SlideShare a Scribd company logo
1 of 5
Download to read offline
International Association of Scientific Innovation and Research (IASIR)
(An Association Unifying the Sciences, Engineering, and Applied Research)
International Journal of Engineering, Business and Enterprise
Applications (IJEBEA)
www.iasir.net
IJEBEA 14-211; © 2014, IJEBEA All Rights Reserved Page 13
ISSN (Print): 2279-0020
ISSN (Online): 2279-0039
Rediscovering, Redefining and Rebuilding Manufacturing in the Education
Sector
S.K.Sumana
, R.M.Belokarb
, Harish Kumar Bangac
, Pratik Belokard
a
Electrical Engineering Department b,c
Production Engineering Department d
Chemical Engineering Department
a,b,c
PEC U&T Chanidgarh, d
UICET Chandigarh
a,b,c,d
India
Abstract: Manufacturing industries worldwide have undergone dramatic changes in recent years and now
demand more from graduating manufacturing engineers. The effects of globalization have forever changed the
parameters for success in manufacturing. Our educational institutions must respond to these changes with
innovation. Since most of the global economic crisis is developed in manufacturing organizations such as in
Europe, Japan. This transition is made even more marked with the economic downturn taking place across the
world. There is a strong movement of cost based manufacturing to offshore and low wage economies. The
remaining onshore manufacturing activities now focus on innovative new processes and exceptional customer
service. The technology and processes required for onshore manufacturing can be complex and challenges the
existing skills of engineers and managers to continuously operate and change such systems. Educational bodies
struggle to keep up to date. The paper provides a number of suggestions for strategic change to research and
education in manufacturing in the future.
Index Terms: Manufacturing, Strategy, Education, Pedagogy, Curricula
I. Introduction
anufacturing education is in crisis. The evidence is striking and undeniable: Despite a consistently high United
States unemployment rate for several years ranging between 8% and 10% from February 2009 through
March 2021 as many as 600,000 manufacturing jobs have gone unfilled because of a shortage of skilled
workers. The roots of this crisis started with a serious shortage of workers educated in Science, Technology,
Engineering and Mathematics (STEM) fields, according to numerous reports. [1].A 2011 report authored by
Deloitte and the Manufacturing Institute, “Boiling Point The Skills Gap in U.S. Manufacturing”[2-3], notes that
the biggest areas of workforce shortage “are those that impact operations the most and require the most
training.From technicians to engineers, the talent crunch in these critical areas is taking its toll on
manufacturers’ ability to meet current operation objectives and achieve longer-term goals.” The SME Task
Force on the Role of SME in Higher Education and members of SME’s Manufacturing Education & Research
Community [3-8] has examined the state of manufacturing education. This research included a series of events
discussing manufacturing education that engaged hundreds of stakeholders from industry, government and
academia.
II. Science, Technology, Engineering and Mathematics (Stem) Foundation
Manufacturing must be portrayed as a vibrant industry that offers opportunities that are ample, creative, high-
tech and rewarding. Many students tend to be altruistic in their choice of careers, so educational programs
should make it clear to students that manufacturing offers the chance to improve the world.[9] For example,
students should be educated about the role manufacturing plays in the green revolution that saves energy,
increases health, saves lives and creates a new economy.
It is important to stress to students that there are multiple pathways, requiring different education levels, to a
career in manufacturing. Figure 1 shows several options. However, a significant portion of the available
manufacturing jobs require educational equivalency up to an associate degree. In order to develop technicians,
there must be more support for technical education, especially in high schools. Students must have options for
manufacturing paths that are hands-on and technical or academic in nature or, ideally, both.
III. Manufacturing and Its Program’s
Today, there is little agreement on the answer to that question. But if the crisis in manufacturing education is to
be resolved, a better-defined manufacturing curriculum is needed to guide manufacturing education programs,
with an eye toward accreditation.
M
S.K.Suman et al., International Journal of Engineering, Business and Enterprise Applications, 8(1), March-May., 2014, pp 13-17
IJEBEA 14-211; © 2014, IJEBEA All Rights Reserved Page 14
Fig.1 Institutional Pipeline for Manufacturing Knowledge
Figure 2 gives the comparison between 2005 and 2025 of different countries in manufacturing education
Fig.2.World’s Talent Pools of Younger People
This will enhance the understanding and value of certifications and degrees that individuals receive from
accredited programs. The Department of Labor has taken a step toward defining the manufacturing skills
workers need to be successful in 21st century manufacturing with its Advanced Manufacturing Competency
Model [Figure 3].
Fig.3. Advanced Manufacturing Competency Model
The model was developed in 2006 in collaboration with the Employment and Training Administration and
updated in 2010 with leading industry organizations. The National Association of Manufacturers, the National
S.K.Suman et al., International Journal of Engineering, Business and Enterprise Applications, 8(1), March-May., 2014, pp 13-17
IJEBEA 14-211; © 2014, IJEBEA All Rights Reserved Page 15
Council for Advanced Manufacturing and the Society for Manufacturing Engineers took the lead in collecting
feedback from their members to ensure that the updated model includes the most current processes and practices
[9].manufacturing, such as mathematics. The middle levels define the technical competencies required by the
manufacturing industry, such as production and quality assurance. The top levels define the competencies
required by specific occupations within advanced manufacturing. This model serves as a framework for the
National Association of Manufacturers-endorsed Manufacturing Skills Certification System [Figure 4], which is
a system of stackable credentials from certification organizations applicable to all sectors in the manufacturing
industry. These nationally portable, industry-recognized credentials validate the skills and competencies
identified in the Advanced Manufacturing Competency Model [10]. But there has been a missing link between
the skills defined in the Advanced Manufacturing Competency Model and the Manufacturing Skills
Certification System. A model was needed to define the academic content needed for manufacturing education
programs, whether they confer degrees or technical credentials. SME’s Center for Education developed and
adopted a model, which is included in the “Curricula 2015,” [11-16] to provide a solution to this problem.
Fig.4 Endorsed Manufacturing Skills Certification System
The Four Pillars of Manufacturing Knowledge is meant to be a standard for recommending curriculum topics
and establishing accreditation criteria for manufacturing programs of all kinds.
They also set important standards for accreditation of educational program [17]. Certifications and degrees that
come from accredited programs are necessary for industry to verify and trust the level of skills and knowledge
that certain individuals bring to the workforce.
IV. Consistency and Quality of Manufacturing
Manufacturing curricula vary greatly from school to school and program to program. While some flexibility is
necessary, everyone educated in manufacturing should have a basic core of knowledge. Figure 5 shows the
percentage of executive reporting high difficulty attracting and retaining qualified workers in different countries
in between 2005 and 2025
Fig. 5 Comparison of Country wise Qualified Workers (Source: Deloitte search based on United National
Department of Social Economic affairs)
SME recommends that educators, industry, professional organizations and government work together to:
S.K.Suman et al., International Journal of Engineering, Business and Enterprise Applications, 8(1), March-May., 2014, pp 13-17
IJEBEA 14-211; © 2014, IJEBEA All Rights Reserved Page 16
• Use the Four Pillars of Manufacturing Knowledge and the Advanced Manufacturing Competency models as a
foundation to build manufacturing curricula [18].
• Keep curricula current by monitoring trends in education and industry needs.
• Use curriculum and instructional resources shared through the National Center for Manufacturing Education
[19] and industry professionals
V. Faculty Development In World-Class Manufacturing Education
To develop faculty that can deliver an excellent manufacturing education, educators must:
• Keep up to date on using new technologies.
• Work with industry to understand current technical needs and update curriculum.
• Collaborate with industry, professional organizations and government on projects such as design to
build competitions and mentorships for both students as well as faculty.
• Research, publish and participate in manufacturing journals and conferences.
• Share best teaching practices. This includes in-service days and conferences, among other examples
[20-25].
VI. Manufacturing Education Programs
Manufacturing education is an essential priority and should be funded accordingly. All sources of possible
funding should be sought to support manufacturing education, and investments need to be strategic and
effective, with measurable results. Figure 6 shows the generation gap between young, medium and old in
different countries during manufacturing
Fig.6. Generation gap by Age in 2005(Source: Deloitte search based on United National Department of Social
Economic affairs)
SME recommends that investments be guided by the Four Pillars of Manufacturing Knowledge, the Advanced
Manufacturing Competency and the Skills Certification System models. Many educational programs and
initiatives that demonstrate the excitement and rewards of manufacturing are now under way for young students.
Among the efforts: National Engineers Week activities,[26] “Dream it. Do It.” campaigns, [27] SkillsUSA, [28]
FIRST competitions [29].
VII. Conclusion
It includes a discussion on the role of manufacturing in the global economy, the factors affecting the scope of
manufacturing, and the current efforts to revitalize manufacturing in various parts of the world. It then presents
an overview of the curricular models proposed to address the needs of the manufacturing industry. As an
extension of the analysis, a recommendation is made on the key aspects of any manufacturing curriculum with
an emphasis on innovation and entrepreneurship. Finally, a set of strategies are proposed for the enhancement of
manufacturing education. They include the creation of a flexible degree program that emphasizes learning over
teaching, development of a network of academic institutions around the globe to deliver the program, use of
communication technologies to provide access to the program to anyone at anytime and anywhere in the world,
and an outreach to future manufacturing professionals.
VIII. References
[1] United States Department of Labor, Bureau of Labor Statistics, Unemployment rate data table
[2] “A Manufacturing Renaissance: Four Goals for Economic Growth.” Washington, DC: National Association of Manufacturers,
2011
[3] “Boiling Point The Skills Gap in U.S. Manufacturing.” Deloitte and the Manufacturing Institute, 2011
S.K.Suman et al., International Journal of Engineering, Business and Enterprise Applications, 8(1), March-May., 2014, pp 13-17
IJEBEA 14-211; © 2014, IJEBEA All Rights Reserved Page 17
[4] “Made in North America.” A Deloitte Research Manufacturing Study. Deloitte Research, National Association of
Manufacturers, The Manufacturing Institute and Canadian Manufacturers & Exporters, 2008
[5] James P. Andrew, Emily Stover DeRocco and Andrew Taylor. “The Innovation Imperative in Manufacturing: How the United
States Can Restore Its Edge.” The Boston Consulting Group, National Association of Manufacturers and The Manufacturing
Institute, March 2009
[6] “The Facts about Modern Manufacturing,” 8th edition. Washington, DC: The Manufacturing Institute, 2009
[7] Robert D. Atkinson and Merrilea Mayo. “Refueling the U.S. Innovation Economy: Fresh Approaches to Science, Technology,
Engineering and Mathematics (STEM) Education.” Washington, DC: The Information Technology and Innovation Foundation,
December 2010
[8] “Prepare and Inspire: K-12 Education in Science, Technology, Engineering and Math (STEM) for America’s Future.” Report to
the President. Washington, DC: Executive Office of the President, President’s Council of Advisors on Science and Technology,
2010
[9] “Help Wanted: Projections of Jobs and Education Requirements through 2018.” Washington, DC: Georgetown University
Center on Education and the Workforce, 2010
[10] “Pathways to Prosperity: Meeting the Challenge of Preparing Young Americans for the 21st Century.” Pathways to Prosperity
Project. Cambridge, MA: Harvard Graduate School of Education, February 2011
[11] “Rising Above the Gathering Storm, Revisited: Rapidly Approaching Category 5.” National Academy of Sciences, National
Academy of Engineering and Institute of Medicine. Washington, DC: The National Academies Press, 2010
[12] “America’s Changing Workforce: Recession Turns a Graying Office Grayer.” A Social & Demographic Trends Report. Pew
Research Center, September 2009
[13] Facts about Manufacturing. Washington, DC: National Association of Manufacturers
[14] Hugh Jack et al. “Curricula 2015: A Four Year Strategic Plan for Manufacturing Education,” June 2011
[15] “Bridging the Skills Gap: How the Skills Shortage Threatens Growth and Competitiveness… And what to do About It.”
Alexandria, VA: Public Policy Council, American Society for Training & Development, Fall 2006,
[16] “Changing the Conversation: Messages for Improving Public Understanding of Engineering.” National Academy of
Engineering. Washington, DC: The National Academies Press, 2008
[17] “Criteria for Accrediting Engineering Programs, 2012–2013.” Baltimore, MD: ABET, October 2011
[18] “Advanced Manufacturing Competency Model.” Washington, DC: United States Department of Labor, Employment and
Training Administration
[19] National Center for Manufacturing Education (NCME), www.ncmeresource.org
[20] “Vision 2030 Reveals Workforce Development Needs.” ASME Today, May 2011
[21] Center for Pre-Collegiate Engineering Education, University of St. Thomas
[22] Engineering and technology minor, University of Dayton
[23] Aditya Johri and Barbara M. Olds. “Situated Engineering Learning: Bridging Engineering Education Research and the Learning
Sciences” Journal of Engineering Education, 100 (1), January 2011, pp. 151-185
[24] “Going the Distance: Online Education in the United States, 2011.” Newburyport, MA: Babson Survey Research Group, Babson
College, November 2011
[25] Discussion with Paul Nutter, Ohio Northern University, June 4, 2011, referring to Tooling University
[26] National Engineers Week, www.Eweek.org
[27] Dream It! Do It! The Manufacturing Institute, www.Dreamitdoit.com
[28] Skills USA, www.SkillsUSA.org
[29] USFIRST, www.USFIRST.org

More Related Content

What's hot

China automotive industry scenario 2022 executive summary
China automotive industry scenario 2022 executive summaryChina automotive industry scenario 2022 executive summary
China automotive industry scenario 2022 executive summary
Uli Kaiser
 
Ijciet 10 02_021
Ijciet 10 02_021Ijciet 10 02_021
Ijciet 10 02_021
IAEME Publication
 
Implicationof Branding Initiatives in engineering colleges -An empirical study
Implicationof Branding Initiatives in engineering colleges -An empirical studyImplicationof Branding Initiatives in engineering colleges -An empirical study
Implicationof Branding Initiatives in engineering colleges -An empirical study
iosrjce
 
Relationship between Technical Skills Acquired and Skills Required on Electri...
Relationship between Technical Skills Acquired and Skills Required on Electri...Relationship between Technical Skills Acquired and Skills Required on Electri...
Relationship between Technical Skills Acquired and Skills Required on Electri...
Dr. Amarjeet Singh
 

What's hot (19)

The impact of industrial practical skills on fashion students in
The impact of industrial practical skills on fashion students inThe impact of industrial practical skills on fashion students in
The impact of industrial practical skills on fashion students in
 
HOW TO BOOST ENGINEERS’ CAREERS
HOW TO BOOST ENGINEERS’ CAREERSHOW TO BOOST ENGINEERS’ CAREERS
HOW TO BOOST ENGINEERS’ CAREERS
 
China automotive industry scenario 2022 executive summary
China automotive industry scenario 2022 executive summaryChina automotive industry scenario 2022 executive summary
China automotive industry scenario 2022 executive summary
 
11.higher institution students’ access to information and communications tech...
11.higher institution students’ access to information and communications tech...11.higher institution students’ access to information and communications tech...
11.higher institution students’ access to information and communications tech...
 
An appraisal of technical skills possessed by technical college auto mechanic...
An appraisal of technical skills possessed by technical college auto mechanic...An appraisal of technical skills possessed by technical college auto mechanic...
An appraisal of technical skills possessed by technical college auto mechanic...
 
Ijciet 10 02_021
Ijciet 10 02_021Ijciet 10 02_021
Ijciet 10 02_021
 
IIIC ppt
IIIC pptIIIC ppt
IIIC ppt
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
ICAO GAT Symposium-Delhi-Qs for the Session 1
ICAO GAT Symposium-Delhi-Qs for the Session 1ICAO GAT Symposium-Delhi-Qs for the Session 1
ICAO GAT Symposium-Delhi-Qs for the Session 1
 
Bridging the skills gap in tertiary institutions/education through collabora...
Bridging the skills gap in tertiary  institutions/education through collabora...Bridging the skills gap in tertiary  institutions/education through collabora...
Bridging the skills gap in tertiary institutions/education through collabora...
 
Implicationof Branding Initiatives in engineering colleges -An empirical study
Implicationof Branding Initiatives in engineering colleges -An empirical studyImplicationof Branding Initiatives in engineering colleges -An empirical study
Implicationof Branding Initiatives in engineering colleges -An empirical study
 
Application of Statistical Quality Tools in the Root Cause Analysis of Indust...
Application of Statistical Quality Tools in the Root Cause Analysis of Indust...Application of Statistical Quality Tools in the Root Cause Analysis of Indust...
Application of Statistical Quality Tools in the Root Cause Analysis of Indust...
 
Cs
CsCs
Cs
 
Relationship between Technical Skills Acquired and Skills Required on Electri...
Relationship between Technical Skills Acquired and Skills Required on Electri...Relationship between Technical Skills Acquired and Skills Required on Electri...
Relationship between Technical Skills Acquired and Skills Required on Electri...
 
13396 51859-1-pb
13396 51859-1-pb13396 51859-1-pb
13396 51859-1-pb
 
Master Plan for Automative industry in Thailand
Master Plan for Automative industry in ThailandMaster Plan for Automative industry in Thailand
Master Plan for Automative industry in Thailand
 
Why do students need curriculum 4.0 and faculty 4.0
Why do students need curriculum 4.0 and faculty 4.0Why do students need curriculum 4.0 and faculty 4.0
Why do students need curriculum 4.0 and faculty 4.0
 
Dr.k.sivasakthivel
Dr.k.sivasakthivelDr.k.sivasakthivel
Dr.k.sivasakthivel
 
The business training in the automotive industry in greecethe example of opel
The business training in the automotive industry in greecethe example of opelThe business training in the automotive industry in greecethe example of opel
The business training in the automotive industry in greecethe example of opel
 

Viewers also liked (19)

Aijrfans14 223
Aijrfans14 223Aijrfans14 223
Aijrfans14 223
 
Ijetcas14 313
Ijetcas14 313Ijetcas14 313
Ijetcas14 313
 
Ijetcas14 448
Ijetcas14 448Ijetcas14 448
Ijetcas14 448
 
Ijetcas14 444
Ijetcas14 444Ijetcas14 444
Ijetcas14 444
 
Ijetcas14 523
Ijetcas14 523Ijetcas14 523
Ijetcas14 523
 
Aijrfans14 294
Aijrfans14 294Aijrfans14 294
Aijrfans14 294
 
Ijetcas14 399
Ijetcas14 399Ijetcas14 399
Ijetcas14 399
 
Aijrfans14 271
Aijrfans14 271Aijrfans14 271
Aijrfans14 271
 
Ijetcas14 345
Ijetcas14 345Ijetcas14 345
Ijetcas14 345
 
Ijetcas14 335
Ijetcas14 335Ijetcas14 335
Ijetcas14 335
 
Ijebea14 207
Ijebea14 207Ijebea14 207
Ijebea14 207
 
Ijetcas14 323
Ijetcas14 323Ijetcas14 323
Ijetcas14 323
 
Ijetcas14 394
Ijetcas14 394Ijetcas14 394
Ijetcas14 394
 
Ijetcas14 409
Ijetcas14 409Ijetcas14 409
Ijetcas14 409
 
Ijetcas14 438
Ijetcas14 438Ijetcas14 438
Ijetcas14 438
 
Ijetcas14 361
Ijetcas14 361Ijetcas14 361
Ijetcas14 361
 
Ijetcas14 446
Ijetcas14 446Ijetcas14 446
Ijetcas14 446
 
Ijetcas14 393
Ijetcas14 393Ijetcas14 393
Ijetcas14 393
 
Ijetcas14 378
Ijetcas14 378Ijetcas14 378
Ijetcas14 378
 

Similar to Ijebea14 211

Industry Based Vocational Higher Education Management Model (IVHEMM) On Engin...
Industry Based Vocational Higher Education Management Model (IVHEMM) On Engin...Industry Based Vocational Higher Education Management Model (IVHEMM) On Engin...
Industry Based Vocational Higher Education Management Model (IVHEMM) On Engin...
AM Publications
 
Industrial Installation Skills Acquired and Job Performance of Graduates of E...
Industrial Installation Skills Acquired and Job Performance of Graduates of E...Industrial Installation Skills Acquired and Job Performance of Graduates of E...
Industrial Installation Skills Acquired and Job Performance of Graduates of E...
theijes
 
Industrial training Report
Industrial training ReportIndustrial training Report
Industrial training Report
David James
 
Making a Market for Competency-Based Credentials: Effective Employer Engagement
Making a Market for Competency-Based Credentials: Effective Employer EngagementMaking a Market for Competency-Based Credentials: Effective Employer Engagement
Making a Market for Competency-Based Credentials: Effective Employer Engagement
mmabbitt
 

Similar to Ijebea14 211 (20)

IRJET- TVET- Industry Linkage and Collaboration in Ethiopia: A Necessity ...
IRJET-  	  TVET- Industry Linkage and Collaboration in Ethiopia: A Necessity ...IRJET-  	  TVET- Industry Linkage and Collaboration in Ethiopia: A Necessity ...
IRJET- TVET- Industry Linkage and Collaboration in Ethiopia: A Necessity ...
 
Industry Based Vocational Higher Education Management Model (IVHEMM) On Engin...
Industry Based Vocational Higher Education Management Model (IVHEMM) On Engin...Industry Based Vocational Higher Education Management Model (IVHEMM) On Engin...
Industry Based Vocational Higher Education Management Model (IVHEMM) On Engin...
 
Mantra for lace preprint
Mantra for lace preprintMantra for lace preprint
Mantra for lace preprint
 
Manufacturing Jobs: Opportunities and Challenges in 2024 | Enterprise Wired
Manufacturing Jobs: Opportunities and Challenges in 2024 | Enterprise WiredManufacturing Jobs: Opportunities and Challenges in 2024 | Enterprise Wired
Manufacturing Jobs: Opportunities and Challenges in 2024 | Enterprise Wired
 
Industrial Installation Skills Acquired and Job Performance of Graduates of E...
Industrial Installation Skills Acquired and Job Performance of Graduates of E...Industrial Installation Skills Acquired and Job Performance of Graduates of E...
Industrial Installation Skills Acquired and Job Performance of Graduates of E...
 
Entrepreneurial Mindset for Engineering Undergraduates
Entrepreneurial Mindset for Engineering UndergraduatesEntrepreneurial Mindset for Engineering Undergraduates
Entrepreneurial Mindset for Engineering Undergraduates
 
Manufacturing Innovation & the Power of Partnerships
Manufacturing Innovation & the Power of Partnerships Manufacturing Innovation & the Power of Partnerships
Manufacturing Innovation & the Power of Partnerships
 
Integrating human relation skills into the curriculum of industrial technolog...
Integrating human relation skills into the curriculum of industrial technolog...Integrating human relation skills into the curriculum of industrial technolog...
Integrating human relation skills into the curriculum of industrial technolog...
 
National Industry 4.0 Policy Framework
National Industry 4.0 Policy FrameworkNational Industry 4.0 Policy Framework
National Industry 4.0 Policy Framework
 
Aroso Emmanuel A. - IT Technical Report.pdf
Aroso Emmanuel A. - IT Technical Report.pdfAroso Emmanuel A. - IT Technical Report.pdf
Aroso Emmanuel A. - IT Technical Report.pdf
 
Industry- Academia Collaboration through Cloud Computing: A Pathway for Susta...
Industry- Academia Collaboration through Cloud Computing: A Pathway for Susta...Industry- Academia Collaboration through Cloud Computing: A Pathway for Susta...
Industry- Academia Collaboration through Cloud Computing: A Pathway for Susta...
 
Industry 4.0 trg 2014
Industry 4.0 trg 2014Industry 4.0 trg 2014
Industry 4.0 trg 2014
 
Industry 4.0 trg 2014
Industry 4.0 trg 2014Industry 4.0 trg 2014
Industry 4.0 trg 2014
 
III C
III C III C
III C
 
Industry academia interface
Industry academia interfaceIndustry academia interface
Industry academia interface
 
Industrial training Report
Industrial training ReportIndustrial training Report
Industrial training Report
 
Making a Market for Competency-Based Credentials: Effective Employer Engagement
Making a Market for Competency-Based Credentials: Effective Employer EngagementMaking a Market for Competency-Based Credentials: Effective Employer Engagement
Making a Market for Competency-Based Credentials: Effective Employer Engagement
 
Upskilling study - WMF report 2019
Upskilling study - WMF report 2019Upskilling study - WMF report 2019
Upskilling study - WMF report 2019
 
The Talent Gap Crisis - Is Manufacturing Sexy Enough for the Next Generations?
The Talent Gap Crisis - Is Manufacturing Sexy Enough for the Next Generations? The Talent Gap Crisis - Is Manufacturing Sexy Enough for the Next Generations?
The Talent Gap Crisis - Is Manufacturing Sexy Enough for the Next Generations?
 
ENIT introduction
ENIT introductionENIT introduction
ENIT introduction
 

More from Iasir Journals

More from Iasir Journals (20)

ijetcas14 650
ijetcas14 650ijetcas14 650
ijetcas14 650
 
Ijetcas14 648
Ijetcas14 648Ijetcas14 648
Ijetcas14 648
 
Ijetcas14 647
Ijetcas14 647Ijetcas14 647
Ijetcas14 647
 
Ijetcas14 643
Ijetcas14 643Ijetcas14 643
Ijetcas14 643
 
Ijetcas14 641
Ijetcas14 641Ijetcas14 641
Ijetcas14 641
 
Ijetcas14 639
Ijetcas14 639Ijetcas14 639
Ijetcas14 639
 
Ijetcas14 632
Ijetcas14 632Ijetcas14 632
Ijetcas14 632
 
Ijetcas14 624
Ijetcas14 624Ijetcas14 624
Ijetcas14 624
 
Ijetcas14 619
Ijetcas14 619Ijetcas14 619
Ijetcas14 619
 
Ijetcas14 615
Ijetcas14 615Ijetcas14 615
Ijetcas14 615
 
Ijetcas14 608
Ijetcas14 608Ijetcas14 608
Ijetcas14 608
 
Ijetcas14 605
Ijetcas14 605Ijetcas14 605
Ijetcas14 605
 
Ijetcas14 604
Ijetcas14 604Ijetcas14 604
Ijetcas14 604
 
Ijetcas14 598
Ijetcas14 598Ijetcas14 598
Ijetcas14 598
 
Ijetcas14 594
Ijetcas14 594Ijetcas14 594
Ijetcas14 594
 
Ijetcas14 593
Ijetcas14 593Ijetcas14 593
Ijetcas14 593
 
Ijetcas14 591
Ijetcas14 591Ijetcas14 591
Ijetcas14 591
 
Ijetcas14 589
Ijetcas14 589Ijetcas14 589
Ijetcas14 589
 
Ijetcas14 585
Ijetcas14 585Ijetcas14 585
Ijetcas14 585
 
Ijetcas14 584
Ijetcas14 584Ijetcas14 584
Ijetcas14 584
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Recently uploaded (20)

Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 

Ijebea14 211

  • 1. International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Engineering, Business and Enterprise Applications (IJEBEA) www.iasir.net IJEBEA 14-211; © 2014, IJEBEA All Rights Reserved Page 13 ISSN (Print): 2279-0020 ISSN (Online): 2279-0039 Rediscovering, Redefining and Rebuilding Manufacturing in the Education Sector S.K.Sumana , R.M.Belokarb , Harish Kumar Bangac , Pratik Belokard a Electrical Engineering Department b,c Production Engineering Department d Chemical Engineering Department a,b,c PEC U&T Chanidgarh, d UICET Chandigarh a,b,c,d India Abstract: Manufacturing industries worldwide have undergone dramatic changes in recent years and now demand more from graduating manufacturing engineers. The effects of globalization have forever changed the parameters for success in manufacturing. Our educational institutions must respond to these changes with innovation. Since most of the global economic crisis is developed in manufacturing organizations such as in Europe, Japan. This transition is made even more marked with the economic downturn taking place across the world. There is a strong movement of cost based manufacturing to offshore and low wage economies. The remaining onshore manufacturing activities now focus on innovative new processes and exceptional customer service. The technology and processes required for onshore manufacturing can be complex and challenges the existing skills of engineers and managers to continuously operate and change such systems. Educational bodies struggle to keep up to date. The paper provides a number of suggestions for strategic change to research and education in manufacturing in the future. Index Terms: Manufacturing, Strategy, Education, Pedagogy, Curricula I. Introduction anufacturing education is in crisis. The evidence is striking and undeniable: Despite a consistently high United States unemployment rate for several years ranging between 8% and 10% from February 2009 through March 2021 as many as 600,000 manufacturing jobs have gone unfilled because of a shortage of skilled workers. The roots of this crisis started with a serious shortage of workers educated in Science, Technology, Engineering and Mathematics (STEM) fields, according to numerous reports. [1].A 2011 report authored by Deloitte and the Manufacturing Institute, “Boiling Point The Skills Gap in U.S. Manufacturing”[2-3], notes that the biggest areas of workforce shortage “are those that impact operations the most and require the most training.From technicians to engineers, the talent crunch in these critical areas is taking its toll on manufacturers’ ability to meet current operation objectives and achieve longer-term goals.” The SME Task Force on the Role of SME in Higher Education and members of SME’s Manufacturing Education & Research Community [3-8] has examined the state of manufacturing education. This research included a series of events discussing manufacturing education that engaged hundreds of stakeholders from industry, government and academia. II. Science, Technology, Engineering and Mathematics (Stem) Foundation Manufacturing must be portrayed as a vibrant industry that offers opportunities that are ample, creative, high- tech and rewarding. Many students tend to be altruistic in their choice of careers, so educational programs should make it clear to students that manufacturing offers the chance to improve the world.[9] For example, students should be educated about the role manufacturing plays in the green revolution that saves energy, increases health, saves lives and creates a new economy. It is important to stress to students that there are multiple pathways, requiring different education levels, to a career in manufacturing. Figure 1 shows several options. However, a significant portion of the available manufacturing jobs require educational equivalency up to an associate degree. In order to develop technicians, there must be more support for technical education, especially in high schools. Students must have options for manufacturing paths that are hands-on and technical or academic in nature or, ideally, both. III. Manufacturing and Its Program’s Today, there is little agreement on the answer to that question. But if the crisis in manufacturing education is to be resolved, a better-defined manufacturing curriculum is needed to guide manufacturing education programs, with an eye toward accreditation. M
  • 2. S.K.Suman et al., International Journal of Engineering, Business and Enterprise Applications, 8(1), March-May., 2014, pp 13-17 IJEBEA 14-211; © 2014, IJEBEA All Rights Reserved Page 14 Fig.1 Institutional Pipeline for Manufacturing Knowledge Figure 2 gives the comparison between 2005 and 2025 of different countries in manufacturing education Fig.2.World’s Talent Pools of Younger People This will enhance the understanding and value of certifications and degrees that individuals receive from accredited programs. The Department of Labor has taken a step toward defining the manufacturing skills workers need to be successful in 21st century manufacturing with its Advanced Manufacturing Competency Model [Figure 3]. Fig.3. Advanced Manufacturing Competency Model The model was developed in 2006 in collaboration with the Employment and Training Administration and updated in 2010 with leading industry organizations. The National Association of Manufacturers, the National
  • 3. S.K.Suman et al., International Journal of Engineering, Business and Enterprise Applications, 8(1), March-May., 2014, pp 13-17 IJEBEA 14-211; © 2014, IJEBEA All Rights Reserved Page 15 Council for Advanced Manufacturing and the Society for Manufacturing Engineers took the lead in collecting feedback from their members to ensure that the updated model includes the most current processes and practices [9].manufacturing, such as mathematics. The middle levels define the technical competencies required by the manufacturing industry, such as production and quality assurance. The top levels define the competencies required by specific occupations within advanced manufacturing. This model serves as a framework for the National Association of Manufacturers-endorsed Manufacturing Skills Certification System [Figure 4], which is a system of stackable credentials from certification organizations applicable to all sectors in the manufacturing industry. These nationally portable, industry-recognized credentials validate the skills and competencies identified in the Advanced Manufacturing Competency Model [10]. But there has been a missing link between the skills defined in the Advanced Manufacturing Competency Model and the Manufacturing Skills Certification System. A model was needed to define the academic content needed for manufacturing education programs, whether they confer degrees or technical credentials. SME’s Center for Education developed and adopted a model, which is included in the “Curricula 2015,” [11-16] to provide a solution to this problem. Fig.4 Endorsed Manufacturing Skills Certification System The Four Pillars of Manufacturing Knowledge is meant to be a standard for recommending curriculum topics and establishing accreditation criteria for manufacturing programs of all kinds. They also set important standards for accreditation of educational program [17]. Certifications and degrees that come from accredited programs are necessary for industry to verify and trust the level of skills and knowledge that certain individuals bring to the workforce. IV. Consistency and Quality of Manufacturing Manufacturing curricula vary greatly from school to school and program to program. While some flexibility is necessary, everyone educated in manufacturing should have a basic core of knowledge. Figure 5 shows the percentage of executive reporting high difficulty attracting and retaining qualified workers in different countries in between 2005 and 2025 Fig. 5 Comparison of Country wise Qualified Workers (Source: Deloitte search based on United National Department of Social Economic affairs) SME recommends that educators, industry, professional organizations and government work together to:
  • 4. S.K.Suman et al., International Journal of Engineering, Business and Enterprise Applications, 8(1), March-May., 2014, pp 13-17 IJEBEA 14-211; © 2014, IJEBEA All Rights Reserved Page 16 • Use the Four Pillars of Manufacturing Knowledge and the Advanced Manufacturing Competency models as a foundation to build manufacturing curricula [18]. • Keep curricula current by monitoring trends in education and industry needs. • Use curriculum and instructional resources shared through the National Center for Manufacturing Education [19] and industry professionals V. Faculty Development In World-Class Manufacturing Education To develop faculty that can deliver an excellent manufacturing education, educators must: • Keep up to date on using new technologies. • Work with industry to understand current technical needs and update curriculum. • Collaborate with industry, professional organizations and government on projects such as design to build competitions and mentorships for both students as well as faculty. • Research, publish and participate in manufacturing journals and conferences. • Share best teaching practices. This includes in-service days and conferences, among other examples [20-25]. VI. Manufacturing Education Programs Manufacturing education is an essential priority and should be funded accordingly. All sources of possible funding should be sought to support manufacturing education, and investments need to be strategic and effective, with measurable results. Figure 6 shows the generation gap between young, medium and old in different countries during manufacturing Fig.6. Generation gap by Age in 2005(Source: Deloitte search based on United National Department of Social Economic affairs) SME recommends that investments be guided by the Four Pillars of Manufacturing Knowledge, the Advanced Manufacturing Competency and the Skills Certification System models. Many educational programs and initiatives that demonstrate the excitement and rewards of manufacturing are now under way for young students. Among the efforts: National Engineers Week activities,[26] “Dream it. Do It.” campaigns, [27] SkillsUSA, [28] FIRST competitions [29]. VII. Conclusion It includes a discussion on the role of manufacturing in the global economy, the factors affecting the scope of manufacturing, and the current efforts to revitalize manufacturing in various parts of the world. It then presents an overview of the curricular models proposed to address the needs of the manufacturing industry. As an extension of the analysis, a recommendation is made on the key aspects of any manufacturing curriculum with an emphasis on innovation and entrepreneurship. Finally, a set of strategies are proposed for the enhancement of manufacturing education. They include the creation of a flexible degree program that emphasizes learning over teaching, development of a network of academic institutions around the globe to deliver the program, use of communication technologies to provide access to the program to anyone at anytime and anywhere in the world, and an outreach to future manufacturing professionals. VIII. References [1] United States Department of Labor, Bureau of Labor Statistics, Unemployment rate data table [2] “A Manufacturing Renaissance: Four Goals for Economic Growth.” Washington, DC: National Association of Manufacturers, 2011 [3] “Boiling Point The Skills Gap in U.S. Manufacturing.” Deloitte and the Manufacturing Institute, 2011
  • 5. S.K.Suman et al., International Journal of Engineering, Business and Enterprise Applications, 8(1), March-May., 2014, pp 13-17 IJEBEA 14-211; © 2014, IJEBEA All Rights Reserved Page 17 [4] “Made in North America.” A Deloitte Research Manufacturing Study. Deloitte Research, National Association of Manufacturers, The Manufacturing Institute and Canadian Manufacturers & Exporters, 2008 [5] James P. Andrew, Emily Stover DeRocco and Andrew Taylor. “The Innovation Imperative in Manufacturing: How the United States Can Restore Its Edge.” The Boston Consulting Group, National Association of Manufacturers and The Manufacturing Institute, March 2009 [6] “The Facts about Modern Manufacturing,” 8th edition. Washington, DC: The Manufacturing Institute, 2009 [7] Robert D. Atkinson and Merrilea Mayo. “Refueling the U.S. Innovation Economy: Fresh Approaches to Science, Technology, Engineering and Mathematics (STEM) Education.” Washington, DC: The Information Technology and Innovation Foundation, December 2010 [8] “Prepare and Inspire: K-12 Education in Science, Technology, Engineering and Math (STEM) for America’s Future.” Report to the President. Washington, DC: Executive Office of the President, President’s Council of Advisors on Science and Technology, 2010 [9] “Help Wanted: Projections of Jobs and Education Requirements through 2018.” Washington, DC: Georgetown University Center on Education and the Workforce, 2010 [10] “Pathways to Prosperity: Meeting the Challenge of Preparing Young Americans for the 21st Century.” Pathways to Prosperity Project. Cambridge, MA: Harvard Graduate School of Education, February 2011 [11] “Rising Above the Gathering Storm, Revisited: Rapidly Approaching Category 5.” National Academy of Sciences, National Academy of Engineering and Institute of Medicine. Washington, DC: The National Academies Press, 2010 [12] “America’s Changing Workforce: Recession Turns a Graying Office Grayer.” A Social & Demographic Trends Report. Pew Research Center, September 2009 [13] Facts about Manufacturing. Washington, DC: National Association of Manufacturers [14] Hugh Jack et al. “Curricula 2015: A Four Year Strategic Plan for Manufacturing Education,” June 2011 [15] “Bridging the Skills Gap: How the Skills Shortage Threatens Growth and Competitiveness… And what to do About It.” Alexandria, VA: Public Policy Council, American Society for Training & Development, Fall 2006, [16] “Changing the Conversation: Messages for Improving Public Understanding of Engineering.” National Academy of Engineering. Washington, DC: The National Academies Press, 2008 [17] “Criteria for Accrediting Engineering Programs, 2012–2013.” Baltimore, MD: ABET, October 2011 [18] “Advanced Manufacturing Competency Model.” Washington, DC: United States Department of Labor, Employment and Training Administration [19] National Center for Manufacturing Education (NCME), www.ncmeresource.org [20] “Vision 2030 Reveals Workforce Development Needs.” ASME Today, May 2011 [21] Center for Pre-Collegiate Engineering Education, University of St. Thomas [22] Engineering and technology minor, University of Dayton [23] Aditya Johri and Barbara M. Olds. “Situated Engineering Learning: Bridging Engineering Education Research and the Learning Sciences” Journal of Engineering Education, 100 (1), January 2011, pp. 151-185 [24] “Going the Distance: Online Education in the United States, 2011.” Newburyport, MA: Babson Survey Research Group, Babson College, November 2011 [25] Discussion with Paul Nutter, Ohio Northern University, June 4, 2011, referring to Tooling University [26] National Engineers Week, www.Eweek.org [27] Dream It! Do It! The Manufacturing Institute, www.Dreamitdoit.com [28] Skills USA, www.SkillsUSA.org [29] USFIRST, www.USFIRST.org