2.
Quadratics come in this form:
ax 2 + bx + c = 0
Sometimes it is factorable and finding
the value(s) of x is easy. What do you do
when it isn't factorable?
Can you still solve for x?
3.
2 + bx + c = 0
ax
2 + bx + c = 0
ax
a a a a
2
x + bx +c=0
a a
4.
x 2
+ bx +c=0
a a
x 2
+ bx =0-c
a a
2 2= 2
x + bx +
a ( )
b
2a
-c +
a ( )
b
2a
5.
2 2
( x+ b
2a
) = -c +
a ( )
b
2a
2 2
( x+ b
2a
) = -c +
a ( )
b
2a
2
( )
x+ b =± -c + b
2a a 2a
6.
2
( )
x+ b =± -c + b
2a a 2a
2
x =± -c +
a
( )
b
2a
- b
2a
7.
2
x= ± -c +
a
( )b
2a
- b
2a
2
x= -
( )
b ± -c + b
2a a 2a
2
x= -
( )
b ± 2a -c + b
2a 2a a 2a
8.
2
x= -
( )
b ± 2a -c + b
2a 2a a 2a
2
( )
x= - b ± 2a -c + b
a 2a
2a
9.
2
( )
x= - b ± 2a -c + b
a 2a
2a
2 2 2
x= - b ± - c (2a) +
a ( )
b
2a
(2a)
2a
10.
2 2 2
x= - b ± - c (2a) +
a ( )
b
2a
(2a)
2a
2 2 2
x= - b ± - c 4a +
a
( )
b
4a
2
4a
2a
11.
2 2 2
x= - b ± - c 4a +
a ( )
b
4a
2
4a
2a
2 2 2
x= - b ± - c 4a +
a ( )
b
4a
2
4a
2a
12.
2 2 2
x= - b ± - c 4a +
a ( )
b
4a
2
4a
2a
2
x= - b ± - c 4a + b
2a
Views
Actions
Embeds 0
Report content