SlideShare a Scribd company logo
1 of 48
Tutorial MTH 3201
Linear Algebras
Tutorial 1
1. Determine whether the given set V with the given operations is a vector
      space or not. For those that are NOT, list all axioms that fail to hold.
   (a) V is the set of all 2 × 2 non-singular matrices. The operations of
      addition and scalar multiplication are the standard matrix
      operations. V=2 × 2 non-singular matrices Operation=-standard matrix operations.
         Let


      Suppose            u1    u2                   v1     v2
                
                u                             
                                          and v
                         u3    u4                   v3     v4
 AXIOM 1:
                u1      u2      v1   v2     u1 v1 u2 v2
       
      u v                                                             V
                u3      u4      v3   v4     u3 v3    u4 v4
 AXIOM 2:          
                u v v u
        u1 u2        v1 v2    u1 v1 u2 v2    v1 u1 v2 u2         u1 u2    v1 v2
 
u v
        u3 u4        v3 v4    u3 v3 u4 v4    v3 u3 v4 u4         u3 u4    v3 v4
                                                                 
                                                                v u      V
AXIOM 3:

           u1   u2        v1        v2        w1    w2
u (v w)
              u3   u4        v3        v4        w3    w4
                   u1 u2           v1 w1 v2 w2
                   u3 u4           v3 w3 v4 w4
                   u1 v1 w1            u2 v2 w2
                    u3 v3 w3 u4 v4 w4                            V
                u1 u2    v1 v2   w1                      w2
    (u v) w
                   u3   u4        v3        v4        w3    w4
                    u1 v1 u2 v2                   w1 w2
                    u3 v3 u4 v4                   w3       w4
                   u1 v1 w1                 u2 v2 w2
                                                                     V
                   u3 v3 w3 u4 v4 w4
                             
                        u (v w) (v u ) w
AXIOM 4:                                 
             There exist 0 V such that u 0 0 u             
                                                           u

  Let            x1        x2
        
        0                       ; u 0 u
                                    
                 x3        x4
            u1        u2        x1   x2    u1   u2
 
u 0
            u3        u4        x3   x4    u3       u4
                  u1 x1 u2 x2              u1       u2
                  u3 x3 u4 x4              u3       u4

             u1        x1 u1 , then x1          0               V
                                                         Then, 0
             u2            x2   u2 , then x2    0
             u3            x3   u3 , then x3    0
                 u4        x4   u4 , then x4    0
    
But 0                 0 which is a singular matrix
AXIOM 5:       
               u V           
                             u          
                                   s.t. u    
                                             u      
                                                    u    
                                                        u 0
          V
  Since, 0
AXIOM 6:

                                  
  If k is any scalar and u V then ku V .
     k u1 u2           ku1 ku2
   ku
            u3 u4
                                   V
                        ku3 ku4
AXIOM 7:     
           k u      
                    v     
                         ku         
                                   kv

             u1   u2       v1    v2
k u v      k
               u3   u4       v3    v4
               u1   u2        v1   v2          
           k             k                  ku kv       V
               u3   u4        v3    v4
AXIOM 8:   k       
                  u       
                          ku           
                                      u
                                             ku1 u1 ku2 u2
                        u1      u2
  k     u ( k )                            ku3 u3 ku4 u4
                         u3      u4
               ku1 ku2        u1 u2            u1 u2       u1 u2
               ku3 ku4        u3 u4
                                             k           
                                                 u3 u4       u3 u4
                 
                ku        
                         u
AXIOM 9:      
           k u              
                          k u
                        u1          u 2
       k u         k
                         u3          u 4
                         k u1    k u2
                         k u3    k u4
                                 
                              k u
AXIOM 10:               
                      11 u    
                              u

            u1   u2     u1   u2
1
  u    1                         
                                  u
            u3   u4     u3   u4


   CONCLUSION :



      Hence, V is is not a vector space
      since Axiom 4 and Axiom 5 aren't satisfied.
V=2 × 2 non-singular matrices
• i.e., one that has a matrix inverse (invertable)
• A square matrix is nonsingular iff its
  determinant is nonzero.
  Example:


                               0   0
                               0   0
                 V
                0
(b) v       
              v    (v1 , v2 , v3 )    3 v1   v2
Suppose
  
  u                        
       (u1 , u2 , u3 ) and v                                
                                     (v1 , v2 , v3 ) where u, v V
AXIOM 1:

 
u v (u1, u2 , u3 ) (v1, v2 , v3 ) (u1 v1 , u2 v2 , u3 v3 )     V
AXIOM 2:      
           u v v u
 
u v (u1, u2 , u3 ) (v1, v2 , v3 ) (u1 v1 , u2 v2 , u3 v3 )
    (v1 u1 , v2 u2 , v3 u3 ) (v1 , v2 , v3 ) (u1 , u2 , u3 )
                                     
                                    v u      V
AXIOM 3:            
            u (v w) (v u ) w

  
u (v w) (u1, u2 , u3 )         (v1, v2 , v3 ) (w1, w2 , w3 )


              (u1, u2 , u3 )      v1 w1 , v2 w2 , v3 w3

             (u1 v1 w1 , u2 v2            w2 , u3 v3       w3 )       V
      
   (u v) w     (u1, u2 , u3 ) (v1, v2 , v3 )     (w1, w2 , w3 )


           u1 v1, u2 v2 , u3 v3           (w1, w2 , w3 )

           (u1 v1 w1 , u2 v2 w2 , u3 v3                        w3 )   V

                            
                       u (v w) (v u ) w
AXIOM 4:                               
           There exist 0 V such that u 0 0 u                   
                                                               u

  Let                       
        0 ( x1, x2 , x3 ); u 0 u
 
u 0 (u1, u2 , u3 ) ( x1, x2 , x3 )       (u1 , u2 , u3 )
        (u1 x1 , u2 x2 , u3 x3 )         (u1 , u2 , u3 )
           u1 x1 u1 , then x1                    0                                 
                                                           ( x1, x2 , x3 ) (0,0,0) 0
           u2 x2 u2 , then x2                    0
           u3 x3 u3 , then x3
            u4     x4    u4 , then x4
                                                 0
                                                 0
                                                            V
                                                     Then, 0
AXIOM 5:             
                     u V                 
                                         u       s.t.
            
            u       
                    u              
                                 u u 0           Since,              V
                                                                    u
            (u1 , u2 , u3 ) ( (u1 , u2 , u3 )) (u1, u2 , u3 ) ( u1, u2 , u3 )
                 (u1 u1 , u2 u2 , u3 u3 ) ( u1 u1 , u2 u2 , u3 u3 )
                                                      
                 ( (u , u , u )) (u , u , u ) (0,0,0) 0
                     1   2   3       1       2   3
AXIOM 6:
           If k is any scalar and                        
                                                u V then ku   V.

                        (ku1 , ku2 , ku3 )
 ku k u1 , u2 , u3                                  V
AXIOM 7:
             
           k u       
                     v        
                             ku        
                                      kv
      
   k u v       k (u1 , u2 , u3 ) (v1 , v2 , v3 )

              k (u1 , u2 , u3 ) k (v1 , v2 , v3 )
                  
               ku kv             V
AXIOM 8:    k       
                   u         
                             ku         
                                       u

  k      
        u        (k ) u1, u2 , u3             (ku1 u1 , ku2   u2 , ku3 u3 )

                  (ku1 , ku2 , ku3 ) (u1 , u2 , u3 )
                  k u1, u2 , u3     u1, u2 , u3
                    
                   ku              
                                  u
AXIOM 9:        
             k u               
                             k u
              
           k u       k u1 , u2 , u3
                     (k u1 , k u2 , k u3 )
                              
                           k u
AXIOM 10:               1 
                        1 u        
                                    u


1 1(u1 , u2 , u3 )
  u                      (u1 , u2 , u3 )   
                                           u


    CONCLUSION :




               Hence, V is a vector space.
(c) v      
            v    (v1 , v2 , v3 )    3 v1   v2
 Suppose

  
  u                        
       (u1 , u2 , u3 ) and v                               
                                    (v1 , v2 , v3 ) where u, v V
AXIOM 1:

 
u v (u1, u2 , u3 ) (v1, v2 , v3 ) (u1 v1 , u2 v2 , u3 v3 )   V
AXIOM 2:      
           u v v u
 
u v (u1, u2 , u3 ) (v1, v2 , v3 ) (u1 v1 , u2 v2 , u3 v3 )
 (v1 u1 , v2 u2 , v3 u3 ) (v1 , v2 , v3 ) (u1 , u2 , u3 )
                                  
                                v u      V
AXIOM 3:            
            u (v w) (v u ) w

  
u (v w) (u1, u2 , u3 )         (v1, v2 , v3 ) (w1, w2 , w3 )


              (u1, u2 , u3 )      v1 w1 , v2 w2 , v3 w3

             (u1 v1 w1 , u2 v2            w2 , u3 v3       w3 )       V
      
   (u v) w     (u1, u2 , u3 ) (v1, v2 , v3 )     (w1, w2 , w3 )


           u1 v1, u2 v2 , u3 v3           (w1, w2 , w3 )

           (u1 v1 w1 , u2 v2 w2 , u3 v3                        w3 )   V

                            
                       u (v w) (v u ) w
AXIOM 4:                               
           There exist 0 V such that u 0 0 u           
                                                       u

  Let                       
        0 ( x1, x2 , x3 ); u 0 u
 
u 0 (u1, u2 , u3 ) ( x1, x2 , x3 )   (u1 , u2 , u3 )
        (u1 x1 , u2 x2 , u3 x3 )     (u1 , u2 , u3 )
                                 
         ( x1, x2 , x3 ) (0,0,0) 0
  Hence v1                      v2 .Then,              
                                                       0 V.

AXIOM 5:


                V
        Since, 0
AXIOM 6:
           If k is any scalar and                        
                                                u V then ku   V.

                        (ku1 , ku2 , ku3 )
 ku k u1 , u2 , u3                                  V
AXIOM 7:
             
           k u       
                     v        
                             ku        
                                      kv
      
   k u v       k (u1 , u2 , u3 ) (v1 , v2 , v3 )

              k (u1 , u2 , u3 ) k (v1 , v2 , v3 )
                  
               ku kv             V
AXIOM 8:    k       
                   u         
                             ku         
                                       u

  k      
        u        (k ) u1, u2 , u3             (ku1 u1 , ku2   u2 , ku3 u3 )

                  (ku1 , ku2 , ku3 ) (u1 , u2 , u3 )
                  k u1, u2 , u3     u1, u2 , u3
                    
                   ku              
                                  u
AXIOM 9:        
             k u               
                             k u
              
           k u       k u1 , u2 , u3
                     (k u1 , k u2 , k u3 )
                              
                           k u
AXIOM 10:               1
                          u         
                                    u


1 1(u1 , u2 , u3 )
  u                      (u1 , u2 , u3 )   
                                           u


    CONCLUSION :



        Hence, V is not a vector space because
        Axiom 4 and Axiom 5 not satisfied.
2.                                x1
            v           
                        x                x1 , x2       
                                  x2
             u1             v1         u1 v1                            u1         ku1          1
  
 u v                                                        
                                                           ku   k
             u2             v2         u2 v2                            u2         ku2          1
   
a) u     ( 1, 2)        
                        v (3, 4)
                    1        3          2                                            1        3
    
i) u v                                                      iii ) 5u 5v 5                   5
                2                4      2                                          2                4
                                 1                 2            5( 1) 1            5(3) 1
                                   ( 1) 1
    1      1 1                  3                 3            5(2) 1             5( 4) 1
ii ) u
    3       3 2                  1                  1               4        16        12
                                   (2) 1
                                 3                 3            9             21           12
 v) 5 2
iv)5( u 
                                   5(2) 1        11
                       2           5( 2) 1        11

                              1        5( 1) 1            4
            
v) (2 5) u 5u 5
                           2            5(2) 1         9

                             1            1
vi )       2u 3u       2            3
                           2            2
           2( 1) 1     5( 1) 1
           2(2) 1      3(2) 1
       3           2   1
           5   5       0

(b) Find the object 0                    
                             V such that 0              
                                                        u            
                                                            u for any u   V.

                       x1                         u1
  Suppose 0                            
                                   and u
                        x2                         u2
                 x1         u1    u1
         0 u
                   x2         u2    u2
                        x1 u1       u1
                        x2 u2       u2
        Then x1 u1           u1      x1       0
               x2 u2         u2          x2   0.

              0
         0          V
               0

(c) If the object 0 in (b) exist,
                                            
    find the object w V such that u w 0 for any u V .

                   0               w1               u1
 Suppose 0               
                        ,w                       
                                             and u
                    0               w2               u2

               w1       u1          0
        
       w u
               w2       u2          0

               w1 u1            0
               w2 u2            0
        Then w1 u1          0           w1   u1
             w2 u2          0           w2    u2 .
               u1
         
         w              V
               u2

(d) Is 1v             
            v for each v      V?

                        v1
             
     Suppose v
                        v2
                   v1
             
            1v 1
                   v2


                   1(v1 ) 1   v1
                   1(v2 ) 1   v2

(e) Is v with the given two operation a vector space?


         V is not a vector space because
         Axiom 8 is not satisfied.
3.                              x1
           v           
                       x              x1 , x2   
                                x2

               u1          v1        u1v1                      u1            u1        k
      
     u v                                             
                                                    ku    k
               u2          v2        u2 v2                     u2            ku2

   
a) u   ( 2, 7)         
                       v (1, 2)

                                                                                2            1
                   2       1            2(1)        2    iii ) 3u 3v 3                     3
    
i) u v                                                                        7                    2
               7                2     7 2     5
                                                              3( 2)(1)        3 1
                                      1     3
                                 2                            3(7)            3( 2)
    1         1 2                    2     2
ii ) u
    2          2 7              1         7                1        4             4
                                  (7)
                                2         2                   21         6        15
 v) 3( 2 )
iv)3( u 
                               3 2                21
              5                3(5)               15

                              2            2 7        5
            
v) (2 5) u 7u 7
                           7               7(7)        49

                     2               2
vi ) 2u 5u     2               5
                   7               7
   2 2        5 2
   2(7)       5(7)
   0      3          0
   14     35         49

(b) Find the object 0                      
                               V such that 0             
                                                         u            
                                                             u for any u   V.

                       x1                          u1
  Suppose 0                             
                                    and u
                        x2                          u2
                 x1          u1    u1
         0 u
                   x2          u2    u2
                        x1u1         u1
                        x2 u2        u2
        Then       x1u1        u1         x1 1
               x2 u2           u2         x2   0.

              1
         0          V
               0

(c) If the object 0 in (b) exist,
                                            
    find the object w V such that u w 0 for any u V .

                 1              w1                   u1
 Suppose 0                
                         ,w                 
                                        and u
                     0           w2                   u2
                w1          u1   1                               1
                                      Then w1u1   1        w1
         
        w u                                                      u1
                w2          u2   0
                                           w2 u2       0        w2    u2 .
                     w1u1        1          1
                     w2 u2       0     
                                       w    u1     V
                                             u2
(d) Is (k       
              )v         
                         kv               
                               v for each v          V and k ,     ?

                               v1
             
     Suppose v
                               v2
                          v1        (k ) v1
          
   ( k  )v    ( k )
                          v2        (k )v2
                    v1         v1     k v1       v1       (k v1 )( v1 )
     
   kv v      k           
                    v2         v2     kv2       v2        kv2 v2


                                         
                                    (k )v      
                                              kv v

(e) Is v with the given two operation a vector space?


         V is not a vector space because
         Axiom 8 is not satisfied.
v        
                x    u1 , u2      (v1   v2 ) u1 , u2 , v1 , v2   
4.
        
       u v       (u1 , u2 ) (v1 , v2 ) (u1 v1 , 0)
         
        ku        k (u1 , u2 ) ( ku1 , ku2 )

   
a) u       ( 3, 2)   
                     v   ( 1,5)
    
i) u v ( 3, 2) ( 1,5)                                  
                                               iii ) 2u 2v 2         3, 2   2( 1,5)
               ( 3 ( 1),0) ( 4,0)                    ( 6, 4) ( 2,10)
    1    1                                          ( 8, 0).
ii ) u      ( 3, 2)
    2     2
        1     1       3
       ( ( 3), (2)) ( ,1)
        2     2       2
 
iv) 2( u v) 2( 4,0)    8,0

           
v) (2 5) u 7u 7( 3, 2)
    (7( 3),7(2)) ( 21,14)
       
vi ) 2u 5u 2( 3, 2) 5( 3, 2)
   ( 6, 4) ( 15,10)
   ( 21,0)

(b) Find the object 0                   
                            V such that 0               
                                                        u               
                                                               u for any u   V.

        
Suppose 0         ( x1 , x2 )            
                                     and u        (u1 , u2 )

      
     0 u ( x1, x2 ) (u1, u2 ) (u1, u2 )

                  ( x1 u1 , 0)       (u1 , u2 )

       Then       x1 u1         u1           x1   0
                        0       u2           x2   0.

             0
        0           V
              0

(c) If the object 0 in (b) exist,
                                            
    find the object w V such that u w 0 for any u V .

                           
 Since 0 not exist and then w is not exist.
(d) Is       
          k (v   
                 w)     
                       kv                 
                              kw for each v, w V and k                       ?

                 
         Suppose v          v1, v2          
                                        and w          (w1, w2 )


              
          k (v w )    k (v1 , v2 ) k ( w1 , w2 ) (kv1 , kv2 ) (kw1 , kw2 )
              (kv1 kw1 , 0)
             
          kv kw k (v1 , v2 ) k ( w1 , w2 ) (kv1 , kv2 ) (kw1 , kw2 )
                 (kv1 kw1 , 0)


                      
                   k (v              
                                     w)            
                                                  kv             
                                                                kw

(e) Is v with the given two operation a vector space?


           V is not a vector space since
          
          0 is not exist.
5. Is the set W subspace of vector space V
From lecture note,
5. Is the set W subspace of vector space V


a) W     u1 , u2 , u3       3 u1    u2   u3      

                           
   Let u (u2 u3 , u2 , u3 ) v (v2 v3 , v2 , v3 )
   Axiom1
      
   ( u v) (u2 u3 , u2 , u3 ) (v2 v3 , v2 , v3 )
                ((u2 v2 ) (u3 v3 ), u2 v2 , u3 v3 ) W
   Axiom 6
     
   k u k (u       u3 , u2 , u3 ) W
            2

       W is subspace of V
5. Is the set W subspace of vector space V


b) W     x, y      2 x     0 ; V        
                         
         Let u (u1 , u2 ) v (v1 , v2 )
         Axiom1
            
         ( u v) (u1 , u2 ) (v1 , v2 )
                   (u1 v1 , u2 v2 ) W
         Axiom 6
          
         ku k (u1 , u2 ) (ku1 , ku2 )
            If k    0, then ku1 0 W
            W is not subspace of V
5. Is the set W subspace of vector space V


                       2                       2
c) W      x, y            y   2x ; V      

                        
       Let u (u1 , 2u1 ) v (v1 , 2v1 )
       Axiom1
          
       ( u v) (u1 , 2u1 ) (v1 , 2v1 )
                 (u1 v1 , 2(u1 v1 )) W
       Axiom 6
         
       k u k (u1 , 2u1 ) (ku1 , 2ku2 ) W


          W is subspace of V
5. Is the set W subspace of vector space V

d) W         p x       P2 p(0)                     0 ; V    P2

Let P ( x) a1 x n b1 x n
     1
                               1
                                       ... 0
     P2 ( x) a2 x n b2 x n         1
                                           ... 0
Axiom1
P ( x) P2 ( x) a1 x n b1 x n
 1
                                       1
                                            ... 0 a2 x n b2 x n      1
                                                                         ... 0
          (a1 a2 ) x n (b1 b2 ) x n                1
                                                       ... 0 W
Axiom 6
kP ( x) k (a1 x n b1 x n
  1
                           1
                                   ... 0) ka1 x n kb1 x n        1
                                                                         ... 0 W


   W is subspace of V
5. Is the set W subspace of vector space V


e) W   p ( x)    ax 2    3x   2a       ; V    P( x)

          Let P ( x) a1 x 2 3x 2
               1

                 P2 ( x) a2 x 2 3 x 2
          Axiom1
          P ( x) P2 ( x) a1 x 2 3x 2 a2 x 2 3x 2
           1

                        (a1 a2 ) x 2 6 x 4 W
          Axiom 6
          kP ( x) k (a1 x 2 3x 2) ka1 x 2 3kx 6 W
            1



                W is not subspace of V
5. Is the set W subspace of vector space V

               a        c
f) W                                 a, c            ; V     M 22
               c            a
          u1       u2                            v1   v2
    
Let u                                 
                                      v
          u2        u4                           v2   v4
Axiom1
         u1    u2               v1        v2          u1 v1     u2 v2
 
u v                                                                        W
         u2     u4              v2          v4        u2 v2     (u4 v4 )
Axiom 6
     u1        u2               ku1         ku2
 
ku k
     u2         u4              ku2          ku4
If k 0, then         ku1 0 W
  W is not subspace of V
5. Is the set W subspace of vector space V
           a        b
g) W                    a, b, c             ; V       M 22
           c    0

                u1 u2                        v1 v2
       
   Let u                             
                                     v
                u2          0                v2    0
   Axiom1
               u1 u2            v1 v2             u1 v1   u2 v2
    
   u v                                                            W
               u2       0       v2       0        u2 v2   (0 0)
   Axiom 6
        u1 u2                   ku1 ku2
    
   ku k                                            W
        u2 0                    ku2 0
       W is subspace of V
Thank You!!!
“Satu itu Alif, Alif itu Ikhlas,
Ikhlas itu perlu diletakkan pada tempat Pertama,
Juga Perlu di Utamakan”

More Related Content

What's hot

Tutorial 3 mth 3201
Tutorial 3 mth 3201Tutorial 3 mth 3201
Tutorial 3 mth 3201Drradz Maths
 
Tutorial 9 mth 3201
Tutorial 9 mth 3201Tutorial 9 mth 3201
Tutorial 9 mth 3201Drradz Maths
 
geometri analitik ruang
geometri analitik ruanggeometri analitik ruang
geometri analitik ruangria angriani
 
soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)
soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)
soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)Dyas Arientiyya
 
Rank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxRank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxfroilandoblon1
 
Bahan ajar alin 2 rev 2014 pdf
Bahan ajar alin 2 rev 2014 pdfBahan ajar alin 2 rev 2014 pdf
Bahan ajar alin 2 rev 2014 pdfPawit Ngafani
 
Persamaan Bola
Persamaan BolaPersamaan Bola
Persamaan Bolahafizah5
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimensionATUL KUMAR YADAV
 
PERULANGAN DALAM MATLAB
PERULANGAN DALAM MATLABPERULANGAN DALAM MATLAB
PERULANGAN DALAM MATLABFebri Arianti
 
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEMuhammad Nur Chalim
 
Dimensi Metrik Graf Lintasan dan Graf Lengkap
Dimensi Metrik Graf Lintasan dan Graf LengkapDimensi Metrik Graf Lintasan dan Graf Lengkap
Dimensi Metrik Graf Lintasan dan Graf Lengkappetrus fendiyanto
 
APG Pertemuan 1 dan 2 (2)
APG Pertemuan 1 dan 2 (2)APG Pertemuan 1 dan 2 (2)
APG Pertemuan 1 dan 2 (2)Rani Nooraeni
 
Pembahasan osn matematika smp 2013 isian singkat tingkat kabupaten
Pembahasan osn matematika smp 2013 isian singkat tingkat kabupatenPembahasan osn matematika smp 2013 isian singkat tingkat kabupaten
Pembahasan osn matematika smp 2013 isian singkat tingkat kabupatenSosuke Aizen
 
2 geometría analítica
2 geometría analítica2 geometría analítica
2 geometría analíticaERICK CONDE
 
Parabola Presentation
Parabola PresentationParabola Presentation
Parabola Presentationmomonjess
 
Contoh bukan subgrup normal
Contoh bukan subgrup normalContoh bukan subgrup normal
Contoh bukan subgrup normalNida Shafiyanti
 
Fungsi Rasional Pecah.pptx
Fungsi Rasional Pecah.pptxFungsi Rasional Pecah.pptx
Fungsi Rasional Pecah.pptxzainnadaan
 

What's hot (20)

Tutorial 3 mth 3201
Tutorial 3 mth 3201Tutorial 3 mth 3201
Tutorial 3 mth 3201
 
Tutorial 9 mth 3201
Tutorial 9 mth 3201Tutorial 9 mth 3201
Tutorial 9 mth 3201
 
geometri analitik ruang
geometri analitik ruanggeometri analitik ruang
geometri analitik ruang
 
soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)
soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)
soal soal faktor integrasi yang bergantung pada (xy) dan (x+y)
 
Menentukan generalized invers Mariks 3 x 3
Menentukan generalized invers Mariks 3 x 3Menentukan generalized invers Mariks 3 x 3
Menentukan generalized invers Mariks 3 x 3
 
Rank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxRank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptx
 
Bahan ajar alin 2 rev 2014 pdf
Bahan ajar alin 2 rev 2014 pdfBahan ajar alin 2 rev 2014 pdf
Bahan ajar alin 2 rev 2014 pdf
 
Persamaan Bola
Persamaan BolaPersamaan Bola
Persamaan Bola
 
Guia 5 calculo vectorial
Guia 5 calculo vectorialGuia 5 calculo vectorial
Guia 5 calculo vectorial
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimension
 
PERULANGAN DALAM MATLAB
PERULANGAN DALAM MATLABPERULANGAN DALAM MATLAB
PERULANGAN DALAM MATLAB
 
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
 
Dimensi Metrik Graf Lintasan dan Graf Lengkap
Dimensi Metrik Graf Lintasan dan Graf LengkapDimensi Metrik Graf Lintasan dan Graf Lengkap
Dimensi Metrik Graf Lintasan dan Graf Lengkap
 
APG Pertemuan 1 dan 2 (2)
APG Pertemuan 1 dan 2 (2)APG Pertemuan 1 dan 2 (2)
APG Pertemuan 1 dan 2 (2)
 
Pembahasan osn matematika smp 2013 isian singkat tingkat kabupaten
Pembahasan osn matematika smp 2013 isian singkat tingkat kabupatenPembahasan osn matematika smp 2013 isian singkat tingkat kabupaten
Pembahasan osn matematika smp 2013 isian singkat tingkat kabupaten
 
Multilineal
MultilinealMultilineal
Multilineal
 
2 geometría analítica
2 geometría analítica2 geometría analítica
2 geometría analítica
 
Parabola Presentation
Parabola PresentationParabola Presentation
Parabola Presentation
 
Contoh bukan subgrup normal
Contoh bukan subgrup normalContoh bukan subgrup normal
Contoh bukan subgrup normal
 
Fungsi Rasional Pecah.pptx
Fungsi Rasional Pecah.pptxFungsi Rasional Pecah.pptx
Fungsi Rasional Pecah.pptx
 

More from Drradz Maths

More from Drradz Maths (20)

Figures
FiguresFigures
Figures
 
Formulas
FormulasFormulas
Formulas
 
Revision 7.1 7.3
Revision 7.1 7.3Revision 7.1 7.3
Revision 7.1 7.3
 
Tutorial 9
Tutorial 9Tutorial 9
Tutorial 9
 
Tutorial 8
Tutorial 8Tutorial 8
Tutorial 8
 
MTH3101 Tutor 7 lagrange multiplier
MTH3101  Tutor 7 lagrange multiplierMTH3101  Tutor 7 lagrange multiplier
MTH3101 Tutor 7 lagrange multiplier
 
Tutorial 6 en.mughti important
Tutorial 6 en.mughti importantTutorial 6 en.mughti important
Tutorial 6 en.mughti important
 
Figures
FiguresFigures
Figures
 
Formulas
FormulasFormulas
Formulas
 
Figures
FiguresFigures
Figures
 
First_attachment MTH3101
First_attachment MTH3101First_attachment MTH3101
First_attachment MTH3101
 
Tutorial 2, 2(e), no. 7
Tutorial 2,  2(e),  no. 7Tutorial 2,  2(e),  no. 7
Tutorial 2, 2(e), no. 7
 
Echelon or not
Echelon or notEchelon or not
Echelon or not
 
Tutorials Question
Tutorials QuestionTutorials Question
Tutorials Question
 
mth3201 Tutorials
mth3201 Tutorialsmth3201 Tutorials
mth3201 Tutorials
 
tutor 8, question 6
tutor 8, question 6tutor 8, question 6
tutor 8, question 6
 
tutor 8, question 5
tutor 8, question 5tutor 8, question 5
tutor 8, question 5
 
solution tutor 3.... 7(b)
solution tutor 3.... 7(b)solution tutor 3.... 7(b)
solution tutor 3.... 7(b)
 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12
 
Ism et chapter_8
Ism et chapter_8Ism et chapter_8
Ism et chapter_8
 

Recently uploaded

Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxabhijeetpadhi001
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 

Recently uploaded (20)

Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
MICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptxMICROBIOLOGY biochemical test detailed.pptx
MICROBIOLOGY biochemical test detailed.pptx
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 

Tutorial 1 mth 3201

  • 3. 1. Determine whether the given set V with the given operations is a vector space or not. For those that are NOT, list all axioms that fail to hold. (a) V is the set of all 2 × 2 non-singular matrices. The operations of addition and scalar multiplication are the standard matrix operations. V=2 × 2 non-singular matrices Operation=-standard matrix operations. Let Suppose u1 u2 v1 v2  u  and v u3 u4 v3 v4 AXIOM 1: u1 u2 v1 v2 u1 v1 u2 v2   u v V u3 u4 v3 v4 u3 v3 u4 v4 AXIOM 2:     u v v u u1 u2 v1 v2 u1 v1 u2 v2 v1 u1 v2 u2 u1 u2 v1 v2   u v u3 u4 v3 v4 u3 v3 u4 v4 v3 u3 v4 u4 u3 u4 v3 v4   v u V
  • 4. AXIOM 3:    u1 u2 v1 v2 w1 w2 u (v w) u3 u4 v3 v4 w3 w4 u1 u2 v1 w1 v2 w2 u3 u4 v3 w3 v4 w4 u1 v1 w1 u2 v2 w2 u3 v3 w3 u4 v4 w4 V    u1 u2 v1 v2 w1 w2 (u v) w u3 u4 v3 v4 w3 w4 u1 v1 u2 v2 w1 w2 u3 v3 u4 v4 w3 w4 u1 v1 w1 u2 v2 w2 V u3 v3 w3 u4 v4 w4       u (v w) (v u ) w
  • 5. AXIOM 4:      There exist 0 V such that u 0 0 u  u Let x1 x2  0 ; u 0 u    x3 x4 u1 u2 x1 x2 u1 u2   u 0 u3 u4 x3 x4 u3 u4 u1 x1 u2 x2 u1 u2 u3 x3 u4 x4 u3 u4 u1 x1 u1 , then x1 0  V Then, 0 u2 x2 u2 , then x2 0 u3 x3 u3 , then x3 0 u4 x4 u4 , then x4 0  But 0 0 which is a singular matrix
  • 6. AXIOM 5:  u V  u  s.t. u  u  u   u 0  V Since, 0 AXIOM 6:   If k is any scalar and u V then ku V .  k u1 u2 ku1 ku2 ku u3 u4 V ku3 ku4 AXIOM 7:  k u  v  ku  kv   u1 u2 v1 v2 k u v k u3 u4 v3 v4 u1 u2 v1 v2   k k ku kv V u3 u4 v3 v4
  • 7. AXIOM 8: k   u  ku  u ku1 u1 ku2 u2  u1 u2 k  u ( k ) ku3 u3 ku4 u4 u3 u4 ku1 ku2 u1 u2 u1 u2 u1 u2 ku3 ku4 u3 u4 k  u3 u4 u3 u4  ku  u AXIOM 9:  k u  k u  u1 u 2 k u k u3 u 4 k u1 k u2 k u3 k u4  k u
  • 8. AXIOM 10:   11 u  u u1 u2 u1 u2 1 u 1  u u3 u4 u3 u4 CONCLUSION : Hence, V is is not a vector space since Axiom 4 and Axiom 5 aren't satisfied.
  • 9. V=2 × 2 non-singular matrices • i.e., one that has a matrix inverse (invertable) • A square matrix is nonsingular iff its determinant is nonzero. Example: 0 0 0 0  V 0
  • 10. (b) v  v (v1 , v2 , v3 )  3 v1 v2 Suppose  u  (u1 , u2 , u3 ) and v   (v1 , v2 , v3 ) where u, v V AXIOM 1:   u v (u1, u2 , u3 ) (v1, v2 , v3 ) (u1 v1 , u2 v2 , u3 v3 ) V AXIOM 2:     u v v u   u v (u1, u2 , u3 ) (v1, v2 , v3 ) (u1 v1 , u2 v2 , u3 v3 ) (v1 u1 , v2 u2 , v3 u3 ) (v1 , v2 , v3 ) (u1 , u2 , u3 )   v u V
  • 11. AXIOM 3:       u (v w) (v u ) w    u (v w) (u1, u2 , u3 ) (v1, v2 , v3 ) (w1, w2 , w3 ) (u1, u2 , u3 ) v1 w1 , v2 w2 , v3 w3 (u1 v1 w1 , u2 v2 w2 , u3 v3 w3 ) V    (u v) w (u1, u2 , u3 ) (v1, v2 , v3 ) (w1, w2 , w3 ) u1 v1, u2 v2 , u3 v3 (w1, w2 , w3 ) (u1 v1 w1 , u2 v2 w2 , u3 v3 w3 ) V       u (v w) (v u ) w
  • 12. AXIOM 4:      There exist 0 V such that u 0 0 u  u Let     0 ( x1, x2 , x3 ); u 0 u   u 0 (u1, u2 , u3 ) ( x1, x2 , x3 ) (u1 , u2 , u3 ) (u1 x1 , u2 x2 , u3 x3 ) (u1 , u2 , u3 ) u1 x1 u1 , then x1 0  ( x1, x2 , x3 ) (0,0,0) 0 u2 x2 u2 , then x2 0 u3 x3 u3 , then x3 u4 x4 u4 , then x4 0 0  V Then, 0 AXIOM 5:  u V  u s.t.  u  u    u u 0 Since,  V u (u1 , u2 , u3 ) ( (u1 , u2 , u3 )) (u1, u2 , u3 ) ( u1, u2 , u3 ) (u1 u1 , u2 u2 , u3 u3 ) ( u1 u1 , u2 u2 , u3 u3 )  ( (u , u , u )) (u , u , u ) (0,0,0) 0 1 2 3 1 2 3
  • 13. AXIOM 6: If k is any scalar and   u V then ku V.  (ku1 , ku2 , ku3 ) ku k u1 , u2 , u3 V AXIOM 7:  k u  v  ku  kv   k u v k (u1 , u2 , u3 ) (v1 , v2 , v3 ) k (u1 , u2 , u3 ) k (v1 , v2 , v3 )   ku kv V
  • 14. AXIOM 8: k   u  ku  u k   u (k ) u1, u2 , u3 (ku1 u1 , ku2 u2 , ku3 u3 ) (ku1 , ku2 , ku3 ) (u1 , u2 , u3 ) k u1, u2 , u3  u1, u2 , u3  ku  u AXIOM 9:  k u  k u  k u k u1 , u2 , u3 (k u1 , k u2 , k u3 )  k u
  • 15. AXIOM 10: 1  1 u  u 1 1(u1 , u2 , u3 ) u (u1 , u2 , u3 )  u CONCLUSION : Hence, V is a vector space.
  • 16. (c) v  v (v1 , v2 , v3 )  3 v1 v2 Suppose  u  (u1 , u2 , u3 ) and v   (v1 , v2 , v3 ) where u, v V AXIOM 1:   u v (u1, u2 , u3 ) (v1, v2 , v3 ) (u1 v1 , u2 v2 , u3 v3 ) V AXIOM 2:     u v v u   u v (u1, u2 , u3 ) (v1, v2 , v3 ) (u1 v1 , u2 v2 , u3 v3 ) (v1 u1 , v2 u2 , v3 u3 ) (v1 , v2 , v3 ) (u1 , u2 , u3 )   v u V
  • 17. AXIOM 3:       u (v w) (v u ) w    u (v w) (u1, u2 , u3 ) (v1, v2 , v3 ) (w1, w2 , w3 ) (u1, u2 , u3 ) v1 w1 , v2 w2 , v3 w3 (u1 v1 w1 , u2 v2 w2 , u3 v3 w3 ) V    (u v) w (u1, u2 , u3 ) (v1, v2 , v3 ) (w1, w2 , w3 ) u1 v1, u2 v2 , u3 v3 (w1, w2 , w3 ) (u1 v1 w1 , u2 v2 w2 , u3 v3 w3 ) V       u (v w) (v u ) w
  • 18. AXIOM 4:      There exist 0 V such that u 0 0 u  u Let     0 ( x1, x2 , x3 ); u 0 u   u 0 (u1, u2 , u3 ) ( x1, x2 , x3 ) (u1 , u2 , u3 ) (u1 x1 , u2 x2 , u3 x3 ) (u1 , u2 , u3 )  ( x1, x2 , x3 ) (0,0,0) 0 Hence v1 v2 .Then,  0 V. AXIOM 5:  V Since, 0
  • 19. AXIOM 6: If k is any scalar and   u V then ku V.  (ku1 , ku2 , ku3 ) ku k u1 , u2 , u3 V AXIOM 7:  k u  v  ku  kv   k u v k (u1 , u2 , u3 ) (v1 , v2 , v3 ) k (u1 , u2 , u3 ) k (v1 , v2 , v3 )   ku kv V
  • 20. AXIOM 8: k   u  ku  u k   u (k ) u1, u2 , u3 (ku1 u1 , ku2 u2 , ku3 u3 ) (ku1 , ku2 , ku3 ) (u1 , u2 , u3 ) k u1, u2 , u3  u1, u2 , u3  ku  u AXIOM 9:  k u  k u  k u k u1 , u2 , u3 (k u1 , k u2 , k u3 )  k u
  • 21. AXIOM 10: 1 u  u 1 1(u1 , u2 , u3 ) u (u1 , u2 , u3 )  u CONCLUSION : Hence, V is not a vector space because Axiom 4 and Axiom 5 not satisfied.
  • 22. 2. x1 v  x x1 , x2  x2 u1 v1 u1 v1 u1 ku1 1   u v  ku k u2 v2 u2 v2 u2 ku2 1  a) u ( 1, 2)  v (3, 4) 1 3 2   1 3   i) u v iii ) 5u 5v 5 5 2 4 2 2 4 1 2 5( 1) 1 5(3) 1 ( 1) 1 1 1 1 3 3 5(2) 1 5( 4) 1 ii ) u 3 3 2 1 1 4 16 12 (2) 1 3 3 9 21 12
  • 23.  v) 5 2 iv)5( u  5(2) 1 11 2 5( 2) 1 11  1 5( 1) 1 4  v) (2 5) u 5u 5 2 5(2) 1 9   1 1 vi ) 2u 3u 2 3 2 2 2( 1) 1 5( 1) 1 2(2) 1 3(2) 1 3 2 1 5 5 0
  • 24.  (b) Find the object 0  V such that 0  u   u for any u V.  x1 u1 Suppose 0  and u x2 u2   x1 u1 u1 0 u x2 u2 u2 x1 u1 u1 x2 u2 u2 Then x1 u1 u1 x1 0 x2 u2 u2 x2 0.  0 0 V 0
  • 25.  (c) If the object 0 in (b) exist,      find the object w V such that u w 0 for any u V .  0 w1 u1 Suppose 0  ,w  and u 0 w2 u2 w1 u1 0   w u w2 u2 0 w1 u1 0 w2 u2 0 Then w1 u1 0 w1 u1 w2 u2 0 w2 u2 . u1  w V u2
  • 26.  (d) Is 1v   v for each v V? v1  Suppose v v2 v1  1v 1 v2 1(v1 ) 1 v1 1(v2 ) 1 v2
  • 27.  (e) Is v with the given two operation a vector space? V is not a vector space because Axiom 8 is not satisfied.
  • 28. 3. x1 v  x x1 , x2  x2 u1 v1 u1v1 u1 u1 k   u v  ku k u2 v2 u2 v2 u2 ku2  a) u ( 2, 7)  v (1, 2)   2 1 2 1 2(1) 2 iii ) 3u 3v 3 3   i) u v 7 2 7 2 7 2 5 3( 2)(1) 3 1 1 3 2 3(7) 3( 2) 1 1 2 2 2 ii ) u 2 2 7 1 7 1 4 4 (7) 2 2 21 6 15
  • 29.  v) 3( 2 ) iv)3( u  3 2 21 5 3(5) 15  2 2 7 5  v) (2 5) u 7u 7 7 7(7) 49   2 2 vi ) 2u 5u 2 5 7 7 2 2 5 2 2(7) 5(7) 0 3 0 14 35 49
  • 30.  (b) Find the object 0  V such that 0  u   u for any u V.  x1 u1 Suppose 0  and u x2 u2   x1 u1 u1 0 u x2 u2 u2 x1u1 u1 x2 u2 u2 Then x1u1 u1 x1 1 x2 u2 u2 x2 0.  1 0 V 0
  • 31.  (c) If the object 0 in (b) exist,      find the object w V such that u w 0 for any u V .  1 w1 u1 Suppose 0  ,w  and u 0 w2 u2 w1 u1 1 1 Then w1u1 1 w1   w u u1 w2 u2 0 w2 u2 0 w2 u2 . w1u1 1 1 w2 u2 0  w u1 V u2
  • 32. (d) Is (k  )v  kv   v for each v V and k ,  ? v1  Suppose v v2 v1 (k ) v1  ( k  )v ( k ) v2 (k )v2 v1 v1 k v1  v1 (k v1 )( v1 )   kv v k  v2 v2 kv2 v2 kv2 v2  (k )v   kv v
  • 33.  (e) Is v with the given two operation a vector space? V is not a vector space because Axiom 8 is not satisfied.
  • 34. v  x u1 , u2 (v1 v2 ) u1 , u2 , v1 , v2  4.   u v (u1 , u2 ) (v1 , v2 ) (u1 v1 , 0)  ku k (u1 , u2 ) ( ku1 , ku2 )  a) u ( 3, 2)  v ( 1,5)   i) u v ( 3, 2) ( 1,5)   iii ) 2u 2v 2 3, 2 2( 1,5) ( 3 ( 1),0) ( 4,0) ( 6, 4) ( 2,10) 1 1 ( 8, 0). ii ) u ( 3, 2) 2 2 1 1 3 ( ( 3), (2)) ( ,1) 2 2 2
  • 35.   iv) 2( u v) 2( 4,0) 8,0   v) (2 5) u 7u 7( 3, 2) (7( 3),7(2)) ( 21,14)   vi ) 2u 5u 2( 3, 2) 5( 3, 2) ( 6, 4) ( 15,10) ( 21,0)
  • 36.  (b) Find the object 0  V such that 0  u   u for any u V.  Suppose 0 ( x1 , x2 )  and u (u1 , u2 )   0 u ( x1, x2 ) (u1, u2 ) (u1, u2 ) ( x1 u1 , 0) (u1 , u2 ) Then x1 u1 u1 x1 0 0 u2 x2 0.  0 0 V 0
  • 37.  (c) If the object 0 in (b) exist,      find the object w V such that u w 0 for any u V .   Since 0 not exist and then w is not exist.
  • 38. (d) Is  k (v  w)  kv    kw for each v, w V and k ?  Suppose v v1, v2  and w (w1, w2 )   k (v w ) k (v1 , v2 ) k ( w1 , w2 ) (kv1 , kv2 ) (kw1 , kw2 ) (kv1 kw1 , 0)   kv kw k (v1 , v2 ) k ( w1 , w2 ) (kv1 , kv2 ) (kw1 , kw2 ) (kv1 kw1 , 0)  k (v  w)  kv  kw
  • 39.  (e) Is v with the given two operation a vector space? V is not a vector space since  0 is not exist.
  • 40. 5. Is the set W subspace of vector space V From lecture note,
  • 41. 5. Is the set W subspace of vector space V a) W u1 , u2 , u3  3 u1 u2 u3    Let u (u2 u3 , u2 , u3 ) v (v2 v3 , v2 , v3 ) Axiom1   ( u v) (u2 u3 , u2 , u3 ) (v2 v3 , v2 , v3 ) ((u2 v2 ) (u3 v3 ), u2 v2 , u3 v3 ) W Axiom 6  k u k (u u3 , u2 , u3 ) W 2 W is subspace of V
  • 42. 5. Is the set W subspace of vector space V b) W x, y 2 x 0 ; V    Let u (u1 , u2 ) v (v1 , v2 ) Axiom1   ( u v) (u1 , u2 ) (v1 , v2 ) (u1 v1 , u2 v2 ) W Axiom 6  ku k (u1 , u2 ) (ku1 , ku2 ) If k 0, then ku1 0 W W is not subspace of V
  • 43. 5. Is the set W subspace of vector space V 2 2 c) W x, y  y 2x ; V    Let u (u1 , 2u1 ) v (v1 , 2v1 ) Axiom1   ( u v) (u1 , 2u1 ) (v1 , 2v1 ) (u1 v1 , 2(u1 v1 )) W Axiom 6  k u k (u1 , 2u1 ) (ku1 , 2ku2 ) W W is subspace of V
  • 44. 5. Is the set W subspace of vector space V d) W p x P2 p(0) 0 ; V P2 Let P ( x) a1 x n b1 x n 1 1 ... 0 P2 ( x) a2 x n b2 x n 1 ... 0 Axiom1 P ( x) P2 ( x) a1 x n b1 x n 1 1 ... 0 a2 x n b2 x n 1 ... 0 (a1 a2 ) x n (b1 b2 ) x n 1 ... 0 W Axiom 6 kP ( x) k (a1 x n b1 x n 1 1 ... 0) ka1 x n kb1 x n 1 ... 0 W W is subspace of V
  • 45. 5. Is the set W subspace of vector space V e) W p ( x) ax 2 3x 2a  ; V P( x) Let P ( x) a1 x 2 3x 2 1 P2 ( x) a2 x 2 3 x 2 Axiom1 P ( x) P2 ( x) a1 x 2 3x 2 a2 x 2 3x 2 1 (a1 a2 ) x 2 6 x 4 W Axiom 6 kP ( x) k (a1 x 2 3x 2) ka1 x 2 3kx 6 W 1 W is not subspace of V
  • 46. 5. Is the set W subspace of vector space V a c f) W a, c  ; V M 22 c a u1 u2 v1 v2  Let u  v u2 u4 v2 v4 Axiom1 u1 u2 v1 v2 u1 v1 u2 v2   u v W u2 u4 v2 v4 u2 v2 (u4 v4 ) Axiom 6 u1 u2 ku1 ku2  ku k u2 u4 ku2 ku4 If k 0, then ku1 0 W W is not subspace of V
  • 47. 5. Is the set W subspace of vector space V a b g) W a, b, c  ; V M 22 c 0 u1 u2 v1 v2  Let u  v u2 0 v2 0 Axiom1 u1 u2 v1 v2 u1 v1 u2 v2   u v W u2 0 v2 0 u2 v2 (0 0) Axiom 6 u1 u2 ku1 ku2  ku k W u2 0 ku2 0 W is subspace of V
  • 48. Thank You!!! “Satu itu Alif, Alif itu Ikhlas, Ikhlas itu perlu diletakkan pada tempat Pertama, Juga Perlu di Utamakan”