SlideShare a Scribd company logo
1 of 16
*Real Gases and
the van der Waals
Equation
By Shawn P. Shields, Ph. D.
This work is licensed by Shawn P. Shields-Maxwell under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.
*Real Gases…What are they?
*Most gases behave ideally when they
are held at low pressures and “high”
temperatures.
(Room temperature is considered high T.)
*Remember that “ideal behavior” means that
the gas molecules do not interact with each
other. Only kinetic energy is present.
*Real Gases…What are they?
*However, sometimes gas molecules DO
interact with each other.
*Interactions between gas molecules is more
likely at
*low temperatures
*high gas pressures (i.e., high gas densities).
This introduces potential energy into
the picture!
*Real Gases…What are they?
* Molecules that have significant
intermolecular attractions (aka “polar”
molecules) may also interact with each other.



+


“partial charges” on the
molecules are attracted
to each other
Water is a
polar molecule.
*The Compressibility Factor, Z
*We can use the “compressibility factor”
(Z) to detect deviations of a gas from
ideal behavior in experiments.
𝐙 =
𝐏𝐕
𝐧𝐑𝐓
*When Z < 1, intermolecular attractions
exist, and gas molecules can “feel” each
other’s presence. 
*Real Gas Behavior
Compare 3 scenarios for gases in a piston…
The first piston shows a gas at low pressure.
Vactual = Videal
Ideal Gas Law and KTG are obeyed. 
Low P
*Real Gas Behavior
The second piston shows a gas at med-high pressure.
As the volume decreases, some molecules stick
together, effectively reducing the moles of gas.
Now, Vactual < Videal
The gas is more compressible, and attractions
dominate!
Med to high P
*Real Gas Behavior
Compare 3 scenarios for gases in a piston…
The third piston shows a gas at REALLY high pressure.
The gas cannot move and we see that it actually DOES
take up space…as our common sense might tell us.
Now, Vactual > Videal Repulsions dominate!
Ridiculously high P
*The Compressibility Factor, Z
*More about the compressibility factor Z
Z = 1
𝒁 =
𝑷𝑽
𝒏𝑹𝑻
P (atm)
Perfectly ideal
gas behavior
Real gases
Behaves as an ideal gas
under reasonable conditions
Attractions dominate
Repulsions dominate
*The van der Waals Equation
*Corrects the Ideal Gas Law for real gas
behavior.
𝑃 =
𝑛𝑅𝑇
𝑉 − 𝑛𝑏
−
𝑎𝑛2
𝑉2
*The van der Waals constants a and b are
experimentally-determined for each individual
gas.
*The vdw constant a describes the strength of
attractions with units L2 atm mole–2
*The vdw constant b increases with increasing
molecular size with units L mol–1
*The van der Waals Equation
*Corrects the Ideal Gas Law for real gas
behavior.
𝑃 =
𝑛𝑅𝑇
𝑉 − 𝑛𝑏
−
𝑎𝑛2
𝑉2
Correction for the
volume taken up by
the gas molecules
Correction for the
attractions between gas
molecules. The actual
pressure P is reduced by
this amount compared to
the Ideal Gas law.
*The van der Waals Equation
*Predict the relative size of the van der
Waals constants for the following gases:
H2 gas (very small and not polar)
SO2 gas (larger atoms and polar)
𝑃 =
𝑛𝑅𝑇
𝑉 − 𝑛𝑏
−
𝑎𝑛2
𝑉2
*The van der Waals Equation
*Predict the relative size of the van der
waals constants for the following gases:
H2 gas (very small and not polar)
SO2 gas (larger atoms and polar)
The vdw constant a and b would both be
larger for SO2 gas.
*The van der Waals Equation
*Which gas would produce the lowest
pressure, with moles, T and V constant?
CH4 (methane) gas
(small molecule and not polar)
H2O gas
(small molecules and polar)
𝑃 =
𝑛𝑅𝑇
𝑉 − 𝑛𝑏
−
𝑎𝑛2
𝑉2
*The van der Waals Equation
*Which gas would produce the lowest pressure, with
moles, T and V constant?
𝑃 =
𝑛𝑅𝑇
𝑉 − 𝑛𝑏
−
𝑎𝑛2
𝑉2
If CH4 is a small molecule, and not polar, this means that a
and b are both relatively small. (a = 2.25, b = 0.0428)
The gas should behave close to ideally.
If H2O gas is also a small molecule, then the vdw constant
b will be of a similar size. However, since water is polar,
the vdw constant a will be quite a bit larger.
(a = 5.46, b = 0.0305)
The pressure exerted by water will be lower than the
ideal pressure.
*Summary
*Real gases interact with each other and take
up volume in the container.
*The van der Waals equation corrects the Ideal
Gas Law for real gas behavior.
𝑃 =
𝑛𝑅𝑇
𝑉 − 𝑛𝑏
−
𝑎𝑛2
𝑉2
If the gas is under ideal gas conditions, the van
der Waals equation reduces to the Ideal Gas
Law PV=nRT
(Try this by making a and b = 0) 

More Related Content

What's hot

Theories of Reaction Rate - Ashika G
Theories of Reaction Rate - Ashika GTheories of Reaction Rate - Ashika G
Theories of Reaction Rate - Ashika GBebeto G
 
Real and ideal gases
Real and ideal gasesReal and ideal gases
Real and ideal gasesAngela Stott
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibriumArunesh Gupta
 
Le chatelier’s principle 2
Le chatelier’s  principle 2Le chatelier’s  principle 2
Le chatelier’s principle 2Manglam Soni
 
kinetic-theory-of-gases
 kinetic-theory-of-gases kinetic-theory-of-gases
kinetic-theory-of-gasesAshish Kumar
 
Kinetic theory of gases
Kinetic theory of gasesKinetic theory of gases
Kinetic theory of gasesRahul Singh
 
Equation of state2
Equation of state2Equation of state2
Equation of state2Mehtab Rai
 
IB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gas
IB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gasIB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gas
IB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gasLawrence kok
 
Lecture 1 the kinetic theory of gases
Lecture 1  the kinetic theory of gasesLecture 1  the kinetic theory of gases
Lecture 1 the kinetic theory of gasesUsman Shah
 
Liquefaction of gases - B.Sc semester-2
Liquefaction of gases - B.Sc semester-2Liquefaction of gases - B.Sc semester-2
Liquefaction of gases - B.Sc semester-2MAYURI SOMPURA
 
The van der waals gas
The van der waals gasThe van der waals gas
The van der waals gasTaral Soliya
 
Chemical Kinetics
Chemical KineticsChemical Kinetics
Chemical Kineticsjc762006
 
Temperature and Kinetic Theory of Gases cheat sheet
Temperature and Kinetic Theory of Gases cheat sheetTemperature and Kinetic Theory of Gases cheat sheet
Temperature and Kinetic Theory of Gases cheat sheetTimothy Welsh
 

What's hot (20)

Theories of Reaction Rate - Ashika G
Theories of Reaction Rate - Ashika GTheories of Reaction Rate - Ashika G
Theories of Reaction Rate - Ashika G
 
Real Gases and the Virial Equation
Real Gases and the Virial EquationReal Gases and the Virial Equation
Real Gases and the Virial Equation
 
Chemical Equilibrium
Chemical EquilibriumChemical Equilibrium
Chemical Equilibrium
 
Real and ideal gases
Real and ideal gasesReal and ideal gases
Real and ideal gases
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
 
Le chatelier’s principle 2
Le chatelier’s  principle 2Le chatelier’s  principle 2
Le chatelier’s principle 2
 
kinetic-theory-of-gases
 kinetic-theory-of-gases kinetic-theory-of-gases
kinetic-theory-of-gases
 
Kinetic theory of gases
Kinetic theory of gasesKinetic theory of gases
Kinetic theory of gases
 
Equation of state2
Equation of state2Equation of state2
Equation of state2
 
Chapter 1 : Rate of Reaction
Chapter 1 : Rate of ReactionChapter 1 : Rate of Reaction
Chapter 1 : Rate of Reaction
 
IB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gas
IB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gasIB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gas
IB Chemistry Ideal Gas Equation, Kinetic Theory and RMM determination of gas
 
Lecture 1 the kinetic theory of gases
Lecture 1  the kinetic theory of gasesLecture 1  the kinetic theory of gases
Lecture 1 the kinetic theory of gases
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
 
Vander waals equation
Vander waals equationVander waals equation
Vander waals equation
 
Chemical Kinetics
Chemical KineticsChemical Kinetics
Chemical Kinetics
 
Liquefaction of gases - B.Sc semester-2
Liquefaction of gases - B.Sc semester-2Liquefaction of gases - B.Sc semester-2
Liquefaction of gases - B.Sc semester-2
 
The van der waals gas
The van der waals gasThe van der waals gas
The van der waals gas
 
Chemical Kinetics
Chemical KineticsChemical Kinetics
Chemical Kinetics
 
Gaseous state
Gaseous stateGaseous state
Gaseous state
 
Temperature and Kinetic Theory of Gases cheat sheet
Temperature and Kinetic Theory of Gases cheat sheetTemperature and Kinetic Theory of Gases cheat sheet
Temperature and Kinetic Theory of Gases cheat sheet
 

Viewers also liked

Chem II - Kinetic Molecular Theory of Gases (Liquids and Solids)
Chem II - Kinetic Molecular Theory of Gases (Liquids and Solids)Chem II - Kinetic Molecular Theory of Gases (Liquids and Solids)
Chem II - Kinetic Molecular Theory of Gases (Liquids and Solids)Lumen Learning
 
Chem 2 - Chemical Equilibrium VIII: Le Chatelier's Principle- Concepts and Re...
Chem 2 - Chemical Equilibrium VIII: Le Chatelier's Principle- Concepts and Re...Chem 2 - Chemical Equilibrium VIII: Le Chatelier's Principle- Concepts and Re...
Chem 2 - Chemical Equilibrium VIII: Le Chatelier's Principle- Concepts and Re...Lumen Learning
 
Chem 2 - The Second Law of Thermodynamics: Spontaneous Reactions and Entropy S I
Chem 2 - The Second Law of Thermodynamics: Spontaneous Reactions and Entropy S IChem 2 - The Second Law of Thermodynamics: Spontaneous Reactions and Entropy S I
Chem 2 - The Second Law of Thermodynamics: Spontaneous Reactions and Entropy S ILumen Learning
 
Chem 2 - Vapor Pressure: Phase Transitions II
Chem 2 - Vapor Pressure: Phase Transitions II Chem 2 - Vapor Pressure: Phase Transitions II
Chem 2 - Vapor Pressure: Phase Transitions II Lumen Learning
 
Chem II - Daltons Law (Liquids and Solids)
Chem II - Daltons Law (Liquids and Solids)Chem II - Daltons Law (Liquids and Solids)
Chem II - Daltons Law (Liquids and Solids)Lumen Learning
 
Chem 2 - Chemical Equilibrium VII: The Reaction Quotient Q for Non-equilbrium...
Chem 2 - Chemical Equilibrium VII: The Reaction Quotient Q for Non-equilbrium...Chem 2 - Chemical Equilibrium VII: The Reaction Quotient Q for Non-equilbrium...
Chem 2 - Chemical Equilibrium VII: The Reaction Quotient Q for Non-equilbrium...Lumen Learning
 
Chem 2 - Chemical Equilibrium II: The Reltionship Between Kinetics and the Eq...
Chem 2 - Chemical Equilibrium II: The Reltionship Between Kinetics and the Eq...Chem 2 - Chemical Equilibrium II: The Reltionship Between Kinetics and the Eq...
Chem 2 - Chemical Equilibrium II: The Reltionship Between Kinetics and the Eq...Lumen Learning
 
Chem 2 - Chemical Equilibrium VI: Heterogeneous Equilibria
Chem 2 - Chemical Equilibrium VI: Heterogeneous EquilibriaChem 2 - Chemical Equilibrium VI: Heterogeneous Equilibria
Chem 2 - Chemical Equilibrium VI: Heterogeneous EquilibriaLumen Learning
 
Factors Affecting Solution Formation II
Factors Affecting Solution Formation IIFactors Affecting Solution Formation II
Factors Affecting Solution Formation IILumen Learning
 
Chem 2 - Phase Transitions I
Chem 2 - Phase Transitions I Chem 2 - Phase Transitions I
Chem 2 - Phase Transitions I Lumen Learning
 
Chem 2 - Acid-Base Equilibria VII: Conjugate Acid/Base Pairs and Relationship...
Chem 2 - Acid-Base Equilibria VII: Conjugate Acid/Base Pairs and Relationship...Chem 2 - Acid-Base Equilibria VII: Conjugate Acid/Base Pairs and Relationship...
Chem 2 - Acid-Base Equilibria VII: Conjugate Acid/Base Pairs and Relationship...Lumen Learning
 
Chem 2 - Acid-Base Equilibria VI: Weak Base Equilibria and Kb - Calculating p...
Chem 2 - Acid-Base Equilibria VI: Weak Base Equilibria and Kb - Calculating p...Chem 2 - Acid-Base Equilibria VI: Weak Base Equilibria and Kb - Calculating p...
Chem 2 - Acid-Base Equilibria VI: Weak Base Equilibria and Kb - Calculating p...Lumen Learning
 
Chem 2 - Acid-Base Equilibria VIII: The Conjugate See-Saw and Analyzing Ka an...
Chem 2 - Acid-Base Equilibria VIII: The Conjugate See-Saw and Analyzing Ka an...Chem 2 - Acid-Base Equilibria VIII: The Conjugate See-Saw and Analyzing Ka an...
Chem 2 - Acid-Base Equilibria VIII: The Conjugate See-Saw and Analyzing Ka an...Lumen Learning
 
Chem 2 - The Second Law of Thermodynamics: Predicting Entropy Changes Qualita...
Chem 2 - The Second Law of Thermodynamics: Predicting Entropy Changes Qualita...Chem 2 - The Second Law of Thermodynamics: Predicting Entropy Changes Qualita...
Chem 2 - The Second Law of Thermodynamics: Predicting Entropy Changes Qualita...Lumen Learning
 
Colligative Properties III
Colligative Properties IIIColligative Properties III
Colligative Properties IIILumen Learning
 
Chem 2 - Acid-Base Equilibria I: The Basics of Acids and Bases
Chem 2 - Acid-Base Equilibria I: The Basics of Acids and BasesChem 2 - Acid-Base Equilibria I: The Basics of Acids and Bases
Chem 2 - Acid-Base Equilibria I: The Basics of Acids and BasesLumen Learning
 
Chem 2 - Chemical Kinetics I: Introduction and Factors Affecting Reaction Rates
Chem 2 - Chemical Kinetics I: Introduction and Factors Affecting Reaction RatesChem 2 - Chemical Kinetics I: Introduction and Factors Affecting Reaction Rates
Chem 2 - Chemical Kinetics I: Introduction and Factors Affecting Reaction RatesLumen Learning
 

Viewers also liked (20)

Chem II - Kinetic Molecular Theory of Gases (Liquids and Solids)
Chem II - Kinetic Molecular Theory of Gases (Liquids and Solids)Chem II - Kinetic Molecular Theory of Gases (Liquids and Solids)
Chem II - Kinetic Molecular Theory of Gases (Liquids and Solids)
 
Chem 2 - Chemical Equilibrium VIII: Le Chatelier's Principle- Concepts and Re...
Chem 2 - Chemical Equilibrium VIII: Le Chatelier's Principle- Concepts and Re...Chem 2 - Chemical Equilibrium VIII: Le Chatelier's Principle- Concepts and Re...
Chem 2 - Chemical Equilibrium VIII: Le Chatelier's Principle- Concepts and Re...
 
Chem 2 - The Second Law of Thermodynamics: Spontaneous Reactions and Entropy S I
Chem 2 - The Second Law of Thermodynamics: Spontaneous Reactions and Entropy S IChem 2 - The Second Law of Thermodynamics: Spontaneous Reactions and Entropy S I
Chem 2 - The Second Law of Thermodynamics: Spontaneous Reactions and Entropy S I
 
Chem 2 - Vapor Pressure: Phase Transitions II
Chem 2 - Vapor Pressure: Phase Transitions II Chem 2 - Vapor Pressure: Phase Transitions II
Chem 2 - Vapor Pressure: Phase Transitions II
 
Chem II - Daltons Law (Liquids and Solids)
Chem II - Daltons Law (Liquids and Solids)Chem II - Daltons Law (Liquids and Solids)
Chem II - Daltons Law (Liquids and Solids)
 
Chem 2 - Chemical Equilibrium VII: The Reaction Quotient Q for Non-equilbrium...
Chem 2 - Chemical Equilibrium VII: The Reaction Quotient Q for Non-equilbrium...Chem 2 - Chemical Equilibrium VII: The Reaction Quotient Q for Non-equilbrium...
Chem 2 - Chemical Equilibrium VII: The Reaction Quotient Q for Non-equilbrium...
 
Chem 2 - Chemical Equilibrium II: The Reltionship Between Kinetics and the Eq...
Chem 2 - Chemical Equilibrium II: The Reltionship Between Kinetics and the Eq...Chem 2 - Chemical Equilibrium II: The Reltionship Between Kinetics and the Eq...
Chem 2 - Chemical Equilibrium II: The Reltionship Between Kinetics and the Eq...
 
Chem 2 - Chemical Equilibrium VI: Heterogeneous Equilibria
Chem 2 - Chemical Equilibrium VI: Heterogeneous EquilibriaChem 2 - Chemical Equilibrium VI: Heterogeneous Equilibria
Chem 2 - Chemical Equilibrium VI: Heterogeneous Equilibria
 
Factors Affecting Solution Formation II
Factors Affecting Solution Formation IIFactors Affecting Solution Formation II
Factors Affecting Solution Formation II
 
Chem 2 - Phase Transitions I
Chem 2 - Phase Transitions I Chem 2 - Phase Transitions I
Chem 2 - Phase Transitions I
 
Chem 2 - Acid-Base Equilibria VII: Conjugate Acid/Base Pairs and Relationship...
Chem 2 - Acid-Base Equilibria VII: Conjugate Acid/Base Pairs and Relationship...Chem 2 - Acid-Base Equilibria VII: Conjugate Acid/Base Pairs and Relationship...
Chem 2 - Acid-Base Equilibria VII: Conjugate Acid/Base Pairs and Relationship...
 
Plant org lab tz
Plant org lab tzPlant org lab tz
Plant org lab tz
 
Chem 2 - Acid-Base Equilibria VI: Weak Base Equilibria and Kb - Calculating p...
Chem 2 - Acid-Base Equilibria VI: Weak Base Equilibria and Kb - Calculating p...Chem 2 - Acid-Base Equilibria VI: Weak Base Equilibria and Kb - Calculating p...
Chem 2 - Acid-Base Equilibria VI: Weak Base Equilibria and Kb - Calculating p...
 
Chem 2 - Acid-Base Equilibria VIII: The Conjugate See-Saw and Analyzing Ka an...
Chem 2 - Acid-Base Equilibria VIII: The Conjugate See-Saw and Analyzing Ka an...Chem 2 - Acid-Base Equilibria VIII: The Conjugate See-Saw and Analyzing Ka an...
Chem 2 - Acid-Base Equilibria VIII: The Conjugate See-Saw and Analyzing Ka an...
 
Seed Plants Lab
Seed Plants LabSeed Plants Lab
Seed Plants Lab
 
Lab 2: Microbiology
Lab 2: MicrobiologyLab 2: Microbiology
Lab 2: Microbiology
 
Chem 2 - The Second Law of Thermodynamics: Predicting Entropy Changes Qualita...
Chem 2 - The Second Law of Thermodynamics: Predicting Entropy Changes Qualita...Chem 2 - The Second Law of Thermodynamics: Predicting Entropy Changes Qualita...
Chem 2 - The Second Law of Thermodynamics: Predicting Entropy Changes Qualita...
 
Colligative Properties III
Colligative Properties IIIColligative Properties III
Colligative Properties III
 
Chem 2 - Acid-Base Equilibria I: The Basics of Acids and Bases
Chem 2 - Acid-Base Equilibria I: The Basics of Acids and BasesChem 2 - Acid-Base Equilibria I: The Basics of Acids and Bases
Chem 2 - Acid-Base Equilibria I: The Basics of Acids and Bases
 
Chem 2 - Chemical Kinetics I: Introduction and Factors Affecting Reaction Rates
Chem 2 - Chemical Kinetics I: Introduction and Factors Affecting Reaction RatesChem 2 - Chemical Kinetics I: Introduction and Factors Affecting Reaction Rates
Chem 2 - Chemical Kinetics I: Introduction and Factors Affecting Reaction Rates
 

Similar to Chem II - Real Gases: Van der Waals (Liquids and Solids)

Similar to Chem II - Real Gases: Van der Waals (Liquids and Solids) (20)

Chemistry- JIB Topic 6 Gases
Chemistry- JIB Topic 6 GasesChemistry- JIB Topic 6 Gases
Chemistry- JIB Topic 6 Gases
 
Ch10 outline
Ch10 outlineCh10 outline
Ch10 outline
 
AP Chemistry Chapter 10 Outline
AP Chemistry Chapter 10 OutlineAP Chemistry Chapter 10 Outline
AP Chemistry Chapter 10 Outline
 
Chemistry - Chp 14 - The Behavior of Gases - PowerPoint
Chemistry - Chp 14 - The Behavior of Gases - PowerPointChemistry - Chp 14 - The Behavior of Gases - PowerPoint
Chemistry - Chp 14 - The Behavior of Gases - PowerPoint
 
Gases
GasesGases
Gases
 
Chemistry - Chp 14 - The Behavior of Gases - PowerPoint
Chemistry - Chp 14 - The Behavior of Gases - PowerPointChemistry - Chp 14 - The Behavior of Gases - PowerPoint
Chemistry - Chp 14 - The Behavior of Gases - PowerPoint
 
Gas Laws
Gas LawsGas Laws
Gas Laws
 
Notes gas laws
Notes gas lawsNotes gas laws
Notes gas laws
 
Gas
GasGas
Gas
 
States of matter - Gaseous state
States of matter - Gaseous stateStates of matter - Gaseous state
States of matter - Gaseous state
 
Gas Laws
Gas LawsGas Laws
Gas Laws
 
gaseous and liquid states tuition.pptx
gaseous and liquid states tuition.pptxgaseous and liquid states tuition.pptx
gaseous and liquid states tuition.pptx
 
Ch. 10 Gases
Ch. 10 GasesCh. 10 Gases
Ch. 10 Gases
 
Gaseous State SB
Gaseous State SBGaseous State SB
Gaseous State SB
 
Gas
GasGas
Gas
 
States of matter
States of matterStates of matter
States of matter
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Topic 3.2.3 ideal gases
Topic 3.2.3 ideal gasesTopic 3.2.3 ideal gases
Topic 3.2.3 ideal gases
 
Liyue.pptx
Liyue.pptxLiyue.pptx
Liyue.pptx
 

More from Lumen Learning

Powerpoint kutsonova melody week 1
Powerpoint kutsonova melody   week 1Powerpoint kutsonova melody   week 1
Powerpoint kutsonova melody week 1Lumen Learning
 
Practice Problems - General Concepts Blank
Practice Problems - General Concepts BlankPractice Problems - General Concepts Blank
Practice Problems - General Concepts BlankLumen Learning
 
Problem Solution - Dimensional Analysis
Problem Solution - Dimensional AnalysisProblem Solution - Dimensional Analysis
Problem Solution - Dimensional AnalysisLumen Learning
 
Practice Problems - Dimensional Analysis Blank
Practice Problems - Dimensional Analysis BlankPractice Problems - Dimensional Analysis Blank
Practice Problems - Dimensional Analysis BlankLumen Learning
 
Problem Solutions - Conversions
Problem Solutions - ConversionsProblem Solutions - Conversions
Problem Solutions - ConversionsLumen Learning
 
Practice Problems - Conversions Blank
Practice Problems - Conversions BlankPractice Problems - Conversions Blank
Practice Problems - Conversions BlankLumen Learning
 
The Second Law of Thermodynamics: Entropy and Heat IV
The Second Law of Thermodynamics: Entropy and Heat IVThe Second Law of Thermodynamics: Entropy and Heat IV
The Second Law of Thermodynamics: Entropy and Heat IVLumen Learning
 
Chem 2 - Third Law of Thermodynamics and Standard Molar Entropy V
Chem 2 - Third Law of Thermodynamics and Standard Molar Entropy VChem 2 - Third Law of Thermodynamics and Standard Molar Entropy V
Chem 2 - Third Law of Thermodynamics and Standard Molar Entropy VLumen Learning
 
Chem 2 - Std Free Energy of Formation VII
Chem 2 - Std Free Energy of Formation VIIChem 2 - Std Free Energy of Formation VII
Chem 2 - Std Free Energy of Formation VIILumen Learning
 
Chem 2 - Gibbs Free Energy and Spontaneous Reactions VI
Chem 2 - Gibbs Free Energy and Spontaneous Reactions VIChem 2 - Gibbs Free Energy and Spontaneous Reactions VI
Chem 2 - Gibbs Free Energy and Spontaneous Reactions VILumen Learning
 
Chem 2 - Free Energy and the Equilbrium Constant K VIII
Chem 2 - Free Energy and the Equilbrium Constant K VIIIChem 2 - Free Energy and the Equilbrium Constant K VIII
Chem 2 - Free Energy and the Equilbrium Constant K VIIILumen Learning
 
Chem 2 - The Second Law of Thermodynamics: Entropy and Heat IV
Chem 2 - The Second Law of Thermodynamics: Entropy and Heat IVChem 2 - The Second Law of Thermodynamics: Entropy and Heat IV
Chem 2 - The Second Law of Thermodynamics: Entropy and Heat IVLumen Learning
 
Chem 2 - The Second Law of Termodynamics: Entropy Microstates and the Boltzma...
Chem 2 - The Second Law of Termodynamics: Entropy Microstates and the Boltzma...Chem 2 - The Second Law of Termodynamics: Entropy Microstates and the Boltzma...
Chem 2 - The Second Law of Termodynamics: Entropy Microstates and the Boltzma...Lumen Learning
 
Chem 2 - Acid-Base Equilibria V: Weak Acid Equilibria and Calculating the pH ...
Chem 2 - Acid-Base Equilibria V: Weak Acid Equilibria and Calculating the pH ...Chem 2 - Acid-Base Equilibria V: Weak Acid Equilibria and Calculating the pH ...
Chem 2 - Acid-Base Equilibria V: Weak Acid Equilibria and Calculating the pH ...Lumen Learning
 
Chem 2 - Acid-Base Equilibria IV: Calculating the pH of Strong Acids versus W...
Chem 2 - Acid-Base Equilibria IV: Calculating the pH of Strong Acids versus W...Chem 2 - Acid-Base Equilibria IV: Calculating the pH of Strong Acids versus W...
Chem 2 - Acid-Base Equilibria IV: Calculating the pH of Strong Acids versus W...Lumen Learning
 
Chem 2 - Acid-Base Equilibria III: pH, pOH, and pKw
Chem 2 - Acid-Base Equilibria III: pH, pOH, and pKwChem 2 - Acid-Base Equilibria III: pH, pOH, and pKw
Chem 2 - Acid-Base Equilibria III: pH, pOH, and pKwLumen Learning
 
Chem 2 - Acid-Base Equilibria IX: Salts that Hydrolyze in Water to Affect pH
Chem 2 - Acid-Base Equilibria IX: Salts that Hydrolyze in Water to Affect pHChem 2 - Acid-Base Equilibria IX: Salts that Hydrolyze in Water to Affect pH
Chem 2 - Acid-Base Equilibria IX: Salts that Hydrolyze in Water to Affect pHLumen Learning
 
Chem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch Equation
Chem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch EquationChem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch Equation
Chem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch EquationLumen Learning
 

More from Lumen Learning (20)

What is Life
What is LifeWhat is Life
What is Life
 
Collective Action
Collective ActionCollective Action
Collective Action
 
Powerpoint kutsonova melody week 1
Powerpoint kutsonova melody   week 1Powerpoint kutsonova melody   week 1
Powerpoint kutsonova melody week 1
 
Practice Problems - General Concepts Blank
Practice Problems - General Concepts BlankPractice Problems - General Concepts Blank
Practice Problems - General Concepts Blank
 
Problem Solution - Dimensional Analysis
Problem Solution - Dimensional AnalysisProblem Solution - Dimensional Analysis
Problem Solution - Dimensional Analysis
 
Practice Problems - Dimensional Analysis Blank
Practice Problems - Dimensional Analysis BlankPractice Problems - Dimensional Analysis Blank
Practice Problems - Dimensional Analysis Blank
 
Problem Solutions - Conversions
Problem Solutions - ConversionsProblem Solutions - Conversions
Problem Solutions - Conversions
 
Practice Problems - Conversions Blank
Practice Problems - Conversions BlankPractice Problems - Conversions Blank
Practice Problems - Conversions Blank
 
The Second Law of Thermodynamics: Entropy and Heat IV
The Second Law of Thermodynamics: Entropy and Heat IVThe Second Law of Thermodynamics: Entropy and Heat IV
The Second Law of Thermodynamics: Entropy and Heat IV
 
Chem 2 - Third Law of Thermodynamics and Standard Molar Entropy V
Chem 2 - Third Law of Thermodynamics and Standard Molar Entropy VChem 2 - Third Law of Thermodynamics and Standard Molar Entropy V
Chem 2 - Third Law of Thermodynamics and Standard Molar Entropy V
 
Chem 2 - Std Free Energy of Formation VII
Chem 2 - Std Free Energy of Formation VIIChem 2 - Std Free Energy of Formation VII
Chem 2 - Std Free Energy of Formation VII
 
Chem 2 - Gibbs Free Energy and Spontaneous Reactions VI
Chem 2 - Gibbs Free Energy and Spontaneous Reactions VIChem 2 - Gibbs Free Energy and Spontaneous Reactions VI
Chem 2 - Gibbs Free Energy and Spontaneous Reactions VI
 
Chem 2 - Free Energy and the Equilbrium Constant K VIII
Chem 2 - Free Energy and the Equilbrium Constant K VIIIChem 2 - Free Energy and the Equilbrium Constant K VIII
Chem 2 - Free Energy and the Equilbrium Constant K VIII
 
Chem 2 - The Second Law of Thermodynamics: Entropy and Heat IV
Chem 2 - The Second Law of Thermodynamics: Entropy and Heat IVChem 2 - The Second Law of Thermodynamics: Entropy and Heat IV
Chem 2 - The Second Law of Thermodynamics: Entropy and Heat IV
 
Chem 2 - The Second Law of Termodynamics: Entropy Microstates and the Boltzma...
Chem 2 - The Second Law of Termodynamics: Entropy Microstates and the Boltzma...Chem 2 - The Second Law of Termodynamics: Entropy Microstates and the Boltzma...
Chem 2 - The Second Law of Termodynamics: Entropy Microstates and the Boltzma...
 
Chem 2 - Acid-Base Equilibria V: Weak Acid Equilibria and Calculating the pH ...
Chem 2 - Acid-Base Equilibria V: Weak Acid Equilibria and Calculating the pH ...Chem 2 - Acid-Base Equilibria V: Weak Acid Equilibria and Calculating the pH ...
Chem 2 - Acid-Base Equilibria V: Weak Acid Equilibria and Calculating the pH ...
 
Chem 2 - Acid-Base Equilibria IV: Calculating the pH of Strong Acids versus W...
Chem 2 - Acid-Base Equilibria IV: Calculating the pH of Strong Acids versus W...Chem 2 - Acid-Base Equilibria IV: Calculating the pH of Strong Acids versus W...
Chem 2 - Acid-Base Equilibria IV: Calculating the pH of Strong Acids versus W...
 
Chem 2 - Acid-Base Equilibria III: pH, pOH, and pKw
Chem 2 - Acid-Base Equilibria III: pH, pOH, and pKwChem 2 - Acid-Base Equilibria III: pH, pOH, and pKw
Chem 2 - Acid-Base Equilibria III: pH, pOH, and pKw
 
Chem 2 - Acid-Base Equilibria IX: Salts that Hydrolyze in Water to Affect pH
Chem 2 - Acid-Base Equilibria IX: Salts that Hydrolyze in Water to Affect pHChem 2 - Acid-Base Equilibria IX: Salts that Hydrolyze in Water to Affect pH
Chem 2 - Acid-Base Equilibria IX: Salts that Hydrolyze in Water to Affect pH
 
Chem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch Equation
Chem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch EquationChem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch Equation
Chem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch Equation
 

Recently uploaded

Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 

Recently uploaded (20)

Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 

Chem II - Real Gases: Van der Waals (Liquids and Solids)

  • 1. *Real Gases and the van der Waals Equation By Shawn P. Shields, Ph. D. This work is licensed by Shawn P. Shields-Maxwell under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License.
  • 2. *Real Gases…What are they? *Most gases behave ideally when they are held at low pressures and “high” temperatures. (Room temperature is considered high T.) *Remember that “ideal behavior” means that the gas molecules do not interact with each other. Only kinetic energy is present.
  • 3. *Real Gases…What are they? *However, sometimes gas molecules DO interact with each other. *Interactions between gas molecules is more likely at *low temperatures *high gas pressures (i.e., high gas densities). This introduces potential energy into the picture!
  • 4. *Real Gases…What are they? * Molecules that have significant intermolecular attractions (aka “polar” molecules) may also interact with each other.    +   “partial charges” on the molecules are attracted to each other Water is a polar molecule.
  • 5. *The Compressibility Factor, Z *We can use the “compressibility factor” (Z) to detect deviations of a gas from ideal behavior in experiments. 𝐙 = 𝐏𝐕 𝐧𝐑𝐓 *When Z < 1, intermolecular attractions exist, and gas molecules can “feel” each other’s presence. 
  • 6. *Real Gas Behavior Compare 3 scenarios for gases in a piston… The first piston shows a gas at low pressure. Vactual = Videal Ideal Gas Law and KTG are obeyed.  Low P
  • 7. *Real Gas Behavior The second piston shows a gas at med-high pressure. As the volume decreases, some molecules stick together, effectively reducing the moles of gas. Now, Vactual < Videal The gas is more compressible, and attractions dominate! Med to high P
  • 8. *Real Gas Behavior Compare 3 scenarios for gases in a piston… The third piston shows a gas at REALLY high pressure. The gas cannot move and we see that it actually DOES take up space…as our common sense might tell us. Now, Vactual > Videal Repulsions dominate! Ridiculously high P
  • 9. *The Compressibility Factor, Z *More about the compressibility factor Z Z = 1 𝒁 = 𝑷𝑽 𝒏𝑹𝑻 P (atm) Perfectly ideal gas behavior Real gases Behaves as an ideal gas under reasonable conditions Attractions dominate Repulsions dominate
  • 10. *The van der Waals Equation *Corrects the Ideal Gas Law for real gas behavior. 𝑃 = 𝑛𝑅𝑇 𝑉 − 𝑛𝑏 − 𝑎𝑛2 𝑉2 *The van der Waals constants a and b are experimentally-determined for each individual gas. *The vdw constant a describes the strength of attractions with units L2 atm mole–2 *The vdw constant b increases with increasing molecular size with units L mol–1
  • 11. *The van der Waals Equation *Corrects the Ideal Gas Law for real gas behavior. 𝑃 = 𝑛𝑅𝑇 𝑉 − 𝑛𝑏 − 𝑎𝑛2 𝑉2 Correction for the volume taken up by the gas molecules Correction for the attractions between gas molecules. The actual pressure P is reduced by this amount compared to the Ideal Gas law.
  • 12. *The van der Waals Equation *Predict the relative size of the van der Waals constants for the following gases: H2 gas (very small and not polar) SO2 gas (larger atoms and polar) 𝑃 = 𝑛𝑅𝑇 𝑉 − 𝑛𝑏 − 𝑎𝑛2 𝑉2
  • 13. *The van der Waals Equation *Predict the relative size of the van der waals constants for the following gases: H2 gas (very small and not polar) SO2 gas (larger atoms and polar) The vdw constant a and b would both be larger for SO2 gas.
  • 14. *The van der Waals Equation *Which gas would produce the lowest pressure, with moles, T and V constant? CH4 (methane) gas (small molecule and not polar) H2O gas (small molecules and polar) 𝑃 = 𝑛𝑅𝑇 𝑉 − 𝑛𝑏 − 𝑎𝑛2 𝑉2
  • 15. *The van der Waals Equation *Which gas would produce the lowest pressure, with moles, T and V constant? 𝑃 = 𝑛𝑅𝑇 𝑉 − 𝑛𝑏 − 𝑎𝑛2 𝑉2 If CH4 is a small molecule, and not polar, this means that a and b are both relatively small. (a = 2.25, b = 0.0428) The gas should behave close to ideally. If H2O gas is also a small molecule, then the vdw constant b will be of a similar size. However, since water is polar, the vdw constant a will be quite a bit larger. (a = 5.46, b = 0.0305) The pressure exerted by water will be lower than the ideal pressure.
  • 16. *Summary *Real gases interact with each other and take up volume in the container. *The van der Waals equation corrects the Ideal Gas Law for real gas behavior. 𝑃 = 𝑛𝑅𝑇 𝑉 − 𝑛𝑏 − 𝑎𝑛2 𝑉2 If the gas is under ideal gas conditions, the van der Waals equation reduces to the Ideal Gas Law PV=nRT (Try this by making a and b = 0) 