SlideShare a Scribd company logo
1 of 12
Download to read offline
FINAL TUTORIAL
MTH3201 LINEAR ALGEBRA
1. Linear combination or not
(a) 𝛵: ℛ 3 → ℛ 2 ; 𝛵 𝑥, 𝑦, 𝑧 = (𝑥 − 𝑦, 𝑦 − 𝑧)
                       Condition given, please follow

  𝐿𝑒𝑡 𝑢 = 𝑥1 , 𝑦1 , 𝑧1 𝑎𝑛𝑑 𝑣 = 𝑥2 , 𝑦2 , 𝑧2
 (i) 𝑢 + 𝑣 = 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2 , 𝑧1 + 𝑧2
     𝛵 𝑢 + 𝑣 = 𝛵 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2 , 𝑧1 + 𝑧2
    By follow the condition,
                = 𝑥1 + 𝑥2 − 𝑦1 − 𝑦2 , 𝑦1 + 𝑦2 − 𝑧1 − 𝑧2
                = 𝑥1 − 𝑦1 + 𝑥2 − 𝑦2 , 𝑦1 − 𝑧1 + 𝑦2 − 𝑧2
                = 𝑥1 − 𝑦1 , 𝑦1 − 𝑧1 ) + (𝑥2 − 𝑦2 , 𝑦2 − 𝑧2
                = 𝛵(𝑢) + 𝛵(𝑣)
 (ii) 𝐼𝑓 𝑘 𝑖𝑠 𝑎𝑛𝑦 𝑠𝑐𝑎𝑙𝑎𝑟, 𝑘 ∈ ℜ,
       𝑘𝑢 = 𝑘𝑥1 , 𝑘𝑦1 , 𝑘𝑧1                           𝑆𝑖𝑛𝑐𝑒 𝛵 𝑢 + 𝑣 = 𝛵 𝑢 + 𝛵 𝑣 ,
        𝛵 (𝑘𝑢) = 𝛵 𝑘𝑥1 , 𝑘𝑦1 , 𝑘𝑧1                   ∴ 𝛵 is linear combination
               = 𝑘𝑥1 − 𝑘𝑦1 , 𝑘𝑦1 − 𝑘𝑧1
               = 𝑘 𝑥1 − 𝑦1 , 𝑦1 − 𝑧1
               = 𝑘𝛵(𝑢 )
1. Linear combination or not
                                   𝑥          𝑦
(d) 𝛵: ℛ 2 → ℛ; 𝛵 𝑥, 𝑦 =                             𝐿𝑒𝑡 𝑢 = 𝑥1 , 𝑦1 𝑎𝑛𝑑 𝑣 = 𝑥2 , 𝑦2
                                  𝑥+ 𝑦       𝑥− 𝑦
                    Condition given, please follow

(i) 𝑢 + 𝑣 = 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2 ,    𝛵 𝑢 + 𝑣 = 𝛵 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2
                                          𝑥 + 𝑥                 𝑦1 + 𝑦2
By follow the condition,
                         𝛵 𝑢 + 𝑣 = 𝑥 + 𝑥1 + 𝑦2 + 𝑦         𝑥1 + 𝑥2 − 𝑦1 − 𝑦2
                                      1    2    1      2
= 𝑥1 + 𝑥2 𝑥1 + 𝑥2 − 𝑦1 − 𝑦2 − 𝑦1 + 𝑦2 𝑥1 + 𝑥2 + 𝑦1 + 𝑦2
= 𝑥1 2 + 𝑥1 𝑥2 − 𝑥1 𝑦1 − 𝑥1 𝑦2 + 𝑥1 𝑥2 + 𝑥2 2 − 𝑥2 𝑦1 − 𝑥2 𝑦2
                               − 𝑦1 𝑥1 + 𝑦1 𝑥2 + 𝑦1 2 + 𝑦1 𝑦2 + 𝑦2 𝑥1 + 𝑦2 𝑥2 + 𝑦2 𝑦1 + 𝑦2 2
= 𝑥1 2 + 𝑥2 2 − 𝑦1 2 − 𝑦2 2 + 2𝑥1 𝑥2 − 2𝑦1 𝑥2 − 2𝑥1 𝑦1 − 2𝑥1 𝑦2 − 2𝑥2 𝑦1 − 2𝑥2 𝑦2
∗∗ 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝛵 𝑢 + 𝛵 𝑣 ? ? ?
  𝛵 𝑢 + 𝛵 𝑣 = 𝛵 𝑥1 , 𝑦1 + 𝛵 𝑥2 , 𝑦2                                compare
                 𝑥1         𝑦1         𝑥2               𝑦2
            = 𝑥 + 𝑦      𝑥1 − 𝑦1  + 𝑥 + 𝑦            𝑥2 − 𝑦2
               1      1              2    2
               = 𝑥1 2 + 𝑥2 2 − 𝑦1 2 − 𝑦2 2 − 2𝑥1 𝑦1 − 2𝑥2 𝑦2
 𝑆𝑖𝑛𝑐𝑒 𝛵 𝑢 + 𝑣 ≠ 𝛵 𝑢 + 𝛵 𝑣 , ∴ 𝛵 is not linear combination
2(a)   𝛵2 ∙ 𝛵1     𝑝 𝑥    = 𝛵2 𝛵1 (𝑝 𝑥 )    𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛: 𝛵1 𝑝(𝑥) = 𝑝 𝑥 − 1 ,
                          = 𝛵2 𝑝(𝑥 − 1)             𝛵2 𝑝 𝑥 = 𝑝 𝑥 + 2

                          = 𝑝(𝑥 − 1 + 2)
                          = 𝑝(𝑥 + 1)

 (b)     𝛵1 ∙ 𝛵2    𝑝 𝑥    = 𝛵1 𝛵2 (𝑝 𝑥 )
                           = 𝛵1 𝑝(𝑥 + 2)
                           = 𝑝(𝑥 + 2 − 1)
                           = 𝑝(𝑥 + 1)
3(a)             𝑎   𝑏             𝑎   𝑏          𝑎   𝑐
       𝛵1 ∙ 𝛵2           = 𝛵1 𝛵2           = 𝛵1           = 𝑎 − 𝑐 + 4𝑏 − 𝑑
                 𝑐   𝑑             𝑐   𝑑          𝑏   𝑑

                        𝑎 𝑏
   𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛: 𝛵1       = 𝑎 − 𝑏 + 4𝑐 − 𝑑,
                        𝑐 𝑑
                    𝑎 𝑏     𝑎 𝑐
               𝛵2         =
                    𝑐 𝑑     𝑏 𝑑


              𝑎 𝑏                𝑎 𝑏
 (b)   𝛵2 ∙ 𝛵1        = 𝛵2 𝛵1            = 𝛵2 (𝑎 − 𝑏 + 4𝑐 − 𝑑)
              𝑐 𝑑                𝑐 𝑑
       ∴ 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡, 𝑖𝑚𝑎𝑔𝑒 𝑇1 𝑛𝑜𝑡 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑇2
4(a)                                          𝑥2 𝑝 𝑥 = 𝑥2 + 𝑥
                                (i)               𝑝 𝑥 = 1 + 1/𝑥
                                             𝑝 𝑥 is not in domain of 𝑝2
                                             ∴ x 2 +x is not in range(T)
  𝛵 𝑝 𝑥    = 𝑥 2 𝑝(𝑥)
                                      (ii)

                                                             𝑥2 𝑝 𝑥 = 𝑥 + 1
                        (iii)                                 𝑝 𝑥 = 1/𝑥 + 1/𝑥 2
                                                            𝑝 𝑥 is not in domain of 𝑝2
                                                            ∴ x + 1 is not in range(T)


   𝑥2 𝑝 𝑥 = 3 − 𝑥2
              3
     𝑝 𝑥 = 2−1
              𝑥
𝑝 𝑥 is not in domain of 𝑝2
∴ 3 − x 2 is not in range(T)
4(b)                                             𝛵 𝑥 2 = 𝑥 2 ∙ 𝑥 2= 𝑥 4
                               (i)                      𝑥4 ≠ 0
                                                 ∴not in Kernel(T)

 𝛵 𝑝 𝑥   = 𝑥 2 𝑝(𝑥)
                                     (ii)

                                                      𝛵 0 = 𝑥2 ∙ 0 = 0
                       (iii)                          ∴ in Kernel(T)



                       𝛵 𝑥 + 1 = 𝑥2 𝑥 + 1 = 𝑥3 + 𝑥2 ≠ 0
                      ∴not in Kernel(T)
5(a)    𝐴𝑥 = 0
                             𝑟1 /4
    4 5        7 0        3𝑟1 + 2𝑟2      1 5/4 7/4 0             13𝑟2 − 17𝑟3 1   5/4  7/4 0
   −6 1        −1 0                      0 17 19 0                           0    1  19/17 0
                            𝑟2 + 3𝑟3                               𝑟2 /17
    3 6        4 0                       0 13   7 0                          0    0   128 0
                                              19
   𝑟3 /128        1 0     6/17 0         𝑟2 −    𝑟       1   0    0 0
                                              17 3
                  0 1     19/17 0                        0   1    0 0
       5                                       6
𝑟1 −     𝑟        0 0       1   0        𝑟1 −    𝑟       0   0    1 0
       4 2                                    17 3
             ∴ Since 𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0. There is no basis for Kernel (T)

                                     4   5    7
             ∴ Basis for image (T)= −6 , 1 , −1
                                     3   6    4
5(b)   𝐴𝑥 = 0
   1   −1 3 0          5𝑟1 − 𝑟2     1 −1   3 0           𝑟2 − 𝑟3    1 −1  3    0
   5    6 −4 0                      0 −11 19 0                      0 1 −19/11 0
   7    4    2 0       7𝑟1 − 𝑟3     0 −11 19 0            𝑟2 /-11   0 0   0    0
                                                         19           14
   𝑟1 + 𝑟2     1   0 14/11 0         𝐿𝑒𝑡 𝑥3 = 𝑡 , 𝑥2 =      𝑡, 𝑥1 = −    𝑡
                                                         11           11
               0   1 −19/11 0
                            0                 14
               0   0   0                    −      𝑡
                                              11        𝑡 −14
                                        𝑥 = 19       =     19
                                                 𝑡     11
                                             11            11
                                               𝑡
                                     1 −1
             ∴ Basis for range (T)= 5 , 6
                                     7    4
                                     −14
             ∴ Basis for kernel (T)= 19
                                      11
6. 𝑇 𝑥, 𝑦, 𝑧 = (0,0,0)                                           2𝑥 + 4𝑦 − 6𝑧 = 0
  (2𝑥 + 4𝑦 − 6𝑧, 𝑥 − 2𝑦 + 𝑧, 5𝑥 − 2𝑦 − 3𝑧) = (0,0,0)                𝑥 − 2𝑦 + 𝑧 = 0
                                                                 5𝑥 − 2𝑦 − 3𝑧 = 0
                            𝑟1 /2
   2    4      −6 0       𝑟1 − 𝑟2    1      2    −3 0       𝑟3 + 𝑟2      1   2   −3 0
   1   −2      1 0                   0      8    −8 0                    0   1   −1 0
                        5𝑟2 − 𝑟3                              𝑟2 /8      0   0    0 0
   5   −2      −3 0                  0     −8     8 0

   𝑟2 − 2𝑟2       1 0    −1 0            𝐿𝑒𝑡 𝑥3 = 𝑡 ,   𝑥2 = 𝑡, 𝑥1 = 𝑡
                  0 1    −1 0
                                            𝑡     1
                  0 0     0 0
                                         𝑥= 𝑡 = 𝑡 1
                                             𝑡    1


                                      2   4
              ∴ Basis for range (T)= 1 , −2
                                      5 −2
                                      1
              ∴ Basis for kernel (T)= 1
                                      1
TAMAT

More Related Content

What's hot

Tutorial 0 mth 3201
Tutorial 0 mth 3201Tutorial 0 mth 3201
Tutorial 0 mth 3201
Drradz Maths
 
Tutorial 1 mth 3201
Tutorial 1 mth 3201Tutorial 1 mth 3201
Tutorial 1 mth 3201
Drradz Maths
 
Modul bimbingan add maths
Modul bimbingan add mathsModul bimbingan add maths
Modul bimbingan add maths
Sasi Villa
 
Kunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdf
Kunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdfKunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdf
Kunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdf
MutiaraPutri41
 

What's hot (20)

Tutorial 0 mth 3201
Tutorial 0 mth 3201Tutorial 0 mth 3201
Tutorial 0 mth 3201
 
Tutorial 1 mth 3201
Tutorial 1 mth 3201Tutorial 1 mth 3201
Tutorial 1 mth 3201
 
Capitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na EdicionCapitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na Edicion
 
solucionario de purcell 2
solucionario de purcell 2solucionario de purcell 2
solucionario de purcell 2
 
Signals and systems: part i solutions
Signals and systems: part i solutionsSignals and systems: part i solutions
Signals and systems: part i solutions
 
solucionario de purcell 3
solucionario de purcell 3solucionario de purcell 3
solucionario de purcell 3
 
Modul bimbingan add maths
Modul bimbingan add mathsModul bimbingan add maths
Modul bimbingan add maths
 
Single page-integral-table
Single page-integral-tableSingle page-integral-table
Single page-integral-table
 
ANALISIS RIIL 1 3.1 ROBERT G BARTLE
ANALISIS RIIL 1 3.1 ROBERT G BARTLEANALISIS RIIL 1 3.1 ROBERT G BARTLE
ANALISIS RIIL 1 3.1 ROBERT G BARTLE
 
Singular Value Decompostion (SVD): Worked example 1
Singular Value Decompostion (SVD): Worked example 1Singular Value Decompostion (SVD): Worked example 1
Singular Value Decompostion (SVD): Worked example 1
 
Contoh ruang metrik
Contoh ruang metrikContoh ruang metrik
Contoh ruang metrik
 
Applied Calculus Chapter 1 polar coordinates and vector
Applied Calculus Chapter  1 polar coordinates and vectorApplied Calculus Chapter  1 polar coordinates and vector
Applied Calculus Chapter 1 polar coordinates and vector
 
Kunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdf
Kunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdfKunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdf
Kunci Jawaban kalkulus edisi 9[yunusFairVry.blogspot.com].pdf
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integral
 
ANALISIS RIIL 1 3.3 dan 3.4 ROBERT G BARTLE
ANALISIS RIIL 1 3.3 dan 3.4 ROBERT G BARTLEANALISIS RIIL 1 3.3 dan 3.4 ROBERT G BARTLE
ANALISIS RIIL 1 3.3 dan 3.4 ROBERT G BARTLE
 
Bahan ajar alin 2 rev 2014 pdf
Bahan ajar alin 2 rev 2014 pdfBahan ajar alin 2 rev 2014 pdf
Bahan ajar alin 2 rev 2014 pdf
 
Section 6.3 properties of the trigonometric functions
Section 6.3 properties of the trigonometric functionsSection 6.3 properties of the trigonometric functions
Section 6.3 properties of the trigonometric functions
 
Bidang datar dalam dimensi tiga (geometri analitik ruang)
Bidang datar dalam dimensi tiga (geometri analitik ruang)Bidang datar dalam dimensi tiga (geometri analitik ruang)
Bidang datar dalam dimensi tiga (geometri analitik ruang)
 
geometri analitik - ellips
geometri analitik - ellipsgeometri analitik - ellips
geometri analitik - ellips
 
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
 

Similar to Tutorial 9 mth 3201

Similar to Tutorial 9 mth 3201 (20)

Integration Using Partial Fraction or Rational Fraction ( Fully Solved)
Integration Using Partial Fraction or Rational Fraction ( Fully Solved)Integration Using Partial Fraction or Rational Fraction ( Fully Solved)
Integration Using Partial Fraction or Rational Fraction ( Fully Solved)
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2
 
Integrales solucionario
Integrales solucionarioIntegrales solucionario
Integrales solucionario
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
Calculo
CalculoCalculo
Calculo
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptx
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
 
Exercices calculs de_primitives
Exercices calculs de_primitivesExercices calculs de_primitives
Exercices calculs de_primitives
 
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاولملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
Interpolation
InterpolationInterpolation
Interpolation
 
Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007
 
S1230109
S1230109S1230109
S1230109
 

More from Drradz Maths (20)

Figures
FiguresFigures
Figures
 
Formulas
FormulasFormulas
Formulas
 
Revision 7.1 7.3
Revision 7.1 7.3Revision 7.1 7.3
Revision 7.1 7.3
 
Tutorial 9
Tutorial 9Tutorial 9
Tutorial 9
 
Tutorial 8
Tutorial 8Tutorial 8
Tutorial 8
 
MTH3101 Tutor 7 lagrange multiplier
MTH3101  Tutor 7 lagrange multiplierMTH3101  Tutor 7 lagrange multiplier
MTH3101 Tutor 7 lagrange multiplier
 
Tutorial 6 en.mughti important
Tutorial 6 en.mughti importantTutorial 6 en.mughti important
Tutorial 6 en.mughti important
 
Figures
FiguresFigures
Figures
 
Formulas
FormulasFormulas
Formulas
 
Figures
FiguresFigures
Figures
 
First_attachment MTH3101
First_attachment MTH3101First_attachment MTH3101
First_attachment MTH3101
 
Tutorial 2, 2(e), no. 7
Tutorial 2,  2(e),  no. 7Tutorial 2,  2(e),  no. 7
Tutorial 2, 2(e), no. 7
 
Echelon or not
Echelon or notEchelon or not
Echelon or not
 
Tutorials Question
Tutorials QuestionTutorials Question
Tutorials Question
 
mth3201 Tutorials
mth3201 Tutorialsmth3201 Tutorials
mth3201 Tutorials
 
tutor 8, question 6
tutor 8, question 6tutor 8, question 6
tutor 8, question 6
 
tutor 8, question 5
tutor 8, question 5tutor 8, question 5
tutor 8, question 5
 
solution tutor 3.... 7(b)
solution tutor 3.... 7(b)solution tutor 3.... 7(b)
solution tutor 3.... 7(b)
 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12
 
Ism et chapter_8
Ism et chapter_8Ism et chapter_8
Ism et chapter_8
 

Tutorial 9 mth 3201

  • 1.
  • 3. 1. Linear combination or not (a) 𝛵: ℛ 3 → ℛ 2 ; 𝛵 𝑥, 𝑦, 𝑧 = (𝑥 − 𝑦, 𝑦 − 𝑧) Condition given, please follow 𝐿𝑒𝑡 𝑢 = 𝑥1 , 𝑦1 , 𝑧1 𝑎𝑛𝑑 𝑣 = 𝑥2 , 𝑦2 , 𝑧2 (i) 𝑢 + 𝑣 = 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2 , 𝑧1 + 𝑧2 𝛵 𝑢 + 𝑣 = 𝛵 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2 , 𝑧1 + 𝑧2 By follow the condition, = 𝑥1 + 𝑥2 − 𝑦1 − 𝑦2 , 𝑦1 + 𝑦2 − 𝑧1 − 𝑧2 = 𝑥1 − 𝑦1 + 𝑥2 − 𝑦2 , 𝑦1 − 𝑧1 + 𝑦2 − 𝑧2 = 𝑥1 − 𝑦1 , 𝑦1 − 𝑧1 ) + (𝑥2 − 𝑦2 , 𝑦2 − 𝑧2 = 𝛵(𝑢) + 𝛵(𝑣) (ii) 𝐼𝑓 𝑘 𝑖𝑠 𝑎𝑛𝑦 𝑠𝑐𝑎𝑙𝑎𝑟, 𝑘 ∈ ℜ, 𝑘𝑢 = 𝑘𝑥1 , 𝑘𝑦1 , 𝑘𝑧1 𝑆𝑖𝑛𝑐𝑒 𝛵 𝑢 + 𝑣 = 𝛵 𝑢 + 𝛵 𝑣 , 𝛵 (𝑘𝑢) = 𝛵 𝑘𝑥1 , 𝑘𝑦1 , 𝑘𝑧1 ∴ 𝛵 is linear combination = 𝑘𝑥1 − 𝑘𝑦1 , 𝑘𝑦1 − 𝑘𝑧1 = 𝑘 𝑥1 − 𝑦1 , 𝑦1 − 𝑧1 = 𝑘𝛵(𝑢 )
  • 4. 1. Linear combination or not 𝑥 𝑦 (d) 𝛵: ℛ 2 → ℛ; 𝛵 𝑥, 𝑦 = 𝐿𝑒𝑡 𝑢 = 𝑥1 , 𝑦1 𝑎𝑛𝑑 𝑣 = 𝑥2 , 𝑦2 𝑥+ 𝑦 𝑥− 𝑦 Condition given, please follow (i) 𝑢 + 𝑣 = 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2 , 𝛵 𝑢 + 𝑣 = 𝛵 𝑥1 + 𝑥2 , 𝑦1 + 𝑦2 𝑥 + 𝑥 𝑦1 + 𝑦2 By follow the condition, 𝛵 𝑢 + 𝑣 = 𝑥 + 𝑥1 + 𝑦2 + 𝑦 𝑥1 + 𝑥2 − 𝑦1 − 𝑦2 1 2 1 2 = 𝑥1 + 𝑥2 𝑥1 + 𝑥2 − 𝑦1 − 𝑦2 − 𝑦1 + 𝑦2 𝑥1 + 𝑥2 + 𝑦1 + 𝑦2 = 𝑥1 2 + 𝑥1 𝑥2 − 𝑥1 𝑦1 − 𝑥1 𝑦2 + 𝑥1 𝑥2 + 𝑥2 2 − 𝑥2 𝑦1 − 𝑥2 𝑦2 − 𝑦1 𝑥1 + 𝑦1 𝑥2 + 𝑦1 2 + 𝑦1 𝑦2 + 𝑦2 𝑥1 + 𝑦2 𝑥2 + 𝑦2 𝑦1 + 𝑦2 2 = 𝑥1 2 + 𝑥2 2 − 𝑦1 2 − 𝑦2 2 + 2𝑥1 𝑥2 − 2𝑦1 𝑥2 − 2𝑥1 𝑦1 − 2𝑥1 𝑦2 − 2𝑥2 𝑦1 − 2𝑥2 𝑦2 ∗∗ 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝛵 𝑢 + 𝛵 𝑣 ? ? ? 𝛵 𝑢 + 𝛵 𝑣 = 𝛵 𝑥1 , 𝑦1 + 𝛵 𝑥2 , 𝑦2 compare 𝑥1 𝑦1 𝑥2 𝑦2 = 𝑥 + 𝑦 𝑥1 − 𝑦1 + 𝑥 + 𝑦 𝑥2 − 𝑦2 1 1 2 2 = 𝑥1 2 + 𝑥2 2 − 𝑦1 2 − 𝑦2 2 − 2𝑥1 𝑦1 − 2𝑥2 𝑦2 𝑆𝑖𝑛𝑐𝑒 𝛵 𝑢 + 𝑣 ≠ 𝛵 𝑢 + 𝛵 𝑣 , ∴ 𝛵 is not linear combination
  • 5. 2(a) 𝛵2 ∙ 𝛵1 𝑝 𝑥 = 𝛵2 𝛵1 (𝑝 𝑥 ) 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛: 𝛵1 𝑝(𝑥) = 𝑝 𝑥 − 1 , = 𝛵2 𝑝(𝑥 − 1) 𝛵2 𝑝 𝑥 = 𝑝 𝑥 + 2 = 𝑝(𝑥 − 1 + 2) = 𝑝(𝑥 + 1) (b) 𝛵1 ∙ 𝛵2 𝑝 𝑥 = 𝛵1 𝛵2 (𝑝 𝑥 ) = 𝛵1 𝑝(𝑥 + 2) = 𝑝(𝑥 + 2 − 1) = 𝑝(𝑥 + 1)
  • 6. 3(a) 𝑎 𝑏 𝑎 𝑏 𝑎 𝑐 𝛵1 ∙ 𝛵2 = 𝛵1 𝛵2 = 𝛵1 = 𝑎 − 𝑐 + 4𝑏 − 𝑑 𝑐 𝑑 𝑐 𝑑 𝑏 𝑑 𝑎 𝑏 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑒𝑛: 𝛵1 = 𝑎 − 𝑏 + 4𝑐 − 𝑑, 𝑐 𝑑 𝑎 𝑏 𝑎 𝑐 𝛵2 = 𝑐 𝑑 𝑏 𝑑 𝑎 𝑏 𝑎 𝑏 (b) 𝛵2 ∙ 𝛵1 = 𝛵2 𝛵1 = 𝛵2 (𝑎 − 𝑏 + 4𝑐 − 𝑑) 𝑐 𝑑 𝑐 𝑑 ∴ 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡, 𝑖𝑚𝑎𝑔𝑒 𝑇1 𝑛𝑜𝑡 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑇2
  • 7. 4(a) 𝑥2 𝑝 𝑥 = 𝑥2 + 𝑥 (i) 𝑝 𝑥 = 1 + 1/𝑥 𝑝 𝑥 is not in domain of 𝑝2 ∴ x 2 +x is not in range(T) 𝛵 𝑝 𝑥 = 𝑥 2 𝑝(𝑥) (ii) 𝑥2 𝑝 𝑥 = 𝑥 + 1 (iii) 𝑝 𝑥 = 1/𝑥 + 1/𝑥 2 𝑝 𝑥 is not in domain of 𝑝2 ∴ x + 1 is not in range(T) 𝑥2 𝑝 𝑥 = 3 − 𝑥2 3 𝑝 𝑥 = 2−1 𝑥 𝑝 𝑥 is not in domain of 𝑝2 ∴ 3 − x 2 is not in range(T)
  • 8. 4(b) 𝛵 𝑥 2 = 𝑥 2 ∙ 𝑥 2= 𝑥 4 (i) 𝑥4 ≠ 0 ∴not in Kernel(T) 𝛵 𝑝 𝑥 = 𝑥 2 𝑝(𝑥) (ii) 𝛵 0 = 𝑥2 ∙ 0 = 0 (iii) ∴ in Kernel(T) 𝛵 𝑥 + 1 = 𝑥2 𝑥 + 1 = 𝑥3 + 𝑥2 ≠ 0 ∴not in Kernel(T)
  • 9. 5(a) 𝐴𝑥 = 0 𝑟1 /4 4 5 7 0 3𝑟1 + 2𝑟2 1 5/4 7/4 0 13𝑟2 − 17𝑟3 1 5/4 7/4 0 −6 1 −1 0 0 17 19 0 0 1 19/17 0 𝑟2 + 3𝑟3 𝑟2 /17 3 6 4 0 0 13 7 0 0 0 128 0 19 𝑟3 /128 1 0 6/17 0 𝑟2 − 𝑟 1 0 0 0 17 3 0 1 19/17 0 0 1 0 0 5 6 𝑟1 − 𝑟 0 0 1 0 𝑟1 − 𝑟 0 0 1 0 4 2 17 3 ∴ Since 𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0. There is no basis for Kernel (T) 4 5 7 ∴ Basis for image (T)= −6 , 1 , −1 3 6 4
  • 10. 5(b) 𝐴𝑥 = 0 1 −1 3 0 5𝑟1 − 𝑟2 1 −1 3 0 𝑟2 − 𝑟3 1 −1 3 0 5 6 −4 0 0 −11 19 0 0 1 −19/11 0 7 4 2 0 7𝑟1 − 𝑟3 0 −11 19 0 𝑟2 /-11 0 0 0 0 19 14 𝑟1 + 𝑟2 1 0 14/11 0 𝐿𝑒𝑡 𝑥3 = 𝑡 , 𝑥2 = 𝑡, 𝑥1 = − 𝑡 11 11 0 1 −19/11 0 0 14 0 0 0 − 𝑡 11 𝑡 −14 𝑥 = 19 = 19 𝑡 11 11 11 𝑡 1 −1 ∴ Basis for range (T)= 5 , 6 7 4 −14 ∴ Basis for kernel (T)= 19 11
  • 11. 6. 𝑇 𝑥, 𝑦, 𝑧 = (0,0,0) 2𝑥 + 4𝑦 − 6𝑧 = 0 (2𝑥 + 4𝑦 − 6𝑧, 𝑥 − 2𝑦 + 𝑧, 5𝑥 − 2𝑦 − 3𝑧) = (0,0,0) 𝑥 − 2𝑦 + 𝑧 = 0 5𝑥 − 2𝑦 − 3𝑧 = 0 𝑟1 /2 2 4 −6 0 𝑟1 − 𝑟2 1 2 −3 0 𝑟3 + 𝑟2 1 2 −3 0 1 −2 1 0 0 8 −8 0 0 1 −1 0 5𝑟2 − 𝑟3 𝑟2 /8 0 0 0 0 5 −2 −3 0 0 −8 8 0 𝑟2 − 2𝑟2 1 0 −1 0 𝐿𝑒𝑡 𝑥3 = 𝑡 , 𝑥2 = 𝑡, 𝑥1 = 𝑡 0 1 −1 0 𝑡 1 0 0 0 0 𝑥= 𝑡 = 𝑡 1 𝑡 1 2 4 ∴ Basis for range (T)= 1 , −2 5 −2 1 ∴ Basis for kernel (T)= 1 1
  • 12. TAMAT