Your SlideShare is downloading. ×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

[Webinar] Predictive Lead Scoring: How To Turn Data Into Revenue

478

Published on

To watch the entire webinar replay, please visit: …

To watch the entire webinar replay, please visit:
http://www.mintigo.com/predictive-lead-scoring-how-to-turn-data-into-revenue/

Description:

“Predictive Analytics” is the buzzword du jour. With so many digital marketing tools, technologies, and channels at our disposal and the ability to track prospect and customer behavior, we are awash with data to be analyzed in order to predict and drive our marketing results. So, how do we cut through the clutter, sift through the hype, and bring the most critical data into focus? How do we put it to use?

Download the slides and watch this Marketo LaunchPoint webinar replay to discover how predictive lead scoring will put all of your data to work for you. Learn how the marketing ninjas at SmartBear Software have used Marketo and Mintigo to build an automated system that targets the right leads with the right messages at the right time.

You will learn how to:

- Profile your ideal customer so that you can target high-fit leads
- Score your leads in real-time based on that profile
- Optimally engage the leads by routing them to the appropriate nurture track or sales reps before even gathering behavioral data


Speakers:

Patrick Chen - Sr. Manager of Marketing Operations at Marketo
Tony Yang - Director of Demand Generation at Mintigo
Gary DeAsi - Sr. Marketing Manager & Marketo Champion at SmartBear Software

Published in: Business, Technology
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
478
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
14
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. ©  2013  Marketo,  Inc.  Marketo  Proprietary  and  Confiden:al   Predictive Lead Scoring: How To Turn Data Into Revenue #LaunchPoint Gary DeAsi, SmartBear Software Tony Yang, Mintigo Patrick Chen, Marketo
  • 2. ©  2013  Marketo,  Inc.  Marketo  Proprietary  and  Confiden:al   Your Speakers Gary DeAsi Sr. Marketing Manager & Marketo Champion, SmartBear Software Tony Yang Director of Demand Generation, Mintigo Patrick Chen Sr. Manager, Marketing Operations, Marketo
  • 3. Page  3   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Quick Housekeeping •  Chat  box  is  available  if  you  have  any   ques:ons   •  There  will  be  :me  for  a  Q&A  at  the  end     •  We  will  be  recording  the  webinar  for   future  viewing   •  All  aLendees  will  receive  a  copy  of  the   slides  and  the  recording  of  today’s   webinar   •  TwiLer  hashtag:  #LaunchPoint  
  • 4. Page  4   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Source: David Raab. http://customerexperiencematrix.blogspot.co.il/2013/10/marketing-automation-user-satisfaction.html http://customerexperiencematrix.blogspot.co.il/2013/10/which-b2b-marketing-automation-features.html
  • 5. Page  5   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Why Is Lead Scoring So Hard To Implement?
  • 6. Page  6   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Reason #1: I Don’t Know If The Data I’m Using To Score Are The Right Ones - OR - RULES
  • 7. Page  7   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Reason #2: It’s Not Accurate Because It’s Based On False Correlations
  • 8. Page  8   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Reason #3: It Takes A Long Time To Gather Data & A Lot Of Work To Get It Right Utilizing Progressive Profiling To Collect Firmo/Demographic Data Fostering Engagement To Gather Behavioral Data For Implicit Scores
  • 9. Page  9   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Reason #4: It Becomes Super Complex If You Sell Many Products Or To Multiple Personas A B A+12 +20+35 +10
  • 10. Page  10   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Poll What are your biggest challenges in lead scoring?
 •  It’s not very accurate •  I don’t know how to set it up  •  I don’t know what data to score on •  I have many personas or products •  It requires too much work •  No challenges. We’re completely happy with our scoring. •  Other (please type them into the chat box)
  • 11. Page  11   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   What If Your Lead Scoring… •  Is based on the true profile of your ideal customers?
 •  Can target the prospects most likely to become buyers? For each of your products?
 •  Can determine the best 
 nurture path for 
 each lead, instead 
 of using nurturing 
 to gather behavioral 
 data?
  • 12. Page  12   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Predictive Lead Scoring FTW!
  • 13. Page  13   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   What Is Predictive Lead Scoring? A methodology for ranking leads in order to determine their sales-readiness by using predictive modeling to discover the most accurate and relevant data points for which to score.!
  • 14. Page  14   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   How Predictive Lead Scoring Works Thousands of Online Data From Web Ex: - Tech Industry - Sales roles - Has lots of outside sales - Hiring CRM admin - Dreamforce mention - Has call center Customer Data From Your Data Sources Machine Learning & Predictive Model Predictive Score Shows How Closely Matched Unknown Lead Is To Ideal Profile + Ideal Customer Profile (aka CustomerDNATM)
  • 15. Page  15   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   12+  products  
  • 16. Page  16   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al  
  • 17. Page  17   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al  
  • 18. Page  18   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   User Personas
  • 19. Page  19   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Test Ops Dev Audience Overlap Developerı Testerı Operationsı
  • 20. Page  20   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Audience Overlap Test Ops Dev Developerı Testerı Operationsı
  • 21. Page  21   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Marketing Challenges “I  got  99  problems…   and  they  are  all  very  different  depending  on  product  and   market  segment.”  
  • 22. Page  22   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Very Different Challenges •  Too  many  leads  VS  too  few  leads   •  Non-­‐challenged  industry  leader  VS  highly  compe::ve   market  VS  entering  new  market     •  Net  New  VS  Land  n  Expand   •  3  week  sales  cycle  VS  3  month  sales  cycle   •  Cross-­‐sell,  up-­‐sell   •  Segmenta:on,  cross-­‐personas,  departments  &  markets   •  Marke:ng  Opera:ons   •  Feeding  many  hungry  mouths,  all  different  taste  buds   •  Dev,  Test,  and  Ops  people  hate  marketers  
  • 23. Page  23   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Solution: Lead Scoring
  • 24. Page  24   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   $ Qualified Lead Explicit Demo/ FirmoBANTImplicit Behavioral •  Web  visits   •  Email  engagement   •  Content  downloads   •  Webinar  reg/aLendance   •  Trial  downloads/ac:va:ons   •  Product  usage   •  Form  comple:ons   •  etc   •  Contact  data   •  Job  :tle/role   •  Industry   •  Custom  qualifica4on   fields    
  • 25. Page  25   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Multi-Product Lead Scoring
  • 26. Page  26   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Great Rates, but wait… 0.05%   0.14%   0.81%   2.15%   0.00% 0.50% 1.00% 1.50% 2.00% 2.50% Sales Promo CR by Lead Score
  • 27. Page  27   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Great Rates, but wait… 0.05%   0.14%   0.81%   2.15%   0.00% 0.50% 1.00% 1.50% 2.00% 2.50% Sales Promo CR by Lead Score •  Limited  to  track-­‐able  implicit  behavior  and   explicit  form  comple:ons   •  Scoring  data  =  :me  to  collect,  build,  maintain   •  We  are  only  human  J    
  • 28. Page  28   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   $$$ Qualified Lead Explicit Demo/ FirmoBANTImplicit Behavioral Mintigo Big data, predictive, Custom MIs
  • 29. Page  29   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Tool-Assisted Code Reviewı Developerı Use Case #1: Custom MIsı
  • 30. Page  30   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Developerı Custom MIsı o  Proportion of Software Engineer Titlesı o  Programming Language: PHP, Java, .Net, etcı o  Indications/Hiring: Agile, CMMI, SCRUM… Code Reviewı
  • 31. Page  31   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Enterprise & ı Verticalsı Developerı o  Proportion of Software Engineer Titlesı o  Programming Language: PHP, Java, .Net, etcı o  Indications/Hiring: Agile, CMMI, SCRUM… Code Reviewı o  Forbes Global 2000ı o  Fortune 1000ı o  Regulated industry compliances & Certificationsı Custom MIsı
  • 32. Page  32   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Enterprise & ı Verticalsı Developerı Multi-Locationsı o  Forbes Global 2000ı o  Fortune 1000ı o  Regulated industry compliances & Certificationsı o  International locations/ positionsı o  Has multiple locationsı o  Has development teams in multiple locationsı Custom MIsı o  Proportion of Software Engineer Titlesı o  Programming Language: PHP, Java, .Net, etcı o  Indications/Hiring: Agile, CMMI, SCRUM… Code Reviewı
  • 33. Page  33   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Enterprise & ı Verticalsı Developerı Multi-Locationsı o  Forbes Global 2000ı o  Fortune 1000ı o  Regulated industry compliances & Certificationsı o  International locations/ positionsı o  Has multiple locationsı o  Has development teams in multiple locationsı Custom MIsı *Developer at existing Collaborator customer organizationı o  Proportion of Software Engineer Titlesı o  Programming Language: PHP, Java, .Net, etcı o  Indications/Hiring: Agile, CMMI, SCRUM… Code Reviewı
  • 34. Page  34   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Enterprise & ı Verticalsı Developerı Multi-Locationsı o  Forbes Global 2000ı o  Fortune 1000ı o  Regulated industry compliances & Certificationsı o  International locations/ positionsı o  Has multiple locationsı o  Has development teams in multiple locationsı Custom MIsı *Developer at existing Collaborator customer organizationı o  Proportion of Software Engineer Titlesı o  Programming Language: PHP, Java, .Net, etcı o  Indications/Hiring: Agile, CMMI, SCRUM… Code Reviewı
  • 35. Page  35   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Use Case #2: Cross-Sellı Web/App Performance, API Monitoring, UXMı API Testingı Developerı Testerı Operationsı Marketerı
  • 36. Page  36   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   CustomerDNATMı Cross-Sellı
  • 37. Page  37   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   CustomerDNATMı SoapUI Pro Customer INC Devı Testı Cross-Sellı
  • 38. Page  38   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   CustomerDNATMı SoapUI Pro Customer INC Devı Testı Opsı Cross-Sellı
  • 39. Page  39   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Cross-Sellı
  • 40. Page  40   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   API Testingı Developerı Use Case #3:ı Predictive Scoringı Testerı
  • 41. Page  41   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Mintigo Challengeı Positive Sample: All SoapUI leads generated in 2013 converted to Closed Won Opportunities in 2013ı ı Negative Sample: All SoapUI Leads Generated in 2013 not converted to opportunitiesı ı Mystery Sample: All SoapUI leads generated in 2013-2014ı ı Mintigo Challenge: Which leads generated in 2013-2014 closed in Q1 2014?ı ı ı ı ?ı
  • 42. Page  42   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   0 1 2 3 4 5 6 Hiring E-commerce related positions Hiring Web Performance related Positions Hiring Saas related positions Indication of Web Application Technology Alexa Global Rank between 1-5000 Google Page Rank - 8 Daily PPC Budget >$10000 Hiring Code Review related Positions Hiring Agile related positions Company has Multiple Locations Forbes Global 2000 Multiple Locations Software Development Fortune 1000 Rest API Hiring SOA related positions Hiring Devops Hiring Application Mgmt related positions API Provider Buying Signals - Lifts in the modelı Common Traits of Closed Won..ı
  • 43. Page  43   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Negative vs Positive Traitsı 0% 10% 20% 30% 40% 50% 60% Mobile Device Usage (BYOD) Hiring Mobile Developers Hiring MDM related positions Mobility Technologies Indication Test Automation Indication Hiring Chargeback related positions Hiring VOC related positions Has Data Center Hiring Web2.0 Has Data Warehouse Has Call Center Customer Login Area VMWare User Java User Hiring Customer Service CRM User Has Field Workforce Oracle User Has International Activity Marketing Automation User Is Hiring (Growth) Negative - Others Positive - Wins
  • 44. Page  44   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   1000s of Data Pointsı 0% 20% 40% 60% 80%100%120% Country=AUSTRALIA Country=CANADA Country=UNITED Country=UNITED Country=INDIA State=MN State=GA State=VA State=CA State=MA State=NY Valid Title Valid Company Name Is Free Mail Negative - Others 0% 5% 10% 15% 20% 25% 30% 35% Number of Employees= 0 - 25 Number of Employees= 25 - 100 Number of Employees= 100 - 250 Number of Employees= > 50K Number of Employees= 250 - 1000 Number of Employees= 1K - 10K Number of Employees= 10K - 50K Annual Revenue= $0 - 1M Annual Revenue= $1 - 10M Annual Revenue= $10 - 50M Annual Revenue= $50 - 100M Annual Revenue= $100 - 250M Annual Revenue= $500M - 1B Annual Revenue= > $1B Negative - Others Positive - Wins
  • 45. Page  45   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   80% of wins in 27% of leadsı       95% of wins in 40% of leads ı Predictive Resultsı
  • 46. Page  46   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Ok, so 80% of my revenue comes from 27% of my leads.95% from 40%. Now what?ı o  Concentrate Marketing Time/Resourcesı ü  Targeted messagingı ü  Dynamic content, stack your nurture pathsı ü  “Luxury” Initiativesı ü  Double down on the source(s)ı ü  Put them under a microscope ı o  Arm Sales with Data, Prioritization, Toolsı ü  Provide magnifying glass for best betsı ü  Sales enablement: content + intelligenceı ü  Revisit recycled leadsı ü  BDR calling campaignsı ü  Cross-sellı
  • 47. Page  47   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Test OpsDev 42 What’s next?ı
  • 48. Page  48   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Test OpsDev 42 82 19 24 11 95 77 79 35 6 What’s next?ı
  • 49. Page  49   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Mintigo + Marketo •  Real-­‐:me  data  append   •  Share  key  data  w/  sales  (“Best  Bets”)   •  Build  into  lead  scoring,  and/or  use  for   accelerators   •  Granular  segmenta:on  and  dynamic   content   •  Marke:ng  channel/campaign   disposi:on   •  Nurture  stream  assignment  and   transi:on   •  Con:nuous  analy:cs  and  customer   intelligence   The possibilities…
  • 50. Page  50   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   HOW IT WORKS WITH MARKETO Mintigo Predictive Marketing Platform
  • 51. Page  51   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Build Your Predictive Model & CustomerDNA Step 1 ! Pull A CSV Of Your Customer Records (at least 100) & Upload To Mintigo Step 2 ! Mintigo Analyzes Your Data with Thousands Of Data From The Web Step 3 ! Predictive Modeling Identifies The Data Points That Have The Strongest Correlation With Customers Step 4 ! Your Ideal Customer Profile, aka Your CustomerDNATM, Is Created From These Data Points
  • 52. Page  52   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Set Up Webhook & Custom Field Mapping For MI’s
  • 53. Page  53   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Create Smart Campaign To Trigger Web Hook
  • 54. Page  54   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Any Prospect Gets Predictively Score Immediately Predictive Score Tells You How Closely Matched The Prospect Is To Your CustomerDNA
  • 55. Page  55   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Bonus: Mintigo Also Enriches Leads With Firmographic & MI Data Mintigo enriches leads with data points that matter to your business directly into Marketo so you can better target your offers & segment lists
  • 56. Page  56   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Predictive Lead Scoring Is Just The Beginning CustomerD NA Scores Data Enrich- ment Personas Content Offers Channels PREDICTIVE MARKETING INTELLIGENCE Predictive Modeling Marketing Indicators DATA CRM, MAP & Internal Data Big Data / WWW APPLICATION Discover Your Ideal Customer Profile Target The Prospects Most Likely To Buy Engage The Right Prospects With The Right Message & Channel
  • 57. Page  57   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Q&A
  • 58. Page  58   ©  2013  Marketo,  Inc.     Marketo  Proprietary  and  Confiden:al   Gary DeAsi Sr. Marketing Manager & Marketo Champion SmartBear Software Tony Yang Director of Demand Generation Mintigo @tones810 tony@mintigo.com Patrick Chen Sr. Manager, Marketing Operations, Marketo
  • 59. ©  2013  Marketo,  Inc.  Marketo  Proprietary  and  Confiden:al   Thank you!

×