SlideShare a Scribd company logo
1 of 14
Download to read offline
Power Electronics in Wind Turbine Systems

Manasa.K
CWB0912002, FT-2012
M. Sc. (Engg.) in Electronic System Design
Engineering

Module leader: Mr. R Sreekrishna

M.S.Ramaiah School of Advanced Studies

1
Contents
• Introduction
• Modern Power Electronics

• Wind Energy Conversion
• Doubly Fed Induction Generator

• Operating Principal of DFIG
• Advantages

• Disadvantages
• Conclusion
M.S.Ramaiah School of Advanced Studies

2
Introduction
• Wind turbine technology is the most promising renewable energy technology. It
started in 1980’s with a few tens of kW production of power per unit. And today
multi-MW size wind turbines are being installed.

• Wind power production in the beginning, did not have any impact on the power
control system and was based on the induction generator where the pulsations in
the wind was directly transferred to the grid. There was no control on active and
reactive power which are the important control parameter to regulate frequency
and voltage.
• As the power range of the turbines increases those control parameters become
more important and it is necessary to introduce power electronics as an interface
between the wind turbine and the grid. The power electronics is changing the
basic characteristic of the wind turbine from being an energy source to be an
active power source.

M.S.Ramaiah School of Advanced Studies

3
Modern Power Electronics

The interface of Wind power converter between generator and power grid should
satisfy the requirements on both the sides. It has to store the active power and boost up
the voltage from generator side to grid side.
• Generator side: * It should control stator current and adjust the rotating speed.
* Extract maximum power from turbine.
• Power grid side: * It should have the ability to control the inductive/capacitive
reactive power and perform fast active power response.
*Frequency and voltage should be fixed for normal operation
* Harmonic distortion should be maintained low.
M.S.Ramaiah School of Advanced Studies

4
Wind Energy Conversion
Wind energy conversion systems convert wind energy into electrical energy, which is
then fed into electrical grid.

• The turbine rotor, gear box and generator are the main three components for energy
conversion.
• Rotor converts wind energy to mechanical energy.
• Gear box is used to adapt to the rotor speed to generator speed.
• Generator with the variable speed wind turbine along with electronic inverter
absorbs mechanical power and convert to electrical energy.
• The power converter can not only transfer the power from a wind generator, but
also improve the stability and safety of the system.
M.S.Ramaiah School of Advanced Studies

5
Doubly Fed Induction Generator

M.S.Ramaiah School of Advanced Studies

6
Doubly Fed Induction Generator
• Wind turbines use a doubly-fed induction generator (DFIG) consisting of a
wound rotor , induction generator and an AC/DC/AC IGBT-based PWM
converter.
• The stator winding is connected directly to the grid while the rotor is fed at
variable frequency through the AC/DC/AC converter.
• Vr is the rotor voltage and Vgc is grid side voltage.
• The AC/DC/AC converter is basically a PWM converter which uses sinusoidal
PWM technique to reduce the harmonics present in the wind turbine driven
DFIG system.
• Crotor is rotor side converter and Cgrid is grid side converter.
• To control the speed of wind turbine gear boxes or electronic control can be used
M.S.Ramaiah School of Advanced Studies

7
Operating Principal of DFIG

M.S.Ramaiah School of Advanced Studies

8
Operating Principal of DFIG
•

Below the synchronous speed in the motoring mode and above the synchronous speed in the
generating mode, rotor-side converter operates as a rectifier and stator-side converter as an
inverter and where slip power is returned to the stator.

•

Below the synchronous speed in the generating mode and above the synchronous speed in
the motoring mode, rotor-side converter operates as an inverter and stator side converter as
a rectifier, where slip power is supplied to the rotor.

•

For super synchronous speed operation, Pr is transmitted to DC bus capacitor and tends to
rise the DC voltage. For sub-synchronous speed operation, Pr is taken out of DC bus
capacitor and tends to decrease the DC voltage.

•
•

Cgrid is used to generate or absorb the power Pgc in order to keep the DC voltage constant.
In steady-state for a lossless AC/DC/AC converter Pgc is equal to Pr and the speed of the
wind turbine is determined by the power Pr absorbed or generated by Crotor.

•

The phase-sequence of the AC voltage generated by Crotor is positive for sub synchronous
speed and negative for super synchronous speed.
Crotor and Cgrid have the capability for generating or absorbing reactive power and could
be used to control the reactive power or the voltage at the grid terminals.

•

M.S.Ramaiah School of Advanced Studies

9
Advantages of DFIG’s
• Advantages of the system include, low losses, which assures a
high overall efficiency, and an outstanding availability due to the
compact design with a minimal number of components
• Significantly reduced power rating and cost of the converter
• Possible speed regulation for optimal utilization of energy
(typically ±20-25%)
• Sub-synchronous and Super-synchronous operation is possible

M.S.Ramaiah School of Advanced Studies

10
Disadvantages of DFIG’s
• Slip rings wear and tear, maintenance
• Complex control of the entire unit
• Direct connection to the grid is somewhat difficult
• The output voltage is dependent on the rotor speed and stator.

M.S.Ramaiah School of Advanced Studies

11
Summary
• Wind energy conversion systems convert wind energy into electrical energy,
which is then fed into electrical grid.
• Power electronics as an interface between the wind turbine and the grid.
• Power converter is used to store the active power and boost up the voltage from
generator side to grid side and it also reduces harmonics.
• DFIG is a AC/DC/AC IGBT-based PWM converter.
• Crotor and Cgrid have the capability for generating or absorbing reactive power
and could be used to control the reactive power or the voltage at the grid
terminals

• Advantages and disadvantages.

M.S.Ramaiah School of Advanced Studies

12
References
[1] F. Blaabjerg, Z. Chen Power electronics in Wind Turbine System
Aalborg University, Institute of Energy Technology Denmark.

[2] Prof. K. B. Mohanty Thesis on Study of wind turbine driven
DFIG using ac/dc/ac converter National Institute of Technology
Rourkela.
[3] E. Sheeba Percis Comparative Analysis of Variable Speed Wind
Energy Conversion Systems Dr. MGR University Second
International Conference on Sustainable Energy and Intelligent
System July 20-22, 2011 Chennai.

[4] Macro Liserre Power Converters and Controls of Renewable
Energy Systems CEMD Research Group Italy.
M.S.Ramaiah School of Advanced Studies

13
Thank You

M.S.Ramaiah School of Advanced Studies

14

More Related Content

What's hot

Objectives of shunt compensation
Objectives of shunt compensationObjectives of shunt compensation
Objectives of shunt compensation
Ayyarao T S L V
 
Hybrid power generation by and solar –wind
Hybrid power generation by and solar –windHybrid power generation by and solar –wind
Hybrid power generation by and solar –wind
Uday Wankar
 
FAULT ANALISIS IN HVDC & HVAC TRANSMISSION LINE
FAULT ANALISIS IN HVDC & HVAC TRANSMISSION LINEFAULT ANALISIS IN HVDC & HVAC TRANSMISSION LINE
FAULT ANALISIS IN HVDC & HVAC TRANSMISSION LINE
Dr. Babasaheb Ambedkar Technological University
 
An introduction to FACTS
An introduction to FACTSAn introduction to FACTS
An introduction to FACTS
Ayyarao T S L V
 
Basic types of facts controllers
Basic types of facts controllersBasic types of facts controllers
Basic types of facts controllers
Ayyarao T S L V
 

What's hot (20)

Power electronic converter in wind turbine
Power electronic converter in wind turbinePower electronic converter in wind turbine
Power electronic converter in wind turbine
 
induction generator
induction generatorinduction generator
induction generator
 
Unit commitment
Unit commitmentUnit commitment
Unit commitment
 
Overview of different wind generator systems and their comparison
Overview of different wind generator systems and their comparisonOverview of different wind generator systems and their comparison
Overview of different wind generator systems and their comparison
 
Objectives of shunt compensation
Objectives of shunt compensationObjectives of shunt compensation
Objectives of shunt compensation
 
importance of reactive power in power system
importance of reactive power in power systemimportance of reactive power in power system
importance of reactive power in power system
 
Wind energy
Wind energyWind energy
Wind energy
 
Excitation System & capability curve of synchronous generator
Excitation System &  capability curve of synchronous generatorExcitation System &  capability curve of synchronous generator
Excitation System & capability curve of synchronous generator
 
WIND ENERGY SYSTEM
WIND ENERGY SYSTEM WIND ENERGY SYSTEM
WIND ENERGY SYSTEM
 
Wind Power Generation Schemes
Wind Power Generation SchemesWind Power Generation Schemes
Wind Power Generation Schemes
 
Hybrid power generation by and solar –wind
Hybrid power generation by and solar –windHybrid power generation by and solar –wind
Hybrid power generation by and solar –wind
 
FAULT ANALISIS IN HVDC & HVAC TRANSMISSION LINE
FAULT ANALISIS IN HVDC & HVAC TRANSMISSION LINEFAULT ANALISIS IN HVDC & HVAC TRANSMISSION LINE
FAULT ANALISIS IN HVDC & HVAC TRANSMISSION LINE
 
Two area system
Two area systemTwo area system
Two area system
 
An introduction to FACTS
An introduction to FACTSAn introduction to FACTS
An introduction to FACTS
 
Tcsc ppt
Tcsc pptTcsc ppt
Tcsc ppt
 
MTDC SYSTEMS
MTDC SYSTEMSMTDC SYSTEMS
MTDC SYSTEMS
 
Synhronous motor equivalent circuit
Synhronous motor equivalent circuitSynhronous motor equivalent circuit
Synhronous motor equivalent circuit
 
Hydrothermal scheduling
Hydrothermal schedulingHydrothermal scheduling
Hydrothermal scheduling
 
Basic types of facts controllers
Basic types of facts controllersBasic types of facts controllers
Basic types of facts controllers
 
Fixed and variable speed turbine
Fixed and variable speed turbineFixed and variable speed turbine
Fixed and variable speed turbine
 

Similar to Power electronics in Wind Turbine Systems

doubley fed induction motor
doubley fed induction motordoubley fed induction motor
doubley fed induction motor
usic123
 
Full-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generatorsFull-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generators
Long Thang Pham
 
Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...
Uday Wankar
 

Similar to Power electronics in Wind Turbine Systems (20)

SPARC_Course_IIT_D_DH_WTG_Modeling_March_2021_VV.pptx
SPARC_Course_IIT_D_DH_WTG_Modeling_March_2021_VV.pptxSPARC_Course_IIT_D_DH_WTG_Modeling_March_2021_VV.pptx
SPARC_Course_IIT_D_DH_WTG_Modeling_March_2021_VV.pptx
 
Seminar2
Seminar2Seminar2
Seminar2
 
EE6009 unit 4
EE6009 unit 4EE6009 unit 4
EE6009 unit 4
 
Grid Connected Doubly Fed Induction Generator By Wind Power Application
Grid Connected Doubly Fed Induction Generator By Wind Power ApplicationGrid Connected Doubly Fed Induction Generator By Wind Power Application
Grid Connected Doubly Fed Induction Generator By Wind Power Application
 
FINAL PROJECT ppt.pptx
FINAL PROJECT ppt.pptxFINAL PROJECT ppt.pptx
FINAL PROJECT ppt.pptx
 
doubley fed induction motor
doubley fed induction motordoubley fed induction motor
doubley fed induction motor
 
Electrical Drives and Controls
Electrical Drives and Controls Electrical Drives and Controls
Electrical Drives and Controls
 
Integration of a Wind Turbine Based Doubly Fed Induction Generator Using STAT...
Integration of a Wind Turbine Based Doubly Fed Induction Generator Using STAT...Integration of a Wind Turbine Based Doubly Fed Induction Generator Using STAT...
Integration of a Wind Turbine Based Doubly Fed Induction Generator Using STAT...
 
Alternators in windmill
Alternators in windmillAlternators in windmill
Alternators in windmill
 
Components of wind mill
Components of wind millComponents of wind mill
Components of wind mill
 
dfigppt-221029141308-fdd782dd.pptx
dfigppt-221029141308-fdd782dd.pptxdfigppt-221029141308-fdd782dd.pptx
dfigppt-221029141308-fdd782dd.pptx
 
D03701028034
D03701028034D03701028034
D03701028034
 
Study of DFIG Connected to Grid using Wind Energy System
Study of DFIG Connected to Grid using Wind Energy SystemStudy of DFIG Connected to Grid using Wind Energy System
Study of DFIG Connected to Grid using Wind Energy System
 
Ac drive
Ac driveAc drive
Ac drive
 
Full-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generatorsFull-scale converter for synchronous wind turbine generators
Full-scale converter for synchronous wind turbine generators
 
A Short Lecture on FED.pptx
A Short Lecture on FED.pptxA Short Lecture on FED.pptx
A Short Lecture on FED.pptx
 
Advance Power Electronic Converters for Renewable Energy Systems
Advance Power Electronic Converters for Renewable Energy SystemsAdvance Power Electronic Converters for Renewable Energy Systems
Advance Power Electronic Converters for Renewable Energy Systems
 
Electrical ac & dc drives ppt
Electrical ac & dc drives pptElectrical ac & dc drives ppt
Electrical ac & dc drives ppt
 
Lecture 1 to 4 introduction to electrical drive
Lecture 1 to 4 introduction to electrical driveLecture 1 to 4 introduction to electrical drive
Lecture 1 to 4 introduction to electrical drive
 
Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...Improved reactive power capability with grid connected doubly fed induction g...
Improved reactive power capability with grid connected doubly fed induction g...
 

More from Manasa K

Wind Energy Harvesting
Wind Energy HarvestingWind Energy Harvesting
Wind Energy Harvesting
Manasa K
 
Systems Engineering Process Applied for Developing Handheld Projector
Systems Engineering Process Applied for Developing Handheld ProjectorSystems Engineering Process Applied for Developing Handheld Projector
Systems Engineering Process Applied for Developing Handheld Projector
Manasa K
 
Spectrum Analyzer
Spectrum AnalyzerSpectrum Analyzer
Spectrum Analyzer
Manasa K
 
Optical Communication on PCB
Optical Communication on PCBOptical Communication on PCB
Optical Communication on PCB
Manasa K
 
Challenges in Integrated Electronic System Designs
Challenges in Integrated Electronic System DesignsChallenges in Integrated Electronic System Designs
Challenges in Integrated Electronic System Designs
Manasa K
 
Performance Comparison Between x86 and ARM Assembly
Performance Comparison Between x86 and ARM AssemblyPerformance Comparison Between x86 and ARM Assembly
Performance Comparison Between x86 and ARM Assembly
Manasa K
 
Gigabit Ethernet
Gigabit EthernetGigabit Ethernet
Gigabit Ethernet
Manasa K
 

More from Manasa K (7)

Wind Energy Harvesting
Wind Energy HarvestingWind Energy Harvesting
Wind Energy Harvesting
 
Systems Engineering Process Applied for Developing Handheld Projector
Systems Engineering Process Applied for Developing Handheld ProjectorSystems Engineering Process Applied for Developing Handheld Projector
Systems Engineering Process Applied for Developing Handheld Projector
 
Spectrum Analyzer
Spectrum AnalyzerSpectrum Analyzer
Spectrum Analyzer
 
Optical Communication on PCB
Optical Communication on PCBOptical Communication on PCB
Optical Communication on PCB
 
Challenges in Integrated Electronic System Designs
Challenges in Integrated Electronic System DesignsChallenges in Integrated Electronic System Designs
Challenges in Integrated Electronic System Designs
 
Performance Comparison Between x86 and ARM Assembly
Performance Comparison Between x86 and ARM AssemblyPerformance Comparison Between x86 and ARM Assembly
Performance Comparison Between x86 and ARM Assembly
 
Gigabit Ethernet
Gigabit EthernetGigabit Ethernet
Gigabit Ethernet
 

Recently uploaded

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
MateoGardella
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 

Recently uploaded (20)

Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 

Power electronics in Wind Turbine Systems

  • 1. Power Electronics in Wind Turbine Systems Manasa.K CWB0912002, FT-2012 M. Sc. (Engg.) in Electronic System Design Engineering Module leader: Mr. R Sreekrishna M.S.Ramaiah School of Advanced Studies 1
  • 2. Contents • Introduction • Modern Power Electronics • Wind Energy Conversion • Doubly Fed Induction Generator • Operating Principal of DFIG • Advantages • Disadvantages • Conclusion M.S.Ramaiah School of Advanced Studies 2
  • 3. Introduction • Wind turbine technology is the most promising renewable energy technology. It started in 1980’s with a few tens of kW production of power per unit. And today multi-MW size wind turbines are being installed. • Wind power production in the beginning, did not have any impact on the power control system and was based on the induction generator where the pulsations in the wind was directly transferred to the grid. There was no control on active and reactive power which are the important control parameter to regulate frequency and voltage. • As the power range of the turbines increases those control parameters become more important and it is necessary to introduce power electronics as an interface between the wind turbine and the grid. The power electronics is changing the basic characteristic of the wind turbine from being an energy source to be an active power source. M.S.Ramaiah School of Advanced Studies 3
  • 4. Modern Power Electronics The interface of Wind power converter between generator and power grid should satisfy the requirements on both the sides. It has to store the active power and boost up the voltage from generator side to grid side. • Generator side: * It should control stator current and adjust the rotating speed. * Extract maximum power from turbine. • Power grid side: * It should have the ability to control the inductive/capacitive reactive power and perform fast active power response. *Frequency and voltage should be fixed for normal operation * Harmonic distortion should be maintained low. M.S.Ramaiah School of Advanced Studies 4
  • 5. Wind Energy Conversion Wind energy conversion systems convert wind energy into electrical energy, which is then fed into electrical grid. • The turbine rotor, gear box and generator are the main three components for energy conversion. • Rotor converts wind energy to mechanical energy. • Gear box is used to adapt to the rotor speed to generator speed. • Generator with the variable speed wind turbine along with electronic inverter absorbs mechanical power and convert to electrical energy. • The power converter can not only transfer the power from a wind generator, but also improve the stability and safety of the system. M.S.Ramaiah School of Advanced Studies 5
  • 6. Doubly Fed Induction Generator M.S.Ramaiah School of Advanced Studies 6
  • 7. Doubly Fed Induction Generator • Wind turbines use a doubly-fed induction generator (DFIG) consisting of a wound rotor , induction generator and an AC/DC/AC IGBT-based PWM converter. • The stator winding is connected directly to the grid while the rotor is fed at variable frequency through the AC/DC/AC converter. • Vr is the rotor voltage and Vgc is grid side voltage. • The AC/DC/AC converter is basically a PWM converter which uses sinusoidal PWM technique to reduce the harmonics present in the wind turbine driven DFIG system. • Crotor is rotor side converter and Cgrid is grid side converter. • To control the speed of wind turbine gear boxes or electronic control can be used M.S.Ramaiah School of Advanced Studies 7
  • 8. Operating Principal of DFIG M.S.Ramaiah School of Advanced Studies 8
  • 9. Operating Principal of DFIG • Below the synchronous speed in the motoring mode and above the synchronous speed in the generating mode, rotor-side converter operates as a rectifier and stator-side converter as an inverter and where slip power is returned to the stator. • Below the synchronous speed in the generating mode and above the synchronous speed in the motoring mode, rotor-side converter operates as an inverter and stator side converter as a rectifier, where slip power is supplied to the rotor. • For super synchronous speed operation, Pr is transmitted to DC bus capacitor and tends to rise the DC voltage. For sub-synchronous speed operation, Pr is taken out of DC bus capacitor and tends to decrease the DC voltage. • • Cgrid is used to generate or absorb the power Pgc in order to keep the DC voltage constant. In steady-state for a lossless AC/DC/AC converter Pgc is equal to Pr and the speed of the wind turbine is determined by the power Pr absorbed or generated by Crotor. • The phase-sequence of the AC voltage generated by Crotor is positive for sub synchronous speed and negative for super synchronous speed. Crotor and Cgrid have the capability for generating or absorbing reactive power and could be used to control the reactive power or the voltage at the grid terminals. • M.S.Ramaiah School of Advanced Studies 9
  • 10. Advantages of DFIG’s • Advantages of the system include, low losses, which assures a high overall efficiency, and an outstanding availability due to the compact design with a minimal number of components • Significantly reduced power rating and cost of the converter • Possible speed regulation for optimal utilization of energy (typically ±20-25%) • Sub-synchronous and Super-synchronous operation is possible M.S.Ramaiah School of Advanced Studies 10
  • 11. Disadvantages of DFIG’s • Slip rings wear and tear, maintenance • Complex control of the entire unit • Direct connection to the grid is somewhat difficult • The output voltage is dependent on the rotor speed and stator. M.S.Ramaiah School of Advanced Studies 11
  • 12. Summary • Wind energy conversion systems convert wind energy into electrical energy, which is then fed into electrical grid. • Power electronics as an interface between the wind turbine and the grid. • Power converter is used to store the active power and boost up the voltage from generator side to grid side and it also reduces harmonics. • DFIG is a AC/DC/AC IGBT-based PWM converter. • Crotor and Cgrid have the capability for generating or absorbing reactive power and could be used to control the reactive power or the voltage at the grid terminals • Advantages and disadvantages. M.S.Ramaiah School of Advanced Studies 12
  • 13. References [1] F. Blaabjerg, Z. Chen Power electronics in Wind Turbine System Aalborg University, Institute of Energy Technology Denmark. [2] Prof. K. B. Mohanty Thesis on Study of wind turbine driven DFIG using ac/dc/ac converter National Institute of Technology Rourkela. [3] E. Sheeba Percis Comparative Analysis of Variable Speed Wind Energy Conversion Systems Dr. MGR University Second International Conference on Sustainable Energy and Intelligent System July 20-22, 2011 Chennai. [4] Macro Liserre Power Converters and Controls of Renewable Energy Systems CEMD Research Group Italy. M.S.Ramaiah School of Advanced Studies 13
  • 14. Thank You M.S.Ramaiah School of Advanced Studies 14