaterialIRJET-  	  Design and Development of Natural Composite Material
IRJET- Design and Development of Natural Composite Material
 
IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...
IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...
IRJET- Experimental Evaluation of Glass Fiber Reinforced Composites Subjected...
 
Testing the flexural fatigue behavior of e glass epoxy laminates
Testing the flexural fatigue behavior of e glass epoxy laminatesTesting the flexural fatigue behavior of e glass epoxy laminates
Testing the flexural fatigue behavior of e glass epoxy laminates
 
Mechanical properties of polymer composite materials
Mechanical properties of polymer composite materialsMechanical properties of polymer composite materials
Mechanical properties of polymer composite materials
 
[IJET-V2I5P1] Authors: Muthuraj, Ravi kumar.M, Keerthiprasad.K.S
[IJET-V2I5P1] Authors: Muthuraj, Ravi kumar.M, Keerthiprasad.K.S[IJET-V2I5P1] Authors: Muthuraj, Ravi kumar.M, Keerthiprasad.K.S
[IJET-V2I5P1] Authors: Muthuraj, Ravi kumar.M, Keerthiprasad.K.S
 
Comparative study of mechanical and thermal characterization of glasscarbon h...
Comparative study of mechanical and thermal characterization of glasscarbon h...Comparative study of mechanical and thermal characterization of glasscarbon h...
Comparative study of mechanical and thermal characterization of glasscarbon h...
 
An approach of composite materials in industrial
An approach of composite materials in industrialAn approach of composite materials in industrial
An approach of composite materials in industrial
 
A study on flexural strength of hybrid polymer composite materials e glass fib
A study on flexural strength of hybrid polymer composite materials   e glass fibA study on flexural strength of hybrid polymer composite materials   e glass fib
A study on flexural strength of hybrid polymer composite materials e glass fib
 
An approach of composite materials in industrial machinery
An approach of composite materials in industrial machineryAn approach of composite materials in industrial machinery
An approach of composite materials in industrial machinery
 
IRJET- Analysis of Alsi10Mg-Quartz Composite Material for a Connecting Rod
IRJET- Analysis of Alsi10Mg-Quartz Composite Material for a Connecting RodIRJET- Analysis of Alsi10Mg-Quartz Composite Material for a Connecting Rod
IRJET- Analysis of Alsi10Mg-Quartz Composite Material for a Connecting Rod
 
14. a review cohesive zone modeling of laminated composite beam
14. a review cohesive zone modeling of laminated composite beam14. a review cohesive zone modeling of laminated composite beam
14. a review cohesive zone modeling of laminated composite beam
 
Composite materials seminar report
Composite materials seminar reportComposite materials seminar report
Composite materials seminar report
 
Introduction to composite_materials in aerospace_applications
Introduction to composite_materials in aerospace_applicationsIntroduction to composite_materials in aerospace_applications
Introduction to composite_materials in aerospace_applications
 
IRJET- Experimental Investigation of Mechanical Properties for Multilayer GFR...
IRJET- Experimental Investigation of Mechanical Properties for Multilayer GFR...IRJET- Experimental Investigation of Mechanical Properties for Multilayer GFR...
IRJET- Experimental Investigation of Mechanical Properties for Multilayer GFR...
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...
IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...
IRJET- Study of Mechanical Behaviour & Water-Absorption Characteristics of Si...
 
COMPOSITES ( as per MGU syllabus)
COMPOSITES ( as per MGU syllabus)COMPOSITES ( as per MGU syllabus)
COMPOSITES ( as per MGU syllabus)
 

Composites Extruder Head Development for 3D Printing

  • 1.       Composites  Extruder   Head  Development         Colin  Biery   (720)216-­‐7625   handsvod@rams.colostate.edu       Ryan  Dunn   (303)229-­‐8358   rysdunn@gmail.com       Michael  Hansen   (720)427-­‐1687   mikelangelo.mh77@gmail.com     Logan  Rutt   (303)495-­‐8382   lrutt@rams.colostate.edu     Tristan  Vesely   (925)876-­‐2343   tvesely@rams.colostate.edu   Colorado  State  University,  Mechanical  Engineering,   Senior  Practicum  Projects  Program   October  6,  2015     ____________________________   ___________________________     ____________________________   ___________________________     ____________________________     ____________________________   Advisor:  Dr.  Don  Radford            
  • 2.     Composites  Extruder  Head  Development       Table  of  Contents   Introduction  ...................................................................................................................................................  2   Background  ....................................................................................................................................................  2   Composites  Properties  ..........................................................................................................................  2   Composites  Manufacturing  .................................................................................................................  3   Additive  Manufacturing  ........................................................................................................................  3   Current  Solutions  ....................................................................................................................................  4   Problem  Statement  .....................................................................................................................................  5   Goals  .................................................................................................................................................................  6   Design  Constraints  .......................................................................................................................................  7   Work  Plan  and  Design  Evaluation  ..........................................................................................................  7   Design  Evaluation  .....................................................................................................................................  11   Management  Plan  ....................................................................................................................................  11   Meeting  times  .......................................................................................................................................  11   Timeline  and  Milestones  ...................................................................................................................  13   Concluding  Statement  .............................................................................................................................  14   Budget  Breakdown  ...................................................................................................................................  14   References  ...................................................................................................................................................  15          
  • 3.     Composites  Extruder  Head  Development       Introduction   Fiber  reinforced  thermoplastic  composites  are  incredibly  useful  materials  due  to   their  impressive  specific  stiffness  as  well  as  their  specific  strength.  Specific  stiffness  is   measured  by  Modulus  of  Elasticity  divided  by  density,  and      specific  strength  is   measured  by  tensile  strength  divided  by  density.  Unfortunately,  composite   manufacturing  is  a  difficult  and  costly  process  that  makes  the  practicality  of  composite   parts  unsuitable  for  many  designs.  In  contrast  additive  manufacturing  is  a  relatively   simple  manufacturing  processes,  but  creates  weaker  parts.  Combining  the  ease  of   additive  manufacturing  techniques  with  the  strength  of  composites  would  enable   designers  to  rapidly  create  components  that  meet  structural  requirements.  This  will   eliminate  lag  time  for  prototypes  and  reduce  market-­‐level  manufacturing  times.  The   proposed  solution  to  this  challenge  is  a  hot  end  extruder  head  capable  of  manufacturing   consolidated  thermoplastic  composites  through  3D  printing.  Advancement  of  composite   materials  in  engineering  design  strongly  depends  on  the  availability  of  new   manufacturing  processes  [7].     Background   Composites  Properties   Composite   materials   offer   mechanical   properties   for   engineering   applications   that  traditional  materials  cannot  compete  with.  Their  high  specific  strength  can  provide   the   same   capabilities   as   high-­‐grade   aluminum   at   five   to   ten   times   less   weight   [2].   Additionally   they   have   remarkable  durability  and  resistance  to   fatigue   [2].   Thermoplastic   fiber   composites   function   by   transmitting   external   energy   through   the   thermoplastic   matrix   material   to   the   hard,   brittle   fiber   reinforcements   within.  The  fibers  take  the  applied  load   while   the   matrix   protects   them   from   damage.   Properties   of   composites   heavily  depend  on  the  properties  of  the  matrix,  reinforcement,  and  the  ratio  of  matrix   to  reinforcement,  which  is  traditionally  stated  as  the  percent  weight  of  fiber  [2,8].     Fiber  orientation  is  one  factor  that  determines  the  properties  of  a  composite.  As   seen  from  Figure  1,  there  are  several  techniques  for  fiber  and  reinforcement  placement.   The  most  widely  practiced  fiber  placement  for  composites  is  continuous  and   discontinuous  (chopped)  fiber  [8].  Fibers  are  categorized  by  their  aspect  ratio  (length   divided  by  the  diameter  of  the  fiber),  where  continuous  fibers  have  long  aspect  ratios   and  discontinuous  fibers  have  short  aspect  ratios  [1].  Composites  are  most  effective   when  fibers  are  continuous  and  parallel,  increasing  their  ultimate  tensile  strength  and   Figure  1  -­‐  Continuous  vs.  Short  Fibers  [11]  
  • 4.     Composites  Extruder  Head  Development       stiffness.  Continuous  fiber  composites  have  anisotropic  material  characteristics,  and  fail   at  lower  stress  values  when  transversely  loaded  [2,8].  In  contrast,  Discontinuous  short   fiber  composites  tend  to  possess  more  isotropic  material  properties  when  compared  to   continuous  fiber  [2],  but  have  lower  tensile  strength  and  Modulus  of  Elasticity.   Consolidation  is  an  important  issue  when  dealing  with  composite  materials.   Consolidation  describes  how  effective  the  matrix/thermoplastic  is  at  reaching  and   spreading  between  all  of  the  fibers.  Proper  consolidation  uniformly  arranges  the  fiber   reinforcement  throughout  the  material  with  fiber  volumes  at  50%  or  above.  One  reason   composites  are  advantageous  over  other  materials  is  how  the  matrix  distributes  the   external  forces  experienced  by  the  composite  to  the  stronger  (and  more  brittle)  fibers   [5].  The  transfer  of  energy  between  the  matrix  and  fiber  is  accomplished  through  proper   wetting  of  the  composite.  Proper  wetting  provides  adequate  bonding  between  the   matrix  and  fibers,  and  transfers  loads  through  shear  to  the  fibers  [2].  With  inadequate   wetting  out  of  the  fiber  composite,  the  structural  strength  decreases  and  does  not   provide  proper  mechanical  properties  for  engineering  use.    Without  the  stiff,  brittle   fibers  the  thermoplastic  alone  is  far  weaker  and  has  a  lower  modulus  of  elasticity,   because  the  matrix  has  lower  tensile/compression  strength  and  modulus  of  elasticity   than  the  fibers.  Without  proper  consolidation  and  wetting  of  the  fibers,  these  material   advantages  can  be  lost.  If  the  fibers  are  not  distributed  evenly  through  the   thermoplastic  matrix  and  not  adequately  transferring  energy,  you  do  not  achieve   consistent  material  properties  throughout  the  composite.   Composites  Manufacturing   Although  composites  provide  strong  and  stiff  engineering  materials,  the   manufacturing  process  can  be  costly  and  time  consuming.  Manufacturability  is  a  limiting   factor  for  commercialization  of  these  materials,  where  the  process  involves  multiple   steps  and  require  bulky  molds  [7].    The  tooling  required  to  create  composite   components  are  expensive  to  design  and  manufacture  and  do  not  offer  adaptability  for   design  changes.  In  addition  to  expensive  tooling,  the  manufacturing  process  often   requires  human  intervention  [6].  With  high  labor  necessities  the  price  of  production   increases  due  to  lack  of  automation,  and  exposes  individuals  to  unhealthy  work   environments  containing  fumes  and  high  temperatures.     Additive  Manufacturing     Additive  manufacturing  (AM)  refers  to  the  process  of  building  3-­‐D  objects  by   adding  layer  upon  layer  of  material  to  create  a  complete  part  [10].  There  are  many   different  types  of  additive  manufacturing,  the  most  common  and  commercially  available   being  Fused  Deposition  Modeling  (FDM).  FDM  generally  uses  thermoplastic  filament  as   the  stock  material.  The  filament  is  fed  into  a  heated  extrusion  nozzle  where  it  is  melted   and  then  extruded  onto  a  base  plate  through  a  hot  end  extruder  head.  The  rate  at  which   the  filament  is  extruded  is  dependent  on  the  specified  printing  speed  of  the  extruder   head.  The  faster  the  printing  speed,  the  faster  the  filament  is  extruded  [10].  The   extruder  head  and  base  plate  move  on  a  minimum  of  three  axes  to  outline  the  geometry  
  • 5.     Composites  Extruder  Head  Development       of  the  part.  Currently,  most  of  these  printers  move  in  the  x-­‐y  plane  to  create  a  layer  and   then  move  in  the  z-­‐direction  to  begin  printing  the  next  layer.       FDM  manufacturing  requires  no  tooling  or  user  interaction  to  create  finished   parts.  Parts  are  built  up  directly  on  the  base  plate  from  the  ground  up.  This  is   advantageous  as  it  requires  no  tooling  but  disadvantageous  because  it  is  limited  in  what   geometries  at  can  build  vertically.  They  are  built  up  using  G-­‐code  generated  from  3D   specific  software.  This  software  reads  stereolithography  (STL)  files  and  generates  the   code  directly  from  them.  This  form  of  AM  is  extremely  useful  for  developing  geometries,   however  it  is  disadvantaged  when  developing  structural  properties  for  application   purposes.     Current  Solutions       There  are  a  few  current  ways  that  composites  are  being  implemented  into  AM.   These  include  using  hot  end  extruder  heads  to  pull  and  consolidate  fibers,  use  plastic   filament  pre-­‐impregnated  with  chopped  fibers,  and  using  printing  plastics  and  fibers  in   series  using  multiple  extruder  heads.     A  laboratory  scale  extruder  head,  developed  by  engineers  in  Zurich  Switzerland,   is  capable  of  of  processing  continuous  composite  lattice  structures  [7].  The  method  of   manufacturing   is   inspired   by   conventional   3D-­‐ printing,   and   uses   a   novel   two-­‐stage   extrusion   head   to   manufacture   the   composite   as   seen   in   Figure   2.   This   novel   manufacturing   method   is   currently   patented   for   a   continuous   fiber   lattice   fabrication   (CFLF). CSU  currently  has  two  graduate  students  working  with  composite  additive   manufacturing.  They  are  printing  commingled  tow,  a  form  of  composite  stock  material,   onto  a  rotating  mandrel  using  3D  extruder  heads.  This  method  requires  tension  on  the   stock  material  in  order  to  achieve  good  consolidation.     There  are  multiple  companies  that  are  selling  thermoplastic  filament  with  short   chopped   fibers   pre-­‐impregnated   into   the   filament.   This   composite   filament   can   be   Figure  2  –  Commingled  tow  extruder  head  developed  by  ETHZ  Structures  [7]  
  • 6.     Composites  Extruder  Head  Development       Figure  3  -­‐  Mark  Forged  MarkOne  Printer  [3]   printed  in  many  commercially  available  printers  but  does  not  add  the  desired  benefit  to   properties  that  can  be  achieved  from  traditional  composite  manufacturing  methods.     The   only   commercially   available   FDM   printer   that   prints   continuous   fiber   composites  is  the  Mark  One©  by  MarkForged  [3].  It  uses  a  dual  head  extruder  system  to   print  nylon  out  of  one  head  and  pre-­‐preg  fibers  out  of  the  other.  This  is  called  follow   behind  consolidation   because  the  matrix  is   extruded   on   top   of   the   fiber   after   extrusion.   This   method   gives   much   higher   strength   values   than   a   purely   nylon   part   would   achieving   a   tensile   strength  of  590  MPa   for   nylon-­‐fiberglass   composite  [3].   Problem  Statement     Composite  material  production  is  a  time-­‐intensive  and  expensive  process  when   creating  highly  complicated  parts.  Tooling  is  difficult  and  must  have  a  high  level  of   precision  to  create  quality  parts.  Molds  created  for  a  part  are  specific  to  that  part,  they   cannot  be  used  to  manufacture  anything  else.       Fused  deposition  modeling  is  incredibly  easy  to  use  and  can  create  unique   shapes  for  virtually  no  overhead  cost.  It  is  versatile  and  capable,  but  the  parts  created   are  weaker  than  thermoplastic  parts  created  with  traditional  methods.    Being  able  to   produce  composite  materials  in  unique  shapes  via  additive  manufacturing  is  an  enabling   technology  opening  up  countless  opportunities  to  save  money  by  avoiding  costly   production  techniques.  Additive  manufacturing  is  a  rapidly  growing  field  that  keeps   making  breakthroughs  in  the  potential  it  has.  Composites  are  one  of  the  few  types  of   material,  if  not  the  only  one  left,  that  is  not  yet  being  printed.  Research  labs  are  already   starting  to  experiment  with  this  technology  [7].  Before  additive  manufacturing  of   composites  can  become  commercial  there  has  to  be  a  reliable  foundation  built  in   research  labs.  Researchers  who  make  the  most  strides  in  composites  extrusion  stand  to   gain  a  great  amount  as  many  commercial  companies  will  undoubtedly  begin  producing   as  many  composites  as  possible  this  way.  Ultimately  those  manufacturing  composites   stand  to  benefit  from  composites  extrusion  because  they  are  paying  the  outstanding  bill   for  current  production  methods.  Currently  Boeing®  requires  the  use  of  carbon  fiber   thrust  reversing  cascade  baskets  for  their  jet  engines.  There  is  only  one  company  in  the  
  • 7.     Composites  Extruder  Head  Development       world  which  produces  the  baskets  and  they  use  an  expensive  hand-­‐laying  process.  The   proposed  fused  deposition  modeling  method  of  composite  manufacturing  has  the   potential  of  being  a  viable  alternative  to  the  current  cascade  manufacturing  process.     Goals     The  designated  task  is  to  design  and  build  a  progression  of  laboratory  scale   composite  extruder  heads  capable  of  being  mounted  on  a  conventional  or  non-­‐ conventional  3D  printer.  The  heads  developed  must  successfully  print  fiber  reinforced   composite  material.  Each  extruder  head  will  be  capable  of  printing  composites  with   different  stock  material  options:   ● One  head  capable  of  using  commingled  tow  and  of  wetting  out  dry  continuous   fiber.   ● One  head  that  is  able  to  use  lower  cost  forms  of  plastic  feedstock  than  the   commercial  fused  deposition  plastic  filament.   ● One  head  capable  of  extruding  continuous  patterns  of  plastic  and  reinforcing  dry   fiber  with  plastic  pellets  as  the  feedstock.   ● Print  composites  made  up  of  a  polypropylene  thermoplastic  matrix  and  glass   reinforcing  fibers  in  order  to  demonstrate  capability  of  printing  composites  made   up  of  a  Peek  thermoplastic  matrix  and  carbon  reinforcing  fibers     Objectives   Table  1  -­‐  Design  Objectives   Objective  Name   Priority*   Method  of   Measurement   Objective   Direction   Target   Consolidation   5   Photo  Microscopy   Maximize   Evenly  distributed   fibers   Fiber  Volume   Fraction   4   Volume  of  fibers   (cc)   Maximize   60%   Hot  End   Temperature   Capability   3   Head  temperature   (degrees  C)   Maximize   500°C   Operating   Temperature   3   Head  temperature   (degrees  C)   Optimize   TBD  via   experimentation   Composites  Stiffness   2   Specific  Modulus   (GPa)   Maximize   26.5  GPa  [9]**   *      Priority  is  weighed  on  1-­‐5  scale  with  5  most  important   **  Value  provided  for  60%  by  volume  glass  fiber  reinforced  PP  composite.  Value      will   change  based  on  material  produced    
  • 8.     Composites  Extruder  Head  Development         Design  Constraints   Table  2  -­‐  Design  Constraints   Constraint   Method  of  Measurement   Limits   Material  Stock  Form   Thermoplastics  and   Reinforcing  Fibers  Stock   Commingled  tow,  thermoplastic  filament,   dry  fiber,  thermoplastic  pellets   Size   Dimensions  (mm  x  mm  x  mm)   54  x  65  x  65   Commercial  Software   Compatible  slicing  and   controls  software   Cura,  Slic3r,  etc.   Manufacturing   Methods   Compatible  types  of  additive   manufacturing   Fused  Deposition  Modeling   Budget   Dollars  Spent   $2000   Safety   Possibility  of  Serious  Injury   0         Work  Plan  and  Design  Evaluation     The  work  plan  for  our  project  is  crucial  to  developing  a  successful  product  and   will  be  executed  in  three  iterative  design  and  manufacturing  processes,  each  of  which   are  determined  by  the  type  of  material  stock  to  be  extruded.  These  processes  are   broken  down  in  detail  in  tables  3-­‐5.  
  • 9.     Composites  Extruder  Head  Development       Table  3  -­‐  1st  Extruder  Head  Iteration  -­‐  Commingled  Tow  Design  Process   Process  step   Task  Breakdown  (with  number  of  hours  allocated  to   each  task)   1. Acquire  3D  FDM  printer,   extruder  head,  and  commingled   tow  Polypropylene  (PP)  Twintex   stock  material   • Develop  printer  criteria  to  be  approved  by  Dr.   Radford  (3  hrs.)   • research  and  buy  printer  approved  by  Dr.  Radford  (8-­‐ 10  hrs.)   • Communicate  with  Kent  Warlick  to  receive  PP   Twintex  material  (1-­‐2  hrs.)   2.)  Attempt  extruding  commingled   tow  through  original  standard   extruder  head   • use  small  amount  of  PP  Twintex  in  test  extrusion  of   commingled  tow  using  the  original  extruder  head   that  was  purchased  with  the  printer  (3  hrs.)   3.)  Determine  Procedure  for   effective  pultrusion,  consolidation,   and  extrusion  of  commingled  tow   with  extruder  head   • Meet  with  Kevin  Hedin  and  Kent  Warlick  to   determine  current  methods  of  tensioning,   consolidating  extruding,  commingled  tow  on  spinning   mandrel  printer  (1-­‐2  hrs.)   • identify  and  isolate  most  important  components  of   extruder  head  for  effective  tensioning,  consolidation,   and  extrusion  (3-­‐5  hrs.)   4.)  Develop  extrusion  angle  and  flat   plate  printing  techniques   • Use  information  acquired  from  initial  testing  and   mandrel  methods  to  generate  concepts  for   tensioning  consolidation  and  extrusion  (10-­‐15  hrs.)   5.)  Design  angled  extruder  head  to   consolidate  and  print  Commingled   tow   • Design  mechanical  components  necessary  to  achieve   goals  determined  in  concept  generation,  using  as   much  technology  from  prior  commingled  extrusion   process  as  necessary  (  10-­‐15  hrs.)   6.)  Manufacture   • Using  the  I2P  lab  and  the  team  printer,  print  any   parts  necessary  that  are  not  temperature  sensitive   (printing  time:  10-­‐20  hrs.)   • Machine  any  temperature  dependent  components,   either  in  house  or  professionally,  depending  on   complexity  of  geometry  (5-­‐15  hrs.)    (up  to  three   weeks  of  lead  time  for  professional  manufacturing)   7.)  Assemble  and  test  extruder  head   • Test  extruder  head  and  parts  printed  based  on   current  testing  methods  used  by  Kevin  Hedin  and   Kent  Warlick  and  previously  found  in  research  (15-­‐20   hrs.)   8.)  Revise  design  and  modify   extruder  as  necessary  based  on   testing   • Based  on  testing,  modify  or  redesign  components  of   extruder  head  to  increase  composite  print  quality   and  use  on  2nd  and  3rd  iteration  of  extruder  head  (5-­‐ 20  hrs.)  
  • 10.     Composites  Extruder  Head  Development       Table  4  -­‐  2nd  Iteration  -­‐  E-­‐glass  fiber  tow  and  thermoplastic  filament   Process  step   Task  Breakdown  (with  number  of  hours  allocated  to   each  task)   1. Acquire  E-­‐glass  Fiber  feedstock   and  PP  filament  feedstock   • Purchase  E-­‐glass  fiber  tow  feedstock  (2-­‐3  hrs)     • Purchase  PP  thermoplastic  filament  feedstock  (<1   hr)   2.)  Modify  1st  iteration  of  extruder   head  design  to  accommodate  for   thermoplastic  filament  feedstock.   • Generate  concepts  to  accommodate  for  new   feedstock  material  types  (5-­‐10  hrs)   • Modify  designs  of  first  iteration  of  head  to  be   capable  of  tensioning  consolidating,  and  extruding,   composite  as  separate  feedstocks;  dry  fiber  and  PP   filament  (14-­‐18  hrs.)   3.)  Manufacture  new  components   of  extruder  head   • Print  any  parts  necessary  that  are  not  temperature   sensitive    and  were  not  previously  manufactured   from  1st  iteration  (printing  time:  5-­‐10hrs)   • Machine  hot  end  extruder  head,  either  in  house  or   professionally,  depending  on  complexity  of   geometry  (5-­‐15  hrs)    (up  to  three  weeks  of  lead   time  for  professional  manufacturing)   4.)  Assemble  and  test   • Test  extruder  head  and  parts  printed  based  on   current  testing  methods  used  by  Kevin  Hedin  and   Kent  Warlick  and  previously  found  in  research  (15-­‐ 20  hrs)   5.)  Revise  design  and  modify   extruder  as  necessary  based  on   testing   • Based  on  testing,  modify  or  redesign  components  of   extruder  head  to  increase  composite  print  quality   used  on  1st  and  to  be  used  on  3rd  iteration  of   extruder  head  (5-­‐20  hrs)  
  • 11.     Composites  Extruder  Head  Development       Table  5  -­‐  3rd  Iteration  -­‐  E-­‐glass  fiber  tow  and  pellet  stock  Polypropylene  feedstock Process  step   Task  Breakdown  (with  number  of  hours  allocated  to  each   task)   1.)  Acquire  matrix  pellet   feedstock   • purchase  PP  pellet  stock,  preferably  premixed  and   ready  to  be  used  as  is  (1-­‐3  hrs.)   2.)  Develop  compact  process   for  melting  and  extruding   pellet  feedstock   • Working  off  of  existing  technology,  develop  a  method   to  use  thermoplastic  feedstock  that  can  be  integrated   into  3D  printing  process  (8-­‐12  hrs.)   3.)  Modify  2nd  iteration  of   extruder  head  design  to   incorporate  pellet  feedstock   system   • Design  components  to  use  method  developed  to  use   pellet  feedstock  (10-­‐15  hrs.)   • Modify  designs  to  be  capable  of  dealing  with  the   addition  of  components  for  pellet  feedstock  (10-­‐15   hrs.)   4.)  Manufacture  new   components  of  extruder  head   • Print  any  parts  necessary  that  are  not  temperature   sensitive    and  were  not  previously  manufactured  from   1st  iteration  (printing  time:  5-­‐10hrs)   • Machine  any  components  that  are  temperature   dependent,  either  in-­‐house  or  professionally,   depending  on  complexity  of  geometry  (5-­‐20  hrs.)  (  up   to  three  weeks  of  lead  time  for  professional   manufacturing)   5.)  Assemble  and  test   • Test  extruder  head  and  parts  printed  based  on  current   testing  methods  used  by  Kevin  Hedin  and  Kent  Warlick   and  previously  found  in  research  (15-­‐20  hrs.)   6.)  Revise  design  and  modify   extruder  as  necessary  based   on  testing   • Based  on  testing,  modify  or  redesign  components  of   extruder  head  to  increase  composite  print  quality  used   in  1st  and  2nd  iteration  of  extruder  head  (5-­‐20  hrs.)      
  • 12.     Composites  Extruder  Head  Development       Design  Evaluation   Our  main  design  objective  is  to  produce  a  high  quality  composite  so  there  must   be  a  way  to  test  for  quality.  Extrusion  temperature,  feed  rate,  and  nozzle  diameter  are   crucial  test  variables  that  need  structured  experiments  to  determine  optimum  printing   conditions.  Consolidation  will  be  measured  with  density  measurements  and  fiber   volume  fraction  will  be  measured  with  a  resin  burnout  method.  Resin  burnout  involves   weighing  the  produced  part  and  then  baking  it  and  letting  the  resin  evaporate  so  only   fibers  are  left.  Those  fibers  can  then  be  weighed  with  respect  to  the  original  weight  to   find  the  percentage  of  fiber  in  the  material.     Other  engineering  analysis  tools  that  will  be  required  for  a  successful  product   involve  mathematical  consideration  and  control  systems.  Mathematical  heat  transfer   calculations  will  be  required  to  determine  the  optimal  temperature  to  extrude  the   matrix  at  to  ensure  proper  wetting  out  of  fibers  and  solidification  upon  contact  with  the   print  plate  or  previous  layers.  Die  swell  will  be  an  important  variable  to  take  into   consideration  when  designing  and  testing.  Die  swell  is  determined  from  the  diameter  of   the  extrudate  and  the  diameter  of  the  extrusion  nozzle.     Material  selection  software  such  as  Cambridge  Engineering  Selector  will  be  a   valuable  asset  for  any  engineering  decisions  needing  to  be  made  regarding  material   selection,  this  is  most  likely  to  occur  in  nozzle  design.  Control  systems  will  be   implemented  in  regards  to  extruder  head  temperature.  Controls  should  be  user  defined   and  consistent  in  nature  and  therefore  a  system  of  heat  detection  is  necessary.     Management  Plan   Meeting  times     Team  Extruder  meets  Tuesday  and  Thursday  afternoons  starting  around  1:30pm   (depending  on  when  senior  design  lecture  get  out).  On  Tuesday  afternoons  Team  3D   Contour  and  Team  Extruder  Head  meet  in  order  to  coordinate  between  the  two   projects.  Team  Cascade  joins  this  collaborative  meeting  the  first  Tuesday  of  every  month   to  update  everyone  on  current  progress  and  to  prepare  the  interfacing  of  the  three   projects.  Cascade’s  involvement  in  the  collaborative  meetings  will  increase  as  the  design   process  progresses,  and  the  time  comes  to  start  interfacing  the  projects.    After  the   multi-­‐team  meetings  are  finished  Team  Extruder  continues  working  on  the  composite   extruder  head  specifically.  On  Thursday  the  team  initially  meets  with  Dr.  Radford,  along   with  the  other  Boeing  composite  teams  for  a  short  period.  Afterwards  Team  Extruder   has  its  own  meeting  to  prepare  questions  and  concerns,  while  the  3D  contour  team   meets  with  Dr.  Radford.  After  meeting  with  the  team’s  advisor  there  is  another  short   team  meeting  to  discuss  what  was  just  covered  and  what  needs  to  be  done  for  the  next   week,  including  goals  and  specific  tasks  for  each  team  member.      
  • 13.     Composites  Extruder  Head  Development       Every  Wednesday  night  before  our  team  meeting  with  Dr.  Radford  everyone  in   the  team  completes  an  individual  progress  report  which  details  what  they  accomplished   in  the  last  week  and  what  they  hope  to  accomplish  in  the  upcoming  week.  The  project   manager  also  completes  a  progress  report  for  the  entire  team  that  is  sent  to  Dr.   Radford.  The  team  progress  report  also  includes  questions  and  concerns  that  the  entire   team  would  like  to  discuss  and  any  additional  documentation  that  is  separate  from  the   report.  These  progress  reports  are  sent  to  Dr.  Radford  no  later  than  8:00  AM  the  day  of   the  meeting  and  are  stored  in  a  folder  on  the  team’s  drive  for  reference.  Every  other   week  the  team  also  gives  a  PowerPoint  presentation  to  Dr.  Radford  covering  much  of   the  same  information.   Other  meetings  times  are  scheduled  as  needed  to  complete  certain  tasks.     Table  6  -­‐  Team  Meeting  Times   Tuesday   Wednesday   Thursday   Other  Days   1:30pm  -­‐  Combined   meeting  with  3D   Contour  Team  and   Boeing  Cascade  Basket   team(Cascade-­‐First   Tuesday  of  the  month)   -­‐  Separate  team   meeting  afterwards   Individual  and  team   progress  reports  finished   and  sent  by  the  end  of   the  day  Bi-­‐weekly   progress  report  finished   and  sent  every  other   week   2:00pm  -­‐   Combined  advisor   meeting   2:15pm     -­‐  Team  meeting   time  3:15pm     -­‐  Meeting  with  Dr.   Radford   3:45pm     -­‐  Quick  team  recap   Meetings  as   necessary  to   complete  tasks          
  • 14.     Composites  Extruder  Head  Development       Timeline  and  Milestones     The  main  team  schedule  is  set  in  a  Gantt  chart  built  in  Microsoft  Project.  Important   milestones  which  are  closer  to  the  present  have  more  exact  dates  assigned  to  them.  In   order  to  complete  three  prototypes  within  the  allowed  time  for  this  project  milestones   are  set  very  close  together  and  sometimes  overlap.  Some  important  milestones  are:     ● Oct.  6th:  Turn  in  project  plan  document     ● Week  of  Nov.  9th:  Complete  concept  generation  and  evaluation  for  fiber-­‐ filament  and  fiber-­‐pellet  extruder  heads     ● Week  of  Nov.  16th:  Complete  testing  and  evaluation  of  commingled  tow   extruder  head     ● Dec.  3rd:  Critical  decision  meeting  to  determine  focus  on  commingled  tow  or   fiber-­‐filament  extruder  head  development     ● Week  of  Dec.  14th:  Complete  full  3D  CAD  and  2D  drawings  for  fiber-­‐filament  and   fiber-­‐pellet  extruder  heads,  begin  fiber-­‐filament  extruder  head  manufacturing     ● Week  of  Jan.  18th:  Finish  fiber-­‐filament  extruder  head  manufacturing     ● Week  of  Jan.  25th:  Finish  fiber-­‐filament  extruder  head  assembly  and  begin   testing,  begin  fiber-­‐pellet  extruder  head  manufacturing     ● Late  Feb.:  Critical  decision  meeting  to  determine  focus  on  fiber-­‐filament  or  fiber-­‐ pellet  extruder  head  development,  finish  fiber-­‐pellet  extruder  head  assembly     ● Mid  Apr.:  E-­‐Days,  finish  extruder  head  project  and  present,  begin  integration   with  other  Boeing  Composite  teams  to  print  composite  cascade  basket     ● Early  May:  Finish  integration  with  other  Boeing  Composite  teams  and  attempt   full  composite  cascade  basket  print        
  • 15.     Composites  Extruder  Head  Development       Concluding  Statement     This  project  plan  was  intended  to  communicate  what  the  Composites  Extruder   Head  Development  Team  will  be  working  on  for  the  academic  year.  Three  iterative   design  processes  will  be  used  to  develop  the  capability  to  print  with  three  different   forms  of  feedstock  material.  Difficulties  of  the  development  lie  in  achieving  wetting   between  fibers  and  matrix  as  well  as  between  layers  and  the  previously  produced  layer.   Evaluation  of  the  successes  put  forth  by  the  team  most  notably  involve  producing  a   composite  material  of  high  quality.     Budget  Breakdown     Table  7  -­‐  Team  Budget  Allotment   Item     Description   Estimated  Cost   3D  printer   A  commercially  available  3D  printer  which  can   fit  our  extruder  head.  Will  be  used  to  print   test  articles  for  all  three  prototypes.  Split  with   Contour  Team   $600  ($1200  split   evenly  with  contour   team,  printer  may  be   donated/discounted)   Pico  B3  hot   end   Commercially  available  hot  end  for  extruder   which  will  allow  printing  of  commingled  tow   $150  (includes   shipping,  base  plate   cost)   Glass  fiber   and  PP   commingled   tow   Commingled  glass  fiber  inside  PP  matrix  to  be   used  for  first  prototype   $0  (provided  by   advisor)   Glass  fiber   E-­‐glass  fibers  used  as  reinforcing  material  in   second  and  third  prototypes   $40  (6  kg  of  fiber)   PP  filament   PP  matrix  in  filament  stock  form,  for  use  in   prototype  two   $80  (2  kg  of  filament)   PP  pellet   stock   PP  matrix  in  pellet  stock  form  for  use  in   prototype  three   $45  (10  lbs  of  pellets)   Production  of   custom  hot   ends   Professional  machining  for  prototype  two  and   three  hot  ends   $600  ($60  per  hour)   I2P  printer  lab   printing   Printing  of  dual  extruder  head  and  prototype   parts  for  all  three  prototypes       In  total  the  Team  was  allocated  2,000  dollars  to  complete  all  three  prototypes.   This  money  was  granted  through  our  advisor,  Dr.  Radford,  for  use  on  this  project.      
  • 16.     Composites  Extruder  Head  Development       References   [1]  al.,  F.  N.  (2015).  Additive  Manufacturing  Of  Carbon  Fiber  Reinforced  thermoplastic   Composites  using  Fused  Deposition  Modeling.  Composites:  Part  B,  Engineering,  80,  369-­‐ 378.   [2]  Campbell,  F.  (2010).  Structural  Composite  Materials.  ASM  International.   [3]  MarkForged  Develops  3D  Printer  For  Carbon  Fibre.  (2015).  Reinforced  Plastics,  1(59).   [4]  Michaeli,  W.  (2004).  Processing  Polyethelylene  Terephthalate  on  a  Single  Screw  Extruder   Without  Predrying  Usin  Hopper  and  Melt  Degassing.  ANTEC,  296-­‐298.   [5]  Premix  Inc.,  'Why  Composites?',  (2015).  Available:  http://www.premix.com/why-­‐ composites/adv-­‐composites.php.  [Accessed:  03-­‐  Oct-­‐  2015].   [6]  TWI,  'FAQ:  How  are  composites  manufactured?',  (2015).  Available:  http://www.twi-­‐ global.com/technical-­‐knowledge/faqs/process-­‐faqs/faq-­‐how-­‐are-­‐composites-­‐ manufactured/.  [Accessed:  02-­‐  Oct-­‐  2015].   [7]  Eichenhofer,  Maldonado,  Florian,  Ermanni,  M.  (2015).  ANALYSIS  OF  PROCESSING   CONDITIONS  FOR  A  NOVEL  3D-­‐COMPOSITE  PRODUCTION  TECHNIQUE.  20th   International  Conference  on  Composite  Materials,  20th.   [8]  Budinski,  K.  (1979).  Engineering  Materials:  Properties  and  Selection  (9th  ed.,  Vol.  1,  p.  773).     Upper  Saddle  River,  New  Jersey:  Reston  Pub.     [9]"TWINTEX®  PP  Mechanical  Properties  (non  Standard)."  Fiberglass  Industries,  Inc.     Fiber  Glass  Industries,  Inc,  2013.  Web.  5  Oct.  2015.   <http://fiberglassindustries.com/twintextechdata.htm>.       [10]  Gibson,  I.,  Rosen,  D.,  &  Stucker,  B.  (2010).  Additive  manufacturing  technologies  rapid     prototyping  to  direct  digital  manufacturing  (2nd  ed.,  Vol.  1,  p.  487).  New  York:  Springer     New  York.     [11]  Composite  Materials  Development.  (n.d.).  Retrieved  October  6,  2015.