SlideShare a Scribd company logo
1 of 11
Download to read offline
ISSN (Print): 2328-3777, ISSN (Online): 2328-3785, ISSN (CD-ROM): 2328-3793
American International Journal of
Research in Formal, Applied
& Natural Sciences
AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 161
AIJRFANS is a refereed, indexed, peer-reviewed, multidisciplinary and open access journal published by
International Association of Scientific Innovation and Research (IASIR), USA
(An Association Unifying the Sciences, Engineering, and Applied Research)
Available online at http://www.iasir.net
Synthesis, Characterization and Study of Optical Constant of
4-(4-N,N-Dimethylaminobenzylideneamino)Phenyltellurium Tribromide
Adil Ali Al-Fregi1
, Ghufran Mohammad Shabeeb2
1
Chemistry Department, College of Science, University of Basrah, Basrah, IRAQ
2
Physics Department, College of Education for Pure Sciences , University of Basrah, Basrah, IRAQ
I. Introduction
Tellurium is one of members of group 16 in the periodic table. Tellurium lies between selenium and
polonium and have electronic configuration [Kr]4d10
5s2
5p4
, it bears resemblance to this group especially to
selenium in many of its properties and reactions [1]. Tellurium and its compounds have several applications in
different fields. Organotellurium compounds have been mainly used as antioxidant agents [2,3], polymerization
catalysts [4,5], antitumors and pharmaceutical agents [6-8], organic super conductors [9,10], synthetic
intermediate [11-13] and as ligands with many transition metal ions [14,15].
In recent years there has been a growing interest in studing the organotellurium compounds which have N→Te
intramolecular interaction [16,17]. There are several types of organotellurium compounds containing nitro,
amino and azomethine groups which show such intramolecular interaction [18-29]. One of these compounds
represent in organotellurium compounds which contain azomethine groups [20,30,31].
Organyltellurium trihalides (RTeX3 where X= Cl, Br, I; R = alkyl, aryl) constitute a large and a well studied
class of compounds [5,10]. Generally, the stability of alkyltellurium trihalides are lower than aryltellurium
trihalides, thus, methyltellurium trihalides (CH3TeX3 ; X = Cl, Br and I) are very sensitive to light and moisture,
and decomposed in solutions while the corresponding phenyltellurium trihalides are stable under the same
conditions [32]. Generally, the structures of organyltellurium trihalides are connected into infinite chains [32-
34] or dimeric structures by halogene bridges [32-35].
The important methods for preparing organyltellurium trihalides are reaction of tellurium tetrahalides (TeX4;
X = Cl, Br) with several compounds such as alkenes [36], alkynes [37], ketones [38] and activated aromatic
compounds [33].
In some cases, the direct substitution of tellurium tetrahalides with aromatic compounds is not feasible or give
low yield. The substitution reaction of arylmercuric chloride with tellurium tetrahalides gave the corresponding
aryltellurium trihalide in good yield [39,40].
Several attempts to prepare tellurated Schiff bases by reacting Schiff bases with tellurium tetrabromide were
failed and leading to ionic products [41,42].
Singh and McWhinnie [43] prepared {4-substituted-2-(phenyliminomethyl) phenyl}tellurium tribromide by
reacting 4-substituted-2-(phenyliminomethyl) phenyl mercuric chloride with tellurium tetrabromide, Scheme1.
Al-Rubaie et al [30] reported the synthesis of a new series of tellurated Schiff bases compounds of formula
ArTeBr3 (Ar =5-RC6H3N=CHC6H5, R=Cl, Br, CH3O and NO2) by reaction of tellurium tetrabromide with the
corresponding arylmercuric chloride in 1:1 mole ratio, Scheme 2 .
Abstract: 4-(4-N,N-dimethylaminobenzylideneamino) phenyltellurium tribromide synthesed by reaction of
ehtanolic solutons of 4- aminophenylmercuric chloride with 4-N,N-dimethylaminobenzaldehyde then with
tellurium tetrabromide. The prepared compund 4-(4-N,N-dimethylaminobenzylideneamino)phenyltellurium
tribromide was charecterized by several techniques such as elemental analysis ; FTIR, UV-Visible, 1
H and
13
C- NMR spectroscopies ; X-Ray diffraction and molar conductivity. Optical absorption of 4-(4-N,N-
dimethylaminobenzylideneamino)phenyltellurium tribromide was measured. The X-ray analysis revealed that
these films are amorphous nature. Then films were deposited using cast method. Transmittance
measurements in the wavelength range(190-900)nm are used to calculate the refractive index(n), the
absorption index(k) and the optical energy gap.
Keywords: optical absorption; refractive index; optical energy gap; organotellurium compounds;
azomethine group; Schiff base.
Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp.
161-171
AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 162
In the present work, attempts will be made to prepare and characterization a new organyltellurium
tribromide compound containing azomethine group (-CH=N) namely 4-(4-N,N-
dimethylaminobenzylideamino)phenyltellurium tribromide and study of optical constant of it by using thin films
technique.
Both of the optical constant, n(refractive index) and k (extinction coefficient), represent fundamental properties
of a material not only because of their relation to the electronic structure but also due to their applications in
many integrated optical devices. Thus, calculating n and k, of material are the key parameters for a device
design [44].
The refractive index provides the information about the chemical bonding and electronic structure of the
material [45]. The evaluation of refractive indices of optical material is of considerable importance for
application in integrated optical devices such as switches, filters and modulators [46].
II. Experimental Section
A. Chemicals
All chemicals used in this study were supplied from the commercial sources by famous chemical companies .
Bromine, 4-N,N-dimethylaminobenzaldehyde, p-toluenesulfonic acid and mercuric acetate were supplied by
British Drug House (BDH). Absolute ethanol, aniline, benzene and tellurium 99.5% were supplied from Fluka
company. Diethyl ether, dioxane, hexane and sodium chloride were supplied by Reidal de Hean company.
Argon gas 99.995% was purchased from Jordan Gases company.
Tellurium tetrabromide which used in the present work was prepared by a literature method [47] 4-
aminophenylmercuric chloride was prepared by the literature methods [48]. All the prepared compounds gave
the correct melting points and infrared spectra.
B. Purification of Solvents
The solvents were obtained from commercial sources and are analytically pure solvents. Some solvents such as
dioxane and ethanol were cautiously purified and drying according to literature methods and were kept over
molecular sieve type A4 and stored in clean dark containers [49,50].
C. Physical Measurements
Melting points of all solid compounds were determined by using a Gallenkamp Thermo point apparatus.
Elemental analysis for carbon, hydrogen, nitrogen and sullphur were performed at AL al-Bayt Univrsity, Al-
Mafraq, Jordan using a Euro vector EA 3000A Elemental Analysis (Italy). Infrared spectra for the synthesed
compounds were recorded as KBr disk or thin film supported on KBr disk using a FT-IR spectrophotometer
Shimadzu model 8400S in range 4000-400 cm-1
at Department of Chemistry, College of Science, University of
Basrah. UV-Vis spectra for the synthesized compounds were recorded at Department of Chemistry, College of
Science, University of Basrah by using Scan 80D (England) at range 200-800 nm using ethanol or chloroform as
a solvents and 1cm3
pathway quartz cells. 1
H-and 13
C NMR spectra were recorded at Al al-Bayt University,
Jordan by using a Bruker 300 MHz (Germany). Chemical shift of all 1
H-and 13
C NMR spectra were recorded in
δ(ppm) unit downfield from the internal reference tetramethylsilane (TMS), using DMSO-d6 solvent. The molar
conductivity for synthesized compounds were measured in 1x10-3
M solutions of dimethylsulfoxide solvent at
room temperature using a Konduktoskop model 365B using standard conductivity cell with constant equal to
0.81 cm-1
.
D. Synthesis of 4-(4-N,N-dimethylaminobenzylideneamino)phenylmercuric chloride
A mixture of 4-aminophenylmercuric chloride (2.43 g , 8.00 mmol) in 50 mL of ethanol and 4-N,N-
dimethylaminobenzaldehyde (1.19 g,8.00 mmol) in 50 mL of ethanol containing 0.1 g of p-toluenesulfonic acid
was refluxed with stirring for 5h. After cooling, the precipitate was collected by filtration and washed several
times with ethanol. The solid product was twice recrystallized from a mixture of ethanol and benzene (3:2) to
give a pale yellow solid. Yields 88%, melting point 191-193 0
C , Table 1.
E. Synthesis of 4-(4-N,N-dimethylaminobenzylideneamino)phenyltellurium tribromide
A mixture of tellurium tetrabromide (1.78 g, 4.00 mmol) in 35 mL of dry dioxane and 4-(4-N,N-
dimethylaminobenzylideamino)phenyl mercuric chloride (1.83 g, 4.00 mmol) in 30 mL of dry dioxane was
refluxed with stirring for 6h under argon atmosphere. The resulting solution was filtered hot and on cooling
deposited 2:1 complex of dioxane and mercuric chloride as white plates, which was filtered off. The filtrate was
evaporated by a rotary evaporator to give a yellow precipitate. Recrystallization of the crude product from a
mixture of diethyl ether and hexane (7:3) gave a yellow solid. Yield 60% and melting point 155 – 156 0
C ,
Table 1.
Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp.
161-171
AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 163
Comp.
No.
Compound Stracture Colour
Melting
Point(o
C)
Yield%
Molar
conductiv-
ity
Elemental analysis
Found (calculated)
C% H% N%
1
Pale
yellow
191-193 88 33.05
40.01
(39.22)
3.26
(3.29)
6.08
(6.10)
2 Yellow 155-156 60 28.99
30.44
(30.50)
2.52
(2.56)
4.73
(4.74)
Table 1 : Some physical properties and elemental analysis of new organometallic compounds containing
azomethine groups 1 and 2 in cm-1
unit.
III. Results and Discussion
X-ray diffraction (XRD) studies were carried out to get an idea about the structural changes produced in the
investigated 4-(4-N,N-dimethylaminobenzylideneamino)phenyltellurium tribromide thin films.
The diffracted intensity as a function of the reflection angle was, measured automatically by the X-ray
diffractopmeter. The absence of a peak in X-ray spectra confirmed the amorphous nature of 4-(4-N,N-
dimethylaminobenzylideneamino)phenyltellurium tribromide samples.
Fig. (1): (XRD) of4-(4-N,N-dimethylaminobenzylideneamino)phenyltellurium tribromide thin film.
The elemental analysis (CHN) of compounds 1 and 2 are in good agreement with the calculated values ,Table 1.
The IR spectra of the two new synthesized compounds 1 and 2 display common feature in certain region and
characteristic bands in the fingerprint and other regions. Table 2 shows the important functional groups
vibration bands and some representive IR spectra are shown in Fig. 2 and 3.
The IR spectra of compounds 1 and 2 show a strong band at 1668 and 1618 cm-1
respectively, can be attributed
to CH=N stretching . These values are in good agreement with previous works [51-53]. The IR spectra of
mercurated Schiff bases 1 shows no stretching bands vibration of carbonyl groups of at 1715 cm-1
and
stretching band of amino groups of mercurated anilines (i.e 4-aminophenylmercuric chloride at 3450-3100 cm-1
range [51,53,54] this indicates the complete condensation between carbonyl and amino groups.
The IR spectra of aryltellurium tribromides 2 is quite similar to those of the mercurated Schiff base 1. This
means that telluration has occurred at the point of mercuration.
The IR spectra of compounds 1 and 2 show a weak bands in the range 3110-3060 cm-1
due to aromatic C-H
stretching while weak bands were appeared at 2921- 2817 cm-1
range due to stretching of aliphatic C-H bands
[53,54]. Also, compounds 1 show two strong bands appeared in 1598 and 1365 cm-1
, while compound 2 at
1541 and 1325 cm-1
can be attributed to asymmetrical and symmetrical stretching of aromatic (C=C) [53,54].
Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp.
161-171
AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 164
Furthermore, several variable bands between 815 – 700 cm-1
range can be assigned to aromatic C-H bending
while the band at 1365-1317 cm-1
due to aliphatic C-H bending [53,54]. The IR spectra of compounds 1 and 2
show a strong band at 1232 and 1200 cm-1
respectively, attributed to ν(C-N) [53,54].
Comp.No.
Aromatic
ν(C-H)
Aliphatic
νas (C-H)
νs (C-H)
ν(C=N)
νas(C=C)
νs (C=C)
Bending
νara(C-H)
ν(C-N)
1 3110 w
2912 w
2817 w
1668 s
1598 s
1365 s
815 s
721 m
1232 s
2 3066 w
2921 w
1618 s
1541 s
1325 s
813 m
840 m
7500 m
1200 s
Table 2 : Selected infrared bonds vibration of new organometallic compounds containing azomethine groups in
cm-1
unit.
Fig. (2): showed the FtIR- spectrum of 4-(4-N,N-dimethylaminobenzylideneamino)phenylmercuric chlorid .
Fig. (3): showed the FTIR spectrum of 4-(4-N,N-dimethylaminobenzylideneamino)phenyltellurium tribromide.
.
Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp.
161-171
AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 165
The 1
H NMR spectra of compounds 1 and 2 were measured in DMSO-d6 solvent and are represented in Fig.
4 and 5 respectively and summarized in Table 3. In general, 1
H NMR spectra of the 1 and 2 show the expected
signals in proper intensity ratio, Table 3.
Fig. (4): 1
H NMR spectrum of compound 1.
Fig. (5): 1
H NMR spectrum of compound 2.
The 1
H NMR spectra of compounds 1and 2, Fig.3 and 4, respectively gave another evidences for forming
azomethine group (-CH=N-) by showing a singlet signal at 8.33 and 8.32 ppm respectively, Table 3. These
values are in agreement with previously reported data [53,56]. The 1
H NMR spectrum of compound 1 and 2,
Fig. 6 and 7, respectively, show a multple signals at between 7.44 - 6.18 ppm can be assigned to aromatic
protons of phenyl groups [53-55]. Furthermore, these spectra show a singlet signal at 2.27 ppm can be attributed
to methyl groups [53-55].
Comp. No.
Compound Structure
Chemical Shift (ppm)
TMS = 0 ppm
1
8.33 ( s , 1H , CH=N)
7.43 – 6.18 ( m, 8H, Ar-H)
2.27 ( s, 6H, 2 CH3)
Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp.
161-171
AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 166
2
8.32 (s , 1H , CH=N)
7.44 – 6.18 ( m, 8H, Ar-H)
2.27 ( s, 6H, 2 CH3)
Table 3 : 1
H NMR data for organometallic compounds containing azomethine groups 1 and 2.
The 13
C NMR spectra of some synthesized compounds 1 and 2 were recorded using DMSO-d6 solvent. Fig.
5 and 6 represented 13
C NMR spectra of synthesized compounds while 13
C NMR data were summarized in
Table 4.
Fig. (6): 13
C NMR spectra of compound1.
Fig. (7): 13
C NMR spectra of compound 2.
13
C- NMR spectra proved further evidences about characterization of synthesized compounds . The 13
C-
NMR spectra of 1 and 2 show the signal of methine carbon atoms (C7) at 169.12 and 169.44 ppm, respectively
which are in agreement with previous reported works [53-56],Table 4.
13
C NMR spectra of compounds 1 and 2 show a lowfield signal at (155.69 and 155.62) ppm and ( 145.56 and
145. 60) ppm, respectively can be assigned to aromatic carbon atoms which attached with nitrogen atom (C4)
and (C11) , Table 4 . The high chemical shifts for these carbon signals attributed to presence of high
electronegativity of nitrogen atom [53-56].
The 13
C NMR spectra of 1 and 2 show a high field signal at 113.18 and 113.19 ppm respectively can be
assigned to tellurated carbon atoms (Te-C) (C1) [53-56]. The low chemical shift, comparatively, for carbon
atoms bearing tellurium atom compared with other aromatic carbon atoms may be attributed to the polarity of
Te-C bond [56].
Generally, the other signals between 145.60 - 120.09 ppm in 13
C NMR spectra of 1 and 2 can be assigned
to aromatic carbon atoms, Table 4. The high field signals at 47.43 and 47.84 ppm in both 13
C- NMR spectra of
compounds 1 and 2, respectively are due to methyl groups (C14 and C15) [53-56].
Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp.
161-171
AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 167
Comp.
No.
Compound structure
Chemical shift (ppm)
TMS = 0 ppm
1
169.12 (C7) , 155.69 (C4)
145.56 (C11) , 130.55 (C2, C6)
130.16 (C9,C13 ) , 127.74 (C3,C5)
122.08 (C8) , 120.09 (C10,C12)
113.18 (C1) , 47.43 (C14, C15)
2
169.44 (C7) , 155.62 (C4)
145. 60 (C11) , 130.16 (C2, C6)
129.12 (C9,C13 ) , 128.30 (C3,C5)
122.31 (C8) , 120.10 (C10,C12)
113.19 (C1) , 47.84 (C14, C15)
Table 4 : 13
C -NMR data for organometallic compounds containing azomethine groups 1 and 2.
The UV-Vis spectra of compounds 1 and 2 were measured at 1 x 10-4
M using chloroform as a solvent. Fig. 8
and 9 have shown the UV-Vis spectra for the synthesized compounds Table 5.
Fig. (8): UV-Vis. spectrum of compound 1.
Fig. (9): UV-Vis. spectrum of compound 2.
Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp.
161-171
AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 168
In general, the UV-Vis spectra of compounds 1 and 2 showed two strong bands , The first band at 245 nm with
molar extraction (Є) ranged 13000 and 11500 M-1
.cm-1
, respectively is attributed to π→π*
transitions of the
aromatic rings [53,54]. The second band observed at 295 nm (molar extinction Є = 12250 and 10100 M-1
.cm-1
,
respectively) which may attributed to π→π*
transitions of azomethine groups [53,54].
Comp.No. Wavelength nm (molar extinction M-1
.cm-1
)
1 245 (13000) , 295 (12250)
2 245 (11500) , 295 (10100)
Table 5 : UV-Vis data of compounds 1 and 2
The molar conductivities were determined for compounds 1 and 2 in 1 x 10-3
M of DMSO solvent at room
temperature, Table 1.
The molar conductances of 1 and 2 were found at 33.05 and 28.99 ohm-1
cm2
mol-1
respectively, Table 1. This
indicates that these compounds behave as 1:1 electrolyte which are in agree well with previous work in DMSO
solution [57-59]. This observation may be due to ionic character of one Te-Br bond in these compounds.
IV. Optical Constant
The optical parameters for 4 -(4-N,N-dimethylaminobenzylideneamino)phenyltellurium tribromide films
deposited on glass substrate have been investigated .
The analysis of the absorption coefficient has been carried out to obtain the optical energy gapand also, the
analysis of the refractive index n with the help of the absorption index k has been carried out to obtain the
optical conductivity.
The values of n and k are determined from the transmittance and reflectance spectra of the thin films. The
reflectance and refractive index of any solid certain wavelength are expressed as [60].
K= (1)
R= (2)
The spectral distributions of the mean values of n and k versus wavelength for the investigated-(4-N,N-
dimethylaminobenzylideneamino)phenyltellurium tribromide are shown in Fig.10.
Fig. (10): Dependence of the mean values of the refractive index n on the wavelength.
Fig. (11): Dependence of the mean values of the absorption index k on the wavelength.
The absorption coefficient have been estimated after correction for the reflection losses. The absorption
coefficient is given by [61]:
Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp.
161-171
AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 169
=( )*A (3)
Where d is the thickness of the sample and Ais the absorption after correction.
The absorption edge can be divided into two regions depending on the value of absorption coefficient . For
<104
cm-1
, there is usually an Urbach tail [62] in which depends exponentially on photon energy,
h .Fig.(22) shows a plot of log( ) as a function of photon energy h .
Fig. (22): Dependence of the absorption coefficient α on the photon energy.
For 104
106
cm-1
in the high-absorption region( where absorption is associated with inter-band
transitions). The following relation [63,64] is obeyed:
h = (h -Eopt)n
(4)
Where is the band tailing parameter, Eopt is the optical band gap and n is an index which can assume values
1,2,3,1/2 and 3/2 depending on the nature of the electronic transition responsible for the absorption [65].
The relation between ( h )1/2
and photon energy shown in Fig. (23).
Fig. (13): Dependence of the ( h )1/2
on the photon energy.
The absorption coefficient can be used to calculate the optical conductivity opt as follows [66].
opt= (5)
Where c the velocity of the light. Fig.(14) shows the variation of optical conductivity opt as a function of
photon energy.
Fig. (24): Dependence of the opt on the photon energy.
The increased of optical conductivity at high photon energy is due to the high absorbance of 4-(4-N,N-
dimethylaminobenzylideneamino)phenyltellurium tribromide thin films and also may be due to the electron
excited by photon energy [67].
Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp.
161-171
AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 170
V. Conclusions
4-(4-N,N-dimethylaminobenzylideneamino)phenyltellurium tribromide thin films have been deposited on glass
substrate by cast method, and X-ray diffraction shows that it is structure. The optical constant of A1 was
calculated from the transmittance spectra. The estimation of the corresponding band gap Eg is 2 eV.
References
[1] F. A. Cotton and G.Wilkinson, Advanced Inorganic Chemistry, A Comperehensive Text, Willey-Interscience Publisher, New
York, 6th
Ed, 1999.
[2] M. McNaughton, L.Engman, A.Birminghan, G.Powis and I.A.Cotgreave, J.Mid. Chem., 47, 233 (2004).
[3] C.W. Nogueira , G. Zeni and J. B. T. Rocha, Chem. Rev, 104, 6255 (2004) .
[4] A. Goto, Y. Kwak, T. Fukuda , S. Yamago , K. Iida, M. Nakajima and J.I. Yoshida, J.Am. Chem. Soc., 125 , 2720 (2003).
[5] S. Yamago, K. Iida and J. J. Yoshida, J.Am. Chem. Soc., 124, 2874 (2002)
[6] M. Attebery and B. L. Sailer, Bios (Ocean Grov), 73, 52 (2002).
[7] L. Engman, T. Kanada, A. Gallegos, R. Williams and G. Powis, Anti-Cancer Drug Design, 15, 323 (2001).
[8] L. Engman, I. Cotgreave, M. Angulo, C.W. Taylor, G.D. Paine and G. Powis , Anticancer Res., 17, 4599 (1997).
[9] J. M. Williams, M.A. Beno, H.H. Wang, P.C. Leung, T. Emge, V. Geiser and K.D . Carlson, ACC. Chem. Res. , 18, 261 (1985).
[10] M.R. Bryce, Aldrichim . Acta , 18, 73 (1985).
[11] S Yamago and J. J. Yoshida, Synth. Org. Chem. , JPN , 60 , 330 (2002).
[12] G. Zeni, A. L. Braga and H. A. Stefani, ACC. Chem. Res. , 36 , 731 (2003). [13]-N. Petragnani, Tellurium in Organic Synthesis,
Best Synthetic Method Series, Academic Press, London, 1994.
[14] A. K. Singh, S. Sharma, Coord . Chem. Rev., 209, 49 (2000).
[15] W. Levason, S.D. Orchard and G. Reid, Coord. Chem. Rev., 124,159(2002)
[16] P. Pykko , Chem. Rev., 97, 597 (1997).
[17] W. R. McWhinnie, I. D. Sadekov and V. I. Minkin, Sulfur Reports, 18, 295 (1996).
[18] H. B. Singh and H. B. Proc, Indian Acad. Sci. Chem.Sci., 107, 431 (1995).
[19] R. M. Detty, A. J. Williams, J. M. Hewitt and M. McMillan, Organometallics, 14, 5258(1995).
[20] I. D. Stadekov, V. I. Minkin, A. V. Zakharov, A. G. Stankov, G. S. Borodkin, S. M. Aldoshin, V. V. Tkachev, G. V. Shilov and
F. J. Berry, J.Organomet . Chem., 690, 103 (2005).
[21] V. I. Minkin, I. D. Sadekov, B. B. Rivkin, A. V. Zakharov, V. L. Nivorozhkin, O. E. Kompan and Y. T. Struchkov, J.Organomet.
Chem., 233 , 536 (1997).
[22] S. J. Falcone and M. P. Cava, J. Org.Chem., 45, 1044(1980).
[23] I. D. Sadekov, A. A. Ladatko, V. L. Nivorozhkhin, D. E. Kompan, Y. T. Struchkov and V. I. Minkin, Zh. Obsch. Khim ., 60 ,
2764 (1990).
[24] M. Baiwir, G. Llabres, O. Dideberg, L. Dupont and J. L. Piette, Acta Cryst., B30, 139 (1974).
[25] J. L. Piette, P. Thibaut and M.Renson, Tetrahedron, 34 , 655 (1978).
[26] L. Engman and M.P. Cava, J. Org. Chem., 46, 4194(1981).
[27] M. A. Ahmed, W. R. MeWhinnie and T. A. Hamor, J.Organomet. Chem., 281 , 205 (1985).
[28] S. M. Aldoshin, F. J. Berry, A. V. Zakharov, I. D. Sadekov, B. B. Safaklov , V. V. Tkacher , I.D. Sadekov. and V.I. Minkin , IZV.
Akad. Nauk (Ser. Khim , 66 (2004).
[29] L. Yang, Y. Wu, X. Cui, C.Du and Y. Zhu, Tetrahedron : Asymmetry, 14 , 1073 (2003).
[30] A. Z. Al-Rubaie, W.A. Al-Masoudi, S. A. Al-Jadaan, A.F.Jalbout and A.J.Hameed, Hetroatom Chem., 19 , 307 (2008).
[31] A. K. Chauhan, Anamica, A. Kumar, R. C. Srivastava and R.J. Butcher, J. Beckman and A. Duthie, J. Organomet. Chem., 690,
1350(2005).
[32] S. Patai and Z.Rappoport (ed.), "The Chemistry of Organic Selenium and Tellurium Compounds ", Vol 1 and 2, John Wiley and
Sons Ltd , 1986.
[33] K. J. Irgolic, " The Organic Chemistry of Tellurium ", Gorden and Beach , New York , 1974.
[34] F. B. W. Eienstein and T. Jones, Acta Cryst. B38, 617 (1982).
[35] T. M. Klapotke, B. Krum, P. Mayer , H. Piotrowski and P. Ruscitti, Z. Anorg . Allg . Chem., 628, 229 (2002).
[36] G. Vasiliu and A. Gioaba, Rev. Chem. (Bucharest), 20, 357 (1969).
[37] R. L. O. Cunha, J. Zukerman-Schpector, I. Caracelli and J. V. Comasseto, J.Organomet. Chem., 691 , 4807 (2006).
[38] D. H. O`Brien, K. J. Irgolic and C. K. Huang , Hetroatom Chem., 1, 215 (1990).
[39] A. Z. Al-Rubaie , N. I. Al-Salim and S. A. Al-Jadaan, Organomet. Chem., 443, 67 (1993).
[40] A. Z. Al-Rubaie, S. A. Al-Jadaan, Appl.Organomet.Chem., 12 , 79 (1998) .
[41] P. V. Rolling, D. D. Kirt, J. L. Dill, S. Hall and C. Holtstrom, J.Organomet. Chem., 116 , 39 (1976).
[42] M. I. Bruce, B. L. Goodall and F. A. Stone, J. Chem. Soc. , Chem. Commun., 558(1973).
[43] H. B. Singh and W. R. McWhinnie, J. Chem. Soc. Dalton Trans., 821 , 1985.
[44] V.Pamuckchieva, A.Szekeres, Optical Mater. 30 1088(2008).
[45] M.Dongol, Egypt. J.Sol., 25,33(2002).
[46] H.Neumann, W.Horig, E.Reccius, H.Sobotta, B.Schumann, G., Thin Solid Films,61,13(1979).
[47] F. Feher, "Hand Book Of Preparative Inorganic Chemistry", 2nd
Ed., Academic Press , N. Y., Ch.7 , P. 445 (1967).
[48] L.G. Makarova and H. M. Nesmeyanov, "The Organic Chemistry of Mercury Compounds", In Method of Elementary of
Organic Chemistry (Edited by A.N.Nesmyanov and K.A.Kocheshakov), Vol. 4, 1st
Ed., Northland Publishing Company -
Amisterdam, 1967.
[49] A. I. Vogel, "Text Book of Practical Chemistry", 3rd
Ed., Academic Press, NY, Ch.7, P. 445(1967).
[50] D. D. Perin, W. L. F. Armarege and D.R.Perrin, "Purification of Laboratory Chemicals ", 2nd
Ed., 1980.
[51] R. Kumar, A. K.Singh, R. J. Butcher, P.Shama and R. A. Toscano, European J. Inorg. Chem., 5, 1107 (2004).
[52] R. P. Kumar, A. K. Singh, J. E. Drake, M.B. Hursthouse, and M.E. Light, Inorg. Chem. Commun., 7, 502 (2004).
[53] R. M. Silerstien, F. X. Webster and D. J. Kiemle, "Spectrometric Identification of Organic Chemistry Compounds ", 6th
Ed. ,
John Wiley and Sons , N. Y, 2005.
[54] R. I. Shriner and C. K. Hermann," Spectroscopic Techniques for Organic Chemistry ", John Wiley and Sons , N. Y , 2004.
[55] G. E. Martin, " Cryogenic NMR Probs: Application, D. M. Grant and R. K. Harris, " Encyclopedia of Nuclear Magnetic
Resonance, Vol.9, Wiley Chichester, 2002.
[56] A. Z. Al-Rubaie, W.A. Al-Masoudi, S. A. Al-Jadaan, A.F.Jalbout and A.J.Hameed, Hetroatom Chem., 19 , 307 (2008).
[57] A.Z. Al-Rubaie, A.A. Al-Najar and F.A. Jassim, Inorg. Chim. Acta, 175,181(1990).
Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp.
161-171
AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 171
[58] A. Z. Al-Rubaie H.A. Al-Shirayda, P. Granger, and S. Chapelle, J.Organomet. Chem., 234 , 287 (1982).
[59] F. A. Jassim, M.Sc. Thesis, University of Basrah, 1989.
[60] A.EL-Korasyh, H.EL-Zahed, M.Radwan, Physics B 334,75(2003).
[61] F.Ym, Al-Eithani, M.C.Edani, A.K.Abass, Phys. Stat. Sol. a 0103, p571(1987).
[62] F.Urbach, Phys Rev, 92:1324(1953).
[63] J.Tauc, R.Grigorovici, A.Vancu, Phys Stat Sol, 15:627(1966).
[64] EA.Davis, NF.Mott, Philos Mag, 22:903(1970).
[65] J.Tauc, in:Tauc, (editor) Amorphous and liquid semiconductors, New York: Plenum Press, [chapter 4](1974).
[66] J.I.Pankove, Optical Processes in Semiconductors, Dover Publication Inc., New York, pp.91(1975).
[67] F.Yakuphanoglu, A.Cukurovali, I.Yilmaz, Opt.Mater. 27,1366(2005).

More Related Content

What's hot

adsorption of methylene blue onto xanthogenated modified chitosan microbeads
adsorption of methylene blue onto xanthogenated modified chitosan microbeadsadsorption of methylene blue onto xanthogenated modified chitosan microbeads
adsorption of methylene blue onto xanthogenated modified chitosan microbeadsSiti Nadzifah Ghazali
 
Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...
Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...
Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...inventionjournals
 
Location of functional groups & molecular stereochemistry
Location of functional groups & molecular stereochemistryLocation of functional groups & molecular stereochemistry
Location of functional groups & molecular stereochemistryNilesh Thorat
 
N – methyl thiomethylation and n hydroxymethylation of phthalimide
N – methyl thiomethylation and n hydroxymethylation of phthalimideN – methyl thiomethylation and n hydroxymethylation of phthalimide
N – methyl thiomethylation and n hydroxymethylation of phthalimideAlexander Decker
 
Complexation, Spectroscopic, Thermal, Magnetic And Conductimetric Studies On ...
Complexation, Spectroscopic, Thermal, Magnetic And Conductimetric Studies On ...Complexation, Spectroscopic, Thermal, Magnetic And Conductimetric Studies On ...
Complexation, Spectroscopic, Thermal, Magnetic And Conductimetric Studies On ...IOSR Journals
 
Synthesis and characterization of antioxidant resin modified
Synthesis and characterization of antioxidant resin modified Synthesis and characterization of antioxidant resin modified
Synthesis and characterization of antioxidant resin modified Alexander Decker
 
Structural elucidation, Identification, quantization of process related impur...
Structural elucidation, Identification, quantization of process related impur...Structural elucidation, Identification, quantization of process related impur...
Structural elucidation, Identification, quantization of process related impur...IOSR Journals
 
Structure determination of organic compounds tables of spectral data 4th
Structure determination of organic compounds tables of spectral data 4thStructure determination of organic compounds tables of spectral data 4th
Structure determination of organic compounds tables of spectral data 4thIvan Milenkovic
 
Microwave assisted synthesis and IR spectral analysis of a few complexes of 4...
Microwave assisted synthesis and IR spectral analysis of a few complexes of 4...Microwave assisted synthesis and IR spectral analysis of a few complexes of 4...
Microwave assisted synthesis and IR spectral analysis of a few complexes of 4...IRJET Journal
 
PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016Anirban Kundu
 
Thermodynamics and adsorption studies of rhodamine-b dye onto organoclay
Thermodynamics and adsorption studies of rhodamine-b dye onto organoclayThermodynamics and adsorption studies of rhodamine-b dye onto organoclay
Thermodynamics and adsorption studies of rhodamine-b dye onto organoclayInnspub Net
 
Melamine epichlorohydrin prepolymers syntheses and characterization
Melamine epichlorohydrin prepolymers syntheses and characterizationMelamine epichlorohydrin prepolymers syntheses and characterization
Melamine epichlorohydrin prepolymers syntheses and characterizationArif Yavuz Akartepe
 
Effect of Fractionation and Pyrolysis on Fuel Properties of Poultry Litter
Effect of Fractionation and Pyrolysis on Fuel Properties of Poultry LitterEffect of Fractionation and Pyrolysis on Fuel Properties of Poultry Litter
Effect of Fractionation and Pyrolysis on Fuel Properties of Poultry LitterLPE Learning Center
 
Research journal
Research journalResearch journal
Research journalfaixan_live
 
Iron Doped Titania Nanostructures Synthesis, DFT modelling and Photocatalysis
Iron Doped Titania Nanostructures Synthesis, DFT modelling and PhotocatalysisIron Doped Titania Nanostructures Synthesis, DFT modelling and Photocatalysis
Iron Doped Titania Nanostructures Synthesis, DFT modelling and Photocatalysisioneec
 
Chemistry of natural_products
Chemistry of natural_productsChemistry of natural_products
Chemistry of natural_productsshveta arya
 
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...Alexander Decker
 

What's hot (20)

adsorption of methylene blue onto xanthogenated modified chitosan microbeads
adsorption of methylene blue onto xanthogenated modified chitosan microbeadsadsorption of methylene blue onto xanthogenated modified chitosan microbeads
adsorption of methylene blue onto xanthogenated modified chitosan microbeads
 
Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...
Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...
Kinetics and Thermodynamics of Mandelic Acid Oxidation By Tripropylammonium H...
 
Location of functional groups & molecular stereochemistry
Location of functional groups & molecular stereochemistryLocation of functional groups & molecular stereochemistry
Location of functional groups & molecular stereochemistry
 
N – methyl thiomethylation and n hydroxymethylation of phthalimide
N – methyl thiomethylation and n hydroxymethylation of phthalimideN – methyl thiomethylation and n hydroxymethylation of phthalimide
N – methyl thiomethylation and n hydroxymethylation of phthalimide
 
Methoxy porphyrins
Methoxy porphyrinsMethoxy porphyrins
Methoxy porphyrins
 
Complexation, Spectroscopic, Thermal, Magnetic And Conductimetric Studies On ...
Complexation, Spectroscopic, Thermal, Magnetic And Conductimetric Studies On ...Complexation, Spectroscopic, Thermal, Magnetic And Conductimetric Studies On ...
Complexation, Spectroscopic, Thermal, Magnetic And Conductimetric Studies On ...
 
Synthesis and characterization of antioxidant resin modified
Synthesis and characterization of antioxidant resin modified Synthesis and characterization of antioxidant resin modified
Synthesis and characterization of antioxidant resin modified
 
Structural elucidation, Identification, quantization of process related impur...
Structural elucidation, Identification, quantization of process related impur...Structural elucidation, Identification, quantization of process related impur...
Structural elucidation, Identification, quantization of process related impur...
 
Structure determination of organic compounds tables of spectral data 4th
Structure determination of organic compounds tables of spectral data 4thStructure determination of organic compounds tables of spectral data 4th
Structure determination of organic compounds tables of spectral data 4th
 
Microwave assisted synthesis and IR spectral analysis of a few complexes of 4...
Microwave assisted synthesis and IR spectral analysis of a few complexes of 4...Microwave assisted synthesis and IR spectral analysis of a few complexes of 4...
Microwave assisted synthesis and IR spectral analysis of a few complexes of 4...
 
PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016PhD presentation 3rd feb 2016
PhD presentation 3rd feb 2016
 
Thermodynamics and adsorption studies of rhodamine-b dye onto organoclay
Thermodynamics and adsorption studies of rhodamine-b dye onto organoclayThermodynamics and adsorption studies of rhodamine-b dye onto organoclay
Thermodynamics and adsorption studies of rhodamine-b dye onto organoclay
 
Melamine epichlorohydrin prepolymers syntheses and characterization
Melamine epichlorohydrin prepolymers syntheses and characterizationMelamine epichlorohydrin prepolymers syntheses and characterization
Melamine epichlorohydrin prepolymers syntheses and characterization
 
RamaleyPosterFinal_KRA
RamaleyPosterFinal_KRARamaleyPosterFinal_KRA
RamaleyPosterFinal_KRA
 
18
1818
18
 
Effect of Fractionation and Pyrolysis on Fuel Properties of Poultry Litter
Effect of Fractionation and Pyrolysis on Fuel Properties of Poultry LitterEffect of Fractionation and Pyrolysis on Fuel Properties of Poultry Litter
Effect of Fractionation and Pyrolysis on Fuel Properties of Poultry Litter
 
Research journal
Research journalResearch journal
Research journal
 
Iron Doped Titania Nanostructures Synthesis, DFT modelling and Photocatalysis
Iron Doped Titania Nanostructures Synthesis, DFT modelling and PhotocatalysisIron Doped Titania Nanostructures Synthesis, DFT modelling and Photocatalysis
Iron Doped Titania Nanostructures Synthesis, DFT modelling and Photocatalysis
 
Chemistry of natural_products
Chemistry of natural_productsChemistry of natural_products
Chemistry of natural_products
 
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
A new and efficient synthesis of 1 (4-subtitued phenyl)-3-(1-(6-(substitued-2...
 

Viewers also liked (19)

Ijetcas14 394
Ijetcas14 394Ijetcas14 394
Ijetcas14 394
 
Ijetcas14 409
Ijetcas14 409Ijetcas14 409
Ijetcas14 409
 
Ijetcas14 444
Ijetcas14 444Ijetcas14 444
Ijetcas14 444
 
Ijebea14 211
Ijebea14 211Ijebea14 211
Ijebea14 211
 
Ijetcas14 393
Ijetcas14 393Ijetcas14 393
Ijetcas14 393
 
Ijetcas14 345
Ijetcas14 345Ijetcas14 345
Ijetcas14 345
 
Ijetcas14 399
Ijetcas14 399Ijetcas14 399
Ijetcas14 399
 
Aijrfans14 271
Aijrfans14 271Aijrfans14 271
Aijrfans14 271
 
Ijebea14 207
Ijebea14 207Ijebea14 207
Ijebea14 207
 
Ijetcas14 323
Ijetcas14 323Ijetcas14 323
Ijetcas14 323
 
Ijetcas14 313
Ijetcas14 313Ijetcas14 313
Ijetcas14 313
 
Ijetcas14 361
Ijetcas14 361Ijetcas14 361
Ijetcas14 361
 
Ijetcas14 438
Ijetcas14 438Ijetcas14 438
Ijetcas14 438
 
Ijetcas14 523
Ijetcas14 523Ijetcas14 523
Ijetcas14 523
 
Ijetcas14 335
Ijetcas14 335Ijetcas14 335
Ijetcas14 335
 
Ijetcas14 446
Ijetcas14 446Ijetcas14 446
Ijetcas14 446
 
Aijrfans14 223
Aijrfans14 223Aijrfans14 223
Aijrfans14 223
 
Ijetcas14 448
Ijetcas14 448Ijetcas14 448
Ijetcas14 448
 
Ijetcas14 378
Ijetcas14 378Ijetcas14 378
Ijetcas14 378
 

Similar to Aijrfans14 294

Study of the Synthesis of Pyrrole and its Derivatives
Study of the Synthesis of Pyrrole and its DerivativesStudy of the Synthesis of Pyrrole and its Derivatives
Study of the Synthesis of Pyrrole and its Derivativesijtsrd
 
Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...
Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...
Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...inventionjournals
 
Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...
Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...
Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...IOSR Journals
 
New benzotriozole phthalocyanine nickel(ii) photostabilizer for low density p...
New benzotriozole phthalocyanine nickel(ii) photostabilizer for low density p...New benzotriozole phthalocyanine nickel(ii) photostabilizer for low density p...
New benzotriozole phthalocyanine nickel(ii) photostabilizer for low density p...Alexander Decker
 
Synthesis and Characterization of cyclohexylidene containing novel cardo pol...
	Synthesis and Characterization of cyclohexylidene containing novel cardo pol...	Synthesis and Characterization of cyclohexylidene containing novel cardo pol...
Synthesis and Characterization of cyclohexylidene containing novel cardo pol...inventionjournals
 
khalid & Ahmed Sabeeh research
khalid & Ahmed Sabeeh researchkhalid & Ahmed Sabeeh research
khalid & Ahmed Sabeeh researchKhalid Walled
 
Synthesis And Characterization of Novel Processable Poly (EtherAzomethine)S C...
Synthesis And Characterization of Novel Processable Poly (EtherAzomethine)S C...Synthesis And Characterization of Novel Processable Poly (EtherAzomethine)S C...
Synthesis And Characterization of Novel Processable Poly (EtherAzomethine)S C...inventionjournals
 
2009_Nguyen et al._Journal of Organometallic Chemistry
2009_Nguyen et al._Journal of Organometallic Chemistry2009_Nguyen et al._Journal of Organometallic Chemistry
2009_Nguyen et al._Journal of Organometallic ChemistryHuyen Lyckeskog
 
Synthesis and Biological Evaluation of Novel3, 5-Disubstituted 4h-1, 2, 4-Tri...
Synthesis and Biological Evaluation of Novel3, 5-Disubstituted 4h-1, 2, 4-Tri...Synthesis and Biological Evaluation of Novel3, 5-Disubstituted 4h-1, 2, 4-Tri...
Synthesis and Biological Evaluation of Novel3, 5-Disubstituted 4h-1, 2, 4-Tri...IOSR Journals
 
Research paper (3)
Research paper (3)Research paper (3)
Research paper (3)Asif Mirza
 
Physics Of A Magritek Nmr Spectrometer
Physics Of A Magritek Nmr SpectrometerPhysics Of A Magritek Nmr Spectrometer
Physics Of A Magritek Nmr SpectrometerLaura Martin
 

Similar to Aijrfans14 294 (20)

SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITIES OF{FE(II),CO(II),NI(...
SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITIES OF{FE(II),CO(II),NI(...SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITIES OF{FE(II),CO(II),NI(...
SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITIES OF{FE(II),CO(II),NI(...
 
Study of the Synthesis of Pyrrole and its Derivatives
Study of the Synthesis of Pyrrole and its DerivativesStudy of the Synthesis of Pyrrole and its Derivatives
Study of the Synthesis of Pyrrole and its Derivatives
 
Howarth2000
Howarth2000Howarth2000
Howarth2000
 
Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...
Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...
Microwave Assisted Synthesis, Structure, Spectral Characterization And Biolog...
 
Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...
Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...
Synthesis Characterization And Antimicrobial Activity Of 6- Oxido-1- ((5 -5- ...
 
8454
84548454
8454
 
8454
84548454
8454
 
New benzotriozole phthalocyanine nickel(ii) photostabilizer for low density p...
New benzotriozole phthalocyanine nickel(ii) photostabilizer for low density p...New benzotriozole phthalocyanine nickel(ii) photostabilizer for low density p...
New benzotriozole phthalocyanine nickel(ii) photostabilizer for low density p...
 
Synthesis and Characterization of cyclohexylidene containing novel cardo pol...
	Synthesis and Characterization of cyclohexylidene containing novel cardo pol...	Synthesis and Characterization of cyclohexylidene containing novel cardo pol...
Synthesis and Characterization of cyclohexylidene containing novel cardo pol...
 
khalid & Ahmed Sabeeh research
khalid & Ahmed Sabeeh researchkhalid & Ahmed Sabeeh research
khalid & Ahmed Sabeeh research
 
Synthesis And Characterization of Novel Processable Poly (EtherAzomethine)S C...
Synthesis And Characterization of Novel Processable Poly (EtherAzomethine)S C...Synthesis And Characterization of Novel Processable Poly (EtherAzomethine)S C...
Synthesis And Characterization of Novel Processable Poly (EtherAzomethine)S C...
 
2009_Nguyen et al._Journal of Organometallic Chemistry
2009_Nguyen et al._Journal of Organometallic Chemistry2009_Nguyen et al._Journal of Organometallic Chemistry
2009_Nguyen et al._Journal of Organometallic Chemistry
 
AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...
AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...
AN INVESTIGATION LEADING TO THE DESIGN AND SYNTHESIS OF BENZIMIDAZOLO/ TETRAZ...
 
4
44
4
 
Synthesis and Biological Evaluation of Novel3, 5-Disubstituted 4h-1, 2, 4-Tri...
Synthesis and Biological Evaluation of Novel3, 5-Disubstituted 4h-1, 2, 4-Tri...Synthesis and Biological Evaluation of Novel3, 5-Disubstituted 4h-1, 2, 4-Tri...
Synthesis and Biological Evaluation of Novel3, 5-Disubstituted 4h-1, 2, 4-Tri...
 
Ijaret 06 10_001
Ijaret 06 10_001Ijaret 06 10_001
Ijaret 06 10_001
 
Research paper (3)
Research paper (3)Research paper (3)
Research paper (3)
 
Physics Of A Magritek Nmr Spectrometer
Physics Of A Magritek Nmr SpectrometerPhysics Of A Magritek Nmr Spectrometer
Physics Of A Magritek Nmr Spectrometer
 
Jcpr 2014-6-4-1225-1231
Jcpr 2014-6-4-1225-1231Jcpr 2014-6-4-1225-1231
Jcpr 2014-6-4-1225-1231
 
Jcpr 2014-6-4-1225-1231
Jcpr 2014-6-4-1225-1231Jcpr 2014-6-4-1225-1231
Jcpr 2014-6-4-1225-1231
 

More from Iasir Journals (20)

ijetcas14 650
ijetcas14 650ijetcas14 650
ijetcas14 650
 
Ijetcas14 648
Ijetcas14 648Ijetcas14 648
Ijetcas14 648
 
Ijetcas14 647
Ijetcas14 647Ijetcas14 647
Ijetcas14 647
 
Ijetcas14 643
Ijetcas14 643Ijetcas14 643
Ijetcas14 643
 
Ijetcas14 641
Ijetcas14 641Ijetcas14 641
Ijetcas14 641
 
Ijetcas14 639
Ijetcas14 639Ijetcas14 639
Ijetcas14 639
 
Ijetcas14 632
Ijetcas14 632Ijetcas14 632
Ijetcas14 632
 
Ijetcas14 624
Ijetcas14 624Ijetcas14 624
Ijetcas14 624
 
Ijetcas14 619
Ijetcas14 619Ijetcas14 619
Ijetcas14 619
 
Ijetcas14 615
Ijetcas14 615Ijetcas14 615
Ijetcas14 615
 
Ijetcas14 608
Ijetcas14 608Ijetcas14 608
Ijetcas14 608
 
Ijetcas14 605
Ijetcas14 605Ijetcas14 605
Ijetcas14 605
 
Ijetcas14 604
Ijetcas14 604Ijetcas14 604
Ijetcas14 604
 
Ijetcas14 598
Ijetcas14 598Ijetcas14 598
Ijetcas14 598
 
Ijetcas14 594
Ijetcas14 594Ijetcas14 594
Ijetcas14 594
 
Ijetcas14 593
Ijetcas14 593Ijetcas14 593
Ijetcas14 593
 
Ijetcas14 591
Ijetcas14 591Ijetcas14 591
Ijetcas14 591
 
Ijetcas14 589
Ijetcas14 589Ijetcas14 589
Ijetcas14 589
 
Ijetcas14 585
Ijetcas14 585Ijetcas14 585
Ijetcas14 585
 
Ijetcas14 584
Ijetcas14 584Ijetcas14 584
Ijetcas14 584
 

Recently uploaded

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.MateoGardella
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 

Recently uploaded (20)

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 

Aijrfans14 294

  • 1. ISSN (Print): 2328-3777, ISSN (Online): 2328-3785, ISSN (CD-ROM): 2328-3793 American International Journal of Research in Formal, Applied & Natural Sciences AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 161 AIJRFANS is a refereed, indexed, peer-reviewed, multidisciplinary and open access journal published by International Association of Scientific Innovation and Research (IASIR), USA (An Association Unifying the Sciences, Engineering, and Applied Research) Available online at http://www.iasir.net Synthesis, Characterization and Study of Optical Constant of 4-(4-N,N-Dimethylaminobenzylideneamino)Phenyltellurium Tribromide Adil Ali Al-Fregi1 , Ghufran Mohammad Shabeeb2 1 Chemistry Department, College of Science, University of Basrah, Basrah, IRAQ 2 Physics Department, College of Education for Pure Sciences , University of Basrah, Basrah, IRAQ I. Introduction Tellurium is one of members of group 16 in the periodic table. Tellurium lies between selenium and polonium and have electronic configuration [Kr]4d10 5s2 5p4 , it bears resemblance to this group especially to selenium in many of its properties and reactions [1]. Tellurium and its compounds have several applications in different fields. Organotellurium compounds have been mainly used as antioxidant agents [2,3], polymerization catalysts [4,5], antitumors and pharmaceutical agents [6-8], organic super conductors [9,10], synthetic intermediate [11-13] and as ligands with many transition metal ions [14,15]. In recent years there has been a growing interest in studing the organotellurium compounds which have N→Te intramolecular interaction [16,17]. There are several types of organotellurium compounds containing nitro, amino and azomethine groups which show such intramolecular interaction [18-29]. One of these compounds represent in organotellurium compounds which contain azomethine groups [20,30,31]. Organyltellurium trihalides (RTeX3 where X= Cl, Br, I; R = alkyl, aryl) constitute a large and a well studied class of compounds [5,10]. Generally, the stability of alkyltellurium trihalides are lower than aryltellurium trihalides, thus, methyltellurium trihalides (CH3TeX3 ; X = Cl, Br and I) are very sensitive to light and moisture, and decomposed in solutions while the corresponding phenyltellurium trihalides are stable under the same conditions [32]. Generally, the structures of organyltellurium trihalides are connected into infinite chains [32- 34] or dimeric structures by halogene bridges [32-35]. The important methods for preparing organyltellurium trihalides are reaction of tellurium tetrahalides (TeX4; X = Cl, Br) with several compounds such as alkenes [36], alkynes [37], ketones [38] and activated aromatic compounds [33]. In some cases, the direct substitution of tellurium tetrahalides with aromatic compounds is not feasible or give low yield. The substitution reaction of arylmercuric chloride with tellurium tetrahalides gave the corresponding aryltellurium trihalide in good yield [39,40]. Several attempts to prepare tellurated Schiff bases by reacting Schiff bases with tellurium tetrabromide were failed and leading to ionic products [41,42]. Singh and McWhinnie [43] prepared {4-substituted-2-(phenyliminomethyl) phenyl}tellurium tribromide by reacting 4-substituted-2-(phenyliminomethyl) phenyl mercuric chloride with tellurium tetrabromide, Scheme1. Al-Rubaie et al [30] reported the synthesis of a new series of tellurated Schiff bases compounds of formula ArTeBr3 (Ar =5-RC6H3N=CHC6H5, R=Cl, Br, CH3O and NO2) by reaction of tellurium tetrabromide with the corresponding arylmercuric chloride in 1:1 mole ratio, Scheme 2 . Abstract: 4-(4-N,N-dimethylaminobenzylideneamino) phenyltellurium tribromide synthesed by reaction of ehtanolic solutons of 4- aminophenylmercuric chloride with 4-N,N-dimethylaminobenzaldehyde then with tellurium tetrabromide. The prepared compund 4-(4-N,N-dimethylaminobenzylideneamino)phenyltellurium tribromide was charecterized by several techniques such as elemental analysis ; FTIR, UV-Visible, 1 H and 13 C- NMR spectroscopies ; X-Ray diffraction and molar conductivity. Optical absorption of 4-(4-N,N- dimethylaminobenzylideneamino)phenyltellurium tribromide was measured. The X-ray analysis revealed that these films are amorphous nature. Then films were deposited using cast method. Transmittance measurements in the wavelength range(190-900)nm are used to calculate the refractive index(n), the absorption index(k) and the optical energy gap. Keywords: optical absorption; refractive index; optical energy gap; organotellurium compounds; azomethine group; Schiff base.
  • 2. Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp. 161-171 AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 162 In the present work, attempts will be made to prepare and characterization a new organyltellurium tribromide compound containing azomethine group (-CH=N) namely 4-(4-N,N- dimethylaminobenzylideamino)phenyltellurium tribromide and study of optical constant of it by using thin films technique. Both of the optical constant, n(refractive index) and k (extinction coefficient), represent fundamental properties of a material not only because of their relation to the electronic structure but also due to their applications in many integrated optical devices. Thus, calculating n and k, of material are the key parameters for a device design [44]. The refractive index provides the information about the chemical bonding and electronic structure of the material [45]. The evaluation of refractive indices of optical material is of considerable importance for application in integrated optical devices such as switches, filters and modulators [46]. II. Experimental Section A. Chemicals All chemicals used in this study were supplied from the commercial sources by famous chemical companies . Bromine, 4-N,N-dimethylaminobenzaldehyde, p-toluenesulfonic acid and mercuric acetate were supplied by British Drug House (BDH). Absolute ethanol, aniline, benzene and tellurium 99.5% were supplied from Fluka company. Diethyl ether, dioxane, hexane and sodium chloride were supplied by Reidal de Hean company. Argon gas 99.995% was purchased from Jordan Gases company. Tellurium tetrabromide which used in the present work was prepared by a literature method [47] 4- aminophenylmercuric chloride was prepared by the literature methods [48]. All the prepared compounds gave the correct melting points and infrared spectra. B. Purification of Solvents The solvents were obtained from commercial sources and are analytically pure solvents. Some solvents such as dioxane and ethanol were cautiously purified and drying according to literature methods and were kept over molecular sieve type A4 and stored in clean dark containers [49,50]. C. Physical Measurements Melting points of all solid compounds were determined by using a Gallenkamp Thermo point apparatus. Elemental analysis for carbon, hydrogen, nitrogen and sullphur were performed at AL al-Bayt Univrsity, Al- Mafraq, Jordan using a Euro vector EA 3000A Elemental Analysis (Italy). Infrared spectra for the synthesed compounds were recorded as KBr disk or thin film supported on KBr disk using a FT-IR spectrophotometer Shimadzu model 8400S in range 4000-400 cm-1 at Department of Chemistry, College of Science, University of Basrah. UV-Vis spectra for the synthesized compounds were recorded at Department of Chemistry, College of Science, University of Basrah by using Scan 80D (England) at range 200-800 nm using ethanol or chloroform as a solvents and 1cm3 pathway quartz cells. 1 H-and 13 C NMR spectra were recorded at Al al-Bayt University, Jordan by using a Bruker 300 MHz (Germany). Chemical shift of all 1 H-and 13 C NMR spectra were recorded in δ(ppm) unit downfield from the internal reference tetramethylsilane (TMS), using DMSO-d6 solvent. The molar conductivity for synthesized compounds were measured in 1x10-3 M solutions of dimethylsulfoxide solvent at room temperature using a Konduktoskop model 365B using standard conductivity cell with constant equal to 0.81 cm-1 . D. Synthesis of 4-(4-N,N-dimethylaminobenzylideneamino)phenylmercuric chloride A mixture of 4-aminophenylmercuric chloride (2.43 g , 8.00 mmol) in 50 mL of ethanol and 4-N,N- dimethylaminobenzaldehyde (1.19 g,8.00 mmol) in 50 mL of ethanol containing 0.1 g of p-toluenesulfonic acid was refluxed with stirring for 5h. After cooling, the precipitate was collected by filtration and washed several times with ethanol. The solid product was twice recrystallized from a mixture of ethanol and benzene (3:2) to give a pale yellow solid. Yields 88%, melting point 191-193 0 C , Table 1. E. Synthesis of 4-(4-N,N-dimethylaminobenzylideneamino)phenyltellurium tribromide A mixture of tellurium tetrabromide (1.78 g, 4.00 mmol) in 35 mL of dry dioxane and 4-(4-N,N- dimethylaminobenzylideamino)phenyl mercuric chloride (1.83 g, 4.00 mmol) in 30 mL of dry dioxane was refluxed with stirring for 6h under argon atmosphere. The resulting solution was filtered hot and on cooling deposited 2:1 complex of dioxane and mercuric chloride as white plates, which was filtered off. The filtrate was evaporated by a rotary evaporator to give a yellow precipitate. Recrystallization of the crude product from a mixture of diethyl ether and hexane (7:3) gave a yellow solid. Yield 60% and melting point 155 – 156 0 C , Table 1.
  • 3. Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp. 161-171 AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 163 Comp. No. Compound Stracture Colour Melting Point(o C) Yield% Molar conductiv- ity Elemental analysis Found (calculated) C% H% N% 1 Pale yellow 191-193 88 33.05 40.01 (39.22) 3.26 (3.29) 6.08 (6.10) 2 Yellow 155-156 60 28.99 30.44 (30.50) 2.52 (2.56) 4.73 (4.74) Table 1 : Some physical properties and elemental analysis of new organometallic compounds containing azomethine groups 1 and 2 in cm-1 unit. III. Results and Discussion X-ray diffraction (XRD) studies were carried out to get an idea about the structural changes produced in the investigated 4-(4-N,N-dimethylaminobenzylideneamino)phenyltellurium tribromide thin films. The diffracted intensity as a function of the reflection angle was, measured automatically by the X-ray diffractopmeter. The absence of a peak in X-ray spectra confirmed the amorphous nature of 4-(4-N,N- dimethylaminobenzylideneamino)phenyltellurium tribromide samples. Fig. (1): (XRD) of4-(4-N,N-dimethylaminobenzylideneamino)phenyltellurium tribromide thin film. The elemental analysis (CHN) of compounds 1 and 2 are in good agreement with the calculated values ,Table 1. The IR spectra of the two new synthesized compounds 1 and 2 display common feature in certain region and characteristic bands in the fingerprint and other regions. Table 2 shows the important functional groups vibration bands and some representive IR spectra are shown in Fig. 2 and 3. The IR spectra of compounds 1 and 2 show a strong band at 1668 and 1618 cm-1 respectively, can be attributed to CH=N stretching . These values are in good agreement with previous works [51-53]. The IR spectra of mercurated Schiff bases 1 shows no stretching bands vibration of carbonyl groups of at 1715 cm-1 and stretching band of amino groups of mercurated anilines (i.e 4-aminophenylmercuric chloride at 3450-3100 cm-1 range [51,53,54] this indicates the complete condensation between carbonyl and amino groups. The IR spectra of aryltellurium tribromides 2 is quite similar to those of the mercurated Schiff base 1. This means that telluration has occurred at the point of mercuration. The IR spectra of compounds 1 and 2 show a weak bands in the range 3110-3060 cm-1 due to aromatic C-H stretching while weak bands were appeared at 2921- 2817 cm-1 range due to stretching of aliphatic C-H bands [53,54]. Also, compounds 1 show two strong bands appeared in 1598 and 1365 cm-1 , while compound 2 at 1541 and 1325 cm-1 can be attributed to asymmetrical and symmetrical stretching of aromatic (C=C) [53,54].
  • 4. Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp. 161-171 AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 164 Furthermore, several variable bands between 815 – 700 cm-1 range can be assigned to aromatic C-H bending while the band at 1365-1317 cm-1 due to aliphatic C-H bending [53,54]. The IR spectra of compounds 1 and 2 show a strong band at 1232 and 1200 cm-1 respectively, attributed to ν(C-N) [53,54]. Comp.No. Aromatic ν(C-H) Aliphatic νas (C-H) νs (C-H) ν(C=N) νas(C=C) νs (C=C) Bending νara(C-H) ν(C-N) 1 3110 w 2912 w 2817 w 1668 s 1598 s 1365 s 815 s 721 m 1232 s 2 3066 w 2921 w 1618 s 1541 s 1325 s 813 m 840 m 7500 m 1200 s Table 2 : Selected infrared bonds vibration of new organometallic compounds containing azomethine groups in cm-1 unit. Fig. (2): showed the FtIR- spectrum of 4-(4-N,N-dimethylaminobenzylideneamino)phenylmercuric chlorid . Fig. (3): showed the FTIR spectrum of 4-(4-N,N-dimethylaminobenzylideneamino)phenyltellurium tribromide. .
  • 5. Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp. 161-171 AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 165 The 1 H NMR spectra of compounds 1 and 2 were measured in DMSO-d6 solvent and are represented in Fig. 4 and 5 respectively and summarized in Table 3. In general, 1 H NMR spectra of the 1 and 2 show the expected signals in proper intensity ratio, Table 3. Fig. (4): 1 H NMR spectrum of compound 1. Fig. (5): 1 H NMR spectrum of compound 2. The 1 H NMR spectra of compounds 1and 2, Fig.3 and 4, respectively gave another evidences for forming azomethine group (-CH=N-) by showing a singlet signal at 8.33 and 8.32 ppm respectively, Table 3. These values are in agreement with previously reported data [53,56]. The 1 H NMR spectrum of compound 1 and 2, Fig. 6 and 7, respectively, show a multple signals at between 7.44 - 6.18 ppm can be assigned to aromatic protons of phenyl groups [53-55]. Furthermore, these spectra show a singlet signal at 2.27 ppm can be attributed to methyl groups [53-55]. Comp. No. Compound Structure Chemical Shift (ppm) TMS = 0 ppm 1 8.33 ( s , 1H , CH=N) 7.43 – 6.18 ( m, 8H, Ar-H) 2.27 ( s, 6H, 2 CH3)
  • 6. Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp. 161-171 AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 166 2 8.32 (s , 1H , CH=N) 7.44 – 6.18 ( m, 8H, Ar-H) 2.27 ( s, 6H, 2 CH3) Table 3 : 1 H NMR data for organometallic compounds containing azomethine groups 1 and 2. The 13 C NMR spectra of some synthesized compounds 1 and 2 were recorded using DMSO-d6 solvent. Fig. 5 and 6 represented 13 C NMR spectra of synthesized compounds while 13 C NMR data were summarized in Table 4. Fig. (6): 13 C NMR spectra of compound1. Fig. (7): 13 C NMR spectra of compound 2. 13 C- NMR spectra proved further evidences about characterization of synthesized compounds . The 13 C- NMR spectra of 1 and 2 show the signal of methine carbon atoms (C7) at 169.12 and 169.44 ppm, respectively which are in agreement with previous reported works [53-56],Table 4. 13 C NMR spectra of compounds 1 and 2 show a lowfield signal at (155.69 and 155.62) ppm and ( 145.56 and 145. 60) ppm, respectively can be assigned to aromatic carbon atoms which attached with nitrogen atom (C4) and (C11) , Table 4 . The high chemical shifts for these carbon signals attributed to presence of high electronegativity of nitrogen atom [53-56]. The 13 C NMR spectra of 1 and 2 show a high field signal at 113.18 and 113.19 ppm respectively can be assigned to tellurated carbon atoms (Te-C) (C1) [53-56]. The low chemical shift, comparatively, for carbon atoms bearing tellurium atom compared with other aromatic carbon atoms may be attributed to the polarity of Te-C bond [56]. Generally, the other signals between 145.60 - 120.09 ppm in 13 C NMR spectra of 1 and 2 can be assigned to aromatic carbon atoms, Table 4. The high field signals at 47.43 and 47.84 ppm in both 13 C- NMR spectra of compounds 1 and 2, respectively are due to methyl groups (C14 and C15) [53-56].
  • 7. Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp. 161-171 AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 167 Comp. No. Compound structure Chemical shift (ppm) TMS = 0 ppm 1 169.12 (C7) , 155.69 (C4) 145.56 (C11) , 130.55 (C2, C6) 130.16 (C9,C13 ) , 127.74 (C3,C5) 122.08 (C8) , 120.09 (C10,C12) 113.18 (C1) , 47.43 (C14, C15) 2 169.44 (C7) , 155.62 (C4) 145. 60 (C11) , 130.16 (C2, C6) 129.12 (C9,C13 ) , 128.30 (C3,C5) 122.31 (C8) , 120.10 (C10,C12) 113.19 (C1) , 47.84 (C14, C15) Table 4 : 13 C -NMR data for organometallic compounds containing azomethine groups 1 and 2. The UV-Vis spectra of compounds 1 and 2 were measured at 1 x 10-4 M using chloroform as a solvent. Fig. 8 and 9 have shown the UV-Vis spectra for the synthesized compounds Table 5. Fig. (8): UV-Vis. spectrum of compound 1. Fig. (9): UV-Vis. spectrum of compound 2.
  • 8. Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp. 161-171 AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 168 In general, the UV-Vis spectra of compounds 1 and 2 showed two strong bands , The first band at 245 nm with molar extraction (Є) ranged 13000 and 11500 M-1 .cm-1 , respectively is attributed to π→π* transitions of the aromatic rings [53,54]. The second band observed at 295 nm (molar extinction Є = 12250 and 10100 M-1 .cm-1 , respectively) which may attributed to π→π* transitions of azomethine groups [53,54]. Comp.No. Wavelength nm (molar extinction M-1 .cm-1 ) 1 245 (13000) , 295 (12250) 2 245 (11500) , 295 (10100) Table 5 : UV-Vis data of compounds 1 and 2 The molar conductivities were determined for compounds 1 and 2 in 1 x 10-3 M of DMSO solvent at room temperature, Table 1. The molar conductances of 1 and 2 were found at 33.05 and 28.99 ohm-1 cm2 mol-1 respectively, Table 1. This indicates that these compounds behave as 1:1 electrolyte which are in agree well with previous work in DMSO solution [57-59]. This observation may be due to ionic character of one Te-Br bond in these compounds. IV. Optical Constant The optical parameters for 4 -(4-N,N-dimethylaminobenzylideneamino)phenyltellurium tribromide films deposited on glass substrate have been investigated . The analysis of the absorption coefficient has been carried out to obtain the optical energy gapand also, the analysis of the refractive index n with the help of the absorption index k has been carried out to obtain the optical conductivity. The values of n and k are determined from the transmittance and reflectance spectra of the thin films. The reflectance and refractive index of any solid certain wavelength are expressed as [60]. K= (1) R= (2) The spectral distributions of the mean values of n and k versus wavelength for the investigated-(4-N,N- dimethylaminobenzylideneamino)phenyltellurium tribromide are shown in Fig.10. Fig. (10): Dependence of the mean values of the refractive index n on the wavelength. Fig. (11): Dependence of the mean values of the absorption index k on the wavelength. The absorption coefficient have been estimated after correction for the reflection losses. The absorption coefficient is given by [61]:
  • 9. Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp. 161-171 AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 169 =( )*A (3) Where d is the thickness of the sample and Ais the absorption after correction. The absorption edge can be divided into two regions depending on the value of absorption coefficient . For <104 cm-1 , there is usually an Urbach tail [62] in which depends exponentially on photon energy, h .Fig.(22) shows a plot of log( ) as a function of photon energy h . Fig. (22): Dependence of the absorption coefficient α on the photon energy. For 104 106 cm-1 in the high-absorption region( where absorption is associated with inter-band transitions). The following relation [63,64] is obeyed: h = (h -Eopt)n (4) Where is the band tailing parameter, Eopt is the optical band gap and n is an index which can assume values 1,2,3,1/2 and 3/2 depending on the nature of the electronic transition responsible for the absorption [65]. The relation between ( h )1/2 and photon energy shown in Fig. (23). Fig. (13): Dependence of the ( h )1/2 on the photon energy. The absorption coefficient can be used to calculate the optical conductivity opt as follows [66]. opt= (5) Where c the velocity of the light. Fig.(14) shows the variation of optical conductivity opt as a function of photon energy. Fig. (24): Dependence of the opt on the photon energy. The increased of optical conductivity at high photon energy is due to the high absorbance of 4-(4-N,N- dimethylaminobenzylideneamino)phenyltellurium tribromide thin films and also may be due to the electron excited by photon energy [67].
  • 10. Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp. 161-171 AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 170 V. Conclusions 4-(4-N,N-dimethylaminobenzylideneamino)phenyltellurium tribromide thin films have been deposited on glass substrate by cast method, and X-ray diffraction shows that it is structure. The optical constant of A1 was calculated from the transmittance spectra. The estimation of the corresponding band gap Eg is 2 eV. References [1] F. A. Cotton and G.Wilkinson, Advanced Inorganic Chemistry, A Comperehensive Text, Willey-Interscience Publisher, New York, 6th Ed, 1999. [2] M. McNaughton, L.Engman, A.Birminghan, G.Powis and I.A.Cotgreave, J.Mid. Chem., 47, 233 (2004). [3] C.W. Nogueira , G. Zeni and J. B. T. Rocha, Chem. Rev, 104, 6255 (2004) . [4] A. Goto, Y. Kwak, T. Fukuda , S. Yamago , K. Iida, M. Nakajima and J.I. Yoshida, J.Am. Chem. Soc., 125 , 2720 (2003). [5] S. Yamago, K. Iida and J. J. Yoshida, J.Am. Chem. Soc., 124, 2874 (2002) [6] M. Attebery and B. L. Sailer, Bios (Ocean Grov), 73, 52 (2002). [7] L. Engman, T. Kanada, A. Gallegos, R. Williams and G. Powis, Anti-Cancer Drug Design, 15, 323 (2001). [8] L. Engman, I. Cotgreave, M. Angulo, C.W. Taylor, G.D. Paine and G. Powis , Anticancer Res., 17, 4599 (1997). [9] J. M. Williams, M.A. Beno, H.H. Wang, P.C. Leung, T. Emge, V. Geiser and K.D . Carlson, ACC. Chem. Res. , 18, 261 (1985). [10] M.R. Bryce, Aldrichim . Acta , 18, 73 (1985). [11] S Yamago and J. J. Yoshida, Synth. Org. Chem. , JPN , 60 , 330 (2002). [12] G. Zeni, A. L. Braga and H. A. Stefani, ACC. Chem. Res. , 36 , 731 (2003). [13]-N. Petragnani, Tellurium in Organic Synthesis, Best Synthetic Method Series, Academic Press, London, 1994. [14] A. K. Singh, S. Sharma, Coord . Chem. Rev., 209, 49 (2000). [15] W. Levason, S.D. Orchard and G. Reid, Coord. Chem. Rev., 124,159(2002) [16] P. Pykko , Chem. Rev., 97, 597 (1997). [17] W. R. McWhinnie, I. D. Sadekov and V. I. Minkin, Sulfur Reports, 18, 295 (1996). [18] H. B. Singh and H. B. Proc, Indian Acad. Sci. Chem.Sci., 107, 431 (1995). [19] R. M. Detty, A. J. Williams, J. M. Hewitt and M. McMillan, Organometallics, 14, 5258(1995). [20] I. D. Stadekov, V. I. Minkin, A. V. Zakharov, A. G. Stankov, G. S. Borodkin, S. M. Aldoshin, V. V. Tkachev, G. V. Shilov and F. J. Berry, J.Organomet . Chem., 690, 103 (2005). [21] V. I. Minkin, I. D. Sadekov, B. B. Rivkin, A. V. Zakharov, V. L. Nivorozhkin, O. E. Kompan and Y. T. Struchkov, J.Organomet. Chem., 233 , 536 (1997). [22] S. J. Falcone and M. P. Cava, J. Org.Chem., 45, 1044(1980). [23] I. D. Sadekov, A. A. Ladatko, V. L. Nivorozhkhin, D. E. Kompan, Y. T. Struchkov and V. I. Minkin, Zh. Obsch. Khim ., 60 , 2764 (1990). [24] M. Baiwir, G. Llabres, O. Dideberg, L. Dupont and J. L. Piette, Acta Cryst., B30, 139 (1974). [25] J. L. Piette, P. Thibaut and M.Renson, Tetrahedron, 34 , 655 (1978). [26] L. Engman and M.P. Cava, J. Org. Chem., 46, 4194(1981). [27] M. A. Ahmed, W. R. MeWhinnie and T. A. Hamor, J.Organomet. Chem., 281 , 205 (1985). [28] S. M. Aldoshin, F. J. Berry, A. V. Zakharov, I. D. Sadekov, B. B. Safaklov , V. V. Tkacher , I.D. Sadekov. and V.I. Minkin , IZV. Akad. Nauk (Ser. Khim , 66 (2004). [29] L. Yang, Y. Wu, X. Cui, C.Du and Y. Zhu, Tetrahedron : Asymmetry, 14 , 1073 (2003). [30] A. Z. Al-Rubaie, W.A. Al-Masoudi, S. A. Al-Jadaan, A.F.Jalbout and A.J.Hameed, Hetroatom Chem., 19 , 307 (2008). [31] A. K. Chauhan, Anamica, A. Kumar, R. C. Srivastava and R.J. Butcher, J. Beckman and A. Duthie, J. Organomet. Chem., 690, 1350(2005). [32] S. Patai and Z.Rappoport (ed.), "The Chemistry of Organic Selenium and Tellurium Compounds ", Vol 1 and 2, John Wiley and Sons Ltd , 1986. [33] K. J. Irgolic, " The Organic Chemistry of Tellurium ", Gorden and Beach , New York , 1974. [34] F. B. W. Eienstein and T. Jones, Acta Cryst. B38, 617 (1982). [35] T. M. Klapotke, B. Krum, P. Mayer , H. Piotrowski and P. Ruscitti, Z. Anorg . Allg . Chem., 628, 229 (2002). [36] G. Vasiliu and A. Gioaba, Rev. Chem. (Bucharest), 20, 357 (1969). [37] R. L. O. Cunha, J. Zukerman-Schpector, I. Caracelli and J. V. Comasseto, J.Organomet. Chem., 691 , 4807 (2006). [38] D. H. O`Brien, K. J. Irgolic and C. K. Huang , Hetroatom Chem., 1, 215 (1990). [39] A. Z. Al-Rubaie , N. I. Al-Salim and S. A. Al-Jadaan, Organomet. Chem., 443, 67 (1993). [40] A. Z. Al-Rubaie, S. A. Al-Jadaan, Appl.Organomet.Chem., 12 , 79 (1998) . [41] P. V. Rolling, D. D. Kirt, J. L. Dill, S. Hall and C. Holtstrom, J.Organomet. Chem., 116 , 39 (1976). [42] M. I. Bruce, B. L. Goodall and F. A. Stone, J. Chem. Soc. , Chem. Commun., 558(1973). [43] H. B. Singh and W. R. McWhinnie, J. Chem. Soc. Dalton Trans., 821 , 1985. [44] V.Pamuckchieva, A.Szekeres, Optical Mater. 30 1088(2008). [45] M.Dongol, Egypt. J.Sol., 25,33(2002). [46] H.Neumann, W.Horig, E.Reccius, H.Sobotta, B.Schumann, G., Thin Solid Films,61,13(1979). [47] F. Feher, "Hand Book Of Preparative Inorganic Chemistry", 2nd Ed., Academic Press , N. Y., Ch.7 , P. 445 (1967). [48] L.G. Makarova and H. M. Nesmeyanov, "The Organic Chemistry of Mercury Compounds", In Method of Elementary of Organic Chemistry (Edited by A.N.Nesmyanov and K.A.Kocheshakov), Vol. 4, 1st Ed., Northland Publishing Company - Amisterdam, 1967. [49] A. I. Vogel, "Text Book of Practical Chemistry", 3rd Ed., Academic Press, NY, Ch.7, P. 445(1967). [50] D. D. Perin, W. L. F. Armarege and D.R.Perrin, "Purification of Laboratory Chemicals ", 2nd Ed., 1980. [51] R. Kumar, A. K.Singh, R. J. Butcher, P.Shama and R. A. Toscano, European J. Inorg. Chem., 5, 1107 (2004). [52] R. P. Kumar, A. K. Singh, J. E. Drake, M.B. Hursthouse, and M.E. Light, Inorg. Chem. Commun., 7, 502 (2004). [53] R. M. Silerstien, F. X. Webster and D. J. Kiemle, "Spectrometric Identification of Organic Chemistry Compounds ", 6th Ed. , John Wiley and Sons , N. Y, 2005. [54] R. I. Shriner and C. K. Hermann," Spectroscopic Techniques for Organic Chemistry ", John Wiley and Sons , N. Y , 2004. [55] G. E. Martin, " Cryogenic NMR Probs: Application, D. M. Grant and R. K. Harris, " Encyclopedia of Nuclear Magnetic Resonance, Vol.9, Wiley Chichester, 2002. [56] A. Z. Al-Rubaie, W.A. Al-Masoudi, S. A. Al-Jadaan, A.F.Jalbout and A.J.Hameed, Hetroatom Chem., 19 , 307 (2008). [57] A.Z. Al-Rubaie, A.A. Al-Najar and F.A. Jassim, Inorg. Chim. Acta, 175,181(1990).
  • 11. Adil Ali Al-Fregi et al., American International Journal of Research in Formal, Applied & Natural Sciences, 6(2), March-May, 2014, pp. 161-171 AIJRFANS 14-294; © 2014, AIJRFANS All Rights Reserved Page 171 [58] A. Z. Al-Rubaie H.A. Al-Shirayda, P. Granger, and S. Chapelle, J.Organomet. Chem., 234 , 287 (1982). [59] F. A. Jassim, M.Sc. Thesis, University of Basrah, 1989. [60] A.EL-Korasyh, H.EL-Zahed, M.Radwan, Physics B 334,75(2003). [61] F.Ym, Al-Eithani, M.C.Edani, A.K.Abass, Phys. Stat. Sol. a 0103, p571(1987). [62] F.Urbach, Phys Rev, 92:1324(1953). [63] J.Tauc, R.Grigorovici, A.Vancu, Phys Stat Sol, 15:627(1966). [64] EA.Davis, NF.Mott, Philos Mag, 22:903(1970). [65] J.Tauc, in:Tauc, (editor) Amorphous and liquid semiconductors, New York: Plenum Press, [chapter 4](1974). [66] J.I.Pankove, Optical Processes in Semiconductors, Dover Publication Inc., New York, pp.91(1975). [67] F.Yakuphanoglu, A.Cukurovali, I.Yilmaz, Opt.Mater. 27,1366(2005).