SlideShare a Scribd company logo
1 of 19
Download to read offline
Chapter 1
Problem Solutions

1.1
                − E / 2 kT
 ni = BT 3 / 2 e g
(a)       Silicon
                                              ⎡          −1.1           ⎤
             ni = ( 5.23 × 1015 ) ( 250 )
                                            3/ 2
(i)                                       exp ⎢                         ⎥
                                              ⎢ 2 ( 86 × 10−6 ) ( 250 ) ⎥
                                              ⎣                         ⎦
                 = 2.067 × 1019 exp [ −25.58]
             ni = 1.61× 108 cm −3
                                              ⎡          −1.1           ⎤
             ni = ( 5.23 × 1015 ) ( 350 )
                                            3/ 2
(ii)                                     exp ⎢                          ⎥
                                              ⎢ 2 ( 86 × 10−6 ) ( 350 ) ⎥
                                              ⎣                         ⎦
                = 3.425 × 1019 exp [ −18.27 ]
             ni = 3.97 ×1011 cm −3

(b)          GaAs
                                                       ⎡          −1.4         ⎤
             ni = ( 2.10 × 1014 ) ( 250 )
                                            3/ 2
(i)                                                exp ⎢                       ⎥
                                                       ⎢ 2 ( 86 × 10 ) ( 250 ) ⎥
                                                       ⎣
                                                                    −6
                                                                               ⎦
                 = ( 8.301× 1017 ) exp [ −32.56]
             ni = 6.02 × 103 cm −3


                                                       ⎡          −1.4           ⎤
             ni = ( 2.10 × 1014 ) ( 350 )
                                            3/ 2
(ii)                                               exp ⎢                         ⎥
                                                       ⎢ 2 ( 86 × 10−6 ) ( 350 ) ⎥
                                                       ⎣                         ⎦
                 = (1.375 × 1018 ) exp [ −23.26]
             ni = 1.09 × 108 cm −3

1.2
                             ⎛ − Eg ⎞
a.        ni = BT 3 / 2 exp ⎜       ⎟
                             ⎝ 2kT ⎠
                               ⎛      −1.1         ⎞
1012 = 5.23 × 1015 T 3 / 2 exp ⎜                   ⎟
                               ⎝ 2(86 × 10−6 )(T ) ⎠
                         ⎛ 6.40 × 103 ⎞
1.91× 10−4 = T 3 / 2 exp ⎜ −          ⎟
                         ⎝     T      ⎠
By trial and error, T ≈ 368 K
b.        ni = 109 cm −3
                              ⎛        −1.1          ⎞
109 = 5.23 × 1015 T 3 / 2 exp ⎜                      ⎟
                              ⎜ 2 ( 86 × 10−6 ) (T ) ⎟
                              ⎝                      ⎠
                         ⎛ 6.40 × 103 ⎞
1.91× 10−7 = T 3 / 2 exp ⎜ −          ⎟
                         ⎝     T      ⎠
By trial and error, T ≈ 268° K

1.3
Silicon
⎡          −1.1        ⎤
              ni = ( 5.23 × 1015 ) (100 )
                                              3/ 2
(a)                                                   exp ⎢                      ⎥
                                                          ⎢ 2 ( 86 × 10 ) (100 ) ⎥
                                                          ⎣
                                                                       −6
                                                                                 ⎦
                 = ( 5.23 × 1018 ) exp [ −63.95]
              ni = 8.79 ×10−10 cm −3


                                                          ⎡          −1.1           ⎤
              ni = ( 5.23 × 1015 ) ( 300 )
                                               3/ 2
(b)                                                   exp ⎢                         ⎥
                                                          ⎢ 2 ( 86 × 10−6 ) ( 300 ) ⎥
                                                          ⎣                         ⎦
                 = ( 2.718 × 1019 ) exp [ −21.32]
              ni = 1.5 × 1010 cm −3


                                                          ⎡          −1.1         ⎤
              ni = ( 5.23 × 1015 ) ( 500 )
                                               3/ 2
(c)                                                   exp ⎢                       ⎥
                                                          ⎢ 2 ( 86 × 10 ) ( 500 ) ⎥
                                                          ⎣
                                                                       −6
                                                                                  ⎦
                 = ( 5.847 × 1019 ) exp [ −12.79]
              ni = 1.63 × 1014 cm −3

Germanium.
                                                          ⎡         −0.66          ⎤
              ni = (1.66 × 1015 ) (100 )                                           ⎥ = (1.66 × 1018 ) exp [ −38.37 ]
                                              3/ 2
(a)                                                   exp ⎢
                                                          ⎢ 2 ( 86 × 10−6 ) (100 ) ⎥
                                                          ⎣                        ⎦
              ni = 35.9 cm −3
                                                          ⎡         −0.66           ⎤
              ni = (1.66 × 1015 ) ( 300 )                                           ⎥ = ( 8.626 × 1018 ) exp [ −12.79]
                                              3/ 2
(b)                                                   exp ⎢
                                                          ⎢ 2 ( 86 × 10−6 ) ( 300 ) ⎥
                                                          ⎣                         ⎦
              ni = 2.40 × 1013 cm −3
                                                          ⎡         −0.66           ⎤
              ni = (1.66 × 1015 ) ( 500 )                                           ⎥ = (1.856 × 1019 ) exp [ −7.674]
                                              3/ 2
(c)                                                   exp ⎢
                                                          ⎢ 2 ( 86 × 10−6 ) ( 500 ) ⎥
                                                          ⎣                         ⎦
              ni = 8.62 ×1015 cm −3

1.4
a.            N d = 5 × 1015 cm −3 ⇒ n − type
n0 = N d = 5 × 1015 cm −3

    n 2 (1.5 × 10 )
                          10 2

p0 = i =            ⇒ p0 = 4.5 × 10 4 cm −3
    n0     5 × 1015
b.            N d = 5 × 1015 cm −3 ⇒ n − type
no = N d = 5 × 1015 cm −3
                                             ⎛        −1.4      ⎞
ni = ( 2.10 × 1014 ) ( 300 )
                                  3/ 2
                                         exp ⎜          −6      ⎟
                                             ⎝ 2(86 × 10 )(300) ⎠
      = ( 2.10 × 1014 ) ( 300 )          (1.65 ×10 )
                                  3/ 2                 −12


      = 1.80 × 106 cm −3

     ni2 (1.8 × 10 )
                  6         2

p0 =    =            ⇒ p0 = 6.48 × 10 −4 cm −3
     n0    5 × 1015




1.5
(a)          n-type
(b)           no = N d = 5 × 1016 cm −3

                  n 2 (1.5 × 10 )
                               10                  2

              po = i =            = 4.5 × 103 cm −3
                  no     5 × 1016
(c)          no = N d = 5 × 1016 cm −3
From Problem 1.1(a)(ii) ni = 3.97 × 1011 cm −3

po    =
        ( 3.97 × 10 )  11 2

                              = 3.15 × 106 cm −3
             5 × 1016

1.6
a.            N a = 1016 cm −3 ⇒ p − type
p0 = N a = 1016 cm −3

     n 2 (1.5 × 10 )
                              10 2

n0 = i =                ⇒ n0 = 2.25 × 10 4 cm −3
      p0       1016
b.       Germanium
N a = 1016 cm −3 ⇒ p − type
p0 = N a = 1016 cm −3
                                                ⎛         −0.66           ⎞
ni = (1.66 × 1015 ) ( 300 )
                                     3/ 2
                                            exp ⎜                         ⎟
                                                ⎜ 2 ( 86 × 10−6 ) ( 300 ) ⎟
                                                ⎝                         ⎠
      = (1.66 × 1015 ) ( 300 )              ( 2.79 × 10 )
                                     3/ 2               −6


      = 2.4 × 1013 cm −3

    n 2 ( 2.4 × 10 )
                  13             2

n0 = i =             ⇒ n0 = 5.76 × 1010 cm −3
     p0      1016

1.7
(a)          p-type
(b)           po = N a = 2 × 1017 cm −3

                   ni2 (1.5 × 10 )
                                10                 2

              no =    =            = 1.125 × 103 cm −3
                   po     2 × 1017
(c)           po = 2 × 1017 cm −3
From Problem 1.1(a)(i) ni = 1.61 × 108 cm −3

no    =
        (1.61×10 )   8 2

                           = 0.130 cm −3
            2 × 1017



1.8
(a)           no = 5 × 1015 cm −3

                   ni2 (1.5 × 10 )
                                10                 2

              po =    =            ⇒ po = 4.5 × 104 cm −3
                   no     5 × 1015
(b)          no        po ⇒ n-type
(c)          no ≅ N d = 5 × 1015 cm −3

1.9
a.        Add Donors
 N d = 7 × 1015 cm −3
b.           Want po = 106 cm −3 = ni2 / N d
So ni2 = (106 )( 7 × 1015 ) = 7 × 10 21
                      ⎛ − Eg ⎞
         = B 2T 3 exp ⎜      ⎟
                      ⎝ kT ⎠
                                   ⎛       −1.1       ⎞
7 × 1021 = ( 5.23 × 1015 ) T 3 exp ⎜
                          2
                                                      ⎟
                                   ⎜ ( 86 × 10 ) (T ) ⎟
                                              −6
                                   ⎝                  ⎠
By trial and error, T ≈ 324° K

1.10
I = J ⋅ A = σ EA
I = ( 2.2 )(15 ) (10−4 ) ⇒ I = 3.3 mA

1.11
               J 85
J =σE ⇒σ =       =
              E 12
σ = 7.08 (ohm − cm) −1

1.12
          1              1                   1
g≈              ⇒ Na =       =
       eμ p N a        eμ p g (1.6 × 10 −19 ) ( 480 )( 0.80 )
N a = 1.63 × 10 16 cm −3

1.13
  σ = eμ n N d
         σ               ( 0.5)
Nd =           =
        eμ n       (1.6 ×10 ) (1350 )
                          −19


N d = 2.31× 1015 cm −3

1.14
(a) For n-type, σ ≅ eμ n N d = (1.6 × 10 −19 ) ( 8500 ) N d
For 1015 ≤ N d ≤ 1019 cm −3 ⇒ 1.36 ≤ σ ≤ 1.36 × 104 ( Ω − cm )
                                                                 −1



(b) J = σ E = σ ( 0.1) ⇒ 0.136 ≤ J ≤ 1.36 × 103 A / cm2

1.15
               dn       Δn
J n = eDn         = eDn
               dx       Δx
                             ⎡10 15 −10 2 ⎤
    = (1.6 × 10 −19 ) (180 ) ⎢         −4 ⎥
                             ⎣ 0.5 × 10 ⎦
J n = 576 A/cm 2

1.16
dp
J p = −eD p
               dx
                       ⎛ −1 ⎞  ⎛ −x ⎞
      = −eD p (10 15 ) ⎜ ⎟ exp ⎜ ⎟
                       ⎜ Lp ⎟  ⎜ Lp ⎟
                       ⎝ ⎠     ⎝ ⎠

Jp =
        (1.6 ×10 ) (15) (10 ) exp ⎛ − x ⎞
                    −19          15

                                           ⎜ ⎟
                                           ⎜L ⎟
                 10 × 10 −4                ⎝ p⎠
              − x / Lp
J p = 2.4 e
(a)        x=0            J p = 2.4 A/cm2
(b)         x = 10 μ m                J p = 2.4 e−1 = 0.883 A/cm 2
(c)         x = 30 μ m                J p = 2.4 e−3 = 0.119 A/cm 2

1.17
a.          N a = 1017 cm −3 ⇒ po = 1017 cm −3

     ni2 (1.8 × 10 )
                  6         2

no =    =            ⇒ no = 3.24 × 10−5 cm −3
     po      1017
b.          n = no + δ n = 3.24 × 10 −5 + 1015 ⇒ n = 1015 cm −3
            p = po + δ p = 1017 + 1015 ⇒ p = 1.01× 1017 cm −3

1.18
                       ⎛N N ⎞
(a)        Vbi = VT ln ⎜ a 2 d ⎟
                       ⎝ ni ⎠
                                ⎡ (10 16 )(10 16 ) ⎤
                 = ( 0.026 ) ln ⎢                  ⎥ = 0.697 V
                                ⎢ (1.5 × 10 10 )2 ⎥
                                ⎣                  ⎦
                              ⎡ (10 18 )(10 16 ) ⎤
(b)        Vbi = ( 0.026 ) ln ⎢                  ⎥ = 0.817 V
                              ⎢ (1.5 × 10 10 )2 ⎥
                              ⎣                  ⎦
                              ⎡ (10 18 )(10 18 ) ⎤
(c)        Vbi = ( 0.026 ) ln ⎢                  ⎥ = 0.937 V
                              ⎢ (1.5 × 10 10 )2 ⎥
                              ⎣                  ⎦

1.19
            ⎛N N ⎞
Vbi = VT ln ⎜ a 2 d ⎟
            ⎝ ni ⎠
                              ⎡ (1016 )(1016 ) ⎤
a.         Vbi = ( 0.026 ) ln ⎢                ⎥ ⇒ Vbi = 1.17 V
                              ⎢ (1.8 × 10 ) ⎥
                                         6 2
                              ⎣                ⎦
                              ⎡ (1018 )(1016 ) ⎤
b.         Vbi = ( 0.026 ) ln ⎢                ⎥ ⇒ Vbi = 1.29 V
                              ⎢ (1.8 × 10 ) ⎥
                                         6 2
                              ⎣                ⎦
                              ⎡ (1018 )(1018 ) ⎤
c.         Vbi = ( 0.026 ) ln ⎢                ⎥ ⇒ Vbi = 1.41 V
                              ⎢ (1.8 × 10 ) ⎥
                                         6 2
                              ⎣                ⎦

1.20
            ⎛ Na Nd ⎞            ⎡ N a (1016 ) ⎤
Vbi = VT ln ⎜ 2 ⎟ = ( 0.026 ) ln ⎢               ⎥
                                 ⎢ (1.5 × 10 ) ⎥
                                            10 2
            ⎝ ni ⎠               ⎣               ⎦
For N a = 1015 cm −3 , Vbi = 0.637 V
For N a = 1018 cm −3 , Vbi = 0.817 V
Vbi (V)


 0.817




 0.637


       1015                    1016              1017               1018 Na(cmϪ3)


1.21
             ⎛ T ⎞
kT = (0.026) ⎜     ⎟
             ⎝ 300 ⎠
T       kT           (T)3/2
200     0.01733      2828.4
250     0.02167      3952.8
300     0.026        5196.2
350     0.03033      6547.9
400     0.03467      8000.0
450     0.0390       9545.9
500     0.04333      11,180.3

                                 ⎛        −1.4        ⎞
ni = ( 2.1× 1014 )(T 3 / 2 ) exp ⎜                    ⎟
                                 ⎜ 2 ( 86 × 10 ) (T ) ⎟
                                              −6
                                 ⎝                    ⎠
            ⎛N N ⎞
Vbi = VT ln ⎜ a 2 d ⎟
            ⎝ ni ⎠

T             ni                        Vbi
200           1.256                     1.405
250           6.02 × 103                1.389
300           1.80 × 106                1.370
350           1.09 × 108                1.349
400           2.44 × 109                1.327
450           2.80 × 1010               1.302
500           2.00 × 1011               1.277

Vbi (V)


   1.45

   1.35

   1.25



       200       250   300        350    400    450     500 T(ЊC)


1.22
                       −1/ 2
           ⎛ V ⎞
C j = C jo ⎜ 1 + R ⎟
           ⎝ Vbi ⎠
⎡ (1.5 × 10 16 )( 4 × 10 15 ) ⎤
Vbi = ( 0.026 ) ln ⎢                             ⎥ = 0.684 V
                   ⎢
                   ⎣      (1.5 ×10 10 ) 2 ⎥      ⎦
                                                   −1/ 2
                          ⎛     1 ⎞
(a)         C j = ( 0.4 ) ⎜ 1 +   ⎟                        = 0.255 pF
                          ⎝ 0.684 ⎠
                                                   −1/ 2
                          ⎛     3 ⎞
(b)         C j = ( 0.4 ) ⎜ 1 +   ⎟                        = 0.172 pF
                          ⎝ 0.684 ⎠
                                                   −1/ 2
                          ⎛       5 ⎞
(c)         C j = ( 0.4 ) ⎜ 1 +       ⎟                    = 0.139 pF
                          ⎝     0.684 ⎠

1.23
                                          −1 / 2
                       ⎛ V ⎞
(a)         C j = C jo ⎜1 + R ⎟
                       ⎝ Vbi ⎠
                                                           −1 / 2
                           ⎛     5 ⎞
For VR = 5 V, C j = (0.02) ⎜ 1 +   ⎟                                = 0.00743 pF
                           ⎝ 0. 8 ⎠
                                                              −1 / 2
                                    ⎛ 1. 5 ⎞
For VR = 1.5 V, C j = (0.02) ⎜1 +             ⎟      = 0.0118 pF
                                    ⎝ 0. 8 ⎠
              0.00743 + 0.0118
C j (avg ) =                          = 0.00962 pF
                        2
vC ( t ) = vC ( final ) + ( vC ( initial ) − vC ( final ) ) e − t / τ
where
τ = RC = RC j (avg ) = (47 × 103 )(0.00962 × 10−12 )
or
τ = 4.52 ×10−10 s
Then vC ( t ) = 1.5 = 0 + ( 5 − 0 ) e − ti / τ
  5     + r /τ         ⎛ 5 ⎞
     = e 1 ⇒ t1 = τ ln ⎜ ⎟
1.5                    ⎝ 1.5 ⎠
               −10
t1 = 5.44 × 10 s
(b)        For VR = 0 V, Cj = Cjo = 0.02 pF
                                         −1/ 2
                               ⎛ 3.5 ⎞
For VR = 3.5 V, C j = ( 0.02 ) ⎜ 1 +   ⎟       = 0.00863 pF
                               ⎝ 0.8 ⎠
             0.02 + 0.00863
C j (avg ) =                 = 0.0143 pF
                    2
τ = RC j ( avg ) = 6.72 ×10−10 s
vC ( t ) = vC ( final ) + ( vC ( initial ) − vC ( final ) ) e − t / τ

                                   (
3.5 = 5 + (0 − 5)e − t2 /τ = 5 1 − e − t2 /τ          )
                            −10
so that t2 = 8.09 × 10            s

1.24
                   ⎡ (1018 )(1015 ) ⎤
Vbi = ( 0.026 ) ln ⎢                ⎥ = 0.757 V
                   ⎢ (1.5 × 1010 )2 ⎥
                   ⎣                ⎦
a.         VR = 1 V
                                  −1/ 2
             ⎛     1 ⎞
C j = (0.25) ⎜ 1 +   ⎟                     = 0.164 pF
             ⎝ 0.757 ⎠
1                                            1
 f0 =               =
        2π LC                2π     ( 2.2 ×10 )( 0.164 ×10 )
                                                     −3            −12


 f 0 = 8.38 MHz
b.       VR = 10 V
                           −1/ 2
             ⎛     10 ⎞
C j = (0.25) ⎜ 1 +       ⎟       = 0.0663 pF
             ⎝ 0.757 ⎠
                       1
f0 =
      2π ( 2.2 × 10 )( 0.0663 × 10−12 )
                    −3


 f 0 = 13.2 MHz

1.25
                     ⎡     ⎛V               ⎞ ⎤                 ⎛ VD     ⎞
a.           I = I S ⎢ exp ⎜ D              ⎟ − 1⎥ − 0.90 = exp ⎜        ⎟ −1
                     ⎣     ⎝ VT             ⎠ ⎦                 ⎝ VT     ⎠
    ⎛V ⎞
exp ⎜ D ⎟ = 1 − 0.90 = 0.10
    ⎝ VT ⎠
VD = VT ln ( 0.10 ) ⇒ VD = −0.0599 V
b.
             ⎡     ⎛ VF            ⎞ ⎤        ⎛ 0.2 ⎞
             ⎢ exp ⎜               ⎟ − 1⎥ exp ⎜       ⎟ −1
                   ⎝ VT            ⎠ ⎦
        = S ⋅⎣                                ⎝ 0.026 ⎠
 IF      I
                                         =
 IR      IS ⎡      ⎛ VR            ⎞ ⎤        ⎛ −0.2 ⎞
             ⎢exp ⎜                ⎟ − 1⎥ exp ⎜ 0.026 ⎟ − 1
                                              ⎝       ⎠
             ⎣     ⎝ VT            ⎠ ⎦
            2190
        =
             −1
 IF
    = 2190
 IR

1.26
a.
                 ⎛ 0.5 ⎞
I ≅ (10−11 ) exp ⎜       ⎟ ⇒ I = 2.25 mA
                 ⎝ 0.026 ⎠
                 ⎛ 0.6 ⎞
I = (10−11 ) exp ⎜       ⎟ ⇒ I = 0.105 A
                 ⎝ 0.026 ⎠
                 ⎛ 0.7 ⎞
I = (10−11 ) exp ⎜       ⎟ ⇒ I = 4.93 A
                 ⎝ 0.026 ⎠
b.
                 ⎛ 0.5 ⎞
I ≅ (10−13 ) exp ⎜       ⎟ ⇒ I = 22.5 μ A
                 ⎝ 0.026 ⎠
                 ⎛ 0.6 ⎞
I = (10−13 ) exp ⎜       ⎟ ⇒ I = 1.05 mA
                 ⎝ 0.026 ⎠
                 ⎛ 0.7 ⎞
I = (10−13 ) exp ⎜       ⎟ ⇒ I = 49.3 mA
                 ⎝ 0.026 ⎠

1.27
(a)                      (
             I = I S eVD / VT − 1            )
150 × 10    −6
                 = 10   −11
                              (e  VD / VT
                                                 )
                                            − 1 ≅ 10−11 eVD / VT
⎛ 150 × 10−6       ⎞              ⎛ 150 × 10−6 ⎞
Then VD = VT ln ⎜      −11         ⎟ = (0.026) ln ⎜      −11   ⎟
                ⎝ 10               ⎠              ⎝ 10         ⎠
Or VD = 0.430 V
(b)
           ⎛ 150 × 10−6 ⎞
VD = VT ln ⎜      −13   ⎟
           ⎝ 10         ⎠
Or VD = 0.549 V

1.28
                            ⎛ 0.7 ⎞
(a)        10−3 = I S exp ⎜           ⎟
                            ⎝ 0.026 ⎠
 I S = 2.03 × 10 −15 A
(b)
VD                     I D ( A ) ( n = 1)             I D ( A )( n = 2 )
0.1                     9.50 ×10 −14                  1.39 ×10 −14
0.2                     4.45 ×10 −12                  9.50 ×10 −14
0.3                     2.08 ×10 −10                  6.50 ×10 −13
0.4                     9.75 ×10 −9                   4.45 ×10 −12
0.5                     4.56 ×10 −7                   3.04 ×10 −11
0.6                     2.14 ×10 −5                   2.08 ×10 −10
0.7                     10 −3                         1.42 ×10 −9

1.29
(a)
 I S = 10 −12 A
VD(v)                  ID(A)                          log10ID
0.10                    4.68 ×10−11                    −10.3
0.20                    2.19 ×10−9                     −8.66
0.30                   1.03 ×10−7                      −6.99
0.40                    4.80 ×10−6                     −5.32
0.50                    2.25 ×10−4                     −3.65
0.60                   1.05 ×10−2                      −1.98
0.70                    4.93 ×10−1                     −0.307
(b)
 I S = 10 −14 A
VD(v)                  ID(A)                          log10ID
0.10                    4.68 ×10−13                    −12.3
0.20                    2.19 ×10−11                    −10.66
0.30                   1.03 ×10−9                      −8.99
0.40                    4.80 ×10−8                     −7.32
0.50                    2.25 ×10−6                     −5.65
0.60                   1.05 ×10−4                      −3.98
0.70                    4.93 ×10−3                     −2.31

1.30
a.
  ID2             ⎛ V − VD1 ⎞
       = 10 = exp ⎜ D 2     ⎟
  I D1            ⎝ VT      ⎠
ΔVD = VT ln (10) ⇒ ΔVD = 59.9 mV ≈ 60 mV
b.        ΔVD = VT ln (100 ) ⇒ ΔVD = 119.7 mV ≈ 120 mV

1.31
                     ⎛I     ⎞                ⎛ 150 × 10−6 ⎞
(a) (i)   VD = Vt ln ⎜ D    ⎟ = ( 0.026 ) ln ⎜      −15   ⎟
                     ⎝ IS   ⎠                ⎝ 10         ⎠
          VD = 0.669 V
                          ⎛ 25 × 10−6 ⎞
(ii)      VD = ( 0.026)ln ⎜      −15  ⎟
                          ⎝ 10        ⎠
          VD = 0.622 V
                            ⎛ 0.2 ⎞
(b) (i)   I D = (10−15 )exp ⎜                    −12
                                    ⎟ = 2.19 × 10 A
                            ⎝ 0.026 ⎠
(ii)      ID = 0
(iii)     I D = −10 −15 A
(iv)      I D = −10 −15 A

1.32
           ⎛I     ⎞              ⎛ 2 × 10−3 ⎞
VD = Vt ln ⎜ D    ⎟ = (0.026) ln ⎜       −14 ⎟
                                               = 0.6347 V
           ⎝ IS   ⎠              ⎝ 5 × 10 ⎠
                ⎛ 2 × 10−3 ⎞
VD = (0.026) ln ⎜       −12 ⎟
                              = 0.5150 V
                ⎝ 5 × 10 ⎠
0.5150 ≤ VD ≤ 0.6347 V

1.33
                        ⎛V ⎞
(a)      I D = I S exp ⎜ D ⎟
                        ⎝ Vt ⎠
                    ⎛ 1.10 ⎞
12 ×10−3 = I S exp ⎜                            −21
                             ⎟ ⇒ I S = 5.07 × 10 A
                    ⎝ 0.026 ⎠
                                     ⎛ 1.0 ⎞
          I D = ( 5.07 × 10−21 ) exp ⎜       ⎟
(b)                                  ⎝ 0.026 ⎠
          I D = 2.56 × 10−4 A = 0.256 mA

1.34
                          ⎛ 1.0 ⎞
(a)       I D = 10−23 exp ⎜                     −7
                                  ⎟ = 5.05 × 10 A
                          ⎝ 0.026 ⎠
                          ⎛ 1.1 ⎞
(b)       I D = 10−23 exp ⎜                     −5
                                  ⎟ = 2.37 × 10 A
                          ⎝ 0.026 ⎠
                          ⎛ 1.2 ⎞
(c)       I D = 10−23 exp ⎜                    −3
                                  ⎟ = 1.11× 10 A
                          ⎝ 0.026 ⎠

1.35
IS doubles for every 5C increase in temperature.
 I S = 10 −12 A at T = 300K
For I S = 0.5 × 10 −12 A ⇒ T = 295 K
For I S = 50 × 10 −12 A, (2) n = 50 ⇒ n = 5.64
Where n equals number of 5C increases.
Then ΔT = ( 5.64 )( 5 ) = 28.2 K
So 295 ≤ T ≤ 328.2 K
1.36
   I S (T )
            = 2ΔT / 5 , ΔT = 155° C
 I S (−55)
I S (100)
          = 2155 / 5 = 2.147 × 109
I S (−55)
VT @100°C ⇒ 373°K ⇒ VT = 0.03220
VT @− 55°C ⇒ 216°K ⇒ VT = 0.01865
                                    ⎛ 0.6 ⎞
                                exp ⎜        ⎟
I D (100)                           ⎝ 0.0322 ⎠
          = (2.147 × 109 ) ×
I D (−55)                          ⎛ 0.6 ⎞
                               exp ⎜          ⎟
                                   ⎝ 0.01865 ⎠

           =
               ( 2.147 ×10 )(1.237 ×10 )
                          9              8



                      ( 9.374 ×10 ) 13


I D (100)
          = 2.83 × 103
I D (−55)

1.37
3.5 = ID (105) + VD
                            ⎛ V ⎞                 ⎛ ID ⎞
(a)       I D = 5 ×10−9 exp ⎜ D ⎟ ⇒ VD = 0.026 ln ⎜       −9 ⎟
                            ⎝ 0.026 ⎠             ⎝ 5 × 10 ⎠
Trial and error.
VD                        ID                  VD
0.50                      3 ×10  −5           0.226
0.40                      3.1×10−5            0.227
0.250                     3.25 ×10  −5        0.228
0.229                     3.271×10    −5      0.2284
0.2285                    3.2715 ×10    −5    0.2284

So VD ≅ 0.2285 V
      I D ≅ 3.272 × 10−5 A

(b)        I D = I S = 5 × 10−9 A
           VR = ( 5 × 10−9 )(105 ) = 5 × 10−4 V
           VD = 3.4995 V

1.38
                                                 ⎛ I ⎞
10 = I D ( 2 × 10 4 ) + VD and VD = ( 0.026 ) ln ⎜ D12 ⎟
                                                     −
                                                 ⎝ 10 ⎠
Trial and error.
VD(v)                  ID(A)             VD(v)
0.50                    4.75 ×10−4       0.5194
0.517                   4.7415 ×10 −4    0.5194
0.5194                  4.740 ×10−4      0.5194

VD = 0.5194 V
I D = 0.4740 mA

1.39
I s = 5 × 10 −13 A
                   R1 ϭ 50 K


    ϩ                                                   ϩ
1.2 V                  R2 ϭ 30 K                        VD
    Ϫ                                    ID             Ϫ




               RTH ϭ R1 ͉͉ R2 ϭ 18.75 K


          ϩ                                   ϩ
        VTH                                   VD
          Ϫ                                   Ϫ
                                   ID


      ⎛ R2           ⎞         ⎛ 30 ⎞
VTH = ⎜              ⎟ (1.2) = ⎜ ⎟ (1.2) = 0.45 V
      ⎝ R1 + R2      ⎠         ⎝ 80 ⎠
                                 ⎛I ⎞
0.45 = I D RTH + VD , VD = VT ln ⎜ D ⎟
                                 ⎝ IS ⎠
By trial and error:
I D = 2.56 μ A, VD = 0.402 V

1.40
          ϩ VDϪ ϩ VDϪ


ϩ                                                  ϩ
              I1
VI                                  1K             V0
Ϫ                          IR            I2        Ϫ


I S = 2 × 10 −13 A
V0 = 0.60 V
              ⎛V ⎞                      ⎛ 0.60 ⎞
I 2 = I S exp ⎜ 0 ⎟ = ( 2 × 10−13 ) exp ⎜       ⎟
              ⎝ VT ⎠                    ⎝ 0.026 ⎠
    = 2.105 mA
      0.6
IR =        = 0.60 mA
      1K
 I1 = I 2 + I R = 2.705 mA
           ⎛I       ⎞              ⎛ 2.705 × 10−3 ⎞
VD = VT ln ⎜ 1      ⎟ = (0.026) ln ⎜         −13  ⎟
           ⎝ IS     ⎠              ⎝ 2 × 10       ⎠
   = 0.6065
VI = 2VD + V0 ⇒ VI = 1.81 V

1.41
(a) Assume diode is conducting.
Then, VD = Vγ = 0.7 V
                   0. 7
So that I R 2 =         ⇒ 23.3 μ A
                   30
1.2 − 0.7
I R1 =          ⇒ 50 μ A
        10
Then I D = I R1 − I R 2 = 50 − 23.3
Or I D = 26.7 μ A
(b) Let R1 = 50 k Ω Diode is cutoff.
       30
VD =         ⋅ (1.2) = 0.45 V
     30 + 50
Since VD < Vγ , I D = 0

1.42
                 ϩ5 V




         3 k⍀                 2 k⍀

                   ID
VB ϭVAϪVr                    VA



         2 k⍀                 2 k⍀




A&VA:
         5 − VA       V
(1)             = ID + A
            2          2
A& VA − Vr
            5 − (VA − Vr )            (VA − Vr )
(2)                          + ID =
                 2                   2
    5 − (VA − Vr ) ⎡ 5 − VA VA ⎤ VA − Vr
So                 +⎢        − ⎥=
          3          ⎣ 2        2⎦        2
Multiply by 6:
10 − 2 (VA − Vr ) + 15 − 6VA = 3 (VA − Vr )
 25 + 2Vr + 3Vr = 11VA
(a)       Vr = 0.6 V
11VA = 25 + 5 ( 0.6 ) = 28 ⇒ VA = 2.545 V
                 5 − VA VA
From (1) I D =         −   = 2.5 − VA ⇒ I D Neg. ⇒ I D = 0
                    2    2
Both (a), (b) I D = 0
                  2
VA = 2.5, VB =      ⋅ 5 = 2 V ⇒ VD = 0.50 V
                  5

1.43
Minimum diode current for VPS (min)
I D (min) = 2 mA, VD = 0.7 V
         0.7        5 − 0.7 4.3
I2 =         , I1 =        =
         R2           R1     R1
We have I1 = I 2 + I D
4.3 0.7
so (1)      =      +2
         R1   R2
Maximum diode current for VPS (max)
P = I DVD 10 = I D ( 0.7 ) ⇒ I D = 14.3 mA
 I1 = I 2 + I D
or
            9.3 0.7
(2)             =    + 14.3
             R1   R2
                 9.3 4.3
Using Eq. (1),      =    − 2 + 14.3 ⇒        R1 = 0.41 kΩ
                 R1   R1
Then R2 = 82.5Ω 82.5Ω

1.44
(a)      Vo = 0.7 V
    5 − 0.7
 I=         ⇒ I = 0.215 mA
      20
             10 − 0.7
(b)       I=          ⇒ I = 0.2325 mA
             20 + 20
         Vo = I (20 K) − 5 ⇒ Vo = −0.35 V
              10 − 0.7
(c)        I=           ⇒ I = 0.372 mA
               5 + 20
         Vo = 0.7 + I (20) − 8 ⇒ Vo = +0.14 V
(d)       I =0
         Vo = I (20) − 5 ⇒ Vo = −5 V

1.45
                                                            ⎛          ⎞
          5 = I ( 2 × 109 ) + VD
                                                                 I
(a)                                       VD = ( 0.026 ) ln ⎜      −12 ⎟
                                                            ⎝ 2 ×10 ⎠
VD       →               ID        →             VD                Vo = VD = 0.482 V
0.6                       2.2 ×10−4              0.481
0.482                     2.259 ×10−4            0.482              I = 0.226 mA

                                                            ⎛          ⎞
         10 = I ( 4 × 10 4 ) + VD
                                                                 I
(b)                                       VD = ( 0.026 ) ln ⎜      −12 ⎟
                                                            ⎝ 2 ×10 ⎠
Vo       →               I            →          VD                 VD = 0.483 V
0.5                      2.375 ×10−4            0.4834           I = 0.238 mA
0.484                    2.379 ×10−4            0.4834            Vo = −0.24 V

                                                        ⎛          ⎞
         10 = I ( 2.5 × 10 4 ) + VD
                                                             I
(c)                                   VD = ( 0.026 ) ln ⎜          ⎟
                                                        ⎝ 2 ×10−12 ⎠
Vo       →               I       →           VD                VD = 0.496 V
0.480                    3.808 ×10 −4        0.496             I = 0.380 mA
0.496                    3.802 ×10 −4        0.496              Vo = −0.10 V

(d)       I = − I S ⇒ I = 2 × 10−12 A
                         Vo ≅ −5 V

1.46
(a)      Diode forward biased VD = 0.7 V
5 = (0.4)(4.7) + 0.7 + V ⇒ V = 2.42 V
(b)       P = I ⋅ VD = (0.4)(0.7) ⇒ P = 0.28 mω

1.47
                       0.65
(a)       I R 2 = I D1 =     = 0.65 mA = I D1
                         1
          ID2   = 2(0.65) = 1.30 mA
                  VI − 2Vr − V0 5 − 3(0.65)
          ID2 =                =            = 1.30 ⇒ R1 = 2.35 K
                        R1           R1
                 0.65
(b)       IR2 =          = 0.65 mA
                    1
                 8 − 3(0.65)
          ID2 =                  ⇒ I D 2 = 3.025 mA
                        2
          I D1 = I D 2 − I R 2 = 3.025 − 0.65
          I D1 = 2.375 mA

1.48
                  VT     (0.026)
a.        τd =         =         = 0.026 kΩ = 26Ω
                  I DQ      1
          id = 0.05 I DQ = 50 μ A peak-to-peak
          vd = idτ d = (26)(50) μ A ⇒ vd = 1.30 mV peak-to-peak

                                         (0.026)
b.        For I DQ = 0.1 mA ⇒ τ d =              = 260Ω
                                           0. 1
id = 0.05 I DQ = 5 μ A peak-to-peak
vd = idτ d = (260)(5) μ V ⇒ vd = 1.30 mV peak-to-peak

1.49
                 RS



                             ϩ
␯S    ϩ                      ␯d
      Ϫ                      Ϫ



a.        diode resistance rd = VT /I
                       ⎛          ⎞
     ⎛ rd ⎞            ⎜ VT /I    ⎟
vd = ⎜         ⎟ vS = ⎜ V         ⎟ vS
     ⎝ rd + RS ⎠       ⎜ T + RS
                       ⎜          ⎟
                                  ⎟
                       ⎝ I        ⎠
     ⎛ VT        ⎞
vd = ⎜           ⎟ vs = vo
     ⎝ VT + IRS ⎠

b.        RS = 260Ω
v0 ⎛ VT       ⎞         0.026         v
I = 1 mA,   =⎜          ⎟=                  ⇒ 0 = 0.0909
          vS ⎝ VT + IRS ⎠ 0.026 + (1)(0.26)     vS
             v          0.026           v
I = 0.1 mA, 0 =                        ⇒ 0 = 0.50
             vs 0.026 + ( 0.1)( 0.26 )  vS
                     v0        0.026          v
I = 0.01 mA.            =                    ⇒ 0 = 0.909
                     vS 0.026 + (0.01)(0.26)  vS

1.50
            ⎛V      ⎞              ⎛ I ⎞
I ≅ I S exp ⎜ a     ⎟ , Va = VT ln ⎜ ⎟
            ⎝ VT    ⎠              ⎝ IS ⎠
                             ⎛ 100 × 10−6 ⎞
pn junction, Va = (0.026) ln ⎜      −14   ⎟
                             ⎝ 10         ⎠
Va = 0.599 V
                                ⎛ 100 × 10−6 ⎞
Schottky diode, Va = (0.026) ln ⎜      −9    ⎟
                                ⎝ 10         ⎠
Va = 0.299 V

1.51
         Schottky

                             pn junction
I




                      ⎛V ⎞
Schottky: I ≅ I S exp ⎜ a ⎟
                      ⎝ VT ⎠
           ⎛ I ⎞             ⎛ 0.5 × 10−3 ⎞
Va = VT ln ⎜ ⎟ = (0.026) ln ⎜         −7 ⎟
           ⎝ IS ⎠            ⎝ 5 × 10 ⎠
                  = 0.1796 V
Then
Va of pn junction = 0.1796 + 0.30
                         = 0.4796
           I          0.5 × 10−3
IS =               =
           ⎛V ⎞         ⎛ 0.4796 ⎞
      exp ⎜ a ⎟ exp ⎜            ⎟
           ⎝ VT ⎠       ⎝ 0.026 ⎠
I S = 4.87 × 10 −12 A

1.52

(a)
                         ϩ VD Ϫ


                    I1


0.5 mA
                    I2

I1 + I 2 = 0.5 × 10 −3
⎛V      ⎞          ⎛ VD ⎞
5 × 10−8 exp ⎜ D           −12
                     ⎟ + 10 exp ⎜ ⎟ = 0.5 × 10
                                               −3

             ⎝ VT    ⎠          ⎝ VT ⎠
                  ⎛V ⎞
5.0001× 10 −8 exp ⎜ D ⎟ = 0.5 × 10 −3
                  ⎝ VT ⎠
                ⎛ 0.5 × 10−3 ⎞
VD = (0.026) ln ⎜           −8 ⎟
                                 ⇒ VD = 0.2395
                ⎝ 5.0001× 10 ⎠
Schottky diode, I 2 = 0.49999 mA
pn junction, I1 = 0.00001 mA
(b)
          ϩ VD1 Ϫ            ϩ VD2 Ϫ


  I
      ϩ             0.90 V                Ϫ


               ⎛V ⎞                  ⎛V ⎞
I = 10 −12 exp ⎜ D1 ⎟ = 5 × 10−8 exp ⎜ D 2 ⎟
               ⎝ VT ⎠                ⎝ VT ⎠
VD1 + VD 2 = 0.9
          ⎛V ⎞                  ⎛ 0.9 − VD1 ⎞
10−12 exp ⎜ D1 ⎟ = 5 × 10−8 exp ⎜           ⎟
          ⎝ VT ⎠                ⎝ VT        ⎠
                                ⎛ 0.9 ⎞     ⎛ −VD1 ⎞
                 = 5 ×10−8 exp ⎜      ⎟ exp ⎜      ⎟
                                ⎝ VT ⎠      ⎝ VT ⎠
    ⎛ 2V ⎞ ⎛ 5 × 10−8 ⎞     ⎛ 0.9 ⎞
exp ⎜ D1 ⎟ = ⎜    −12 ⎟
                        exp ⎜       ⎟
    ⎝ VT ⎠ ⎝ 10       ⎠     ⎝ 0.026 ⎠
             ⎛ 5 × 10−8 ⎞
2VD1 = VT ln ⎜      −12 ⎟
                          + 0.9 = 1.1813
             ⎝ 10       ⎠
VD1 = 0.5907 pn junction
VD 2 = 0.3093 Schottky diode
              ⎛ 0.5907 ⎞
I = 10−12 exp ⎜        ⎟ ⇒ I = 7.35 mA
              ⎝ 0.026 ⎠

1.53
                         R ϭ 0.5 K
                                                                 V0

         ϩ           I
                                              ϩ
VPS ϭ 10 V                                    VZ            RL
         Ϫ                                    Ϫ
                                                       IL
                                     IZ



VZ = VZ 0 = 5.6 V at I Z = 0.1 mA
rZ = 10Ω
I Z rZ = ( 0.1)(10 ) = 1 mV
VZ0 = 5.599
a.       RL → ∞ ⇒
       10 − 5.599      4.401
IZ =              =             = 8.63 mA
         R + rZ     0.50 + 0.01
VZ = VZ 0 + I Z rZ = 5.599 + ( 0.00863)(10 )
VZ = V0 = 5.685 V
11 − 5.599
b.        VPS = 11 V ⇒ I Z =             = 10.59 mA
                                 0.51
VZ = V0 = 5.599 + ( 0.01059 )(10 ) = 5.7049 V
                    9 − 5.599
VPS = 9 V ⇒ I Z =             = 6.669 mA
                       0.51
VZ = V0 = 5.599 + ( 0.006669 )(10 ) = 5.66569 V
ΔV0 = 5.7049 − 5.66569 ⇒ ΔV0 = 0.0392 V
c.      I = IZ + IL
     V0        V − V0       V − VZ 0
IL =    , I = PS      , IZ = 0
     RL            R           rZ
10 − V0 V0 − 5.599 V0
        =            +
 0.50       0.010      2
 10 5.599         ⎡ 1      1   1⎤
      +      = V0 ⎢      +    + ⎥
0.50 0.010        ⎣ 0.50 0.010 2 ⎦
20.0 + 559.9 = V0 (102.5)
V0 = 5.658 V

1.54
               9 − 6.8
a.        IZ =         ⇒ I Z = 11 mA
                 0.2
          PZ = (11)( 6.8 ) ⇒ PZ = 74.8 mW
                12 − 6.8
          IZ =            ⇒ I Z = 26 mA
                    0.2
b.
                    26 − 11
             %=             × 100 ⇒ 136%
                      11
PZ = ( 26 )( 6.8 ) = 176.8 mW
            176.8 − 74.8
       %=                × 100 ⇒ 136%
               74.8

1.55
I Z rZ = ( 0.1)( 20 ) = 2 mV
VZ 0 = 6.8 − 0.002 = 6.798 V
a.        RL = ∞
     10 − 6.798
IZ =             ⇒ I Z = 6.158 mA
     0.5 + 0.02
V0 = VZ = VZ 0 + I Z rZ = 6.798 + ( 0.006158)( 20 )
V0 = 6.921 V
b.        I = IZ + IL
10 − V0 V0 − 6.798 V0
        =             +
 0.50       0.020       1
 10 6.798          ⎡ 1      1    1⎤
     +        = V0 ⎢      +    +
0.30 0.020         ⎣ 0.50 0.020 1⎥⎦
359.9 = V0 (53)
V0 = 6.791 V
ΔV0 = 6.791 − 6.921
ΔV0 = −0.13 V

1.56
For VD = 0, I SC = 0.1 A
                      ⎛ 0.2           ⎞
For ID = 0 VD = VT ln ⎜        −14
                                   + 1⎟
                      ⎝ 5 × 10        ⎠
VD = VDC = 0.754 V

More Related Content

What's hot

Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
cideni
 
1ºbach. santillana la casa del saber ejercicios t2
1ºbach. santillana la casa del saber ejercicios t21ºbach. santillana la casa del saber ejercicios t2
1ºbach. santillana la casa del saber ejercicios t2
quififluna
 

What's hot (20)

Sect1 2
Sect1 2Sect1 2
Sect1 2
 
Derivadas
DerivadasDerivadas
Derivadas
 
Chapter002math
Chapter002mathChapter002math
Chapter002math
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
Clonal Selection: an Immunological Algorithm for Global Optimization over Con...
Clonal Selection: an Immunological Algorithm for Global Optimization over Con...Clonal Selection: an Immunological Algorithm for Global Optimization over Con...
Clonal Selection: an Immunological Algorithm for Global Optimization over Con...
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
 
3 chap
3 chap3 chap
3 chap
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 Functions
 
Docslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tablesDocslide.us 2002 formulae-and-tables
Docslide.us 2002 formulae-and-tables
 
Solution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and ContinuitySolution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and Continuity
 
Dynamic equity price pdf
Dynamic equity price pdfDynamic equity price pdf
Dynamic equity price pdf
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 Integration
 
1ºbach. santillana la casa del saber ejercicios t2
1ºbach. santillana la casa del saber ejercicios t21ºbach. santillana la casa del saber ejercicios t2
1ºbach. santillana la casa del saber ejercicios t2
 
B010310813
B010310813B010310813
B010310813
 
Chapter 2(limits)
Chapter 2(limits)Chapter 2(limits)
Chapter 2(limits)
 
Numerical Methods Solving Linear Equations
Numerical Methods Solving Linear EquationsNumerical Methods Solving Linear Equations
Numerical Methods Solving Linear Equations
 
Sequential Selection of Correlated Ads by POMDPs
Sequential Selection of Correlated Ads by POMDPsSequential Selection of Correlated Ads by POMDPs
Sequential Selection of Correlated Ads by POMDPs
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
 
Numerical methods generating polynomial
Numerical methods generating polynomialNumerical methods generating polynomial
Numerical methods generating polynomial
 
Econometric Analysis 8th Edition Greene Solutions Manual
Econometric Analysis 8th Edition Greene Solutions ManualEconometric Analysis 8th Edition Greene Solutions Manual
Econometric Analysis 8th Edition Greene Solutions Manual
 

Similar to Ch01s

Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Maamoun Hennache
 
Y4 maths week beginning 13th july
Y4 maths week beginning 13th julyY4 maths week beginning 13th july
Y4 maths week beginning 13th july
chrispenny85
 
626 pages
626 pages626 pages
626 pages
JFG407
 
Math06reviewsheet (3)
Math06reviewsheet (3)Math06reviewsheet (3)
Math06reviewsheet (3)
Angel Baez
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas
etcenterrbru
 

Similar to Ch01s (20)

Ch01p
Ch01pCh01p
Ch01p
 
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serway
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serwayCapítulo 34 (5th edition) con soluciones ondas electromagneticas serway
Capítulo 34 (5th edition) con soluciones ondas electromagneticas serway
 
41 introductory ci
41 introductory ci41 introductory ci
41 introductory ci
 
1st 2practice
1st 2practice1st 2practice
1st 2practice
 
Multiplying and-dividing-by-10-100-and-1000
Multiplying and-dividing-by-10-100-and-1000Multiplying and-dividing-by-10-100-and-1000
Multiplying and-dividing-by-10-100-and-1000
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
 
trapezoidal rule.pptx
trapezoidal rule.pptxtrapezoidal rule.pptx
trapezoidal rule.pptx
 
Random Number Generation
Random Number GenerationRandom Number Generation
Random Number Generation
 
Y4 maths week beginning 13th july
Y4 maths week beginning 13th julyY4 maths week beginning 13th july
Y4 maths week beginning 13th july
 
626 pages
626 pages626 pages
626 pages
 
Re:ゲーム理論入門 第14回 - 仁 -
Re:ゲーム理論入門 第14回 - 仁 -Re:ゲーム理論入門 第14回 - 仁 -
Re:ゲーム理論入門 第14回 - 仁 -
 
Math06reviewsheet (3)
Math06reviewsheet (3)Math06reviewsheet (3)
Math06reviewsheet (3)
 
Numerical Computing
Numerical ComputingNumerical Computing
Numerical Computing
 
1 reinforced concrete lectures-t-beam2
1 reinforced concrete lectures-t-beam21 reinforced concrete lectures-t-beam2
1 reinforced concrete lectures-t-beam2
 
1. asas bodmas formula
1. asas bodmas formula1. asas bodmas formula
1. asas bodmas formula
 
Tugas blog-matematika
Tugas blog-matematikaTugas blog-matematika
Tugas blog-matematika
 
JUEC 初中 (2013 Past Year)
JUEC 初中 (2013 Past Year)JUEC 初中 (2013 Past Year)
JUEC 初中 (2013 Past Year)
 
Calculus B Notes (Notre Dame)
Calculus B Notes (Notre Dame)Calculus B Notes (Notre Dame)
Calculus B Notes (Notre Dame)
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas
 
9 chap
9 chap9 chap
9 chap
 

More from Bilal Sarwar (20)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
Ch16p
Ch16pCh16p
Ch16p
 
Ch15s
Ch15sCh15s
Ch15s
 
Ch15p
Ch15pCh15p
Ch15p
 
Ch14s
Ch14sCh14s
Ch14s
 
Ch14p
Ch14pCh14p
Ch14p
 
Ch13s
Ch13sCh13s
Ch13s
 
Ch13p
Ch13pCh13p
Ch13p
 
Ch12s
Ch12sCh12s
Ch12s
 
Ch12p
Ch12pCh12p
Ch12p
 
Ch11s
Ch11sCh11s
Ch11s
 
Ch11p
Ch11pCh11p
Ch11p
 
Ch10s
Ch10sCh10s
Ch10s
 
Ch10p
Ch10pCh10p
Ch10p
 
Ch09s
Ch09sCh09s
Ch09s
 
Ch09p
Ch09pCh09p
Ch09p
 

Recently uploaded

Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
AnaAcapella
 

Recently uploaded (20)

Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Basic Intentional Injuries Health Education
Basic Intentional Injuries Health EducationBasic Intentional Injuries Health Education
Basic Intentional Injuries Health Education
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactistics
 
Simple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfSimple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdf
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
latest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answerslatest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answers
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 

Ch01s

  • 1. Chapter 1 Problem Solutions 1.1 − E / 2 kT ni = BT 3 / 2 e g (a) Silicon ⎡ −1.1 ⎤ ni = ( 5.23 × 1015 ) ( 250 ) 3/ 2 (i) exp ⎢ ⎥ ⎢ 2 ( 86 × 10−6 ) ( 250 ) ⎥ ⎣ ⎦ = 2.067 × 1019 exp [ −25.58] ni = 1.61× 108 cm −3 ⎡ −1.1 ⎤ ni = ( 5.23 × 1015 ) ( 350 ) 3/ 2 (ii) exp ⎢ ⎥ ⎢ 2 ( 86 × 10−6 ) ( 350 ) ⎥ ⎣ ⎦ = 3.425 × 1019 exp [ −18.27 ] ni = 3.97 ×1011 cm −3 (b) GaAs ⎡ −1.4 ⎤ ni = ( 2.10 × 1014 ) ( 250 ) 3/ 2 (i) exp ⎢ ⎥ ⎢ 2 ( 86 × 10 ) ( 250 ) ⎥ ⎣ −6 ⎦ = ( 8.301× 1017 ) exp [ −32.56] ni = 6.02 × 103 cm −3 ⎡ −1.4 ⎤ ni = ( 2.10 × 1014 ) ( 350 ) 3/ 2 (ii) exp ⎢ ⎥ ⎢ 2 ( 86 × 10−6 ) ( 350 ) ⎥ ⎣ ⎦ = (1.375 × 1018 ) exp [ −23.26] ni = 1.09 × 108 cm −3 1.2 ⎛ − Eg ⎞ a. ni = BT 3 / 2 exp ⎜ ⎟ ⎝ 2kT ⎠ ⎛ −1.1 ⎞ 1012 = 5.23 × 1015 T 3 / 2 exp ⎜ ⎟ ⎝ 2(86 × 10−6 )(T ) ⎠ ⎛ 6.40 × 103 ⎞ 1.91× 10−4 = T 3 / 2 exp ⎜ − ⎟ ⎝ T ⎠ By trial and error, T ≈ 368 K b. ni = 109 cm −3 ⎛ −1.1 ⎞ 109 = 5.23 × 1015 T 3 / 2 exp ⎜ ⎟ ⎜ 2 ( 86 × 10−6 ) (T ) ⎟ ⎝ ⎠ ⎛ 6.40 × 103 ⎞ 1.91× 10−7 = T 3 / 2 exp ⎜ − ⎟ ⎝ T ⎠ By trial and error, T ≈ 268° K 1.3 Silicon
  • 2. −1.1 ⎤ ni = ( 5.23 × 1015 ) (100 ) 3/ 2 (a) exp ⎢ ⎥ ⎢ 2 ( 86 × 10 ) (100 ) ⎥ ⎣ −6 ⎦ = ( 5.23 × 1018 ) exp [ −63.95] ni = 8.79 ×10−10 cm −3 ⎡ −1.1 ⎤ ni = ( 5.23 × 1015 ) ( 300 ) 3/ 2 (b) exp ⎢ ⎥ ⎢ 2 ( 86 × 10−6 ) ( 300 ) ⎥ ⎣ ⎦ = ( 2.718 × 1019 ) exp [ −21.32] ni = 1.5 × 1010 cm −3 ⎡ −1.1 ⎤ ni = ( 5.23 × 1015 ) ( 500 ) 3/ 2 (c) exp ⎢ ⎥ ⎢ 2 ( 86 × 10 ) ( 500 ) ⎥ ⎣ −6 ⎦ = ( 5.847 × 1019 ) exp [ −12.79] ni = 1.63 × 1014 cm −3 Germanium. ⎡ −0.66 ⎤ ni = (1.66 × 1015 ) (100 ) ⎥ = (1.66 × 1018 ) exp [ −38.37 ] 3/ 2 (a) exp ⎢ ⎢ 2 ( 86 × 10−6 ) (100 ) ⎥ ⎣ ⎦ ni = 35.9 cm −3 ⎡ −0.66 ⎤ ni = (1.66 × 1015 ) ( 300 ) ⎥ = ( 8.626 × 1018 ) exp [ −12.79] 3/ 2 (b) exp ⎢ ⎢ 2 ( 86 × 10−6 ) ( 300 ) ⎥ ⎣ ⎦ ni = 2.40 × 1013 cm −3 ⎡ −0.66 ⎤ ni = (1.66 × 1015 ) ( 500 ) ⎥ = (1.856 × 1019 ) exp [ −7.674] 3/ 2 (c) exp ⎢ ⎢ 2 ( 86 × 10−6 ) ( 500 ) ⎥ ⎣ ⎦ ni = 8.62 ×1015 cm −3 1.4 a. N d = 5 × 1015 cm −3 ⇒ n − type n0 = N d = 5 × 1015 cm −3 n 2 (1.5 × 10 ) 10 2 p0 = i = ⇒ p0 = 4.5 × 10 4 cm −3 n0 5 × 1015 b. N d = 5 × 1015 cm −3 ⇒ n − type no = N d = 5 × 1015 cm −3 ⎛ −1.4 ⎞ ni = ( 2.10 × 1014 ) ( 300 ) 3/ 2 exp ⎜ −6 ⎟ ⎝ 2(86 × 10 )(300) ⎠ = ( 2.10 × 1014 ) ( 300 ) (1.65 ×10 ) 3/ 2 −12 = 1.80 × 106 cm −3 ni2 (1.8 × 10 ) 6 2 p0 = = ⇒ p0 = 6.48 × 10 −4 cm −3 n0 5 × 1015 1.5
  • 3. (a) n-type (b) no = N d = 5 × 1016 cm −3 n 2 (1.5 × 10 ) 10 2 po = i = = 4.5 × 103 cm −3 no 5 × 1016 (c) no = N d = 5 × 1016 cm −3 From Problem 1.1(a)(ii) ni = 3.97 × 1011 cm −3 po = ( 3.97 × 10 ) 11 2 = 3.15 × 106 cm −3 5 × 1016 1.6 a. N a = 1016 cm −3 ⇒ p − type p0 = N a = 1016 cm −3 n 2 (1.5 × 10 ) 10 2 n0 = i = ⇒ n0 = 2.25 × 10 4 cm −3 p0 1016 b. Germanium N a = 1016 cm −3 ⇒ p − type p0 = N a = 1016 cm −3 ⎛ −0.66 ⎞ ni = (1.66 × 1015 ) ( 300 ) 3/ 2 exp ⎜ ⎟ ⎜ 2 ( 86 × 10−6 ) ( 300 ) ⎟ ⎝ ⎠ = (1.66 × 1015 ) ( 300 ) ( 2.79 × 10 ) 3/ 2 −6 = 2.4 × 1013 cm −3 n 2 ( 2.4 × 10 ) 13 2 n0 = i = ⇒ n0 = 5.76 × 1010 cm −3 p0 1016 1.7 (a) p-type (b) po = N a = 2 × 1017 cm −3 ni2 (1.5 × 10 ) 10 2 no = = = 1.125 × 103 cm −3 po 2 × 1017 (c) po = 2 × 1017 cm −3 From Problem 1.1(a)(i) ni = 1.61 × 108 cm −3 no = (1.61×10 ) 8 2 = 0.130 cm −3 2 × 1017 1.8 (a) no = 5 × 1015 cm −3 ni2 (1.5 × 10 ) 10 2 po = = ⇒ po = 4.5 × 104 cm −3 no 5 × 1015 (b) no po ⇒ n-type (c) no ≅ N d = 5 × 1015 cm −3 1.9 a. Add Donors N d = 7 × 1015 cm −3
  • 4. b. Want po = 106 cm −3 = ni2 / N d So ni2 = (106 )( 7 × 1015 ) = 7 × 10 21 ⎛ − Eg ⎞ = B 2T 3 exp ⎜ ⎟ ⎝ kT ⎠ ⎛ −1.1 ⎞ 7 × 1021 = ( 5.23 × 1015 ) T 3 exp ⎜ 2 ⎟ ⎜ ( 86 × 10 ) (T ) ⎟ −6 ⎝ ⎠ By trial and error, T ≈ 324° K 1.10 I = J ⋅ A = σ EA I = ( 2.2 )(15 ) (10−4 ) ⇒ I = 3.3 mA 1.11 J 85 J =σE ⇒σ = = E 12 σ = 7.08 (ohm − cm) −1 1.12 1 1 1 g≈ ⇒ Na = = eμ p N a eμ p g (1.6 × 10 −19 ) ( 480 )( 0.80 ) N a = 1.63 × 10 16 cm −3 1.13 σ = eμ n N d σ ( 0.5) Nd = = eμ n (1.6 ×10 ) (1350 ) −19 N d = 2.31× 1015 cm −3 1.14 (a) For n-type, σ ≅ eμ n N d = (1.6 × 10 −19 ) ( 8500 ) N d For 1015 ≤ N d ≤ 1019 cm −3 ⇒ 1.36 ≤ σ ≤ 1.36 × 104 ( Ω − cm ) −1 (b) J = σ E = σ ( 0.1) ⇒ 0.136 ≤ J ≤ 1.36 × 103 A / cm2 1.15 dn Δn J n = eDn = eDn dx Δx ⎡10 15 −10 2 ⎤ = (1.6 × 10 −19 ) (180 ) ⎢ −4 ⎥ ⎣ 0.5 × 10 ⎦ J n = 576 A/cm 2 1.16
  • 5. dp J p = −eD p dx ⎛ −1 ⎞ ⎛ −x ⎞ = −eD p (10 15 ) ⎜ ⎟ exp ⎜ ⎟ ⎜ Lp ⎟ ⎜ Lp ⎟ ⎝ ⎠ ⎝ ⎠ Jp = (1.6 ×10 ) (15) (10 ) exp ⎛ − x ⎞ −19 15 ⎜ ⎟ ⎜L ⎟ 10 × 10 −4 ⎝ p⎠ − x / Lp J p = 2.4 e (a) x=0 J p = 2.4 A/cm2 (b) x = 10 μ m J p = 2.4 e−1 = 0.883 A/cm 2 (c) x = 30 μ m J p = 2.4 e−3 = 0.119 A/cm 2 1.17 a. N a = 1017 cm −3 ⇒ po = 1017 cm −3 ni2 (1.8 × 10 ) 6 2 no = = ⇒ no = 3.24 × 10−5 cm −3 po 1017 b. n = no + δ n = 3.24 × 10 −5 + 1015 ⇒ n = 1015 cm −3 p = po + δ p = 1017 + 1015 ⇒ p = 1.01× 1017 cm −3 1.18 ⎛N N ⎞ (a) Vbi = VT ln ⎜ a 2 d ⎟ ⎝ ni ⎠ ⎡ (10 16 )(10 16 ) ⎤ = ( 0.026 ) ln ⎢ ⎥ = 0.697 V ⎢ (1.5 × 10 10 )2 ⎥ ⎣ ⎦ ⎡ (10 18 )(10 16 ) ⎤ (b) Vbi = ( 0.026 ) ln ⎢ ⎥ = 0.817 V ⎢ (1.5 × 10 10 )2 ⎥ ⎣ ⎦ ⎡ (10 18 )(10 18 ) ⎤ (c) Vbi = ( 0.026 ) ln ⎢ ⎥ = 0.937 V ⎢ (1.5 × 10 10 )2 ⎥ ⎣ ⎦ 1.19 ⎛N N ⎞ Vbi = VT ln ⎜ a 2 d ⎟ ⎝ ni ⎠ ⎡ (1016 )(1016 ) ⎤ a. Vbi = ( 0.026 ) ln ⎢ ⎥ ⇒ Vbi = 1.17 V ⎢ (1.8 × 10 ) ⎥ 6 2 ⎣ ⎦ ⎡ (1018 )(1016 ) ⎤ b. Vbi = ( 0.026 ) ln ⎢ ⎥ ⇒ Vbi = 1.29 V ⎢ (1.8 × 10 ) ⎥ 6 2 ⎣ ⎦ ⎡ (1018 )(1018 ) ⎤ c. Vbi = ( 0.026 ) ln ⎢ ⎥ ⇒ Vbi = 1.41 V ⎢ (1.8 × 10 ) ⎥ 6 2 ⎣ ⎦ 1.20 ⎛ Na Nd ⎞ ⎡ N a (1016 ) ⎤ Vbi = VT ln ⎜ 2 ⎟ = ( 0.026 ) ln ⎢ ⎥ ⎢ (1.5 × 10 ) ⎥ 10 2 ⎝ ni ⎠ ⎣ ⎦
  • 6. For N a = 1015 cm −3 , Vbi = 0.637 V For N a = 1018 cm −3 , Vbi = 0.817 V Vbi (V) 0.817 0.637 1015 1016 1017 1018 Na(cmϪ3) 1.21 ⎛ T ⎞ kT = (0.026) ⎜ ⎟ ⎝ 300 ⎠ T kT (T)3/2 200 0.01733 2828.4 250 0.02167 3952.8 300 0.026 5196.2 350 0.03033 6547.9 400 0.03467 8000.0 450 0.0390 9545.9 500 0.04333 11,180.3 ⎛ −1.4 ⎞ ni = ( 2.1× 1014 )(T 3 / 2 ) exp ⎜ ⎟ ⎜ 2 ( 86 × 10 ) (T ) ⎟ −6 ⎝ ⎠ ⎛N N ⎞ Vbi = VT ln ⎜ a 2 d ⎟ ⎝ ni ⎠ T ni Vbi 200 1.256 1.405 250 6.02 × 103 1.389 300 1.80 × 106 1.370 350 1.09 × 108 1.349 400 2.44 × 109 1.327 450 2.80 × 1010 1.302 500 2.00 × 1011 1.277 Vbi (V) 1.45 1.35 1.25 200 250 300 350 400 450 500 T(ЊC) 1.22 −1/ 2 ⎛ V ⎞ C j = C jo ⎜ 1 + R ⎟ ⎝ Vbi ⎠
  • 7. ⎡ (1.5 × 10 16 )( 4 × 10 15 ) ⎤ Vbi = ( 0.026 ) ln ⎢ ⎥ = 0.684 V ⎢ ⎣ (1.5 ×10 10 ) 2 ⎥ ⎦ −1/ 2 ⎛ 1 ⎞ (a) C j = ( 0.4 ) ⎜ 1 + ⎟ = 0.255 pF ⎝ 0.684 ⎠ −1/ 2 ⎛ 3 ⎞ (b) C j = ( 0.4 ) ⎜ 1 + ⎟ = 0.172 pF ⎝ 0.684 ⎠ −1/ 2 ⎛ 5 ⎞ (c) C j = ( 0.4 ) ⎜ 1 + ⎟ = 0.139 pF ⎝ 0.684 ⎠ 1.23 −1 / 2 ⎛ V ⎞ (a) C j = C jo ⎜1 + R ⎟ ⎝ Vbi ⎠ −1 / 2 ⎛ 5 ⎞ For VR = 5 V, C j = (0.02) ⎜ 1 + ⎟ = 0.00743 pF ⎝ 0. 8 ⎠ −1 / 2 ⎛ 1. 5 ⎞ For VR = 1.5 V, C j = (0.02) ⎜1 + ⎟ = 0.0118 pF ⎝ 0. 8 ⎠ 0.00743 + 0.0118 C j (avg ) = = 0.00962 pF 2 vC ( t ) = vC ( final ) + ( vC ( initial ) − vC ( final ) ) e − t / τ where τ = RC = RC j (avg ) = (47 × 103 )(0.00962 × 10−12 ) or τ = 4.52 ×10−10 s Then vC ( t ) = 1.5 = 0 + ( 5 − 0 ) e − ti / τ 5 + r /τ ⎛ 5 ⎞ = e 1 ⇒ t1 = τ ln ⎜ ⎟ 1.5 ⎝ 1.5 ⎠ −10 t1 = 5.44 × 10 s (b) For VR = 0 V, Cj = Cjo = 0.02 pF −1/ 2 ⎛ 3.5 ⎞ For VR = 3.5 V, C j = ( 0.02 ) ⎜ 1 + ⎟ = 0.00863 pF ⎝ 0.8 ⎠ 0.02 + 0.00863 C j (avg ) = = 0.0143 pF 2 τ = RC j ( avg ) = 6.72 ×10−10 s vC ( t ) = vC ( final ) + ( vC ( initial ) − vC ( final ) ) e − t / τ ( 3.5 = 5 + (0 − 5)e − t2 /τ = 5 1 − e − t2 /τ ) −10 so that t2 = 8.09 × 10 s 1.24 ⎡ (1018 )(1015 ) ⎤ Vbi = ( 0.026 ) ln ⎢ ⎥ = 0.757 V ⎢ (1.5 × 1010 )2 ⎥ ⎣ ⎦ a. VR = 1 V −1/ 2 ⎛ 1 ⎞ C j = (0.25) ⎜ 1 + ⎟ = 0.164 pF ⎝ 0.757 ⎠
  • 8. 1 1 f0 = = 2π LC 2π ( 2.2 ×10 )( 0.164 ×10 ) −3 −12 f 0 = 8.38 MHz b. VR = 10 V −1/ 2 ⎛ 10 ⎞ C j = (0.25) ⎜ 1 + ⎟ = 0.0663 pF ⎝ 0.757 ⎠ 1 f0 = 2π ( 2.2 × 10 )( 0.0663 × 10−12 ) −3 f 0 = 13.2 MHz 1.25 ⎡ ⎛V ⎞ ⎤ ⎛ VD ⎞ a. I = I S ⎢ exp ⎜ D ⎟ − 1⎥ − 0.90 = exp ⎜ ⎟ −1 ⎣ ⎝ VT ⎠ ⎦ ⎝ VT ⎠ ⎛V ⎞ exp ⎜ D ⎟ = 1 − 0.90 = 0.10 ⎝ VT ⎠ VD = VT ln ( 0.10 ) ⇒ VD = −0.0599 V b. ⎡ ⎛ VF ⎞ ⎤ ⎛ 0.2 ⎞ ⎢ exp ⎜ ⎟ − 1⎥ exp ⎜ ⎟ −1 ⎝ VT ⎠ ⎦ = S ⋅⎣ ⎝ 0.026 ⎠ IF I = IR IS ⎡ ⎛ VR ⎞ ⎤ ⎛ −0.2 ⎞ ⎢exp ⎜ ⎟ − 1⎥ exp ⎜ 0.026 ⎟ − 1 ⎝ ⎠ ⎣ ⎝ VT ⎠ ⎦ 2190 = −1 IF = 2190 IR 1.26 a. ⎛ 0.5 ⎞ I ≅ (10−11 ) exp ⎜ ⎟ ⇒ I = 2.25 mA ⎝ 0.026 ⎠ ⎛ 0.6 ⎞ I = (10−11 ) exp ⎜ ⎟ ⇒ I = 0.105 A ⎝ 0.026 ⎠ ⎛ 0.7 ⎞ I = (10−11 ) exp ⎜ ⎟ ⇒ I = 4.93 A ⎝ 0.026 ⎠ b. ⎛ 0.5 ⎞ I ≅ (10−13 ) exp ⎜ ⎟ ⇒ I = 22.5 μ A ⎝ 0.026 ⎠ ⎛ 0.6 ⎞ I = (10−13 ) exp ⎜ ⎟ ⇒ I = 1.05 mA ⎝ 0.026 ⎠ ⎛ 0.7 ⎞ I = (10−13 ) exp ⎜ ⎟ ⇒ I = 49.3 mA ⎝ 0.026 ⎠ 1.27 (a) ( I = I S eVD / VT − 1 ) 150 × 10 −6 = 10 −11 (e VD / VT ) − 1 ≅ 10−11 eVD / VT
  • 9. ⎛ 150 × 10−6 ⎞ ⎛ 150 × 10−6 ⎞ Then VD = VT ln ⎜ −11 ⎟ = (0.026) ln ⎜ −11 ⎟ ⎝ 10 ⎠ ⎝ 10 ⎠ Or VD = 0.430 V (b) ⎛ 150 × 10−6 ⎞ VD = VT ln ⎜ −13 ⎟ ⎝ 10 ⎠ Or VD = 0.549 V 1.28 ⎛ 0.7 ⎞ (a) 10−3 = I S exp ⎜ ⎟ ⎝ 0.026 ⎠ I S = 2.03 × 10 −15 A (b) VD I D ( A ) ( n = 1) I D ( A )( n = 2 ) 0.1 9.50 ×10 −14 1.39 ×10 −14 0.2 4.45 ×10 −12 9.50 ×10 −14 0.3 2.08 ×10 −10 6.50 ×10 −13 0.4 9.75 ×10 −9 4.45 ×10 −12 0.5 4.56 ×10 −7 3.04 ×10 −11 0.6 2.14 ×10 −5 2.08 ×10 −10 0.7 10 −3 1.42 ×10 −9 1.29 (a) I S = 10 −12 A VD(v) ID(A) log10ID 0.10 4.68 ×10−11 −10.3 0.20 2.19 ×10−9 −8.66 0.30 1.03 ×10−7 −6.99 0.40 4.80 ×10−6 −5.32 0.50 2.25 ×10−4 −3.65 0.60 1.05 ×10−2 −1.98 0.70 4.93 ×10−1 −0.307 (b) I S = 10 −14 A VD(v) ID(A) log10ID 0.10 4.68 ×10−13 −12.3 0.20 2.19 ×10−11 −10.66 0.30 1.03 ×10−9 −8.99 0.40 4.80 ×10−8 −7.32 0.50 2.25 ×10−6 −5.65 0.60 1.05 ×10−4 −3.98 0.70 4.93 ×10−3 −2.31 1.30 a. ID2 ⎛ V − VD1 ⎞ = 10 = exp ⎜ D 2 ⎟ I D1 ⎝ VT ⎠ ΔVD = VT ln (10) ⇒ ΔVD = 59.9 mV ≈ 60 mV
  • 10. b. ΔVD = VT ln (100 ) ⇒ ΔVD = 119.7 mV ≈ 120 mV 1.31 ⎛I ⎞ ⎛ 150 × 10−6 ⎞ (a) (i) VD = Vt ln ⎜ D ⎟ = ( 0.026 ) ln ⎜ −15 ⎟ ⎝ IS ⎠ ⎝ 10 ⎠ VD = 0.669 V ⎛ 25 × 10−6 ⎞ (ii) VD = ( 0.026)ln ⎜ −15 ⎟ ⎝ 10 ⎠ VD = 0.622 V ⎛ 0.2 ⎞ (b) (i) I D = (10−15 )exp ⎜ −12 ⎟ = 2.19 × 10 A ⎝ 0.026 ⎠ (ii) ID = 0 (iii) I D = −10 −15 A (iv) I D = −10 −15 A 1.32 ⎛I ⎞ ⎛ 2 × 10−3 ⎞ VD = Vt ln ⎜ D ⎟ = (0.026) ln ⎜ −14 ⎟ = 0.6347 V ⎝ IS ⎠ ⎝ 5 × 10 ⎠ ⎛ 2 × 10−3 ⎞ VD = (0.026) ln ⎜ −12 ⎟ = 0.5150 V ⎝ 5 × 10 ⎠ 0.5150 ≤ VD ≤ 0.6347 V 1.33 ⎛V ⎞ (a) I D = I S exp ⎜ D ⎟ ⎝ Vt ⎠ ⎛ 1.10 ⎞ 12 ×10−3 = I S exp ⎜ −21 ⎟ ⇒ I S = 5.07 × 10 A ⎝ 0.026 ⎠ ⎛ 1.0 ⎞ I D = ( 5.07 × 10−21 ) exp ⎜ ⎟ (b) ⎝ 0.026 ⎠ I D = 2.56 × 10−4 A = 0.256 mA 1.34 ⎛ 1.0 ⎞ (a) I D = 10−23 exp ⎜ −7 ⎟ = 5.05 × 10 A ⎝ 0.026 ⎠ ⎛ 1.1 ⎞ (b) I D = 10−23 exp ⎜ −5 ⎟ = 2.37 × 10 A ⎝ 0.026 ⎠ ⎛ 1.2 ⎞ (c) I D = 10−23 exp ⎜ −3 ⎟ = 1.11× 10 A ⎝ 0.026 ⎠ 1.35 IS doubles for every 5C increase in temperature. I S = 10 −12 A at T = 300K For I S = 0.5 × 10 −12 A ⇒ T = 295 K For I S = 50 × 10 −12 A, (2) n = 50 ⇒ n = 5.64 Where n equals number of 5C increases. Then ΔT = ( 5.64 )( 5 ) = 28.2 K So 295 ≤ T ≤ 328.2 K
  • 11. 1.36 I S (T ) = 2ΔT / 5 , ΔT = 155° C I S (−55) I S (100) = 2155 / 5 = 2.147 × 109 I S (−55) VT @100°C ⇒ 373°K ⇒ VT = 0.03220 VT @− 55°C ⇒ 216°K ⇒ VT = 0.01865 ⎛ 0.6 ⎞ exp ⎜ ⎟ I D (100) ⎝ 0.0322 ⎠ = (2.147 × 109 ) × I D (−55) ⎛ 0.6 ⎞ exp ⎜ ⎟ ⎝ 0.01865 ⎠ = ( 2.147 ×10 )(1.237 ×10 ) 9 8 ( 9.374 ×10 ) 13 I D (100) = 2.83 × 103 I D (−55) 1.37 3.5 = ID (105) + VD ⎛ V ⎞ ⎛ ID ⎞ (a) I D = 5 ×10−9 exp ⎜ D ⎟ ⇒ VD = 0.026 ln ⎜ −9 ⎟ ⎝ 0.026 ⎠ ⎝ 5 × 10 ⎠ Trial and error. VD ID VD 0.50 3 ×10 −5 0.226 0.40 3.1×10−5 0.227 0.250 3.25 ×10 −5 0.228 0.229 3.271×10 −5 0.2284 0.2285 3.2715 ×10 −5 0.2284 So VD ≅ 0.2285 V I D ≅ 3.272 × 10−5 A (b) I D = I S = 5 × 10−9 A VR = ( 5 × 10−9 )(105 ) = 5 × 10−4 V VD = 3.4995 V 1.38 ⎛ I ⎞ 10 = I D ( 2 × 10 4 ) + VD and VD = ( 0.026 ) ln ⎜ D12 ⎟ − ⎝ 10 ⎠ Trial and error. VD(v) ID(A) VD(v) 0.50 4.75 ×10−4 0.5194 0.517 4.7415 ×10 −4 0.5194 0.5194 4.740 ×10−4 0.5194 VD = 0.5194 V I D = 0.4740 mA 1.39
  • 12. I s = 5 × 10 −13 A R1 ϭ 50 K ϩ ϩ 1.2 V R2 ϭ 30 K VD Ϫ ID Ϫ RTH ϭ R1 ͉͉ R2 ϭ 18.75 K ϩ ϩ VTH VD Ϫ Ϫ ID ⎛ R2 ⎞ ⎛ 30 ⎞ VTH = ⎜ ⎟ (1.2) = ⎜ ⎟ (1.2) = 0.45 V ⎝ R1 + R2 ⎠ ⎝ 80 ⎠ ⎛I ⎞ 0.45 = I D RTH + VD , VD = VT ln ⎜ D ⎟ ⎝ IS ⎠ By trial and error: I D = 2.56 μ A, VD = 0.402 V 1.40 ϩ VDϪ ϩ VDϪ ϩ ϩ I1 VI 1K V0 Ϫ IR I2 Ϫ I S = 2 × 10 −13 A V0 = 0.60 V ⎛V ⎞ ⎛ 0.60 ⎞ I 2 = I S exp ⎜ 0 ⎟ = ( 2 × 10−13 ) exp ⎜ ⎟ ⎝ VT ⎠ ⎝ 0.026 ⎠ = 2.105 mA 0.6 IR = = 0.60 mA 1K I1 = I 2 + I R = 2.705 mA ⎛I ⎞ ⎛ 2.705 × 10−3 ⎞ VD = VT ln ⎜ 1 ⎟ = (0.026) ln ⎜ −13 ⎟ ⎝ IS ⎠ ⎝ 2 × 10 ⎠ = 0.6065 VI = 2VD + V0 ⇒ VI = 1.81 V 1.41 (a) Assume diode is conducting. Then, VD = Vγ = 0.7 V 0. 7 So that I R 2 = ⇒ 23.3 μ A 30
  • 13. 1.2 − 0.7 I R1 = ⇒ 50 μ A 10 Then I D = I R1 − I R 2 = 50 − 23.3 Or I D = 26.7 μ A (b) Let R1 = 50 k Ω Diode is cutoff. 30 VD = ⋅ (1.2) = 0.45 V 30 + 50 Since VD < Vγ , I D = 0 1.42 ϩ5 V 3 k⍀ 2 k⍀ ID VB ϭVAϪVr VA 2 k⍀ 2 k⍀ A&VA: 5 − VA V (1) = ID + A 2 2 A& VA − Vr 5 − (VA − Vr ) (VA − Vr ) (2) + ID = 2 2 5 − (VA − Vr ) ⎡ 5 − VA VA ⎤ VA − Vr So +⎢ − ⎥= 3 ⎣ 2 2⎦ 2 Multiply by 6: 10 − 2 (VA − Vr ) + 15 − 6VA = 3 (VA − Vr ) 25 + 2Vr + 3Vr = 11VA (a) Vr = 0.6 V 11VA = 25 + 5 ( 0.6 ) = 28 ⇒ VA = 2.545 V 5 − VA VA From (1) I D = − = 2.5 − VA ⇒ I D Neg. ⇒ I D = 0 2 2 Both (a), (b) I D = 0 2 VA = 2.5, VB = ⋅ 5 = 2 V ⇒ VD = 0.50 V 5 1.43 Minimum diode current for VPS (min) I D (min) = 2 mA, VD = 0.7 V 0.7 5 − 0.7 4.3 I2 = , I1 = = R2 R1 R1 We have I1 = I 2 + I D
  • 14. 4.3 0.7 so (1) = +2 R1 R2 Maximum diode current for VPS (max) P = I DVD 10 = I D ( 0.7 ) ⇒ I D = 14.3 mA I1 = I 2 + I D or 9.3 0.7 (2) = + 14.3 R1 R2 9.3 4.3 Using Eq. (1), = − 2 + 14.3 ⇒ R1 = 0.41 kΩ R1 R1 Then R2 = 82.5Ω 82.5Ω 1.44 (a) Vo = 0.7 V 5 − 0.7 I= ⇒ I = 0.215 mA 20 10 − 0.7 (b) I= ⇒ I = 0.2325 mA 20 + 20 Vo = I (20 K) − 5 ⇒ Vo = −0.35 V 10 − 0.7 (c) I= ⇒ I = 0.372 mA 5 + 20 Vo = 0.7 + I (20) − 8 ⇒ Vo = +0.14 V (d) I =0 Vo = I (20) − 5 ⇒ Vo = −5 V 1.45 ⎛ ⎞ 5 = I ( 2 × 109 ) + VD I (a) VD = ( 0.026 ) ln ⎜ −12 ⎟ ⎝ 2 ×10 ⎠ VD → ID → VD Vo = VD = 0.482 V 0.6 2.2 ×10−4 0.481 0.482 2.259 ×10−4 0.482 I = 0.226 mA ⎛ ⎞ 10 = I ( 4 × 10 4 ) + VD I (b) VD = ( 0.026 ) ln ⎜ −12 ⎟ ⎝ 2 ×10 ⎠ Vo → I → VD VD = 0.483 V 0.5 2.375 ×10−4 0.4834 I = 0.238 mA 0.484 2.379 ×10−4 0.4834 Vo = −0.24 V ⎛ ⎞ 10 = I ( 2.5 × 10 4 ) + VD I (c) VD = ( 0.026 ) ln ⎜ ⎟ ⎝ 2 ×10−12 ⎠ Vo → I → VD VD = 0.496 V 0.480 3.808 ×10 −4 0.496 I = 0.380 mA 0.496 3.802 ×10 −4 0.496 Vo = −0.10 V (d) I = − I S ⇒ I = 2 × 10−12 A Vo ≅ −5 V 1.46 (a) Diode forward biased VD = 0.7 V
  • 15. 5 = (0.4)(4.7) + 0.7 + V ⇒ V = 2.42 V (b) P = I ⋅ VD = (0.4)(0.7) ⇒ P = 0.28 mω 1.47 0.65 (a) I R 2 = I D1 = = 0.65 mA = I D1 1 ID2 = 2(0.65) = 1.30 mA VI − 2Vr − V0 5 − 3(0.65) ID2 = = = 1.30 ⇒ R1 = 2.35 K R1 R1 0.65 (b) IR2 = = 0.65 mA 1 8 − 3(0.65) ID2 = ⇒ I D 2 = 3.025 mA 2 I D1 = I D 2 − I R 2 = 3.025 − 0.65 I D1 = 2.375 mA 1.48 VT (0.026) a. τd = = = 0.026 kΩ = 26Ω I DQ 1 id = 0.05 I DQ = 50 μ A peak-to-peak vd = idτ d = (26)(50) μ A ⇒ vd = 1.30 mV peak-to-peak (0.026) b. For I DQ = 0.1 mA ⇒ τ d = = 260Ω 0. 1 id = 0.05 I DQ = 5 μ A peak-to-peak vd = idτ d = (260)(5) μ V ⇒ vd = 1.30 mV peak-to-peak 1.49 RS ϩ ␯S ϩ ␯d Ϫ Ϫ a. diode resistance rd = VT /I ⎛ ⎞ ⎛ rd ⎞ ⎜ VT /I ⎟ vd = ⎜ ⎟ vS = ⎜ V ⎟ vS ⎝ rd + RS ⎠ ⎜ T + RS ⎜ ⎟ ⎟ ⎝ I ⎠ ⎛ VT ⎞ vd = ⎜ ⎟ vs = vo ⎝ VT + IRS ⎠ b. RS = 260Ω
  • 16. v0 ⎛ VT ⎞ 0.026 v I = 1 mA, =⎜ ⎟= ⇒ 0 = 0.0909 vS ⎝ VT + IRS ⎠ 0.026 + (1)(0.26) vS v 0.026 v I = 0.1 mA, 0 = ⇒ 0 = 0.50 vs 0.026 + ( 0.1)( 0.26 ) vS v0 0.026 v I = 0.01 mA. = ⇒ 0 = 0.909 vS 0.026 + (0.01)(0.26) vS 1.50 ⎛V ⎞ ⎛ I ⎞ I ≅ I S exp ⎜ a ⎟ , Va = VT ln ⎜ ⎟ ⎝ VT ⎠ ⎝ IS ⎠ ⎛ 100 × 10−6 ⎞ pn junction, Va = (0.026) ln ⎜ −14 ⎟ ⎝ 10 ⎠ Va = 0.599 V ⎛ 100 × 10−6 ⎞ Schottky diode, Va = (0.026) ln ⎜ −9 ⎟ ⎝ 10 ⎠ Va = 0.299 V 1.51 Schottky pn junction I ⎛V ⎞ Schottky: I ≅ I S exp ⎜ a ⎟ ⎝ VT ⎠ ⎛ I ⎞ ⎛ 0.5 × 10−3 ⎞ Va = VT ln ⎜ ⎟ = (0.026) ln ⎜ −7 ⎟ ⎝ IS ⎠ ⎝ 5 × 10 ⎠ = 0.1796 V Then Va of pn junction = 0.1796 + 0.30 = 0.4796 I 0.5 × 10−3 IS = = ⎛V ⎞ ⎛ 0.4796 ⎞ exp ⎜ a ⎟ exp ⎜ ⎟ ⎝ VT ⎠ ⎝ 0.026 ⎠ I S = 4.87 × 10 −12 A 1.52 (a) ϩ VD Ϫ I1 0.5 mA I2 I1 + I 2 = 0.5 × 10 −3
  • 17. ⎛V ⎞ ⎛ VD ⎞ 5 × 10−8 exp ⎜ D −12 ⎟ + 10 exp ⎜ ⎟ = 0.5 × 10 −3 ⎝ VT ⎠ ⎝ VT ⎠ ⎛V ⎞ 5.0001× 10 −8 exp ⎜ D ⎟ = 0.5 × 10 −3 ⎝ VT ⎠ ⎛ 0.5 × 10−3 ⎞ VD = (0.026) ln ⎜ −8 ⎟ ⇒ VD = 0.2395 ⎝ 5.0001× 10 ⎠ Schottky diode, I 2 = 0.49999 mA pn junction, I1 = 0.00001 mA (b) ϩ VD1 Ϫ ϩ VD2 Ϫ I ϩ 0.90 V Ϫ ⎛V ⎞ ⎛V ⎞ I = 10 −12 exp ⎜ D1 ⎟ = 5 × 10−8 exp ⎜ D 2 ⎟ ⎝ VT ⎠ ⎝ VT ⎠ VD1 + VD 2 = 0.9 ⎛V ⎞ ⎛ 0.9 − VD1 ⎞ 10−12 exp ⎜ D1 ⎟ = 5 × 10−8 exp ⎜ ⎟ ⎝ VT ⎠ ⎝ VT ⎠ ⎛ 0.9 ⎞ ⎛ −VD1 ⎞ = 5 ×10−8 exp ⎜ ⎟ exp ⎜ ⎟ ⎝ VT ⎠ ⎝ VT ⎠ ⎛ 2V ⎞ ⎛ 5 × 10−8 ⎞ ⎛ 0.9 ⎞ exp ⎜ D1 ⎟ = ⎜ −12 ⎟ exp ⎜ ⎟ ⎝ VT ⎠ ⎝ 10 ⎠ ⎝ 0.026 ⎠ ⎛ 5 × 10−8 ⎞ 2VD1 = VT ln ⎜ −12 ⎟ + 0.9 = 1.1813 ⎝ 10 ⎠ VD1 = 0.5907 pn junction VD 2 = 0.3093 Schottky diode ⎛ 0.5907 ⎞ I = 10−12 exp ⎜ ⎟ ⇒ I = 7.35 mA ⎝ 0.026 ⎠ 1.53 R ϭ 0.5 K V0 ϩ I ϩ VPS ϭ 10 V VZ RL Ϫ Ϫ IL IZ VZ = VZ 0 = 5.6 V at I Z = 0.1 mA rZ = 10Ω I Z rZ = ( 0.1)(10 ) = 1 mV VZ0 = 5.599 a. RL → ∞ ⇒ 10 − 5.599 4.401 IZ = = = 8.63 mA R + rZ 0.50 + 0.01 VZ = VZ 0 + I Z rZ = 5.599 + ( 0.00863)(10 ) VZ = V0 = 5.685 V
  • 18. 11 − 5.599 b. VPS = 11 V ⇒ I Z = = 10.59 mA 0.51 VZ = V0 = 5.599 + ( 0.01059 )(10 ) = 5.7049 V 9 − 5.599 VPS = 9 V ⇒ I Z = = 6.669 mA 0.51 VZ = V0 = 5.599 + ( 0.006669 )(10 ) = 5.66569 V ΔV0 = 5.7049 − 5.66569 ⇒ ΔV0 = 0.0392 V c. I = IZ + IL V0 V − V0 V − VZ 0 IL = , I = PS , IZ = 0 RL R rZ 10 − V0 V0 − 5.599 V0 = + 0.50 0.010 2 10 5.599 ⎡ 1 1 1⎤ + = V0 ⎢ + + ⎥ 0.50 0.010 ⎣ 0.50 0.010 2 ⎦ 20.0 + 559.9 = V0 (102.5) V0 = 5.658 V 1.54 9 − 6.8 a. IZ = ⇒ I Z = 11 mA 0.2 PZ = (11)( 6.8 ) ⇒ PZ = 74.8 mW 12 − 6.8 IZ = ⇒ I Z = 26 mA 0.2 b. 26 − 11 %= × 100 ⇒ 136% 11 PZ = ( 26 )( 6.8 ) = 176.8 mW 176.8 − 74.8 %= × 100 ⇒ 136% 74.8 1.55 I Z rZ = ( 0.1)( 20 ) = 2 mV VZ 0 = 6.8 − 0.002 = 6.798 V a. RL = ∞ 10 − 6.798 IZ = ⇒ I Z = 6.158 mA 0.5 + 0.02 V0 = VZ = VZ 0 + I Z rZ = 6.798 + ( 0.006158)( 20 ) V0 = 6.921 V b. I = IZ + IL 10 − V0 V0 − 6.798 V0 = + 0.50 0.020 1 10 6.798 ⎡ 1 1 1⎤ + = V0 ⎢ + + 0.30 0.020 ⎣ 0.50 0.020 1⎥⎦ 359.9 = V0 (53) V0 = 6.791 V ΔV0 = 6.791 − 6.921 ΔV0 = −0.13 V 1.56
  • 19. For VD = 0, I SC = 0.1 A ⎛ 0.2 ⎞ For ID = 0 VD = VT ln ⎜ −14 + 1⎟ ⎝ 5 × 10 ⎠ VD = VDC = 0.754 V