SlideShare a Scribd company logo
1 of 365
Download to read offline
Nguyen Duy Tung
             567 Nice And Hard Inequalities
   ======================================
==============================================




                     I
This product is created for educational purpose.

 Please don't use use it for any commecial purpose

unless you got the right of the author. Please contact

        Email:nguyenduytung94@gmail.com




                          P
IF
—A if a, b, c —re positive re—l num˜ersD then

                        a b  c                 a2 + 1         b2 + 1             c2 + 1
                          + + ≥                       +              +                  .
                        b  c a                 b2 + 1         c2 + 1             a2 + 1
˜Avet a, b, c, d ˜e positive re—l num˜ersF€rove th—t

                     a2 − bd    b2 − ca    c2 − db   d2 − ac
                             +          +          +           ≥ 0.
                   b + 2c + d c + 2d + a d + 2a + b a + 2b + c
SolutionX
—Afy g—u™hyEƒ™hw—rz9s inequ—lityD ‡e h—veX

                        a2 + b2       (a2 + 1) (b2 + 1) ≥ a2 + b2 (ab + 1)

                          = ab a2 + b2 + a2 + b2 ≥ ab a2 + b2 + 2
                                              a         b        a2 + b2
                                  ⇒             +         =
                                              b         a          ab
                              a2 + b2 + 2                       a2 + 1                 b2 + 1
                  ≥                                 =                  +
                            (a2 + 1) (b2 + 1)                   b2 + 1                 a2 + 1
fy ghe˜yshev9s inequ—lityD ‡e h—ve


         a2          a2                a2                      a2                     b2         a2 + 1
            =             +                   ≥                     +                        =          .
         b2        b2 + 1         b2 (b2 + 1)                b2 + 1              b2 (b2 + 1)     b2 + 1
„herefore
                                      a   2                    a             b       a2
                          1+                  =1+2               +               +
                                      b                        b             a       b2
                                          a2 + 1              b2 + 1                 a2 + 1
                    ≥1+2                         +                           +
                                          b2 + 1              a2 + 1                 b2 + 1
                                                                     2
                                                            a2 + 1
                                      =       1+                         .
                                                            b2 + 1
„herefore
                        a b  c                 a2 + 1         b2 + 1             c2 + 1
                          + + ≥                       +              +
                        b  c a                 b2 + 1         c2 + 1             a2 + 1
—s requireF

˜Axoti™e th—t

                        2(a2 − bd)           2a2 + b2 + d2 + 2c(b + d)
                                   +b+d=
                        b + 2c + d                   b + 2c + d
                                    2          2
                             (a − b) + (a − d) + 2(a + c)(b + d)
                          =                                      (1)
                                          b + 2c + d
end simil—rlyD

              2(c2 − db)           (c − d)2 + (c − b)2 + 2(a + c)(b + d)
                         +b+d=                                           (2)
              d + 2a + b                         d + 2a + b
…sing g—u™hyEƒ™hw—rz9s inequ—lityDwe get

                   (a − d)2   (c − d)2        [(a − b)2 + (c − d)2 ]
                            +           ≥                             (3)
                  b + 2c + d d + 2a + b   (b + 2c + d) + (d + 2a + b)

                                                        Q
(a − d)2   (c − b)2       [(a − d)2 + (c − b)2 ]2
                            +           ≥                             (4)
                  b + 2c + d d + 2a + b   (b + 2c + d) + (d + 2a + b)
              2(a + c)(b + d) 2(a + c)(b + d)         8(a + c)(b + d)
                             +                ≥                             (5)
                b + 2c + d      d + 2a + b      (b + 2c + d) + (d + 2a + b)
prom @IAD@PAD@QAD@RA —nd @SAD we get

        a2 − bd    c2 − db         (a + c − b − d)2 + 4(a + c)(b + d)
 2(             +           )+b+d≥                                    = a + b + c + d.
      b + 2c + d d + 2a + b                   a+b+c+d
or
                          a2 − bd     c2 − db   a+c−b−d
                                  +           ≥
                        b + 2c + d d + 2a + b      2
sn the s—me m—nnerDwe ™—n —lso show th—t
                             b2 − ca   d2 − ac     b+d−a−c
                                     +           ≥
                           c + 2d + a a + 2b + c      2
—nd ˜y —dding these two inequ—litiesDwe get the desired resultF
inqu—lity holds if —nd only if a = c —nd b = dF

   PD
vet a, b, c ˜e positive re—l num˜ers su™h th—t

                                            a+b+c=1

€rove th—t the following inequ—lity holds
                                 ab       bc       ca     3
                                      +        +        ≤
                               1 − c2   1 − a2   1 − b2   8
SolutionX prom the given ™ondition „he inequ—lity is equiv—lent to
                                               4ab              3
                                                              ≤
                                    a2 + b2 + 2(ab + bc + ca)   2
˜ut from g—uhy ƒhw—rz inequ—lity
                                                   4ab
                                        a2 + b2 + 2(ab + bc + ca)

                                        ab                ab
                       ≤                          + 2
                               a2   + ab + bc + ca b + ab + bc + ca
                                      ab                       ab
                           =                   +
                                (a + b)(a + c)           (b + c)(a + b)
                                                 a(b + c)2
                                    =
                                           (a + b)(b + c)(c + a)
„hus ‡e need prove th—t

                           3(a + b)(b + c)(c + a) ≥ 2          a(b + c)2

whi™h redu™es to the o˜vious inequ—lity

                                            ab(a + b) ≥ 6abc

„he Solution is ™ompletedFwith equ—lity if —nd only if
                                                        1
                                           a=b=c=
                                                        3

                                                  R
yr ‡e ™—n use the f—™t th—t

                                  4ab                                               4ab
                                                 ≤
                       a2 + b2 + 2(ab + bc + ca)                         (2ab + 2ac) + (2ab + 2bc)
                                                  ab                         ab
                                      ≤                  +
                                               2a(b + c)                  2b(a + c)
                                               1             b   a
                                           =                   +
                                               2            b+c a+c
                                           1              b   c                      3
                                       =                    +                   =
                                           2             b+c b+c                     2
QD vet a, b, c ˜e the positive re—l num˜ersF €rove th—t

                  ab2 + bc2 + ca2        4. 3 (a2 + ab + bc)(b2 + bc + ca)(c2 + ca + ab)
       1+                              ≥
             (ab + bc + ca)(a + b + c)                     (a + b + c)2

SolutionX wultiplying ˜oth sides of the —˜ove inequ—lity with (a + b + c)2 it9s equiv—lent to
prove th—t
                                                        (a + b + c)(ab2 + bc2 + ca2 )
                            (a + b + c)2 +
                                                                ab + bc + ca
                         ≥ 4. 3 (a2 + ab + bc)(b2 + bc + ca)(c2 + ca + ab)

‡e h—ve
                         (a + b + c)(ab2 + bc2 + ca2 )                          (a2 + ab + bc)(c + a)(c + b)
        (a + b + c)2 +                                 =
                                 ab + bc + ca                                          ab + bc + ca
fy using ewEqw inequ—lity ‡e get

    (a2 + ab + bc)(c + a)(c + b)                   3
                                                       (a2 + ab + bc)(b2 + bc + ca)(c2 + ca + ab)[(a + b)(b + c)(c + a)]2
                                 ≥ 3.
           ab + bc + ca                                                         ab + bc + ca
ƒin™e it9s suffi™es to show th—t
                           √                                  √
                               3. 3 (a + b)(b + c)(c + a) ≥ 2. ab + bc + ca

whi™h is ™le—rly true ˜y ewEqw inequ—lity —g—inF „he Solution is ™ompletedF iqu—lity
holds for a = b = c

RD
vet a0 , a1 , . . . , an ˜e positive re—l num˜ers su™h th—t ak+1 − ak ≥ 1 for —ll k = 0, 1, . . . , n − 1.
€rove th—t
             1            1                               1                     1              1               1
       1+         1+                  ··· 1 +                        ≤    1+             1+         ··· 1 +
             a0        a1 − a0                         an − a0                  a0             a1             an

SolutionX ‡e will prove it ˜y indu™tionF
por n = 1 ‡e need to ™he™k th—t
                                 1                1                        1              1
                          1+            1+                       ≤   1+              1+
                                 a0            a1 − a0                     a0             a1

whi™h is equiv—lent to a0 (a1 − a0 − 1) ≥ 0, whi™h is true ˜y given ™onditionF
vet
             1            1                               1                     1              1              1
       1+         1+                  ··· 1 +                        ≤    1+             1+         ··· 1 +
             a0        a1 − a0                         ak − a0                  a0             a1             ak

                                                              S
it rem—ins to prove th—tX
                               1                   1                             1
                         1+               1+                    ··· 1 +                           ≤
                               a0               a1 − a0                      ak+1 − a0

                                               1                1                     1
                            ≤        1+                  1+              ··· 1 +
                                               a0               a1                  ak+1
fy our hypothesis
                                          1               1                         1
                                1+                   1+              ··· 1 +                  ≥
                                          a0              a1                      ak+1
                            1                       1              1                              1
                ≥   1+                    1+              1+                    ··· 1 +
                          ak+1                      a0          a1 − a0                        ak − a0
id estD it rem—ins to prove th—tX
                          1                    1                 1                              1
                  1+                 1+                  1+                 ··· 1 +                           ≥
                        ak+1                   a0             a1 − a0                        ak − a0

                                     1                  1                             1
                         ≥1+                  1+                        ··· 1 +
                                     a0              a1 − a0                      ak+1 − a0
fut
                          1                    1                 1                              1
                  1+                 1+                  1+                 ··· 1 +                           ≥
                        ak+1                   a0             a1 − a0                        ak − a0
                                1                      1                            1
                        ≥1+               1+                        ··· 1 +                           ⇔
                                a0                  a1 − a0                     ak+1 − a0
                          1      1                               1                          1
                    ⇔        +                       1+                    ··· 1 +                        ≥
                        ak+1   ak+1 a0                        a1 − a0                    ak − a0
                              1                              1                            1
                    ≥                               1+                    ··· 1 +                         ⇔
                        (ak+1 − a0 )a0                    a1 − a0                      ak − a0
                                    1                            1                              1
                    ⇔1≥                                  1+                 ··· 1 +
                                ak+1 − a0                     a1 − a0                        ak − a0
fut ˜y our ™onditions ‡e o˜t—inX
                             1                          1                             1
                                               1+                       ··· 1 +                       ≤
                         ak+1 − a0                   a1 − a0                       ak − a0

                                      1              1                     1
                                ≤              1+         ··· 1 +                   = 1.
                                      k              1                    k−1
„husD the inequ—lity is provenF
SD
qiven a, b, c > 0F €rove th—t
                                                                    √
                                                                    3
                                               3    a2 + bc           abc
                                                            ≥ 9.
                                                    b2 + c2      (a + b + c)
Solution X „his ineq is equiv—lent toX

                                                   a2 + bc                               9
                                                                            ≥                     3
                                 3                        2
                                     abc(a2 + bc) (b2 + c2 )                    (a + b + c)

fy ewEqw ineq D ‡e h—ve

                                                         a2 + bc
                                                                                   =
                                          3                         2
                                               abc(a2 + bc) (b2 + c2 )


                                                                T
a2 + bc                     3(a2 + bc)
                       =                                          ≥
                            3
                                (a2 + bc)c(a2 + bc)b(b2 + c2 )a            a2 b
                                                                         sym

ƒimil—rlyD this ineq is true if ‡e prove th—tX

                           3(a2 + b2 + c2 + ab + bc + ca)        9
                                           2b
                                                          ≥             3
                                          a                 (a + b + c)
                                        sym


                                    a3 + b3 + c3 + 3abc ≥         a2 b
                                                            sym

‡hi™h is true ˜y ƒ™hur ineqF iqu—lity holds when a = b = c

TD
vet a, b, c ˜e nonneg—tive re—l num˜ers su™h th—t ab + bc + ca > 0F €rove th—t
                           1         1        1           2
                                +        +         ≥              .
                        2a2 + bc 2b2 + ca 2c2 + ab   ab + bc + ca
„he inequ—lity is equiv—lent to
                                           ab + bc + ca
                                                        ≥ 2, (1)
                                             2a2 + bc
or
                             a(b + c)           bc
                                      +               ≥ 2.(2)
                             2a2 + bc        bc + 2a2
…sing the g—u™hyEƒ™hw—rz inequ—lityD ‡e h—ve
                                                           2
                                      bc             ( bc)
                                            ≥                     = 1.(3)
                                   bc + 2a2         bc(bc + 2a2 )
„hereforeD it suffi™es to prove th—t
                                              a(b + c)
                                                       ≥ 1.(4)
                                              2a2 + bc
ƒin™e
                                        a(b + c)    a(b + c)
                                          2 + bc
                                                 ≥
                                        2a         2(a2 + bc)
it is enough to ™he™k th—t
                                              a(b + c)
                                                       ≥ 2, (5)
                                              a2 + bc
whi™h is — known resultF

‚em—rkX
                                  2ca + bc 2bc + ca     4c
                                    2 + bc
                                           + 2      ≥       .
                                  2a        2b + ca   a+b+c
UD
vet a, b, c ˜e non neg—tive re—l num˜ers su™h th—t ab + bc + ca > 0F €rove th—t
                     1       1       1         1              12
                         + 2     + 2     +             ≥              .
               2a2   + bc 2b + ca 2c + ab ab + bc + ca   (a + b + c)2

SolutionX IA ‡e ™—n prove this inequ—lity using the following —uxili—ry result
if 0 ≤ a ≤ min{a, b}D then
                               1         1              4
                                    +         ≥                    .
                            2a2 + bc 2b2 + ca   (a + b)(a + b + c)

                                                    U
in f—™tD this is used to repl—™ed for 4no two of whi™h —re zero4D so th—t the fr—™tions
                                  1         1        1         1
                                       ,        ,        ,
                               2a2 + bc 2b2 + ca 2c2 + ab ab + bc + ca
h—ve me—ningsF

fesidesD the i—ker —lso works for itX

                       1       1       1                          2(ab + bc + ca)
                           + 2     + 2      ≥
                 2a2   + bc 2b + ca 2c + ab                      a2 b2
                                                                     + abc(a + b + c)

fut our Solution for ˜oth of them is exp—nd

vet a, b, c ˜e non neg—tive re—l num˜ers su™h th—t ab + bc + ca > 0F €rove th—t
                  1         1        1         1              12
                       +        +        +             ≥              .
               2a2 + bc 2b2 + ca 2c2 + ab ab + bc + ca   (a + b + c)2

PA gonsider ˜y ewEqw inequ—lityD ‡e h—ve

                                       2 a2 + ab + b2 (a + b + c)

                               = (2b + a) 2a2 + bc + (2a + b) 2b2 + ca

                            ≥2      (2a + b)(2b + a) (2a2 + bc) (2b2 + ca).

end ˜y ewEqw inequ—lityD ‡e h—ve

                                           c2 (2a + b) c2 (2b + a)
                                                      +
                                            2a2 + bc    2b2 + ca

                                                  c4 (2a + b)(2b + a)
                                       ≥2
                                                 (2a2 + bc) (2b2 + ca)
                                              2c2 (2a + b)(2b + a)
                                       ≥
                                           (a2 + ab + b2 ) (a + b + c)
                                    4c2   6abc                     c
                               =        +
                                   a+b+c a+b+c                a2 + ab + b2
                                            2c2 a + bc2 + 2ab2 + b2 c
                                                    2a2 + bc
                                              c2 (2a + b) c2 (2b + a)
                                   =                     +
                                               2a2 + bc    2b2 + ca
                                     4c2   6abc                      c
                        ≥                +
                                    a+b+c a+b+c                 a2 + ab + b2
                           4 a2 + b2 + c2    6abc                        c
                       =                  +
                              a+b+c         a+b+c                   a2 + ab + b2
                        4 a2 + b2 + c2    6abc                    (a + b + c)2
                    ≥                  +
                           a+b+c         a+b+c                    c (a2 + ab + b2 )
                                       4 a2 + b2 + c2       6abc
                                   =                  +
                                           ab + c       ab + bc + ca
                                   2a2 b + 2ab2 + 2b2 c + 2bc2 + 2c2 a + 2ca2
                           ⇒
                                                   2a2 + bc


                                                       V
2c2 a + bc2 + 2ab2 + b2 c
                              =     (b + c) +
                                                             2a2 + bc
                                              4 a2 + b2 + c2       6abc
                          ≥       (b + c) +                  +
                                                 a+b+c         ab + bc + ca
                         8 a2 + b2 + c2 + ab + bc + ca   2    a2 b + ab2
                     =                                 −
                                   a+b+c                   ab + bc + ca
                                           1           1
                                 ⇒               +
                                        2a2 + bc ab + bc + ca
                                      4 a2 + b2 + c2 + ab + bc + ca
                                  ≥
                                       (a + b + c) ( (a2 b + ab2 ))
                                                       12
                                              ≥                .
                                                  (a + b + c)2
                              (a + b)(a + c)           a2 + bc     12(ab + bc + ca)
                <=>                          +                 −2≥
                                 2a2 + bc             2a2 + bc       (a + b + c)2
prom
                                       2a2 + 2bc      bc
                                          2 + bc
                                                 −3= 2      ≥1
                                       2a           2a + bc
‡e get
                                                 a2 + bc
                                                         −2≥0
                                                2a2 + bc
xowD ‡e will prove the stronger
                                      (a + b)(a + c)   12(ab + bc + ca)
                                           2 + bc
                                                     ≥
                                         2a              (a + b + c)2
prom ™—u™hyEs™h—rztD ‡e h—ve
    (a + b)(a + c)                                            1                3(a + b)(b + c)(c + a)
                   = (a+b)(b+c)(c+a)(                                   ≥
       2a2 + bc                                     (2a2   + bc)(b + c)   ab(a + b) + bc(b + c) + ca(c + a)
pin—llyD ‡e only need to prove th—t
                            (a + b)(b + c)(c + a)         4(ab + bc + ca)
                                                        ≥
                      ab(a + b) + bc(b + c) + ca(c + a)     (a + b + c)2

         (a + b + c)2   4[ab(a + b) + bc(b + c) + ca(c + a)             8abc
                      ≥                                     =4−
         ab + bc + ca          (a + b)(b + c)(c + a)            (a + b)(b + c)(c + a)
                               a2 + b2 + c2         8abc
                                            +                     ≥2
                               ab + bc + ca (a + b)(b + c)(c + a)
whi™h is old pro˜lemF yur Solution —re ™ompleted equ—lity o™™ur if —nd if only

                                         a = b = c, a = b, c = 0

or —ny ™y™li™ permutionF

VD vet a, b, c ˜e positive re—l num˜ers su™h th—t 16(a + b + c) ≥                1
                                                                                 a   +   1
                                                                                         b   + 1 F €rove th—t
                                                                                               c

                                                     1                     8
                                                                   3   ≤     .
                                                                           9
                                          a+b+         2(a + c)

SolutionX „his pro˜lem is r—ther e—syF …sing the ewEqw inequ—lityD ‡e h—veX
                                                    c+a            c+a    3 (a + b)(c + a)
             a+b+        2(c + a) = a + b +             +              ≥3                  .
                                                     2              2             2

                                                      W
ƒo th—tX
                                           1                                2
                                                         3   ≤                        .
                                                                     27(a + b)(c + a)
                               a+b+         2(c + a)
„husD it9s enough to ™he™k th—tX
                             1
                                      ≤ 4 ⇐⇒ 6(a + b)(b + c)(c + a) ≥ a + b + c,
                      3(a + b)(c + a)
whi™h is true sin™e

                         9(a + b)(b + c)(c + a) ≥ 8(a + b + c)(ab + bc + ca)

—nd
                                           16(ab + bc + ca)2                                   3
16abc(a + b + c) ≥ ab + bc + ca ⇒                            ≥ ab + bc + ca ⇐⇒ ab + bc + ca ≥    .
                                                   3                                          16
„he Solution is ™ompletedF iqu—lity holds if —nd only if a = b = c = 4 F
                                                                     1



WD vet x, y, z ˜e positive re—l num˜ers su™h th—t xyz = 1F €rove th—t

                  x3 + 1                y3 + 1               z3 + 1          √
                                   +                 +                    ≥ 2 xy + yz + zx.
                  x4 + y + z           y4 + z + x            z4 + x + y
SolutionX …sing the ewEqw inequ—lityD ‡e h—ve
       2   (x4 + y + z)(xy + yz + zx) = 2 [x4 + xyz(y + z)](xy + yz + zx)
                                                = 2 (x3 + y 2 z + yz 2 )(x2 y + x2 z + xyz)
                                                ≤ (x3 + y 2 z + yz 2 ) + (x2 y + x2 z + xyz)
                                                                                (x + y + z)(x3 + 1)
                                                = (x + y + z)(x2 + yz) =                            .
                                                                                         x
it follows th—t                                            √
                                       x3 + 1            2x xy + yz + zx
                                                    ≥                    .
                                       x4 + y + z           x+y+z
edding this —nd it —n—logous inequ—litiesD the result followsF

                                                                                   √
IHD vet a, b, c ˜e nonneg—tive re—l num˜ers s—tisfying a + b + c =                     5F €rove th—t
                                                               √
                               (a2 − b2 )(b2 − c2 )(c2 − a2 ) ≤ 5

SolutionX por this oneD ‡e ™—n —ssume ‡vyq th—t c ≥ b ≥ a so th—t ‡e h—ve

       P = (a2 − b2 )(b2 − c2 )(c2 − a2 ) = (c2 − b2 )(c2 − a2 )(b2 − a2 ) ≤ b2 c2 (c2 − b2 ).
                  √
elso note th—t        5 = a + b + c ≥ b + c sin™e a ≥ 0F xowD using the ewEqw inequ—lity ‡e
h—ve
                                       √                2        √             2
                                         5                    5
                       (c + b) ·           −1     ·c ·          + 1 b · (c − b)
                                        2                    2
                                                              √          5
                                                                5(b + c)    √
                                                   ≤ (c + b)               ≤ 5;
                                                                  5
                   √
ƒo th—t ‡e get P ≤ 5F end hen™e ‡e —re doneF iqu—lity holds if —nd only if (a, b, c) =
 √       √
  2 + 1; 2 − 1; 0 —nd —ll its ™y™li™ permut—tionsF 2
   5       5




                                                        IH
IID vet a, b, c > 0 —nd a + b + c = 3F €rove th—t

                           1           1           1         3
                           2 + b2
                                  +    2 + c2
                                              +     2 + a2
                                                           ≤
                        3+a         3+b         3+c          5
SolutionX ‡e h—veX
                             1             1             1        3
                                    +             +             ≤
                        3 + a2 + b2   3 + b2 + c2   3 + c2 + a2   5
                                3             3             3         9
                     <=>               +             +              ≤
                           3 + a2 + b2   3 + b2 + c2   3 + c2 + a 2   5
                                                 a2 + b2     6
                                                           ≥
                                               3 + a2 + b2   5
…sing g—u™hyEƒ™hw—rz9s inequ—lityX

                           a2 + b2
                                           (     3 + a2 + b2 ) ≥ (          a2 + b2 )2
                         3 + a2 + b2

„h—t me—ns ‡e h—ve to prove
                                                     6
                           (          a2 + b2 )2 ≥     (     (3 + a2 + b2 ))
                                                     5
                                                                        54 12
                     (a2 + b2 ) + 2            (a2 + b2 )(a2 + c2 ) ≥      +             a2
                                                                         5   5
                8     a2 + 10     ab ≥ 54 <=> 5(a + b + c)2 + 3                 a2 ≥ 54

it is true with a + b + c = 3F
IPD
qiven a, b, c > 0 su™h th—t ab + bc + ca = 1F €rove th—t
                            1            1            1
                                   +            +             ≥1
                       4a2 − bc + 1 4b2 − ca + 1 4c2 − ab + 1
SolutionX in f—™tD the sh—rper inequ—lity holds
                           1            1            1        3
                                  +            +             ≥ .
                      4a2 − bc + 1 4b2 − ca + 1 4c2 − ab + 1  2
„he inequ—lity is equiv—lent to
                           1             1             1        3
                                  +             +              ≥ .
                     a(4a + b + c) b(4b + c + a) c(4c + a + b)  2

…sing the g—u™hyEƒ™hw—rz inequ—lityD ‡e h—ve
                                                                            2
                           1                    4a + b + c              1              1
                                                               ≥                =            .
                     a(4a + b + c)                  a                   a           a2 b2 c2

„hereforeD it suffi™es to prove th—t
                         2        4a + b + c 4b + c + a 4c + a + b
                                ≥           +          +           .
                      3a2 b2 c2       a          b          c
ƒin™e
               4a + b + c         a+b+c                            (a + b + c)(ab + bc + ca)
                          =           3+                   =9+
                   a                 a                                        abc
                               a+b+c
                           =9+       ,
                                abc

                                                     II
this inequ—lity ™—n ˜e written —s
                                                                             2
                                    9a2 b2 c2 + abc(a + b + c) ≤               ,
                                                                             3
whi™h is true ˜e™—use
                                                                     3
                                                ab + bc + ca                  1
                                  a2 b2 c2 ≤                             =      ,
                                                     3                       27
—nd
                                             (ab + bc + ca)2  1
                               abc(a + b + c) ≤              = .
                                                    3         3
IQD qiven a, b, c ≥ 0 su™h th—t ab + bc + ca = 1F €rove th—t
                               1            1            1
                                      +            +             ≥1
                          4a2 − bc + 2 4b2 − ca + 2 4c2 − ab + 2
SolutionX xoti™e th—t the ™—se abc = 0 is trivi—l so let us ™onsider now th—t abc > 0F …sing
the ewEqw inequ—lityD ‡e h—ve

                                                                 [c(2a + b) + b(2a + c)]2
          4a2 − bc + 2(ab + bc + ca) = (2a + b)(2a + c) ≤
                                                                            4bc
                                               (ab + bc + ca)2  1
                                             =                 = .
                                                      bc        bc
it follows th—t
                                          1
                                                 ≥ bc.
                                    4a2 − bc + 2
edding this —nd its —n—logous inequ—litiesD ‡e get the desired resultF

IRD qiven a, b, c —re positive re—l num˜ersF €rove th—t
                           1 1 1   1   1   1       9
                          ( + + )(   +   +   )≥         .
                           a b c 1+a 1+b 1+c    1 + abc
SolutionX „he origin—l inequ—lity is equiv—lent to
                  abc + 1 abc + 1 abc + 1                     1   1   1
                         +       +                              +   +                    ≥9
                     a       b       c                       a+1 b+1 c+1
or
                                  1 + a2 c       1   1   1
                                                   +   +                            ≥9
                            cyc
                                     a          a+1 b+1 c+1

fy g—u™hy ƒ™hw—rz ineq —nd ewEqw ineqD

                          1 + a2 c           c(1 + a)2
                                   ≥                   ≥ 3 3 (1 + a)(1 + b)(1 + c)
                    cyc
                             a         cyc
                                              a(1 + c)

—nd
                           1   1   1                                     3
                             +   +    ≥
                          a+1 b+1 c+1                    3
                                                             (1 + a)(1 + b)(1 + c)
wultiplying these two inequ—litiesD the ™on™lusion followsF iqu—lity holds if —nd only if
a = b = c = 1F

ISF qiven a, b, c —re positive re—l num˜ersF €rove th—tX
                                                                 3
                  a(b + 1) +      b(c + 1) +      c(a + 1) ≤             (a + 1)(b + 1)(c + 1)
                                                                 2


                                                    IP
SolutionX g—seIFif a + b + c + ab + bc + ca ≤ 3abc + 3 <=> 4(ab + bc + ca + a + b + c) ≤
3(a + 1)(b + 1)(c + 1) …sing g—u™hyEƒ™h—wrz9s inequ—lity D‡e h—veX
                                                                                   9(a + 1)(b + 1)(c + 1)
( a(b + 1) +     b(c + 1) +        c(a + 1))2 ≤ 3(ab + bc + ca + a + b + c) ≤
                                                                                             4
„he inequ—lity is trueF g—sePF ifa + b + c + ab + bc + ca ≤ 3abc + 3.
                  9(a + 1)(b + 1)(c + 1)
            <=>                          ≥ 2(a + b + c + ab + bc + ca) + 3abc + 3
                            4
fy ewEqw9s inequ—lity X

  2       ab(b + 1)(c + 1) ≤          [ab(c + 1) + (b + 1)] = a + b + c + ab + bc + ca + 3abc + 3

                                                                                      9
      => ab + bc + ca + a + b + c + 2                 ab(b + 1)(c + 1) ≤
                                                                            4(a + 1)(b + 1)(c + 1)
                                                                  3
         => ( a(b + 1) +            b(c + 1) +   c(a + 1))2 ≤ [         (a + 1)(b + 1)(c + 1)]2
                                                                  2
=> Q.E.D
inqu—lity holds when a = b = c = 1.
ITD qiven a, b, c —re positive re—l num˜ersF €rove th—tX
                               1        1       1          10
                                    + 2     + 2     ≥
                            a2 + b2  b + c2  c + a2   (a + b + c)2
SolutionX essume c = min{a, b, c}F „hen
                        1        1        2
                             + 2     ≥         ⇐⇒ (ab − c2 )(a − b)2 ≥ 0
                   a2   +c 2  b +c 2   ab + c2
end ˜y g—u™hyEs™hw—rz
                                                          1         2
                        ((a2 + b2 ) + 8(ab + c2 ))             +               ≥ 25
                                                       a2 + b2   ab + c2
ren™e ‡e need only to proveX

                          5(a + b + c)2 ≥ 2((a2 + b2 ) + 8(ab + c2 )) ⇐⇒

                                   3(a − b)2 + c(10b + 10a − 11c) ≥ 0
iqu—lity for a = b, c = 0 or permut—tionsF

IUD vet a, b —nd c —re nonEneg—tive num˜ers su™h th—t ab + ac + bc = 0F €rove th—t
                        a2 (b + c)2  b2 (a + c)2  c2 (a + b)2
                                    + 2          + 2          ≤ a2 + b2 + c2
                         a2 + 3bc     b + 3ac      c + 3ab
Solution:
fy g—u™hyEƒ™hw—rz ineq D ‡e h—ve
                               2                  3                            3
                   a2 (b + c)    a2 (b + c)             a2 (b + c)
                      2 + bc
                              = 2              =     2 + c2 ) + c(a2 + b2 )
                    a          (a + bc)(b + c)   b(a

               a2 (b + c)      b2          c2         a2 (b + c)     b       c
           ≤              ( 2     2)
                                     +    2 + b2 )
                                                   )=            ( 2   2
                                                                         + 2     )
                    4      b(a + c     c(a                 4      a +c    a + b2
ƒimil—rlyD ‡e h—ve
                                           b        c                 c(a2 (b + c) + b2 (c + a))
          LHS ≤           a2 (b + c)(    2 + c2
                                                + 2     )=
                                        a        a + b2                        a2 + b2

                                                      IQ
abc(a + b)                                    abc(a + b)
= a2 + b2 + c2 +              ≤ a2 + b2 + c2 +                              ≤ a2 + b2 + c2 + ab + bc + ca
                    a2 + b2                                       a2 + b2
whi™h is true ˜y ewEqw ineq

„he origin—l inequ—lity ™—n ˜e written —s

                                  (a + b)2 (a + c)2  8
                                                    ≤ (a + b + c)2 .
                                      a2 + bc        3
ƒin™e (a + b)(a + c) = (a2 + bc) + a(b + c) ‡e h—ve

               (a + b)2 (a + c)2   (a2 + bc)2 + 2a(b + c)(a2 + bc) + a2 (b + c)2
                                 =
                   a2 + bc                           a2 + bc
                                                         a2 (b + c)2
                                 = a2 + bc + 2a(b + c) + 2           ,
                                                          a + bc
—nd thus the —˜ove inequ—lity is equiv—lent to

                           a2 (b + c)2  8
                                       ≤ (a + b + c)2 −                a2 − 5    ab,
                            a2 + bc     3
or
                            a2 (b + c)2   5(a2 + b2 + c2 ) + ab + bc + ca
                               2 + bc
                                        ≤                                 .
                             a                           3
ƒin™e
                5(a2 + b2 + c2 ) + ab + bc + ca
                                                ≥ a2 + b2 + c2 + ab + bc + ca
                               3
it is enough show th—t

                              a2 (b + c)2
                                          ≤ a2 + b2 + c2 + ab + bc + ca.
                               a2 + bc
FiFh

IVD qiven
                         a1 ≥ a2 ≥ . . . ≥ an ≥ 0, b1 ≥ b2 ≥ . . . ≥ bn ≥ 0
                                         n                  n
                                              ai = 1 =            bi
                                        i=1                 i=1

pind the m—xmium of
                                              n
                                                   (ai − bi )2
                                             i=1

     ‡SolutionXithout loss of gener—lityD —ssume th—t

                                                  a1 ≥ b1

xoti™e th—t for
                                        a ≥ x ≥ 0, b, y ≥ 0
‡e h—ve
                  (a − x)2 + (b − y)2 − (a + b − x)2 − y 2 = −2b(a − x + y) ≤ 0.
e™™ording to this inequ—lityD ‡e h—ve

                         (a1 − b1 )2 + (a2 − b2 )2 ≤ (a1 + a2 − b1 )2 + b2 ,
                                                                         2


               (a1 + a2 − b1 )2 + (a3 − b3 )2 ≤ (a1 + a2 + a3 − b1 )2 + b2 , · · · · · ·
                                                                         3


                                                     IR
(a1 + a2 + · · · + an−1 − b1 )2 + (an − bn )2 ≤ (a1 + a2 + · · · + an − b1 )2 + b2 .
                                                                                         n

edding these inequ—litiesD ‡e get
                    n
                         (ai − bi )2 ≤ (1 − b1 )2 + b2 + b2 + · · · + b2
                                                     2    3            n
                   i=1

                                     ≤ (1 − b1 )2 + b1 (b2 + b3 + · · · + bn )
                                                                                  1
                                     = (1 − b1 )2 + b1 (1 − b1 ) = 1 − b1 ≤ 1 −     .
                                                                                  n
iqu—lity holds for ex—mple when

                                    a1 = 1, a2 = a3 = · · · = an = 0

—nd
                                                                 1
                                        b1 = b2 = · · · = bn =
                                                                 n



IWD qiven
                                                a, b, c ≥ 0

su™h th—t
                                            a2 + b2 + c2 = 1

€rove th—t

                             1 − ab   1 − bc   1 − ca   1
                                    +        +        ≥
                            7 − 3ac 7 − 3ba 7 − 3cb     3
SolutionX pirstD ‡e will show th—t
                                      1       1       1     1
                                          +       +        ≤ .
                                   7 − 3ab 7 − 3bc 7 − 3ca  2
…sing the g—u™hyEƒ™hw—rz inequ—lityD ‡e h—ve

                             1            1         1     1
                                  =               ≤             +1 .
                          7 − 3ab   3(1 − ab) + 4   9 3(1 − ab)
it follows th—t

                                    1      1                    1    1
                                         ≤                          + ,
                                 7 − 3ab   27                 1 − ab 3
—nd thusD it is enough to show th—t
                                      1      1      1     9
                                          +      +       ≤ ,
                                    1 − ab 1 − bc 1 − ca  2
whi™h is †—s™9s inequ—lityF xowD ‡e write the origin—l inequ—lity —s
                                   3 − 3ab   3 − 3bc   3 − 3ca
                                           +         +         ≥ 1,
                                   7 − 3ac 7 − 3ba     7 − 3cb
or
            7 − 3ab   7 − 3bc   7 − 3ca                      1       1       1
                    +         +         ≥1+4                     +       +              .
            7 − 3ac 7 − 3ba     7 − 3cb                   7 − 3ab 7 − 3bc 7 − 3ca
ƒin™e
                                       1       1       1
                               4           +       +                   ≤2
                                    7 − 3ab 7 − 3bc 7 − 3ca

                                                    IS
it is enough to show th—t
                             7 − 3ab   7 − 3bc   7 − 3ca
                                     +         +         ≥ 3,
                             7 − 3ac 7 − 3ba     7 − 3cb
whi™h is true —™™ording to the ewEqw inequ—lityF

PID vet
                                            a, b, c ≥ 0
su™h th—t
                                        a+b+c>0
—nd
                                         b + c ≥ 2a
por
                                         x, y, z > 0
su™h th—t
                                            xyz = 1
€rove th—t the following inequ—lity holds
                     1                 1                 1            3
                             +                 +                  ≥
             a + x2 (by + cz) a + y 2 (bz + cx) a + z 2 (bx + cy)   a+b+c
SolutionX ƒetting
                                               1      1
                                        u=       ,v =
                                               x      y
—nd
                                                     1
                                             w=
                                                     z
—nd using the ™ondition
                                            uvw = 1
the inequ—lity ™—n ˜e rewritten —s

                            u                        u2                   3
                                   =                                          F
                      au + cv + bw            au2 + cuv + bwu           a+b+c
epplying g—u™hyD it suffi™es to prove
                                                2
                                 (u + v + w)                   3
                            a    u2 + (b + c)        uv      a+b+c
                            1
                              · (b + c − 2a)            (x − y)2   0D
                            2
whi™h is o˜vious due to the ™ondition for

                                              a, b, c




PPD qiven
                                         x, y, z > 0
su™h th—t
                                            xyz = 1


                                                IT
€rove th—t
                           1                                 1                                         1                   3
                                            +                                   +                                      ≥
                 (1 +   x2 )(1   +   x7 )       (1 +     y 2 )(1     +   y7 )       (1 +           z 2 )(1   +   z7)       4
SolutionX pirst ‡e prove this ineq e—sy
                                                1                                      3
                                                                     ≥                     9
                                     (1 +   x2 )(1   +    x7 )           4(x9 + x 2 + 1)

end this ineq ˜e™—meX
                                 1                           1                                 1
                                      9         +                9         +                       9         ≥1
                          x9   +x +1  2             y9   +y +1   2                z9   + z2 + 1
with
                                                          xyz = 1

it9s —n old result

PQD vet
                                                             a, b, c

˜e positive re—l num˜ers su™h th—t

                                 3(a2 + b2 + c2 ) + ab + bc + ca = 12

€rove th—t

                                           a      b      c    3
                                     √        +√     +√     ≤√ .
                                          a+b    b+c    c+a    2
SolutionX vet
                                     A = a2 + b2 + c2 , B = ab + bc + ca
                                                                         3
                     2A + B = 2             a2 +             ab ≤          3               a2 +              ab = 9.
                                                                         4
fy g—u™hy ƒ™hw—rz inequ—lityD ‡e h—ve

                                                     a                    √          a
                                                √       =                     a
                                                    a+b                             a+b
                                                √                                  a
                                            ≤       a+b+c                             .
                                                                                  a+b
fy g—u™hy ƒ™hw—rz inequ—lity —g—inD ‡e h—ve

                                                     b                       b2
                                                        =
                                                    a+b                   b(a + b)

                                                          (a + b + c)2
                                                    ≥
                                                             b(a + b)
                                                             A + 2B
                                                         =
                                                             A+B
                           a                              b      A + 2B   2A + B
                               =3−                           ≤3−        =
                         a+b                             a+b     A+B       A+B
hen™eD it suffi™es to prove th—t
                                                                     2A + B   9
                                            (a + b + c) ·                   ≤
                                                                     A+B      2

                                                                 IU
gonsider
                                                   √
                                        (a + b + c) 2A + B

                                    =     (A + 2B) (2A + B)
                                     (A + 2B) + (2A + B)
                                   ≤
                                               2
                                            3
                                          = (A + B)
                                            2
                                          2A + B   3√          9
                          ⇒ (a + b + c) ·        ≤    2A + B ≤
                                           A+B     2           2
—s requireF

fy ewEqw ineq e—sy to see th—t

                                       3 ≤ a2 + b2 + c2 ≤ 4

fy g—u™hyEƒ™hw—rz ineqD ‡e h—ve
                     √
        2           a a+c                                                             a
    LHS = (                      ) ≤ (a2 + b2 + c2 + ab + bc + ca)(                            )
                  (a + b)(a + c)                                                (a + b)(a + c)

…sing the f—mili—r ineq

                      9(a + b)(b + c)(c + a) ≥ 8(a + b + c)(ab + bc + ca)

‡e h—ve
                            a             2(ab + bc + ca)           9
                                     =                       ≤
                      (a + b)(a + c)   (a + b)(b + c)(c + a)   4(a + b + c)
end ‡e need to prove th—t

              9(a2 + b2 + c2 + ab + bc + ca)  9           6 − (a2 + b2 + c2 )
                                             ≤ ⇔                                  ≤1
                       4(a + b + c)           2           24 − 5(a2 + b2 + c2 )

                        ⇔ (6 − (a2 + b2 + c2 ))2 ≤ 24 − 5(a2 + b2 + c2 )

                        ⇔ (3 − (a2 + b2 + c2 ))(4 − (a2 + b2 + c2 )) ≤ 0

‡hi™h is true ‡e —re done equ—lity holds when

                                          a=b=c=1

PRF
qiven
                                            a, b, c ≥ 0

€rove th—t
                                   1                 8(a + b + c)2
                                             ≤
                           (a2 + bc)(b + c)2   3(a + b)2 (b + c)2 (c + a)2
SolutionX in f—™tD the sh—rper —nd ni™er inequ—lity holdsX
              a2 (b + c)2  b2 (c + a)2  c2 (a + b)2
                          + 2          + 2          ≤ a2 + b2 + c2 + ab + bc + ca.
               a2 + bc      b + ca       c + ab
              a2 (b + c)2  b2 (c + a)2  c2 (a + b)2
                          + 2          + 2          ≤ a2 + b2 + c2 + ab + bc + ca
               a2 + bc      b + ca       c + ab


                                                IV
PSF
qiven
                                                  a, b, c ≥ 0
su™h th—t
                                             ab + bc + ca = 1
€rove th—t
                                       1          1          1      9
                                 8 2        + 8 2      + 8 2      ≥
                                 5a    + bc   5 b + ca   5 c + ab   4
essume ‡vyq
                                                  a≥b≥c
this ineq
                               1    5      1     5      1
                         8 2       − + 8 2      − + 8 2      −1≥0
                         5a    + bc 8  5 b + ca
                                                 8  5 c + ab
                                                          8
                         8 − 8a2 − 5bc 8 − 8b2 − 5ca 1 − 5 c2 − ab
                                      +             +              ≥0
                           8a2 + 5bc     8b2 + 5ca     c2 + 8 ab
                                                             5
                                                                      8
                    8a(b + c − a) + 3bc 8b(a + c − b) + 5ac c(a + b − 5 c)
                                       +                   +               ≥0
                         8a2 + 5bc           8b2 + 5ca        c2 + 8 ab
                                                                    5
xoti™e th—t ‡e only need to prove this ineq when

                                                  a≥b+c

˜y the w—y ‡e need to prove th—t
                                                8b        8a
                                                      ≥ 2
                                          8b2   + 5ca  8a + 5bc
                                       (a − b)(8ab − 5ac − 5bc) ≥ 0
i—sy to see th—tX if
                                                  a≥b+c
then
                               8ab = 5ab + 3ab ≥ 5ac + 6bc ≥ 5ac + 5ac
ƒo this ineq is trueD ‡e h—ve qFdFe D equ—lity hold when

                                            (a, b, c) = (1, 1, 0)

PTD qive
                                                  a, b, c ≥ 0
€rove th—tX
                 a       b       c      a+b+c             abc(a + b + c)
                     + 2     + 2     ≥             + 3
            b2   +c2  a +c 2  a +b 2   ab + bc + ca (a + b3 + c3 )(ab + bc + ca)

                                                a                 a2
                                                     =
                                           b2   + c2        ab2   + c2 a
                                                  (a + b + c)2
                                            ≥                    ,
                                                    (ab2 + c2 a)
it suffi™es to prove th—t
                      a+b+c               1                    abc
                                   ≥             +                               ,
                      (ab2 + c2 a)   ab + bc + ca (ab + bc + ca) (a3 + b3 + c3 )

                                                      IW
˜e™—use
                                        a+b+c               1
                                           2 + c2 a)
                                                     −
                                        (ab            ab + bc + ca
                                                  3abc
                                  =                               ,
                                      (ab + bc + ca) (ab2 + ca2 )
it suffi™es to prove th—t
                                 3 a3 + b3 + c3 ≥               ab2 + c2 a ,

whi™h is true ˜e™—use
                                 2 a3 + b3 + c3 ≥               ab2 + c2 a .

‚em—rkX
             a        b       c      a+b+c              3abc(a + b + c)
                  + 2     + 2     ≥             +                               .
          b2 + c2  c + a2  a + b2   ab + bc + ca 2(a3 + b3 + c3 )(ab + bc + ca)

qive
                                                  a, b, c ≥ 0

€rove th—t
                       1       1      1          3           81a2 b2 c2
                           + 2    + 2     ≥             +
                  a2   + bc b + ca c + ab   ab + bc + ca 2(a2 + b2 + c2 )4


iqu—lity o™™ur if —nd if only
                                         a = b = c, a = b, c = 0

or —ny ™y™li™ permutionF

it is true ˜e™—use
                                                     (1)
                    1       1      1             3 a2 + b2 + c2
                        + 2    + 2     ≥ 3
                 a2 + bc b + ca c + ab  a b + ab3 + b3 c + bc3 + c3 a + ca3
—nd
                           3 a2 + b2 + c2                    3          81a2 b2 c2
           (2)                                        ≥             +                  .
                 a3 b + ab3 + b3 c + bc3 + c3 a + ca3   ab + bc + ca 2(a2 + b2 + c2 )4
fe™—use
                                                a2           1
                                                       −
                                        (a3 b   + ab3 ) ab + bc + ca
                                              abc(a + b + c)
                                 =                                    ,
                                      (ab + bc + ca) ( (a3 b + ab3 ))
it suffi™es to prove th—t
                                            4
             2(a + b + c) a2 + b2 + c2          ≥ 27abc(ab + bc + ca)             a3 b + ab3   ,

whi™h is true ˜e™—use
                                (a) (a + b + c) a2 + b2 + c2 ≥ 9abc,

                                  (b) a2 + b2 + c2 ≥ ab + bc + ca,
                                                     2
                              (c) 2 a2 + b2 + c2         ≥3        a3 b + ab3 ,

whi™h
                                                     (c)



                                                      PH
is equiv—lent to
                                               a2 − ab + b2 (a − b)2 ≥ 0,

whi™h is trueF

PUD vet
                                                         a, b, c

˜e nonneg—tive num˜ersD no two of whi™h —re zeroF €rove th—t

                    a2 (b + c)     b2 (c + a)   c2 (a + b)                    2(a2 + b2 + c2 )
                                + 2           + 2                                              .
                   b2 + bc + c2  c + ca + a2   a + ab + b2                       a+b+c
SolutionX
                                                        a2 (b + c)
                                                       b2 + bc + c2
                                                 4a2 (b + c)(ab + bc + ca)
                                    =
                                               (b2+ bc + c2 ) (ab + bc + ca)
                                                 4a2 (b + c)(ab + bc + ca)
                                   ≥                                           2
                                            (b2 + bc + c2 + ab + bc + ca)
                                                      4a2 (ab + bc + ca)
                                           =                             ,
                                                     (b + c)(a + b + c)2
it suffi™es to prove
                                         a2   (a + b + c) a2 + b2 + c2
                                            ≥                          ,
                                        b+c        2(ab + bc + ca)
or
                                             a2                  (a + b + c)3
                                                +a         ≥                   ,
                                            b+c                2(ab + bc + ca)
or
                                                a      (a + b + c)2
                                                   ≥                 ,
                                               b+c   2(ab + bc + ca)
whi™h is true ˜y g—u™hyEƒ™hw—rz inequ—lity

                                                  a                   a2
                                                     =
                                                 b+c               a(b + c)

                                                       (a + b + c)2
                                                ≥                    .
                                                     2(ab + bc + ca)
‡e just w—nt to give — little note hereF xoti™e th—t

                    a2 (b + c)     a(b + c)   a(b + c)(a2 + b2 + c2 + ab + bc + ca)
                                 +          =                                       ,
                  b2 + bc + c  2   a+b+c            (b2 + bc + c2 )(a + b + c)

—nd
             2(a2 + b2 + c2 )      a(b + c)     2(a2 + b2 + c2 + ab + bc + ca)
                              +              =                                 .
                 a+b+c             a+b+c                  a+b+c
„hereforeD the inequ—lity ™—n ˜e written in the form

                                a(b + c)       b(c + a)       c(a + b)
                                           + 2            + 2          ≥ 2,
                           b2   + bc + c 2  c + ca + a  2  a + ab + b2
     xote th—t
                  a(b + c)                 4a(b + c)(ab + bc + ca)                   4a(ab + bc + ca)
                             =                                                                          .
          cyc
                b2 + bc + c2      cyc
                                        4(b2 + bc + c2 )(ab + bc + ca)        cyc
                                                                                    (b + c)(a + b + c)2


                                                          PI
ƒo th—t ‡e h—ve to proveX
                                            4a(ab + bc + ca)
                                                                        2,
                                     cyc
                                           (b + c)(a + b + c)2
or
                                            a          (a + b + c)2
                                                                     ,
                                    cyc
                                           b+c       2(ab + bc + ca)

whi™h is o˜viously true due to the g—u™hyEƒ™hw—rz inequ—lityF

„his is —nother new SolutionF pirstD ‡e will prove th—t

                                                     ab(a + b) + bc(b + c) + ca(c + a)
               (a2 + ac + c2 )(b2 + bc + c2 ) ≤                                        .(1)
                                                                   a+b
indeedD using the g—u™hyEƒ™hw—rz inequ—lityD ‡e h—ve
   √     √
     ac · bc + a2 + ac + c2 · b2 + bc + c2 ≤ (ac + a2 + ac + c2 )(bc + b2 + bc + c2 )
                                                         = (a + c)(b + c).

it follows th—t
                                                                   √                              2ab
     (a2 + ac + c2 )(b2 + bc + c2 ) ≤ ab + c2 + c a + b −              ab ≤ ab + c2 + c a + b −
                                                                                                  a+b
                                        ab(a + b) + bc(b + c) + ca(c + a)
                                    =                                     .
                                                      a+b
xowD from @IAD using the ewEqw inequ—lityD ‡e get
                   1            1                                       2
                           + 2          ≥
              a2 + ac + c2  b + bc + c2              (a2 + ac + c2 )(b2 + bc + c2 )
                                                                                       (2)
                                                               2(a + b)
                                                 ≥                                   .
                                                   ab(a + b) + bc(b + c) + ca(c + a)

prom
                                                     (2)

‡e h—ve
                           a(b + c)                    1               1
                                     =       ab                + 2
                      b2   + bc + c2                a2
                                                    + ac + c 2   b + bc + c2
                                                         2ab(a + b)
                                     ≥                                         = 2.
                                             ab(a + b) + bc(b + c) + ca(c + a)
PWD if
                                                  a, b, c > 0

then the following inequ—lity holdsX

                   a2 (b + c)     b2 (c + a)   c2 (a + b)                      a3 + b3 + c3
                               + 2           + 2          ≥2
                  b2 + bc + c2  c + ca + a2   a + ab + b2                       a+b+c
„his inequ—lity is equiv—lent to

                           a2 (b + c)(a + b + c)
                                                 ≥2        (a3 + b3 + c3 ) (a + b + c)
                                b2 + bc + c2
or
                              a2 (ab + bc + ca)
                       a2 +                           ≥2        (a3 + b3 + c3 ) (a + b + c),
                                 b2 + bc + c2


                                                      PP
˜e™—use
                                                                          a3 + b3 + c3 (a + b + c)
          2   (a3 + b3 + c3 ) (a + b + c) ≤ a2 + b2 + c2 +                                         ,
                                                                               a2 + b2 + c2
it suffi™es to prove th—t

                                     a2         a3 + b3 + c3 (a + b + c)
                                             ≥ 2                            ,
                                b2 + bc + c2  (a + b2 + c2 ) (ab + bc + ca)

˜y g—u™hyEƒ™hw—rz inequ—lityD ‡e h—ve
                                                                   2                       2
                          a2                      a2 + b2 + c2           a2 + b2 + c2
                      2 + bc + c2
                                  ≥                2 (b2 + bc + c2 )
                                                                     =                 ,
                     b                            a                    2 a2 b2 + a2 bc

it suffi™es to prove th—t
                     3
      a2 + b2 + c2       (ab + bc + ca) ≥ a3 + b3 + c3 (a + b + c) 2                    a2 b2 +     a2 bc .

vet
                                           1
                A=            a4 , B =             a3 b + ab3 , C =       a2 b2 , D =      a2 bc,
                                           2
‡e h—ve
                                                              2
                                               a2 + b2 + c2       = A + 2C,

                                  a2 + b2 + c2 (ab + bc + ca) = 2B + D,

                                      a3 + b3 + c3 (a + b + c) = A + 2B,

—nd
                                       2        a2 b2 +       a2 bc = 2C + D.

„hereforeD it suffi™es to prove th—t

                               (A + 2C) (2B + D) ≥ (A + 2B) (2C + D) ,

or
                                               2 (A − D) (B − C) ≥ 0,

whi™h is true ˜e™—use
                                                          A≥D

—nd
                                                          B≥C



QHD qiven
                                                      a, b, c ≥ 0

su™h th—t
                                                    a+b+c=1

€rove th—t
                                  2    a2 b + b2 c + c2 a + ab + bc + ca ≤ 1

‚ewrite the inform inequ—lity —s

                          2     a2 b + b2 c + c2 a + ab + bc + ca ≤ (a + b + c)2


                                                           PQ
2   (a2 b + b2 c + c2 a) (a + b + c) ≤ a2 + b2 + c2 + ab + bc + ca

essume th—t ˜ is the num˜er ˜etien — —nd ™F „henD ˜y —pplying the ewEqw inequ—lityD ‡e
get
                                                    a2 b + b2 c + c2 a
               2 (a2 b + b2 c + c2 a) (a + b + c) ≤                    + b(a + b + c)
                                                            b
it is thus suffi™ient to prove the stronger inequ—lity

                                                     a2 b + b2 c + c2 a
                a2 + b2 + c2 + ab + bc + ca ≥                           + b(a + b + c)
                                                             b
„his inequ—lity is equiv—lent to
                                    c(a − b)(b − c)
                                                    ≥ 0,
                                           b
whi™h is o˜viously true —™™ording to the —ssumption of

                                                  b

row to prove
                               a4 + 2       a3 c ≥        a2 b2 + 2    a3 b

only ˜y ewEqw iquiv—lent to prove

                       (a − b)2 (a + b)2 ≥ 4(a − b)(b − c)(a − c)(a + b + c)

‡vyq ‡e ™—n —ssume th—t

                                 a ≥ b ≥ c, a − b = x, b − c = y

then ‡e need to prove th—t

      x2 (2c + 2y + x)2 + y 2 (2c + y)2 + (x + y)2 (2c + x + y)2 ≥ xy(x + y)(3c + 2x + y)

˜y
                                   (x + y)4 ≥ xy(x + y)(x + 2y)

—nd
                                      (x + y)3 ≥ 3xy(x + y)

‡e h—ve ™ompleted the Solution

QID vet
                                                a, b, c

˜e positive num˜ers su™h th—t

                                   a2 b2 + b2 c2 + c2 a2 ≥ a2 b2 c2

pind the minimum of e
                                  a2 b2        b2 c2       c2 a2
                         A=                + 3 2       + 3 2
                              c3 (a2 + b2 ) a (b + c2 ) b (c + a2 )

xo one like this pro˜lemc ƒetting
                                            1     1     1
                                       x=     ,y = ,z =
                                            a     b     c


                                                 PR
‡e h—ve
                                            x2 + y 2 + z 2 ≥ 1

‡e will prove th—t                                       √
                                  x3       y3      z3      3
                                       + 2     + 2     ≥
                               y2 + z2  x + z2  x + y2    2
…sing g—u™hyEƒ™hw—rzX

                                                     (x2 + y 2 + z 2 )2
                         LHS ≥
                                   x(y 2   +   z2)   + y(x2 + z 2 ) + z(x2 + y 2 )

fy ewEqw ‡e h—veX
                                         2 2 2 2                2
x(y 2 +z 2 )+y(x2 +z 2 )+z(x2 +y 2 ) ≤     (x +y +z )(x+y+z) ≤ √ (x2 +y 2 +z 2 ) x2 + y 2 + z 2
                                         3                       3
fe™—use
                                            x2 + y 2 + z 2 ≥ 1

ƒo                                                                             √
                                         (x2 + y 2 + z 2 )2                     3
                             2
                                                                           ≥
                             √ (x2   + y 2 + z 2 ) x2 + y 2 + z 2              2
                              3

‡e done3

QPF
vet xDyDz ˜e non neg—tive re—l num˜ers su™h th—t x2 + y 2 + z 2 = 1
F find the minimum —nd m—ximum of f = x + y + z − xyz.
Solution IF
                                     √                              √
pirst ‡e fix z —nd let m = x+y = x+ 1 − x2 − z 2 = g(x)(0 ≤ x ≤ 1 − z 2 ), then ‡e h—ve

                                                             x
                                    g (x) = 1 − √                     ,
                                                         1 − x2 − z 2
‡e get

                                                                   1 − z2
                                  g (x) > 0 ⇔ 0 ≤ x <
                                                                     2
—nd
                                                     1 − z2
                             g (x) < 0 ⇔                    <x≤          1 − z2,
                                                       2
so ‡e h—ve
                           mmin = min{g(0), g( 1 − z 2 )} =                  1 − z2

—nd
                                                     1 − z2
                              mmax = g                         =       2 − 2z 2 .
                                                       2
e™tu—llyD f —nd written —s

                                      z                 z
                         f = f (m) = − m2 + m + 1 − z 2   + z,
                                      2                 2
e—sy to prove th—t the —xis of symmetry
                                                 1
                                           m=      >        2 − 2z 2
                                                 z


                                                       PS
so f (m) is in™re—sing in the interv—l of mD thusD ‡e h—ve

                             f (m) ≥ f ( 1 − z 2 ) =             1 − z2 + z
—nd
                                                         z3  z
                        f (m) ≤ f ( 2 − 2z 2 ) =            + +         2 − 2z 2 .
                                                         2   2
ƒin™e
                            ( 1 − z 2 + z)2 = 1 + 2z             1 − z2 ≥ 1
‡e get f (m) ≥ 1 —nd when two of xDyDz —re zero ‡e h—ve f = 1, soW egetfmin = 1.
vet
                                      z3    z
                             h(z) =      + + 2 − 2z 2 ,
                                      2     2
e—sy to prove th—t
                                        1                1
                   h (z) > 0 ⇔ 0 ≤ z < √ andh (z) < 0 ⇔ √ < z ≤ 1
                                         3                3
then ‡e get                                                      √
                                                     1          8 3
                                      f (m) ≤ h     √         =     ,
                                                      3          9
                                  √                     √
                    1            8 3                   8 3
when x = y = z = √ W ehavef =        D so ‡e getfmax =      .
                     3            9                      9
honeF
Solution PF
‡hen two of xDyDz —re zero ‡e h—vef = 1D —nd ‡e will prove th—t f ≥ 1 then ‡e ™—n get
fmin = 1F e™tu—llyD ‡e h—ve

            f ≥ 1 ⇔ x + y + z − xyz ≥ 1 ⇔ (x + y + z) x2 + y 2 + z 2 − xyz ≥
                                      3                                                2
                   x2 + y 2 + z 2         ⇔ (x + y + z) x2 + y 2 + z 2 − xyz               ≥
                                 3
                x2 + y 2 + z 2       ⇔ x2 y 2 z 2 + 2         x5 y + x3 y 3 + x3 y 2 z ≥ 0,
                                                        sym

                                                                       1
the l—st inequ—lity is o˜vious trueD so ‡e got f ≥ 1; ‡henx = y = z = √ ‡e h—ve
      √                                                                 3
     8 3
f=       ,
      9
—nd ‡e will prove th—t                        √
                                             8 3
                                        f≤
                                              9
then ‡e ™—n get                                 √
                                              8 3
                                       fmax =
                                                9
e™tu—llyD ‡e h—ve
            √                         √
           8 3                       8 3
        f≤     ⇔ x + y + z − xyz ≤        ⇔ (x + y + z) x2 + y 2 + z 2 − xyz ≤
            9                         9
            √
           8 3                  3                                        2
                  x2 + y 2 + z 2 ⇔ 27 (x + y + z) x2 + y 2 + z 2 − xyz
            9
                                   3    1                        2
                ≤ 64 x2 + y 2 + z 2 ⇔         S (x, y, z) (y − z) ≥ 0,
                                        4 cyc


                                                    PT
where

S(x, y, z) = 17y 2 (2y−x)2 +17z 2 (2z−x)2 +56y 2 (z−x)2 ++56z 2 (y−x)2 +24x4 +6y 4 +6z 4 +57x2 (y 2 +z 2 )+104y 2 z 2
                                                                               √
                                                                              8 3
is o˜vious positiveD so the l—st inequ—lity is o˜vious trueD so ‡e gotfmax =       .
                                                                               9

   QQD por positive re—l num˜ersD show th—t

                 a3 (b + c − a) b3 (c + a − b) c3 (a + b − c)   ab + bc + ca
                               +              +               ≤
                     a2 + bc        b2 + ca        c2 + ab           2
ineq
                                        ab + bc + ca               a3 (b + c − a)
                       a2 + b2 + c2 +                ≥                            + a2
                                             2                         a2 + bc
                                  ab + bc + ca                        a2
                   a2 + b2 + c2 +              ≥ (ab + bc + ca)(           )
                                       2                           a2 + bc
                                                      bc      5
                 a2 + b2 + c2 + (ab + bc + ca)(            ) ≥ (ab + bc + ca)
                                                   a2 + bc    2
                                  a2 + b2 + c2                    bc     5
                                               +                       ≥
                                  ab + bc + ca               a2   + bc   2
…se two ineq
                       bc      ab     ac            4abc
                           + 2    + 2     ≥                       + 1(1)
                  a2   + bc c + ab b + ac   (a + b)(b + c)(c + a)

it is e—sy to proveF

                            a2 + b2 + c2         8abc
                                         +                     ≥ 2(2)
                            ab + bc + ca (a + b)(b + c)(c + a)
ƒo e—sy to see th—t

             a2 + b2 + c2            bc     a2 + b2 + c2         4abc
                          +        2 + bc
                                          ≥              +                     +1
             ab + bc + ca         a         ab + bc + ca (a + b)(b + c)(c + a)

                                         a2 + b2 + c2       5
                                    ≥                   +2≥
                                        2(ab + bc + ca)     2
‡e h—ve done 3


                a3 (b + c − a) b3 (c + a − b) c3 (a + b − c)   3abc(a + b + c)
                     2 + bc
                              +     2 + ca
                                             +     2 + ab
                                                             ≤
                    a              b              c            2(ab + bc + ca)
Solution
                        a2 + b2 + c2            bc    3abc(a + b + c)
                                     +              +                 ≥3
                        ab + bc + ca         a2 + bc 2(ab + bc + ca)2
end ‡e prove th—t
                              3abc(a + b + c)                   4abc
                                                2   ≥
                              2(ab + bc + ca)           (a + b)(b + c)(c + a)
                        3(a + b + c)(a + b)(b + c)(c + a) ≥ 8(ab + bc + ca)2

„his ineq is true ˜e™—use
                                             8
       3(a + b + c)(a + b)(b + c)(c + a) ≥     (a + b + c)2 (ab + bc + ca) ≥ 8(ab + bc + ca)2
                                             3


                                                        PU
ƒo
                  a2 + b2 + c2         4abc                  4abc
          LHS ≥                +                    +                      +1≥3
                  ab + bc + ca (a + b)(b + c)(c + a) (a + b)(b + c)(c + a)
vet
                                                a, b, c > 0

ƒhow th—t
                  a3 (b + c − a) b3 (c + a − b) c3 (a + b − c)       9abc
                                +              +               ≤
                      a2 + bc        b2 + ca        c2 + ab      2(a + b + c)
pirstD‡e prove this lenm—X

                          a2       b2     c2      (a + b + c)2
                               + 2    + 2     ≤
                        a2 + bc b + ca c + ab   2(ab + bc + ca)

                         bc      ac     ab   a2 + b2 + c2
                             + 2    + 2    +                ≥2
                      a2 + bc b + ac c + ab 2(ab + bc + ca)
whi™h is true from
                       bc      ac      ab               4abc
                           +       +        ≥1+
                    a2 + bc b2 + ac c2 + ab     (a + b)(b + c)(c + a)

                              a2 + b2 + c2           4abc
                                            +                      ≥1
                             2(ab + bc + ca) (a + b)(b + c)(c + a)
equ—lity o™™ur if —nd if only
                                                a=b=c

or
                                               a = b, c = 0

or —ny ™y™li™ permutionF
‚eturn to your inequ—lityD‡e h—ve

                            a3 (b + c − a)                             9abc
                        (                  + a2 ) ≤ a2 + b2 + c2 +
                                a2 + bc                            2(a + b + c)
or
                                              a2                        9abc
                    (ab + bc + ca)                 ≤ a2 + b2 + c2 +
                                         a2   + bc                  2(a + b + c)
prom
                          a2       b2     c2      (a + b + c)2
                               + 2    + 2     ≤
                        a2 + bc b + ca c + ab   2(ab + bc + ca)
‡e only need to prove th—t

                            (a + b + c)2                      9abc
                                         ≤ a2 + b2 + c2 +              or
                                 2                        2(a + b + c)
                                        9abc
                             a2 + b2 + c2 +    ≥ 2(ab + bc + ca)
                                      a+b+c
‡hi™h is s™hur inequ—lityF yur Solution —re ™ompleted equ—lity o™™ur if —nd if only

                                       a = b = c, a = b, c = 0

or —ny ™y™li™ permutionF

QQD vet
                                                a, b, c > 0


                                                    PV
su™h th—t
                                              a+b+c=1

„hen
                                  a3 + bc b3 + ca c3 + ab
                                         +       +        ≥2
                                  a2 + bc b2 + ca c2 + ab
prom the ™ondition
                                            a − 1 = −(b + c)

it follows th—t
                                    a3 + bc                  a2 (b + c)
                                            =            −              +1
                                    a2 + bc                   a2 + bc
„hus it suffi™es to prove th—t

                                                             a2 (b + c)
                                      a+b+c≥
                                                              a2 + bc
por
                                                   a, b, c

positive re—ls prove th—t
                                              ab(a + b)
                                                        ≥          a
                                               c2 + ab
                          <=> a4 + b4 + c4 − b2 c2 − c2 a2 − a2 b2 ≥ 0
                                   ab(a + b)           c2 (a + b)
                                             +                    =2           a
                                    c2 + ab             c2 + ab
—nd our inequ—lity ˜e™omes
                                              c2 (a + b)
                                                         ≤         a
                                              (c2 + ab)
˜ut
                  c2 (a + b)              c2 (a + b)2                      (ca + cb)2
                             =                          =                                      ≤
                  (c2 + ab)         (c2    + ab)(a + b)            a(b2   + c2 ) + b(a2 + c2 )
                                      c2 a2                 c2 b2
                                               +                     =          a
                                   a(b2 + c2 )           b(a2 + c2 )
QR
vet
                                                a, b, c ≥ 0

su™h th—t
                                              a+b+c=1

„hen
                                               a3 + bc b3 + ca c3 + ab
                         6(a2 + b2 + c2 ) ≥           +       +
                                               a2 + bc b2 + ca c2 + ab
Solution
                                                             a2 (b + c)
                                 6(a2 + b2 + c2 ) +                     ≥3
                                                              a2 + bc
                                                                             a2 (b + c)
                      6(a2 + b2 + c2 ) − 2(a + b + c)2 ≥               (a−              )
                                                                              a2 + bc
                                                       a(a − b)(a − c)
                            4      (a − b)(a − c) ≥
                                                           a2 + bc
                                                         a
                                    (a − b)(a − c)(4 − 2      )≥0
                                                      a + bc


                                                    PW
essuming ‡vyq
                                               a≥b≥c

then e—sy to see th—t
                                                   a
                                          4−            ≥0
                                                a2 + bc
—nd
                                                   c
                                          4−            ≥0
                                                c2 + ab
                                      c                                 a
              (c − a)(c − b)(4 −           ) ≥ 0and(a − b)(a − c)(4 − 2     )≥0
                                   c2 + ab                           a + bc
‡e h—ve two ™—ses
g—se I
                                                     b
                                          4−              ≤0
                                                b2   + ac
then
                                                               b
                               (b − c)(b − a)(4 −                   )≥0
                                                          b2   + ac
so this ineq is true
g—se P
                                                   b
                                          4−            ≤0
                                                b2 + ac
e—sy to see th—t
                                              c          b
                                    4−             ≥4− 2
                                         c2   + ab    b + ac
ƒo
                                      c                          b      c
             LHS ≥ (c − b)2 (4 −           ) + (a − b)(b − c)( 2    −        )≥0
                                   c2 + ab                    b + ac c2 + ab
FiFh
QSF vet
                                                x, y, z

˜e re—l num˜ers s—tisfyX
                                      x2 y 2 + 2yx2 + 1 = 0

pind the m—ximum —nd minimum v—lues ofX
                                              2   1       1
                              f (x, y) =         + + y(y + + 2)
                                              x2  x       x
SolutionX €ut
                                               1
                                          t=     ;k = y + 1
                                               x
D ‡e h—veX
                                              t2 + k 2 = 1

                                          f (x, y) = t2 + tk

€ut
                                         t = cos α; k = sin α

then
                               f (x, y) = cos α2 + cos α sinα =
                                           1     1        π
                               sin 2α2 =     + √ cos (2α − )
                                           2      2       4
                                                    1  1
                                     max f (x, y) = + √
                                                    2   2

                                                     QH
1   1
                                     min f (x, y) =     −√
                                                      2    2
FiFh
F
QTF
ƒuppose —D˜D™Dd —re positive integers with ab + cd = 1.
„henD por W e = 1, 2, 3, 4,let (xi )2 + (yi )2 = 1, where xi —nd yi —re re—l num˜ersF
ƒhow th—t

                                                                     a b c d
           (ay1 + by2 + cy3 + dy4 )2 + (ax4 + bx3 + cx2 + dx1 )2 ≤ 2( + + + ).
                                                                     b a d c
ƒolitionX
…se g—u™hyEƒ™hw—rtz D ‡e h—ve

                                   (ay1 + by2 + cy3 + dy4 )2 ≤
                                     (ay1 + by2 )2    (cy3 + dy4 )2
                           (ab + cd)(               +               )=
                                          ab               cd
                                  (ay1 + by2 )2    (cy3 + dy4 )2
                                                +
                                       ab               cd
ƒimil—rX
                                  (ax4 + bx3 + cx2 + dx1 )2 ≤
                                     (ax4 + bx3 )2    (cx2 + dx1 )2
                            (ab + cd)(              +               )
                                          ab               cd
                                  (ax4 + bx3 )2    (cx2 + dx1 )2
                                =               +
                                       ab               cd
futX
           (ay1 + by2 )2 ≤ (ay1 + by2 )2 + (ax1 − bx2 )2 = a2 + b2 + 2ab(y1 y2 − x1 x2 )
ƒimil—rF
                           (cx2 + dx1 )2 ≤ c2 + d2 + 2cd(x1 x2 − y1 y2 )
D then ‡e getX

                                 (ay1 + by2 )2   (cx2 + dx1 )2
                                               +               ≤
                                      ab              cd
                                         a     b   c   d
                                           + + +
                                         b     a d     c
@IA
„he s—me —rgument show th—tX

                                 (cy3 + dy4 )2   (ax4 + bx3 )2
                                               +               ≤
                                      cd              ab
                                         a     b   c   d
                                           + + +
                                         b     a d     c
@PA
gom˜ining @IAY@PA ‡e get F FiFh

QUF
in —ny ™onvex qu—dril—ter—l with sides

                                          a≤b≤c≤d


                                                QI
—nd —re— F
€rove th—t X                                 √
                                            3 3 2
                                        F ≤    c
                                             4
SolutionX
„he inequ—lity is rewritten —sX
(−a + b + c + d)(a − b + c + d)(a + b − c + d)(a + b + c − d) ≤ 27c4 .
‡e su˜stitute x = −a + b + c + dD y = a − b + c + dD z = a + b − c + dD t = a + b + c − dF
      x+y−z+t
„hen                 = c —nd x ≥ y ≥ z ≥ t.
             4
                            x+y−z+t 4
„hus ‡e h—veX xyzt ≤ 27(                   ) .
                                   4
„he left side of the inequ—lity is m—ximum when z = y
while the right side of the inequ—lity is minimum @‡e h—ve fixed xDy —nd tAF
                                      x+t 4
„hen ‡e just prove th—t xy 2 t ≤ 27(         ) .
                                         4
fe™—use xy t ≤ x tD ‡e just h—ve to prove
            2      3


                                                  x+t 4
                                       x3 t ≤ (      )
                                                   4

end then it follows th—t the —˜ove inequ—lity is —lso trueF

                                      x x x
                                        + + +t≥
                                      3  3 3
                                            x x x
                                       44    · · ·t
                                            3 3 3

hen™e
                                           x+y 4
                                     27(      ) ≥ x3 t
                                            4

QVF
vet efg ˜e — tri—ngleF €rove th—tX

                      1 1 1    1     1     1
                       + + ≤      +     +
                      a b c  a+b−c b+c−a c+a−b
SolutionX
IF
           1     1               2b                2b        2b   2
              +      =                        = 2           ≥ 2 =
         a+b−c b+c−a   (a + b − c)(b + c − a)  b − (c − a)2  b    b
ƒimil—rlyD ‡e h—ve

                                    1            1       2
                                           +           ≥
                                 b+c−a c+a−b             c
                                    1            1       2
                                           +           ≥
                                 c+a−b a+b−c             a
edd three inequ—lities together —nd divide ˜y P to get the desired resultF
PF
use u—r—m—t— for the num˜er —rr—ys (b + c − a; c + a − b; a + b − c) (a; b; c)
—nd the ™onvex fun™tion
                                                 1
                                         f (x) =
                                                 x


                                              QP
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho
567 bdt hay va kho

More Related Content

What's hot

Texto de matemática y lógica
Texto de matemática y lógicaTexto de matemática y lógica
Texto de matemática y lógicaOdín Zapata
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)yustar1026
 
A Characterization of Twin Prime Pairs
A Characterization of Twin Prime PairsA Characterization of Twin Prime Pairs
A Characterization of Twin Prime PairsJeffrey Gold
 
Integral table
Integral tableIntegral table
Integral tablebags07
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization IMatthew Leingang
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic FormsMatthew Leingang
 

What's hot (10)

Texto de matemática y lógica
Texto de matemática y lógicaTexto de matemática y lógica
Texto de matemática y lógica
 
S101-52國立新化高中(代理)
S101-52國立新化高中(代理)S101-52國立新化高中(代理)
S101-52國立新化高中(代理)
 
A Characterization of Twin Prime Pairs
A Characterization of Twin Prime PairsA Characterization of Twin Prime Pairs
A Characterization of Twin Prime Pairs
 
Integral table
Integral tableIntegral table
Integral table
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization I
 
Real for student
Real for studentReal for student
Real for student
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic Forms
 
Sect3 7
Sect3 7Sect3 7
Sect3 7
 
AMU - Mathematics - 2004
AMU - Mathematics  - 2004AMU - Mathematics  - 2004
AMU - Mathematics - 2004
 
AMU - Mathematics - 2002
AMU - Mathematics  - 2002AMU - Mathematics  - 2002
AMU - Mathematics - 2002
 

Similar to 567 bdt hay va kho

567 nice and_hard_inequality
567 nice and_hard_inequality567 nice and_hard_inequality
567 nice and_hard_inequalityTran Duc Bang
 
Pythagorean theorem notes
Pythagorean theorem notesPythagorean theorem notes
Pythagorean theorem notes41101865
 
March 9 Quadratic Formula
March 9 Quadratic FormulaMarch 9 Quadratic Formula
March 9 Quadratic Formulaste ve
 
March 9 Quadratic Formula
March 9  Quadratic  FormulaMarch 9  Quadratic  Formula
March 9 Quadratic Formulaste ve
 
Important maths formulas
Important maths formulasImportant maths formulas
Important maths formulaskrsraju
 
Productos notables
Productos notablesProductos notables
Productos notablesPROFTEBA
 
Algebraic expression Formula .pptx
 Algebraic expression Formula .pptx Algebraic expression Formula .pptx
Algebraic expression Formula .pptxAbdulGhaffarGhori
 
הדגמת משפט פיתגורס
הדגמת משפט פיתגורסהדגמת משפט פיתגורס
הדגמת משפט פיתגורסosnatsim
 
Chapter 6 algebraic expressions iii
Chapter 6   algebraic expressions iiiChapter 6   algebraic expressions iii
Chapter 6 algebraic expressions iiiKhusaini Majid
 
Why is (a+b)2 = a2+b2+2ab
Why is (a+b)2 = a2+b2+2abWhy is (a+b)2 = a2+b2+2ab
Why is (a+b)2 = a2+b2+2abFreshersSite
 
Presentation1[1]
Presentation1[1]Presentation1[1]
Presentation1[1]efratmarco
 
Mc Ex[1].4 Unit 4 Formulae, Polynomials And Algebraic Fractions
Mc Ex[1].4  Unit 4 Formulae, Polynomials And Algebraic FractionsMc Ex[1].4  Unit 4 Formulae, Polynomials And Algebraic Fractions
Mc Ex[1].4 Unit 4 Formulae, Polynomials And Algebraic Fractionsguest9f21a4
 
04 quadratic equations
04   quadratic equations04   quadratic equations
04 quadratic equationsprofashfaq
 

Similar to 567 bdt hay va kho (20)

567 nice and_hard_inequality
567 nice and_hard_inequality567 nice and_hard_inequality
567 nice and_hard_inequality
 
Pythagorean theorem notes
Pythagorean theorem notesPythagorean theorem notes
Pythagorean theorem notes
 
March 9 Quadratic Formula
March 9 Quadratic FormulaMarch 9 Quadratic Formula
March 9 Quadratic Formula
 
March 9 Quadratic Formula
March 9  Quadratic  FormulaMarch 9  Quadratic  Formula
March 9 Quadratic Formula
 
Important maths formulas
Important maths formulasImportant maths formulas
Important maths formulas
 
Unexpected ineq
Unexpected ineqUnexpected ineq
Unexpected ineq
 
Productos notables
Productos notablesProductos notables
Productos notables
 
Algebraic expression Formula .pptx
 Algebraic expression Formula .pptx Algebraic expression Formula .pptx
Algebraic expression Formula .pptx
 
הדגמת משפט פיתגורס
הדגמת משפט פיתגורסהדגמת משפט פיתגורס
הדגמת משפט פיתגורס
 
number theory chandramowliswaran theorem
number theory chandramowliswaran theoremnumber theory chandramowliswaran theorem
number theory chandramowliswaran theorem
 
Chapter 6 algebraic expressions iii
Chapter 6   algebraic expressions iiiChapter 6   algebraic expressions iii
Chapter 6 algebraic expressions iii
 
Why is (a+b)2 = a2+b2+2ab
Why is (a+b)2 = a2+b2+2abWhy is (a+b)2 = a2+b2+2ab
Why is (a+b)2 = a2+b2+2ab
 
Presentation1[1]
Presentation1[1]Presentation1[1]
Presentation1[1]
 
Presentation1
Presentation1Presentation1
Presentation1
 
Mc Ex[1].4 Unit 4 Formulae, Polynomials And Algebraic Fractions
Mc Ex[1].4  Unit 4 Formulae, Polynomials And Algebraic FractionsMc Ex[1].4  Unit 4 Formulae, Polynomials And Algebraic Fractions
Mc Ex[1].4 Unit 4 Formulae, Polynomials And Algebraic Fractions
 
algebraic expressions class viii Hindi version sushma
algebraic expressions class viii Hindi version sushmaalgebraic expressions class viii Hindi version sushma
algebraic expressions class viii Hindi version sushma
 
04 quadratic equations
04   quadratic equations04   quadratic equations
04 quadratic equations
 
Add Maths 1
Add Maths 1Add Maths 1
Add Maths 1
 
Mathematics
MathematicsMathematics
Mathematics
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 

567 bdt hay va kho

  • 1. Nguyen Duy Tung 567 Nice And Hard Inequalities ====================================== ============================================== I
  • 2. This product is created for educational purpose. Please don't use use it for any commecial purpose unless you got the right of the author. Please contact Email:nguyenduytung94@gmail.com P
  • 3. IF —A if a, b, c —re positive re—l num˜ersD then a b c a2 + 1 b2 + 1 c2 + 1 + + ≥ + + . b c a b2 + 1 c2 + 1 a2 + 1 ˜Avet a, b, c, d ˜e positive re—l num˜ersF€rove th—t a2 − bd b2 − ca c2 − db d2 − ac + + + ≥ 0. b + 2c + d c + 2d + a d + 2a + b a + 2b + c SolutionX —Afy g—u™hyEƒ™hw—rz9s inequ—lityD ‡e h—veX a2 + b2 (a2 + 1) (b2 + 1) ≥ a2 + b2 (ab + 1) = ab a2 + b2 + a2 + b2 ≥ ab a2 + b2 + 2 a b a2 + b2 ⇒ + = b a ab a2 + b2 + 2 a2 + 1 b2 + 1 ≥ = + (a2 + 1) (b2 + 1) b2 + 1 a2 + 1 fy ghe˜yshev9s inequ—lityD ‡e h—ve a2 a2 a2 a2 b2 a2 + 1 = + ≥ + = . b2 b2 + 1 b2 (b2 + 1) b2 + 1 b2 (b2 + 1) b2 + 1 „herefore a 2 a b a2 1+ =1+2 + + b b a b2 a2 + 1 b2 + 1 a2 + 1 ≥1+2 + + b2 + 1 a2 + 1 b2 + 1 2 a2 + 1 = 1+ . b2 + 1 „herefore a b c a2 + 1 b2 + 1 c2 + 1 + + ≥ + + b c a b2 + 1 c2 + 1 a2 + 1 —s requireF ˜Axoti™e th—t 2(a2 − bd) 2a2 + b2 + d2 + 2c(b + d) +b+d= b + 2c + d b + 2c + d 2 2 (a − b) + (a − d) + 2(a + c)(b + d) = (1) b + 2c + d end simil—rlyD 2(c2 − db) (c − d)2 + (c − b)2 + 2(a + c)(b + d) +b+d= (2) d + 2a + b d + 2a + b …sing g—u™hyEƒ™hw—rz9s inequ—lityDwe get (a − d)2 (c − d)2 [(a − b)2 + (c − d)2 ] + ≥ (3) b + 2c + d d + 2a + b (b + 2c + d) + (d + 2a + b) Q
  • 4. (a − d)2 (c − b)2 [(a − d)2 + (c − b)2 ]2 + ≥ (4) b + 2c + d d + 2a + b (b + 2c + d) + (d + 2a + b) 2(a + c)(b + d) 2(a + c)(b + d) 8(a + c)(b + d) + ≥ (5) b + 2c + d d + 2a + b (b + 2c + d) + (d + 2a + b) prom @IAD@PAD@QAD@RA —nd @SAD we get a2 − bd c2 − db (a + c − b − d)2 + 4(a + c)(b + d) 2( + )+b+d≥ = a + b + c + d. b + 2c + d d + 2a + b a+b+c+d or a2 − bd c2 − db a+c−b−d + ≥ b + 2c + d d + 2a + b 2 sn the s—me m—nnerDwe ™—n —lso show th—t b2 − ca d2 − ac b+d−a−c + ≥ c + 2d + a a + 2b + c 2 —nd ˜y —dding these two inequ—litiesDwe get the desired resultF inqu—lity holds if —nd only if a = c —nd b = dF PD vet a, b, c ˜e positive re—l num˜ers su™h th—t a+b+c=1 €rove th—t the following inequ—lity holds ab bc ca 3 + + ≤ 1 − c2 1 − a2 1 − b2 8 SolutionX prom the given ™ondition „he inequ—lity is equiv—lent to 4ab 3 ≤ a2 + b2 + 2(ab + bc + ca) 2 ˜ut from g—uhy ƒhw—rz inequ—lity 4ab a2 + b2 + 2(ab + bc + ca) ab ab ≤ + 2 a2 + ab + bc + ca b + ab + bc + ca ab ab = + (a + b)(a + c) (b + c)(a + b) a(b + c)2 = (a + b)(b + c)(c + a) „hus ‡e need prove th—t 3(a + b)(b + c)(c + a) ≥ 2 a(b + c)2 whi™h redu™es to the o˜vious inequ—lity ab(a + b) ≥ 6abc „he Solution is ™ompletedFwith equ—lity if —nd only if 1 a=b=c= 3 R
  • 5. yr ‡e ™—n use the f—™t th—t 4ab 4ab ≤ a2 + b2 + 2(ab + bc + ca) (2ab + 2ac) + (2ab + 2bc) ab ab ≤ + 2a(b + c) 2b(a + c) 1 b a = + 2 b+c a+c 1 b c 3 = + = 2 b+c b+c 2 QD vet a, b, c ˜e the positive re—l num˜ersF €rove th—t ab2 + bc2 + ca2 4. 3 (a2 + ab + bc)(b2 + bc + ca)(c2 + ca + ab) 1+ ≥ (ab + bc + ca)(a + b + c) (a + b + c)2 SolutionX wultiplying ˜oth sides of the —˜ove inequ—lity with (a + b + c)2 it9s equiv—lent to prove th—t (a + b + c)(ab2 + bc2 + ca2 ) (a + b + c)2 + ab + bc + ca ≥ 4. 3 (a2 + ab + bc)(b2 + bc + ca)(c2 + ca + ab) ‡e h—ve (a + b + c)(ab2 + bc2 + ca2 ) (a2 + ab + bc)(c + a)(c + b) (a + b + c)2 + = ab + bc + ca ab + bc + ca fy using ewEqw inequ—lity ‡e get (a2 + ab + bc)(c + a)(c + b) 3 (a2 + ab + bc)(b2 + bc + ca)(c2 + ca + ab)[(a + b)(b + c)(c + a)]2 ≥ 3. ab + bc + ca ab + bc + ca ƒin™e it9s suffi™es to show th—t √ √ 3. 3 (a + b)(b + c)(c + a) ≥ 2. ab + bc + ca whi™h is ™le—rly true ˜y ewEqw inequ—lity —g—inF „he Solution is ™ompletedF iqu—lity holds for a = b = c RD vet a0 , a1 , . . . , an ˜e positive re—l num˜ers su™h th—t ak+1 − ak ≥ 1 for —ll k = 0, 1, . . . , n − 1. €rove th—t 1 1 1 1 1 1 1+ 1+ ··· 1 + ≤ 1+ 1+ ··· 1 + a0 a1 − a0 an − a0 a0 a1 an SolutionX ‡e will prove it ˜y indu™tionF por n = 1 ‡e need to ™he™k th—t 1 1 1 1 1+ 1+ ≤ 1+ 1+ a0 a1 − a0 a0 a1 whi™h is equiv—lent to a0 (a1 − a0 − 1) ≥ 0, whi™h is true ˜y given ™onditionF vet 1 1 1 1 1 1 1+ 1+ ··· 1 + ≤ 1+ 1+ ··· 1 + a0 a1 − a0 ak − a0 a0 a1 ak S
  • 6. it rem—ins to prove th—tX 1 1 1 1+ 1+ ··· 1 + ≤ a0 a1 − a0 ak+1 − a0 1 1 1 ≤ 1+ 1+ ··· 1 + a0 a1 ak+1 fy our hypothesis 1 1 1 1+ 1+ ··· 1 + ≥ a0 a1 ak+1 1 1 1 1 ≥ 1+ 1+ 1+ ··· 1 + ak+1 a0 a1 − a0 ak − a0 id estD it rem—ins to prove th—tX 1 1 1 1 1+ 1+ 1+ ··· 1 + ≥ ak+1 a0 a1 − a0 ak − a0 1 1 1 ≥1+ 1+ ··· 1 + a0 a1 − a0 ak+1 − a0 fut 1 1 1 1 1+ 1+ 1+ ··· 1 + ≥ ak+1 a0 a1 − a0 ak − a0 1 1 1 ≥1+ 1+ ··· 1 + ⇔ a0 a1 − a0 ak+1 − a0 1 1 1 1 ⇔ + 1+ ··· 1 + ≥ ak+1 ak+1 a0 a1 − a0 ak − a0 1 1 1 ≥ 1+ ··· 1 + ⇔ (ak+1 − a0 )a0 a1 − a0 ak − a0 1 1 1 ⇔1≥ 1+ ··· 1 + ak+1 − a0 a1 − a0 ak − a0 fut ˜y our ™onditions ‡e o˜t—inX 1 1 1 1+ ··· 1 + ≤ ak+1 − a0 a1 − a0 ak − a0 1 1 1 ≤ 1+ ··· 1 + = 1. k 1 k−1 „husD the inequ—lity is provenF SD qiven a, b, c > 0F €rove th—t √ 3 3 a2 + bc abc ≥ 9. b2 + c2 (a + b + c) Solution X „his ineq is equiv—lent toX a2 + bc 9 ≥ 3 3 2 abc(a2 + bc) (b2 + c2 ) (a + b + c) fy ewEqw ineq D ‡e h—ve a2 + bc = 3 2 abc(a2 + bc) (b2 + c2 ) T
  • 7. a2 + bc 3(a2 + bc) = ≥ 3 (a2 + bc)c(a2 + bc)b(b2 + c2 )a a2 b sym ƒimil—rlyD this ineq is true if ‡e prove th—tX 3(a2 + b2 + c2 + ab + bc + ca) 9 2b ≥ 3 a (a + b + c) sym a3 + b3 + c3 + 3abc ≥ a2 b sym ‡hi™h is true ˜y ƒ™hur ineqF iqu—lity holds when a = b = c TD vet a, b, c ˜e nonneg—tive re—l num˜ers su™h th—t ab + bc + ca > 0F €rove th—t 1 1 1 2 + + ≥ . 2a2 + bc 2b2 + ca 2c2 + ab ab + bc + ca „he inequ—lity is equiv—lent to ab + bc + ca ≥ 2, (1) 2a2 + bc or a(b + c) bc + ≥ 2.(2) 2a2 + bc bc + 2a2 …sing the g—u™hyEƒ™hw—rz inequ—lityD ‡e h—ve 2 bc ( bc) ≥ = 1.(3) bc + 2a2 bc(bc + 2a2 ) „hereforeD it suffi™es to prove th—t a(b + c) ≥ 1.(4) 2a2 + bc ƒin™e a(b + c) a(b + c) 2 + bc ≥ 2a 2(a2 + bc) it is enough to ™he™k th—t a(b + c) ≥ 2, (5) a2 + bc whi™h is — known resultF ‚em—rkX 2ca + bc 2bc + ca 4c 2 + bc + 2 ≥ . 2a 2b + ca a+b+c UD vet a, b, c ˜e non neg—tive re—l num˜ers su™h th—t ab + bc + ca > 0F €rove th—t 1 1 1 1 12 + 2 + 2 + ≥ . 2a2 + bc 2b + ca 2c + ab ab + bc + ca (a + b + c)2 SolutionX IA ‡e ™—n prove this inequ—lity using the following —uxili—ry result if 0 ≤ a ≤ min{a, b}D then 1 1 4 + ≥ . 2a2 + bc 2b2 + ca (a + b)(a + b + c) U
  • 8. in f—™tD this is used to repl—™ed for 4no two of whi™h —re zero4D so th—t the fr—™tions 1 1 1 1 , , , 2a2 + bc 2b2 + ca 2c2 + ab ab + bc + ca h—ve me—ningsF fesidesD the i—ker —lso works for itX 1 1 1 2(ab + bc + ca) + 2 + 2 ≥ 2a2 + bc 2b + ca 2c + ab a2 b2 + abc(a + b + c) fut our Solution for ˜oth of them is exp—nd vet a, b, c ˜e non neg—tive re—l num˜ers su™h th—t ab + bc + ca > 0F €rove th—t 1 1 1 1 12 + + + ≥ . 2a2 + bc 2b2 + ca 2c2 + ab ab + bc + ca (a + b + c)2 PA gonsider ˜y ewEqw inequ—lityD ‡e h—ve 2 a2 + ab + b2 (a + b + c) = (2b + a) 2a2 + bc + (2a + b) 2b2 + ca ≥2 (2a + b)(2b + a) (2a2 + bc) (2b2 + ca). end ˜y ewEqw inequ—lityD ‡e h—ve c2 (2a + b) c2 (2b + a) + 2a2 + bc 2b2 + ca c4 (2a + b)(2b + a) ≥2 (2a2 + bc) (2b2 + ca) 2c2 (2a + b)(2b + a) ≥ (a2 + ab + b2 ) (a + b + c) 4c2 6abc c = + a+b+c a+b+c a2 + ab + b2 2c2 a + bc2 + 2ab2 + b2 c 2a2 + bc c2 (2a + b) c2 (2b + a) = + 2a2 + bc 2b2 + ca 4c2 6abc c ≥ + a+b+c a+b+c a2 + ab + b2 4 a2 + b2 + c2 6abc c = + a+b+c a+b+c a2 + ab + b2 4 a2 + b2 + c2 6abc (a + b + c)2 ≥ + a+b+c a+b+c c (a2 + ab + b2 ) 4 a2 + b2 + c2 6abc = + ab + c ab + bc + ca 2a2 b + 2ab2 + 2b2 c + 2bc2 + 2c2 a + 2ca2 ⇒ 2a2 + bc V
  • 9. 2c2 a + bc2 + 2ab2 + b2 c = (b + c) + 2a2 + bc 4 a2 + b2 + c2 6abc ≥ (b + c) + + a+b+c ab + bc + ca 8 a2 + b2 + c2 + ab + bc + ca 2 a2 b + ab2 = − a+b+c ab + bc + ca 1 1 ⇒ + 2a2 + bc ab + bc + ca 4 a2 + b2 + c2 + ab + bc + ca ≥ (a + b + c) ( (a2 b + ab2 )) 12 ≥ . (a + b + c)2 (a + b)(a + c) a2 + bc 12(ab + bc + ca) <=> + −2≥ 2a2 + bc 2a2 + bc (a + b + c)2 prom 2a2 + 2bc bc 2 + bc −3= 2 ≥1 2a 2a + bc ‡e get a2 + bc −2≥0 2a2 + bc xowD ‡e will prove the stronger (a + b)(a + c) 12(ab + bc + ca) 2 + bc ≥ 2a (a + b + c)2 prom ™—u™hyEs™h—rztD ‡e h—ve (a + b)(a + c) 1 3(a + b)(b + c)(c + a) = (a+b)(b+c)(c+a)( ≥ 2a2 + bc (2a2 + bc)(b + c) ab(a + b) + bc(b + c) + ca(c + a) pin—llyD ‡e only need to prove th—t (a + b)(b + c)(c + a) 4(ab + bc + ca) ≥ ab(a + b) + bc(b + c) + ca(c + a) (a + b + c)2 (a + b + c)2 4[ab(a + b) + bc(b + c) + ca(c + a) 8abc ≥ =4− ab + bc + ca (a + b)(b + c)(c + a) (a + b)(b + c)(c + a) a2 + b2 + c2 8abc + ≥2 ab + bc + ca (a + b)(b + c)(c + a) whi™h is old pro˜lemF yur Solution —re ™ompleted equ—lity o™™ur if —nd if only a = b = c, a = b, c = 0 or —ny ™y™li™ permutionF VD vet a, b, c ˜e positive re—l num˜ers su™h th—t 16(a + b + c) ≥ 1 a + 1 b + 1 F €rove th—t c 1 8 3 ≤ . 9 a+b+ 2(a + c) SolutionX „his pro˜lem is r—ther e—syF …sing the ewEqw inequ—lityD ‡e h—veX c+a c+a 3 (a + b)(c + a) a+b+ 2(c + a) = a + b + + ≥3 . 2 2 2 W
  • 10. ƒo th—tX 1 2 3 ≤ . 27(a + b)(c + a) a+b+ 2(c + a) „husD it9s enough to ™he™k th—tX 1 ≤ 4 ⇐⇒ 6(a + b)(b + c)(c + a) ≥ a + b + c, 3(a + b)(c + a) whi™h is true sin™e 9(a + b)(b + c)(c + a) ≥ 8(a + b + c)(ab + bc + ca) —nd 16(ab + bc + ca)2 3 16abc(a + b + c) ≥ ab + bc + ca ⇒ ≥ ab + bc + ca ⇐⇒ ab + bc + ca ≥ . 3 16 „he Solution is ™ompletedF iqu—lity holds if —nd only if a = b = c = 4 F 1 WD vet x, y, z ˜e positive re—l num˜ers su™h th—t xyz = 1F €rove th—t x3 + 1 y3 + 1 z3 + 1 √ + + ≥ 2 xy + yz + zx. x4 + y + z y4 + z + x z4 + x + y SolutionX …sing the ewEqw inequ—lityD ‡e h—ve 2 (x4 + y + z)(xy + yz + zx) = 2 [x4 + xyz(y + z)](xy + yz + zx) = 2 (x3 + y 2 z + yz 2 )(x2 y + x2 z + xyz) ≤ (x3 + y 2 z + yz 2 ) + (x2 y + x2 z + xyz) (x + y + z)(x3 + 1) = (x + y + z)(x2 + yz) = . x it follows th—t √ x3 + 1 2x xy + yz + zx ≥ . x4 + y + z x+y+z edding this —nd it —n—logous inequ—litiesD the result followsF √ IHD vet a, b, c ˜e nonneg—tive re—l num˜ers s—tisfying a + b + c = 5F €rove th—t √ (a2 − b2 )(b2 − c2 )(c2 − a2 ) ≤ 5 SolutionX por this oneD ‡e ™—n —ssume ‡vyq th—t c ≥ b ≥ a so th—t ‡e h—ve P = (a2 − b2 )(b2 − c2 )(c2 − a2 ) = (c2 − b2 )(c2 − a2 )(b2 − a2 ) ≤ b2 c2 (c2 − b2 ). √ elso note th—t 5 = a + b + c ≥ b + c sin™e a ≥ 0F xowD using the ewEqw inequ—lity ‡e h—ve √ 2 √ 2 5 5 (c + b) · −1 ·c · + 1 b · (c − b) 2 2 √ 5 5(b + c) √ ≤ (c + b) ≤ 5; 5 √ ƒo th—t ‡e get P ≤ 5F end hen™e ‡e —re doneF iqu—lity holds if —nd only if (a, b, c) = √ √ 2 + 1; 2 − 1; 0 —nd —ll its ™y™li™ permut—tionsF 2 5 5 IH
  • 11. IID vet a, b, c > 0 —nd a + b + c = 3F €rove th—t 1 1 1 3 2 + b2 + 2 + c2 + 2 + a2 ≤ 3+a 3+b 3+c 5 SolutionX ‡e h—veX 1 1 1 3 + + ≤ 3 + a2 + b2 3 + b2 + c2 3 + c2 + a2 5 3 3 3 9 <=> + + ≤ 3 + a2 + b2 3 + b2 + c2 3 + c2 + a 2 5 a2 + b2 6 ≥ 3 + a2 + b2 5 …sing g—u™hyEƒ™hw—rz9s inequ—lityX a2 + b2 ( 3 + a2 + b2 ) ≥ ( a2 + b2 )2 3 + a2 + b2 „h—t me—ns ‡e h—ve to prove 6 ( a2 + b2 )2 ≥ ( (3 + a2 + b2 )) 5 54 12 (a2 + b2 ) + 2 (a2 + b2 )(a2 + c2 ) ≥ + a2 5 5 8 a2 + 10 ab ≥ 54 <=> 5(a + b + c)2 + 3 a2 ≥ 54 it is true with a + b + c = 3F IPD qiven a, b, c > 0 su™h th—t ab + bc + ca = 1F €rove th—t 1 1 1 + + ≥1 4a2 − bc + 1 4b2 − ca + 1 4c2 − ab + 1 SolutionX in f—™tD the sh—rper inequ—lity holds 1 1 1 3 + + ≥ . 4a2 − bc + 1 4b2 − ca + 1 4c2 − ab + 1 2 „he inequ—lity is equiv—lent to 1 1 1 3 + + ≥ . a(4a + b + c) b(4b + c + a) c(4c + a + b) 2 …sing the g—u™hyEƒ™hw—rz inequ—lityD ‡e h—ve 2 1 4a + b + c 1 1 ≥ = . a(4a + b + c) a a a2 b2 c2 „hereforeD it suffi™es to prove th—t 2 4a + b + c 4b + c + a 4c + a + b ≥ + + . 3a2 b2 c2 a b c ƒin™e 4a + b + c a+b+c (a + b + c)(ab + bc + ca) = 3+ =9+ a a abc a+b+c =9+ , abc II
  • 12. this inequ—lity ™—n ˜e written —s 2 9a2 b2 c2 + abc(a + b + c) ≤ , 3 whi™h is true ˜e™—use 3 ab + bc + ca 1 a2 b2 c2 ≤ = , 3 27 —nd (ab + bc + ca)2 1 abc(a + b + c) ≤ = . 3 3 IQD qiven a, b, c ≥ 0 su™h th—t ab + bc + ca = 1F €rove th—t 1 1 1 + + ≥1 4a2 − bc + 2 4b2 − ca + 2 4c2 − ab + 2 SolutionX xoti™e th—t the ™—se abc = 0 is trivi—l so let us ™onsider now th—t abc > 0F …sing the ewEqw inequ—lityD ‡e h—ve [c(2a + b) + b(2a + c)]2 4a2 − bc + 2(ab + bc + ca) = (2a + b)(2a + c) ≤ 4bc (ab + bc + ca)2 1 = = . bc bc it follows th—t 1 ≥ bc. 4a2 − bc + 2 edding this —nd its —n—logous inequ—litiesD ‡e get the desired resultF IRD qiven a, b, c —re positive re—l num˜ersF €rove th—t 1 1 1 1 1 1 9 ( + + )( + + )≥ . a b c 1+a 1+b 1+c 1 + abc SolutionX „he origin—l inequ—lity is equiv—lent to abc + 1 abc + 1 abc + 1 1 1 1 + + + + ≥9 a b c a+1 b+1 c+1 or 1 + a2 c 1 1 1 + + ≥9 cyc a a+1 b+1 c+1 fy g—u™hy ƒ™hw—rz ineq —nd ewEqw ineqD 1 + a2 c c(1 + a)2 ≥ ≥ 3 3 (1 + a)(1 + b)(1 + c) cyc a cyc a(1 + c) —nd 1 1 1 3 + + ≥ a+1 b+1 c+1 3 (1 + a)(1 + b)(1 + c) wultiplying these two inequ—litiesD the ™on™lusion followsF iqu—lity holds if —nd only if a = b = c = 1F ISF qiven a, b, c —re positive re—l num˜ersF €rove th—tX 3 a(b + 1) + b(c + 1) + c(a + 1) ≤ (a + 1)(b + 1)(c + 1) 2 IP
  • 13. SolutionX g—seIFif a + b + c + ab + bc + ca ≤ 3abc + 3 <=> 4(ab + bc + ca + a + b + c) ≤ 3(a + 1)(b + 1)(c + 1) …sing g—u™hyEƒ™h—wrz9s inequ—lity D‡e h—veX 9(a + 1)(b + 1)(c + 1) ( a(b + 1) + b(c + 1) + c(a + 1))2 ≤ 3(ab + bc + ca + a + b + c) ≤ 4 „he inequ—lity is trueF g—sePF ifa + b + c + ab + bc + ca ≤ 3abc + 3. 9(a + 1)(b + 1)(c + 1) <=> ≥ 2(a + b + c + ab + bc + ca) + 3abc + 3 4 fy ewEqw9s inequ—lity X 2 ab(b + 1)(c + 1) ≤ [ab(c + 1) + (b + 1)] = a + b + c + ab + bc + ca + 3abc + 3 9 => ab + bc + ca + a + b + c + 2 ab(b + 1)(c + 1) ≤ 4(a + 1)(b + 1)(c + 1) 3 => ( a(b + 1) + b(c + 1) + c(a + 1))2 ≤ [ (a + 1)(b + 1)(c + 1)]2 2 => Q.E.D inqu—lity holds when a = b = c = 1. ITD qiven a, b, c —re positive re—l num˜ersF €rove th—tX 1 1 1 10 + 2 + 2 ≥ a2 + b2 b + c2 c + a2 (a + b + c)2 SolutionX essume c = min{a, b, c}F „hen 1 1 2 + 2 ≥ ⇐⇒ (ab − c2 )(a − b)2 ≥ 0 a2 +c 2 b +c 2 ab + c2 end ˜y g—u™hyEs™hw—rz 1 2 ((a2 + b2 ) + 8(ab + c2 )) + ≥ 25 a2 + b2 ab + c2 ren™e ‡e need only to proveX 5(a + b + c)2 ≥ 2((a2 + b2 ) + 8(ab + c2 )) ⇐⇒ 3(a − b)2 + c(10b + 10a − 11c) ≥ 0 iqu—lity for a = b, c = 0 or permut—tionsF IUD vet a, b —nd c —re nonEneg—tive num˜ers su™h th—t ab + ac + bc = 0F €rove th—t a2 (b + c)2 b2 (a + c)2 c2 (a + b)2 + 2 + 2 ≤ a2 + b2 + c2 a2 + 3bc b + 3ac c + 3ab Solution: fy g—u™hyEƒ™hw—rz ineq D ‡e h—ve 2 3 3 a2 (b + c) a2 (b + c) a2 (b + c) 2 + bc = 2 = 2 + c2 ) + c(a2 + b2 ) a (a + bc)(b + c) b(a a2 (b + c) b2 c2 a2 (b + c) b c ≤ ( 2 2) + 2 + b2 ) )= ( 2 2 + 2 ) 4 b(a + c c(a 4 a +c a + b2 ƒimil—rlyD ‡e h—ve b c c(a2 (b + c) + b2 (c + a)) LHS ≤ a2 (b + c)( 2 + c2 + 2 )= a a + b2 a2 + b2 IQ
  • 14. abc(a + b) abc(a + b) = a2 + b2 + c2 + ≤ a2 + b2 + c2 + ≤ a2 + b2 + c2 + ab + bc + ca a2 + b2 a2 + b2 whi™h is true ˜y ewEqw ineq „he origin—l inequ—lity ™—n ˜e written —s (a + b)2 (a + c)2 8 ≤ (a + b + c)2 . a2 + bc 3 ƒin™e (a + b)(a + c) = (a2 + bc) + a(b + c) ‡e h—ve (a + b)2 (a + c)2 (a2 + bc)2 + 2a(b + c)(a2 + bc) + a2 (b + c)2 = a2 + bc a2 + bc a2 (b + c)2 = a2 + bc + 2a(b + c) + 2 , a + bc —nd thus the —˜ove inequ—lity is equiv—lent to a2 (b + c)2 8 ≤ (a + b + c)2 − a2 − 5 ab, a2 + bc 3 or a2 (b + c)2 5(a2 + b2 + c2 ) + ab + bc + ca 2 + bc ≤ . a 3 ƒin™e 5(a2 + b2 + c2 ) + ab + bc + ca ≥ a2 + b2 + c2 + ab + bc + ca 3 it is enough show th—t a2 (b + c)2 ≤ a2 + b2 + c2 + ab + bc + ca. a2 + bc FiFh IVD qiven a1 ≥ a2 ≥ . . . ≥ an ≥ 0, b1 ≥ b2 ≥ . . . ≥ bn ≥ 0 n n ai = 1 = bi i=1 i=1 pind the m—xmium of n (ai − bi )2 i=1 ‡SolutionXithout loss of gener—lityD —ssume th—t a1 ≥ b1 xoti™e th—t for a ≥ x ≥ 0, b, y ≥ 0 ‡e h—ve (a − x)2 + (b − y)2 − (a + b − x)2 − y 2 = −2b(a − x + y) ≤ 0. e™™ording to this inequ—lityD ‡e h—ve (a1 − b1 )2 + (a2 − b2 )2 ≤ (a1 + a2 − b1 )2 + b2 , 2 (a1 + a2 − b1 )2 + (a3 − b3 )2 ≤ (a1 + a2 + a3 − b1 )2 + b2 , · · · · · · 3 IR
  • 15. (a1 + a2 + · · · + an−1 − b1 )2 + (an − bn )2 ≤ (a1 + a2 + · · · + an − b1 )2 + b2 . n edding these inequ—litiesD ‡e get n (ai − bi )2 ≤ (1 − b1 )2 + b2 + b2 + · · · + b2 2 3 n i=1 ≤ (1 − b1 )2 + b1 (b2 + b3 + · · · + bn ) 1 = (1 − b1 )2 + b1 (1 − b1 ) = 1 − b1 ≤ 1 − . n iqu—lity holds for ex—mple when a1 = 1, a2 = a3 = · · · = an = 0 —nd 1 b1 = b2 = · · · = bn = n IWD qiven a, b, c ≥ 0 su™h th—t a2 + b2 + c2 = 1 €rove th—t 1 − ab 1 − bc 1 − ca 1 + + ≥ 7 − 3ac 7 − 3ba 7 − 3cb 3 SolutionX pirstD ‡e will show th—t 1 1 1 1 + + ≤ . 7 − 3ab 7 − 3bc 7 − 3ca 2 …sing the g—u™hyEƒ™hw—rz inequ—lityD ‡e h—ve 1 1 1 1 = ≤ +1 . 7 − 3ab 3(1 − ab) + 4 9 3(1 − ab) it follows th—t 1 1 1 1 ≤ + , 7 − 3ab 27 1 − ab 3 —nd thusD it is enough to show th—t 1 1 1 9 + + ≤ , 1 − ab 1 − bc 1 − ca 2 whi™h is †—s™9s inequ—lityF xowD ‡e write the origin—l inequ—lity —s 3 − 3ab 3 − 3bc 3 − 3ca + + ≥ 1, 7 − 3ac 7 − 3ba 7 − 3cb or 7 − 3ab 7 − 3bc 7 − 3ca 1 1 1 + + ≥1+4 + + . 7 − 3ac 7 − 3ba 7 − 3cb 7 − 3ab 7 − 3bc 7 − 3ca ƒin™e 1 1 1 4 + + ≤2 7 − 3ab 7 − 3bc 7 − 3ca IS
  • 16. it is enough to show th—t 7 − 3ab 7 − 3bc 7 − 3ca + + ≥ 3, 7 − 3ac 7 − 3ba 7 − 3cb whi™h is true —™™ording to the ewEqw inequ—lityF PID vet a, b, c ≥ 0 su™h th—t a+b+c>0 —nd b + c ≥ 2a por x, y, z > 0 su™h th—t xyz = 1 €rove th—t the following inequ—lity holds 1 1 1 3 + + ≥ a + x2 (by + cz) a + y 2 (bz + cx) a + z 2 (bx + cy) a+b+c SolutionX ƒetting 1 1 u= ,v = x y —nd 1 w= z —nd using the ™ondition uvw = 1 the inequ—lity ™—n ˜e rewritten —s u u2 3 = F au + cv + bw au2 + cuv + bwu a+b+c epplying g—u™hyD it suffi™es to prove 2 (u + v + w) 3 a u2 + (b + c) uv a+b+c 1 · (b + c − 2a) (x − y)2 0D 2 whi™h is o˜vious due to the ™ondition for a, b, c PPD qiven x, y, z > 0 su™h th—t xyz = 1 IT
  • 17. €rove th—t 1 1 1 3 + + ≥ (1 + x2 )(1 + x7 ) (1 + y 2 )(1 + y7 ) (1 + z 2 )(1 + z7) 4 SolutionX pirst ‡e prove this ineq e—sy 1 3 ≥ 9 (1 + x2 )(1 + x7 ) 4(x9 + x 2 + 1) end this ineq ˜e™—meX 1 1 1 9 + 9 + 9 ≥1 x9 +x +1 2 y9 +y +1 2 z9 + z2 + 1 with xyz = 1 it9s —n old result PQD vet a, b, c ˜e positive re—l num˜ers su™h th—t 3(a2 + b2 + c2 ) + ab + bc + ca = 12 €rove th—t a b c 3 √ +√ +√ ≤√ . a+b b+c c+a 2 SolutionX vet A = a2 + b2 + c2 , B = ab + bc + ca 3 2A + B = 2 a2 + ab ≤ 3 a2 + ab = 9. 4 fy g—u™hy ƒ™hw—rz inequ—lityD ‡e h—ve a √ a √ = a a+b a+b √ a ≤ a+b+c . a+b fy g—u™hy ƒ™hw—rz inequ—lity —g—inD ‡e h—ve b b2 = a+b b(a + b) (a + b + c)2 ≥ b(a + b) A + 2B = A+B a b A + 2B 2A + B =3− ≤3− = a+b a+b A+B A+B hen™eD it suffi™es to prove th—t 2A + B 9 (a + b + c) · ≤ A+B 2 IU
  • 18. gonsider √ (a + b + c) 2A + B = (A + 2B) (2A + B) (A + 2B) + (2A + B) ≤ 2 3 = (A + B) 2 2A + B 3√ 9 ⇒ (a + b + c) · ≤ 2A + B ≤ A+B 2 2 —s requireF fy ewEqw ineq e—sy to see th—t 3 ≤ a2 + b2 + c2 ≤ 4 fy g—u™hyEƒ™hw—rz ineqD ‡e h—ve √ 2 a a+c a LHS = ( ) ≤ (a2 + b2 + c2 + ab + bc + ca)( ) (a + b)(a + c) (a + b)(a + c) …sing the f—mili—r ineq 9(a + b)(b + c)(c + a) ≥ 8(a + b + c)(ab + bc + ca) ‡e h—ve a 2(ab + bc + ca) 9 = ≤ (a + b)(a + c) (a + b)(b + c)(c + a) 4(a + b + c) end ‡e need to prove th—t 9(a2 + b2 + c2 + ab + bc + ca) 9 6 − (a2 + b2 + c2 ) ≤ ⇔ ≤1 4(a + b + c) 2 24 − 5(a2 + b2 + c2 ) ⇔ (6 − (a2 + b2 + c2 ))2 ≤ 24 − 5(a2 + b2 + c2 ) ⇔ (3 − (a2 + b2 + c2 ))(4 − (a2 + b2 + c2 )) ≤ 0 ‡hi™h is true ‡e —re done equ—lity holds when a=b=c=1 PRF qiven a, b, c ≥ 0 €rove th—t 1 8(a + b + c)2 ≤ (a2 + bc)(b + c)2 3(a + b)2 (b + c)2 (c + a)2 SolutionX in f—™tD the sh—rper —nd ni™er inequ—lity holdsX a2 (b + c)2 b2 (c + a)2 c2 (a + b)2 + 2 + 2 ≤ a2 + b2 + c2 + ab + bc + ca. a2 + bc b + ca c + ab a2 (b + c)2 b2 (c + a)2 c2 (a + b)2 + 2 + 2 ≤ a2 + b2 + c2 + ab + bc + ca a2 + bc b + ca c + ab IV
  • 19. PSF qiven a, b, c ≥ 0 su™h th—t ab + bc + ca = 1 €rove th—t 1 1 1 9 8 2 + 8 2 + 8 2 ≥ 5a + bc 5 b + ca 5 c + ab 4 essume ‡vyq a≥b≥c this ineq 1 5 1 5 1 8 2 − + 8 2 − + 8 2 −1≥0 5a + bc 8 5 b + ca 8 5 c + ab 8 8 − 8a2 − 5bc 8 − 8b2 − 5ca 1 − 5 c2 − ab + + ≥0 8a2 + 5bc 8b2 + 5ca c2 + 8 ab 5 8 8a(b + c − a) + 3bc 8b(a + c − b) + 5ac c(a + b − 5 c) + + ≥0 8a2 + 5bc 8b2 + 5ca c2 + 8 ab 5 xoti™e th—t ‡e only need to prove this ineq when a≥b+c ˜y the w—y ‡e need to prove th—t 8b 8a ≥ 2 8b2 + 5ca 8a + 5bc (a − b)(8ab − 5ac − 5bc) ≥ 0 i—sy to see th—tX if a≥b+c then 8ab = 5ab + 3ab ≥ 5ac + 6bc ≥ 5ac + 5ac ƒo this ineq is trueD ‡e h—ve qFdFe D equ—lity hold when (a, b, c) = (1, 1, 0) PTD qive a, b, c ≥ 0 €rove th—tX a b c a+b+c abc(a + b + c) + 2 + 2 ≥ + 3 b2 +c2 a +c 2 a +b 2 ab + bc + ca (a + b3 + c3 )(ab + bc + ca) a a2 = b2 + c2 ab2 + c2 a (a + b + c)2 ≥ , (ab2 + c2 a) it suffi™es to prove th—t a+b+c 1 abc ≥ + , (ab2 + c2 a) ab + bc + ca (ab + bc + ca) (a3 + b3 + c3 ) IW
  • 20. ˜e™—use a+b+c 1 2 + c2 a) − (ab ab + bc + ca 3abc = , (ab + bc + ca) (ab2 + ca2 ) it suffi™es to prove th—t 3 a3 + b3 + c3 ≥ ab2 + c2 a , whi™h is true ˜e™—use 2 a3 + b3 + c3 ≥ ab2 + c2 a . ‚em—rkX a b c a+b+c 3abc(a + b + c) + 2 + 2 ≥ + . b2 + c2 c + a2 a + b2 ab + bc + ca 2(a3 + b3 + c3 )(ab + bc + ca) qive a, b, c ≥ 0 €rove th—t 1 1 1 3 81a2 b2 c2 + 2 + 2 ≥ + a2 + bc b + ca c + ab ab + bc + ca 2(a2 + b2 + c2 )4 iqu—lity o™™ur if —nd if only a = b = c, a = b, c = 0 or —ny ™y™li™ permutionF it is true ˜e™—use (1) 1 1 1 3 a2 + b2 + c2 + 2 + 2 ≥ 3 a2 + bc b + ca c + ab a b + ab3 + b3 c + bc3 + c3 a + ca3 —nd 3 a2 + b2 + c2 3 81a2 b2 c2 (2) ≥ + . a3 b + ab3 + b3 c + bc3 + c3 a + ca3 ab + bc + ca 2(a2 + b2 + c2 )4 fe™—use a2 1 − (a3 b + ab3 ) ab + bc + ca abc(a + b + c) = , (ab + bc + ca) ( (a3 b + ab3 )) it suffi™es to prove th—t 4 2(a + b + c) a2 + b2 + c2 ≥ 27abc(ab + bc + ca) a3 b + ab3 , whi™h is true ˜e™—use (a) (a + b + c) a2 + b2 + c2 ≥ 9abc, (b) a2 + b2 + c2 ≥ ab + bc + ca, 2 (c) 2 a2 + b2 + c2 ≥3 a3 b + ab3 , whi™h (c) PH
  • 21. is equiv—lent to a2 − ab + b2 (a − b)2 ≥ 0, whi™h is trueF PUD vet a, b, c ˜e nonneg—tive num˜ersD no two of whi™h —re zeroF €rove th—t a2 (b + c) b2 (c + a) c2 (a + b) 2(a2 + b2 + c2 ) + 2 + 2 . b2 + bc + c2 c + ca + a2 a + ab + b2 a+b+c SolutionX a2 (b + c) b2 + bc + c2 4a2 (b + c)(ab + bc + ca) = (b2+ bc + c2 ) (ab + bc + ca) 4a2 (b + c)(ab + bc + ca) ≥ 2 (b2 + bc + c2 + ab + bc + ca) 4a2 (ab + bc + ca) = , (b + c)(a + b + c)2 it suffi™es to prove a2 (a + b + c) a2 + b2 + c2 ≥ , b+c 2(ab + bc + ca) or a2 (a + b + c)3 +a ≥ , b+c 2(ab + bc + ca) or a (a + b + c)2 ≥ , b+c 2(ab + bc + ca) whi™h is true ˜y g—u™hyEƒ™hw—rz inequ—lity a a2 = b+c a(b + c) (a + b + c)2 ≥ . 2(ab + bc + ca) ‡e just w—nt to give — little note hereF xoti™e th—t a2 (b + c) a(b + c) a(b + c)(a2 + b2 + c2 + ab + bc + ca) + = , b2 + bc + c 2 a+b+c (b2 + bc + c2 )(a + b + c) —nd 2(a2 + b2 + c2 ) a(b + c) 2(a2 + b2 + c2 + ab + bc + ca) + = . a+b+c a+b+c a+b+c „hereforeD the inequ—lity ™—n ˜e written in the form a(b + c) b(c + a) c(a + b) + 2 + 2 ≥ 2, b2 + bc + c 2 c + ca + a 2 a + ab + b2 xote th—t a(b + c) 4a(b + c)(ab + bc + ca) 4a(ab + bc + ca) = . cyc b2 + bc + c2 cyc 4(b2 + bc + c2 )(ab + bc + ca) cyc (b + c)(a + b + c)2 PI
  • 22. ƒo th—t ‡e h—ve to proveX 4a(ab + bc + ca) 2, cyc (b + c)(a + b + c)2 or a (a + b + c)2 , cyc b+c 2(ab + bc + ca) whi™h is o˜viously true due to the g—u™hyEƒ™hw—rz inequ—lityF „his is —nother new SolutionF pirstD ‡e will prove th—t ab(a + b) + bc(b + c) + ca(c + a) (a2 + ac + c2 )(b2 + bc + c2 ) ≤ .(1) a+b indeedD using the g—u™hyEƒ™hw—rz inequ—lityD ‡e h—ve √ √ ac · bc + a2 + ac + c2 · b2 + bc + c2 ≤ (ac + a2 + ac + c2 )(bc + b2 + bc + c2 ) = (a + c)(b + c). it follows th—t √ 2ab (a2 + ac + c2 )(b2 + bc + c2 ) ≤ ab + c2 + c a + b − ab ≤ ab + c2 + c a + b − a+b ab(a + b) + bc(b + c) + ca(c + a) = . a+b xowD from @IAD using the ewEqw inequ—lityD ‡e get 1 1 2 + 2 ≥ a2 + ac + c2 b + bc + c2 (a2 + ac + c2 )(b2 + bc + c2 ) (2) 2(a + b) ≥ . ab(a + b) + bc(b + c) + ca(c + a) prom (2) ‡e h—ve a(b + c) 1 1 = ab + 2 b2 + bc + c2 a2 + ac + c 2 b + bc + c2 2ab(a + b) ≥ = 2. ab(a + b) + bc(b + c) + ca(c + a) PWD if a, b, c > 0 then the following inequ—lity holdsX a2 (b + c) b2 (c + a) c2 (a + b) a3 + b3 + c3 + 2 + 2 ≥2 b2 + bc + c2 c + ca + a2 a + ab + b2 a+b+c „his inequ—lity is equiv—lent to a2 (b + c)(a + b + c) ≥2 (a3 + b3 + c3 ) (a + b + c) b2 + bc + c2 or a2 (ab + bc + ca) a2 + ≥2 (a3 + b3 + c3 ) (a + b + c), b2 + bc + c2 PP
  • 23. ˜e™—use a3 + b3 + c3 (a + b + c) 2 (a3 + b3 + c3 ) (a + b + c) ≤ a2 + b2 + c2 + , a2 + b2 + c2 it suffi™es to prove th—t a2 a3 + b3 + c3 (a + b + c) ≥ 2 , b2 + bc + c2 (a + b2 + c2 ) (ab + bc + ca) ˜y g—u™hyEƒ™hw—rz inequ—lityD ‡e h—ve 2 2 a2 a2 + b2 + c2 a2 + b2 + c2 2 + bc + c2 ≥ 2 (b2 + bc + c2 ) = , b a 2 a2 b2 + a2 bc it suffi™es to prove th—t 3 a2 + b2 + c2 (ab + bc + ca) ≥ a3 + b3 + c3 (a + b + c) 2 a2 b2 + a2 bc . vet 1 A= a4 , B = a3 b + ab3 , C = a2 b2 , D = a2 bc, 2 ‡e h—ve 2 a2 + b2 + c2 = A + 2C, a2 + b2 + c2 (ab + bc + ca) = 2B + D, a3 + b3 + c3 (a + b + c) = A + 2B, —nd 2 a2 b2 + a2 bc = 2C + D. „hereforeD it suffi™es to prove th—t (A + 2C) (2B + D) ≥ (A + 2B) (2C + D) , or 2 (A − D) (B − C) ≥ 0, whi™h is true ˜e™—use A≥D —nd B≥C QHD qiven a, b, c ≥ 0 su™h th—t a+b+c=1 €rove th—t 2 a2 b + b2 c + c2 a + ab + bc + ca ≤ 1 ‚ewrite the inform inequ—lity —s 2 a2 b + b2 c + c2 a + ab + bc + ca ≤ (a + b + c)2 PQ
  • 24. 2 (a2 b + b2 c + c2 a) (a + b + c) ≤ a2 + b2 + c2 + ab + bc + ca essume th—t ˜ is the num˜er ˜etien — —nd ™F „henD ˜y —pplying the ewEqw inequ—lityD ‡e get a2 b + b2 c + c2 a 2 (a2 b + b2 c + c2 a) (a + b + c) ≤ + b(a + b + c) b it is thus suffi™ient to prove the stronger inequ—lity a2 b + b2 c + c2 a a2 + b2 + c2 + ab + bc + ca ≥ + b(a + b + c) b „his inequ—lity is equiv—lent to c(a − b)(b − c) ≥ 0, b whi™h is o˜viously true —™™ording to the —ssumption of b row to prove a4 + 2 a3 c ≥ a2 b2 + 2 a3 b only ˜y ewEqw iquiv—lent to prove (a − b)2 (a + b)2 ≥ 4(a − b)(b − c)(a − c)(a + b + c) ‡vyq ‡e ™—n —ssume th—t a ≥ b ≥ c, a − b = x, b − c = y then ‡e need to prove th—t x2 (2c + 2y + x)2 + y 2 (2c + y)2 + (x + y)2 (2c + x + y)2 ≥ xy(x + y)(3c + 2x + y) ˜y (x + y)4 ≥ xy(x + y)(x + 2y) —nd (x + y)3 ≥ 3xy(x + y) ‡e h—ve ™ompleted the Solution QID vet a, b, c ˜e positive num˜ers su™h th—t a2 b2 + b2 c2 + c2 a2 ≥ a2 b2 c2 pind the minimum of e a2 b2 b2 c2 c2 a2 A= + 3 2 + 3 2 c3 (a2 + b2 ) a (b + c2 ) b (c + a2 ) xo one like this pro˜lemc ƒetting 1 1 1 x= ,y = ,z = a b c PR
  • 25. ‡e h—ve x2 + y 2 + z 2 ≥ 1 ‡e will prove th—t √ x3 y3 z3 3 + 2 + 2 ≥ y2 + z2 x + z2 x + y2 2 …sing g—u™hyEƒ™hw—rzX (x2 + y 2 + z 2 )2 LHS ≥ x(y 2 + z2) + y(x2 + z 2 ) + z(x2 + y 2 ) fy ewEqw ‡e h—veX 2 2 2 2 2 x(y 2 +z 2 )+y(x2 +z 2 )+z(x2 +y 2 ) ≤ (x +y +z )(x+y+z) ≤ √ (x2 +y 2 +z 2 ) x2 + y 2 + z 2 3 3 fe™—use x2 + y 2 + z 2 ≥ 1 ƒo √ (x2 + y 2 + z 2 )2 3 2 ≥ √ (x2 + y 2 + z 2 ) x2 + y 2 + z 2 2 3 ‡e done3 QPF vet xDyDz ˜e non neg—tive re—l num˜ers su™h th—t x2 + y 2 + z 2 = 1 F find the minimum —nd m—ximum of f = x + y + z − xyz. Solution IF √ √ pirst ‡e fix z —nd let m = x+y = x+ 1 − x2 − z 2 = g(x)(0 ≤ x ≤ 1 − z 2 ), then ‡e h—ve x g (x) = 1 − √ , 1 − x2 − z 2 ‡e get 1 − z2 g (x) > 0 ⇔ 0 ≤ x < 2 —nd 1 − z2 g (x) < 0 ⇔ <x≤ 1 − z2, 2 so ‡e h—ve mmin = min{g(0), g( 1 − z 2 )} = 1 − z2 —nd 1 − z2 mmax = g = 2 − 2z 2 . 2 e™tu—llyD f —nd written —s z z f = f (m) = − m2 + m + 1 − z 2 + z, 2 2 e—sy to prove th—t the —xis of symmetry 1 m= > 2 − 2z 2 z PS
  • 26. so f (m) is in™re—sing in the interv—l of mD thusD ‡e h—ve f (m) ≥ f ( 1 − z 2 ) = 1 − z2 + z —nd z3 z f (m) ≤ f ( 2 − 2z 2 ) = + + 2 − 2z 2 . 2 2 ƒin™e ( 1 − z 2 + z)2 = 1 + 2z 1 − z2 ≥ 1 ‡e get f (m) ≥ 1 —nd when two of xDyDz —re zero ‡e h—ve f = 1, soW egetfmin = 1. vet z3 z h(z) = + + 2 − 2z 2 , 2 2 e—sy to prove th—t 1 1 h (z) > 0 ⇔ 0 ≤ z < √ andh (z) < 0 ⇔ √ < z ≤ 1 3 3 then ‡e get √ 1 8 3 f (m) ≤ h √ = , 3 9 √ √ 1 8 3 8 3 when x = y = z = √ W ehavef = D so ‡e getfmax = . 3 9 9 honeF Solution PF ‡hen two of xDyDz —re zero ‡e h—vef = 1D —nd ‡e will prove th—t f ≥ 1 then ‡e ™—n get fmin = 1F e™tu—llyD ‡e h—ve f ≥ 1 ⇔ x + y + z − xyz ≥ 1 ⇔ (x + y + z) x2 + y 2 + z 2 − xyz ≥ 3 2 x2 + y 2 + z 2 ⇔ (x + y + z) x2 + y 2 + z 2 − xyz ≥ 3 x2 + y 2 + z 2 ⇔ x2 y 2 z 2 + 2 x5 y + x3 y 3 + x3 y 2 z ≥ 0, sym 1 the l—st inequ—lity is o˜vious trueD so ‡e got f ≥ 1; ‡henx = y = z = √ ‡e h—ve √ 3 8 3 f= , 9 —nd ‡e will prove th—t √ 8 3 f≤ 9 then ‡e ™—n get √ 8 3 fmax = 9 e™tu—llyD ‡e h—ve √ √ 8 3 8 3 f≤ ⇔ x + y + z − xyz ≤ ⇔ (x + y + z) x2 + y 2 + z 2 − xyz ≤ 9 9 √ 8 3 3 2 x2 + y 2 + z 2 ⇔ 27 (x + y + z) x2 + y 2 + z 2 − xyz 9 3 1 2 ≤ 64 x2 + y 2 + z 2 ⇔ S (x, y, z) (y − z) ≥ 0, 4 cyc PT
  • 27. where S(x, y, z) = 17y 2 (2y−x)2 +17z 2 (2z−x)2 +56y 2 (z−x)2 ++56z 2 (y−x)2 +24x4 +6y 4 +6z 4 +57x2 (y 2 +z 2 )+104y 2 z 2 √ 8 3 is o˜vious positiveD so the l—st inequ—lity is o˜vious trueD so ‡e gotfmax = . 9 QQD por positive re—l num˜ersD show th—t a3 (b + c − a) b3 (c + a − b) c3 (a + b − c) ab + bc + ca + + ≤ a2 + bc b2 + ca c2 + ab 2 ineq ab + bc + ca a3 (b + c − a) a2 + b2 + c2 + ≥ + a2 2 a2 + bc ab + bc + ca a2 a2 + b2 + c2 + ≥ (ab + bc + ca)( ) 2 a2 + bc bc 5 a2 + b2 + c2 + (ab + bc + ca)( ) ≥ (ab + bc + ca) a2 + bc 2 a2 + b2 + c2 bc 5 + ≥ ab + bc + ca a2 + bc 2 …se two ineq bc ab ac 4abc + 2 + 2 ≥ + 1(1) a2 + bc c + ab b + ac (a + b)(b + c)(c + a) it is e—sy to proveF a2 + b2 + c2 8abc + ≥ 2(2) ab + bc + ca (a + b)(b + c)(c + a) ƒo e—sy to see th—t a2 + b2 + c2 bc a2 + b2 + c2 4abc + 2 + bc ≥ + +1 ab + bc + ca a ab + bc + ca (a + b)(b + c)(c + a) a2 + b2 + c2 5 ≥ +2≥ 2(ab + bc + ca) 2 ‡e h—ve done 3 a3 (b + c − a) b3 (c + a − b) c3 (a + b − c) 3abc(a + b + c) 2 + bc + 2 + ca + 2 + ab ≤ a b c 2(ab + bc + ca) Solution a2 + b2 + c2 bc 3abc(a + b + c) + + ≥3 ab + bc + ca a2 + bc 2(ab + bc + ca)2 end ‡e prove th—t 3abc(a + b + c) 4abc 2 ≥ 2(ab + bc + ca) (a + b)(b + c)(c + a) 3(a + b + c)(a + b)(b + c)(c + a) ≥ 8(ab + bc + ca)2 „his ineq is true ˜e™—use 8 3(a + b + c)(a + b)(b + c)(c + a) ≥ (a + b + c)2 (ab + bc + ca) ≥ 8(ab + bc + ca)2 3 PU
  • 28. ƒo a2 + b2 + c2 4abc 4abc LHS ≥ + + +1≥3 ab + bc + ca (a + b)(b + c)(c + a) (a + b)(b + c)(c + a) vet a, b, c > 0 ƒhow th—t a3 (b + c − a) b3 (c + a − b) c3 (a + b − c) 9abc + + ≤ a2 + bc b2 + ca c2 + ab 2(a + b + c) pirstD‡e prove this lenm—X a2 b2 c2 (a + b + c)2 + 2 + 2 ≤ a2 + bc b + ca c + ab 2(ab + bc + ca) bc ac ab a2 + b2 + c2 + 2 + 2 + ≥2 a2 + bc b + ac c + ab 2(ab + bc + ca) whi™h is true from bc ac ab 4abc + + ≥1+ a2 + bc b2 + ac c2 + ab (a + b)(b + c)(c + a) a2 + b2 + c2 4abc + ≥1 2(ab + bc + ca) (a + b)(b + c)(c + a) equ—lity o™™ur if —nd if only a=b=c or a = b, c = 0 or —ny ™y™li™ permutionF ‚eturn to your inequ—lityD‡e h—ve a3 (b + c − a) 9abc ( + a2 ) ≤ a2 + b2 + c2 + a2 + bc 2(a + b + c) or a2 9abc (ab + bc + ca) ≤ a2 + b2 + c2 + a2 + bc 2(a + b + c) prom a2 b2 c2 (a + b + c)2 + 2 + 2 ≤ a2 + bc b + ca c + ab 2(ab + bc + ca) ‡e only need to prove th—t (a + b + c)2 9abc ≤ a2 + b2 + c2 + or 2 2(a + b + c) 9abc a2 + b2 + c2 + ≥ 2(ab + bc + ca) a+b+c ‡hi™h is s™hur inequ—lityF yur Solution —re ™ompleted equ—lity o™™ur if —nd if only a = b = c, a = b, c = 0 or —ny ™y™li™ permutionF QQD vet a, b, c > 0 PV
  • 29. su™h th—t a+b+c=1 „hen a3 + bc b3 + ca c3 + ab + + ≥2 a2 + bc b2 + ca c2 + ab prom the ™ondition a − 1 = −(b + c) it follows th—t a3 + bc a2 (b + c) = − +1 a2 + bc a2 + bc „hus it suffi™es to prove th—t a2 (b + c) a+b+c≥ a2 + bc por a, b, c positive re—ls prove th—t ab(a + b) ≥ a c2 + ab <=> a4 + b4 + c4 − b2 c2 − c2 a2 − a2 b2 ≥ 0 ab(a + b) c2 (a + b) + =2 a c2 + ab c2 + ab —nd our inequ—lity ˜e™omes c2 (a + b) ≤ a (c2 + ab) ˜ut c2 (a + b) c2 (a + b)2 (ca + cb)2 = = ≤ (c2 + ab) (c2 + ab)(a + b) a(b2 + c2 ) + b(a2 + c2 ) c2 a2 c2 b2 + = a a(b2 + c2 ) b(a2 + c2 ) QR vet a, b, c ≥ 0 su™h th—t a+b+c=1 „hen a3 + bc b3 + ca c3 + ab 6(a2 + b2 + c2 ) ≥ + + a2 + bc b2 + ca c2 + ab Solution a2 (b + c) 6(a2 + b2 + c2 ) + ≥3 a2 + bc a2 (b + c) 6(a2 + b2 + c2 ) − 2(a + b + c)2 ≥ (a− ) a2 + bc a(a − b)(a − c) 4 (a − b)(a − c) ≥ a2 + bc a (a − b)(a − c)(4 − 2 )≥0 a + bc PW
  • 30. essuming ‡vyq a≥b≥c then e—sy to see th—t a 4− ≥0 a2 + bc —nd c 4− ≥0 c2 + ab c a (c − a)(c − b)(4 − ) ≥ 0and(a − b)(a − c)(4 − 2 )≥0 c2 + ab a + bc ‡e h—ve two ™—ses g—se I b 4− ≤0 b2 + ac then b (b − c)(b − a)(4 − )≥0 b2 + ac so this ineq is true g—se P b 4− ≤0 b2 + ac e—sy to see th—t c b 4− ≥4− 2 c2 + ab b + ac ƒo c b c LHS ≥ (c − b)2 (4 − ) + (a − b)(b − c)( 2 − )≥0 c2 + ab b + ac c2 + ab FiFh QSF vet x, y, z ˜e re—l num˜ers s—tisfyX x2 y 2 + 2yx2 + 1 = 0 pind the m—ximum —nd minimum v—lues ofX 2 1 1 f (x, y) = + + y(y + + 2) x2 x x SolutionX €ut 1 t= ;k = y + 1 x D ‡e h—veX t2 + k 2 = 1 f (x, y) = t2 + tk €ut t = cos α; k = sin α then f (x, y) = cos α2 + cos α sinα = 1 1 π sin 2α2 = + √ cos (2α − ) 2 2 4 1 1 max f (x, y) = + √ 2 2 QH
  • 31. 1 1 min f (x, y) = −√ 2 2 FiFh F QTF ƒuppose —D˜D™Dd —re positive integers with ab + cd = 1. „henD por W e = 1, 2, 3, 4,let (xi )2 + (yi )2 = 1, where xi —nd yi —re re—l num˜ersF ƒhow th—t a b c d (ay1 + by2 + cy3 + dy4 )2 + (ax4 + bx3 + cx2 + dx1 )2 ≤ 2( + + + ). b a d c ƒolitionX …se g—u™hyEƒ™hw—rtz D ‡e h—ve (ay1 + by2 + cy3 + dy4 )2 ≤ (ay1 + by2 )2 (cy3 + dy4 )2 (ab + cd)( + )= ab cd (ay1 + by2 )2 (cy3 + dy4 )2 + ab cd ƒimil—rX (ax4 + bx3 + cx2 + dx1 )2 ≤ (ax4 + bx3 )2 (cx2 + dx1 )2 (ab + cd)( + ) ab cd (ax4 + bx3 )2 (cx2 + dx1 )2 = + ab cd futX (ay1 + by2 )2 ≤ (ay1 + by2 )2 + (ax1 − bx2 )2 = a2 + b2 + 2ab(y1 y2 − x1 x2 ) ƒimil—rF (cx2 + dx1 )2 ≤ c2 + d2 + 2cd(x1 x2 − y1 y2 ) D then ‡e getX (ay1 + by2 )2 (cx2 + dx1 )2 + ≤ ab cd a b c d + + + b a d c @IA „he s—me —rgument show th—tX (cy3 + dy4 )2 (ax4 + bx3 )2 + ≤ cd ab a b c d + + + b a d c @PA gom˜ining @IAY@PA ‡e get F FiFh QUF in —ny ™onvex qu—dril—ter—l with sides a≤b≤c≤d QI
  • 32. —nd —re— F €rove th—t X √ 3 3 2 F ≤ c 4 SolutionX „he inequ—lity is rewritten —sX (−a + b + c + d)(a − b + c + d)(a + b − c + d)(a + b + c − d) ≤ 27c4 . ‡e su˜stitute x = −a + b + c + dD y = a − b + c + dD z = a + b − c + dD t = a + b + c − dF x+y−z+t „hen = c —nd x ≥ y ≥ z ≥ t. 4 x+y−z+t 4 „hus ‡e h—veX xyzt ≤ 27( ) . 4 „he left side of the inequ—lity is m—ximum when z = y while the right side of the inequ—lity is minimum @‡e h—ve fixed xDy —nd tAF x+t 4 „hen ‡e just prove th—t xy 2 t ≤ 27( ) . 4 fe™—use xy t ≤ x tD ‡e just h—ve to prove 2 3 x+t 4 x3 t ≤ ( ) 4 end then it follows th—t the —˜ove inequ—lity is —lso trueF x x x + + +t≥ 3 3 3 x x x 44 · · ·t 3 3 3 hen™e x+y 4 27( ) ≥ x3 t 4 QVF vet efg ˜e — tri—ngleF €rove th—tX 1 1 1 1 1 1 + + ≤ + + a b c a+b−c b+c−a c+a−b SolutionX IF 1 1 2b 2b 2b 2 + = = 2 ≥ 2 = a+b−c b+c−a (a + b − c)(b + c − a) b − (c − a)2 b b ƒimil—rlyD ‡e h—ve 1 1 2 + ≥ b+c−a c+a−b c 1 1 2 + ≥ c+a−b a+b−c a edd three inequ—lities together —nd divide ˜y P to get the desired resultF PF use u—r—m—t— for the num˜er —rr—ys (b + c − a; c + a − b; a + b − c) (a; b; c) —nd the ™onvex fun™tion 1 f (x) = x QP