SlideShare a Scribd company logo
1 of 17
Pulse Code Modulation




                                         4.#                                                   1
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
ANALOG-TO-DIGITAL CONVERSION

 A digital signal is superior to an analog signal because
 it is more robust to noise and can easily be recovered,
 corrected and amplified. For this reason, the tendency
 today is to change an analog signal to digital data. In
 this section we describe two techniques, pulse code
 modulation and delta modulation.

Topics discussed in this section:
 Pulse Code Modulation (PCM)
 Delta Modulation (DM)

                             4.#                            2
PCM
       PCM consists of three steps to digitize an
        analog signal:
    n     Sampling
    n     Quantization
    n     Binary encoding
       Before we sample, we have to filter the signal
        to limit the maximum frequency of the signal as
        it affects the sampling rate.
       Filtering should ensure that we do not distort
        the signal, ie remove high frequency
        components that affect the signal shape.


                             4.#                          3
Figure 4.21 Components of PCM encoder




                               4.#      4
Sampling
   Analog signal is sampled every TS secs.
   Ts is referred to as the sampling interval.
   fs = 1/Ts is called the sampling rate or sampling
    frequency.
   There are 3 sampling methods:
       Ideal - an impulse at each sampling instant
       Natural - a pulse of short width with varying amplitude
       Flattop - sample and hold, like natural but with single
        amplitude value
   The process is referred to as pulse amplitude
    modulation PAM and the outcome is a signal with
    analog (non integer) values

                                 4.#                              5
Figure 4.22 Three different sampling methods for PCM




                                  4.#                  6
Note

According to the Nyquist theorem, the
         sampling rate must be
at least 2 times the highest frequency
        contained in the signal.



                  4.#                    7
Figure 4.23 Nyquist sampling rate for low-pass and bandpass signals




                                    4.#                               8
Example 4.6

For an intuitive example of the Nyquist theorem, let us
sample a simple sine wave at three sampling rates: fs = 4f (2
times the Nyquist rate), fs = 2f (Nyquist rate), and
fs = f (one-half the Nyquist rate). Figure 4.24 shows the
sampling and the subsequent recovery of the signal.

It can be seen that sampling at the Nyquist rate can create
a good approximation of the original sine wave (part a).
Oversampling in part b can also create the same
approximation, but it is redundant and unnecessary.
Sampling below the Nyquist rate (part c) does not produce
a signal that looks like the original sine wave.
                              4.#                         9
Figure 4.24 Recovery of a sampled sine wave for different sampling rates




                                    4.#                                    10
Quantization
   Sampling results in a series of pulses of varying
    amplitude values ranging between two limits: a
    min and a max.
   The amplitude values are infinite between the
    two limits.
   We need to map the infinite amplitude values
    onto a finite set of known values.
   This is achieved by dividing the distance
    between min and max into L zones, each of
    height ∆.
                    ∆ = (max - min)/L

                           4.#                          11
Quantization Levels

   The midpoint of each zone is assigned a
    value from 0 to L-1 (resulting in L values)
   Each sample falling in a zone is then
    approximated to the value of the midpoint.




                        4.#                       12
Quantization Zones
   Assume we have a voltage signal with
    amplitutes Vmin=-20V and Vmax=+20V.
   We want to use L=8 quantization levels.
   Zone width ∆ = (20 - -20)/8 = 5
   The 8 zones are: -20 to -15, -15 to -10, -10
    to -5, -5 to 0, 0 to +5, +5 to +10, +10 to
    +15, +15 to +20
   The midpoints are: -17.5, -12.5, -7.5, -2.5,
    2.5, 7.5, 12.5, 17.5

                        4.#                        13
Assigning Codes to Zones
   Each zone is then assigned a binary code.
   The number of bits required to encode the zones,
    or the number of bits per sample as it is
    commonly referred to, is obtained as follows:
                      nb = log2 L
   Given our example, nb = 3
   The 8 zone (or level) codes are therefore: 000,
    001, 010, 011, 100, 101, 110, and 111
   Assigning codes to zones:
       000 will refer to zone -20 to -15
       001 to zone -15 to -10, etc.


                                 4.#                   14
Figure 4.26 Quantization and encoding of a sampled signal




                                   4.#                      15
Quantization Error
   When a signal is quantized, we introduce an
    error - the coded signal is an approximation of
    the actual amplitude value.
   The difference between actual and coded value
    (midpoint) is referred to as the quantization error.
   The more zones, the smaller ∆ which results in
    smaller errors.
   BUT, the more zones the more bits required to
    encode the samples -> higher bit rate




                            4.#                            16
Bit rate and bandwidth requirements of
PCM
   The bit rate of a PCM signal can be calculated form the
    number of bits per sample x the sampling rate
                         Bit rate = nb x fs
   The bandwidth required to transmit this signal depends on
    the type of line encoding used. Refer to previous section for
    discussion and formulas.
   A digitized signal will always need more bandwidth than the
    original analog signal. Price we pay for robustness and other
    features of digital transmission.




                                4.#                                 17

More Related Content

What's hot

Pulse code modulation
Pulse code modulationPulse code modulation
Pulse code modulation
Naveen Sihag
 
Phase modulation
Phase modulationPhase modulation
Phase modulation
avocado1111
 
Tracking in receivers
Tracking in receiversTracking in receivers
Tracking in receivers
Jay Patel
 

What's hot (20)

Pulse code modulation
Pulse code modulationPulse code modulation
Pulse code modulation
 
Delta Modulation
Delta ModulationDelta Modulation
Delta Modulation
 
PULSE CODE MODULATION (PCM)
PULSE CODE MODULATION (PCM)PULSE CODE MODULATION (PCM)
PULSE CODE MODULATION (PCM)
 
Digital modulation basics(nnm)
Digital modulation basics(nnm)Digital modulation basics(nnm)
Digital modulation basics(nnm)
 
Design of Filters PPT
Design of Filters PPTDesign of Filters PPT
Design of Filters PPT
 
Adaptive equalization
Adaptive equalizationAdaptive equalization
Adaptive equalization
 
Turbo codes
Turbo codesTurbo codes
Turbo codes
 
Introduction to Digital Signal Processing
Introduction to Digital Signal ProcessingIntroduction to Digital Signal Processing
Introduction to Digital Signal Processing
 
presentation on digital signal processing
presentation on digital signal processingpresentation on digital signal processing
presentation on digital signal processing
 
Phase modulation
Phase modulationPhase modulation
Phase modulation
 
Source coding
Source coding Source coding
Source coding
 
Convolutional codes
Convolutional codesConvolutional codes
Convolutional codes
 
DPCM
DPCMDPCM
DPCM
 
Line coding
Line codingLine coding
Line coding
 
Unit- 1 Amplitude Modulation.ppt
Unit- 1 Amplitude Modulation.pptUnit- 1 Amplitude Modulation.ppt
Unit- 1 Amplitude Modulation.ppt
 
Tracking in receivers
Tracking in receiversTracking in receivers
Tracking in receivers
 
LDPC Encoding
LDPC EncodingLDPC Encoding
LDPC Encoding
 
Mixers
MixersMixers
Mixers
 
Pulse code modulation (PCM)
Pulse code modulation (PCM)Pulse code modulation (PCM)
Pulse code modulation (PCM)
 
Analog-to Digital Conversion
Analog-to Digital ConversionAnalog-to Digital Conversion
Analog-to Digital Conversion
 

Viewers also liked (9)

Koding
KodingKoding
Koding
 
pulse code modulation pcm | Communication Systems
pulse code modulation pcm | Communication Systemspulse code modulation pcm | Communication Systems
pulse code modulation pcm | Communication Systems
 
30 CHL PCM PDH SDH BY SKG
30 CHL PCM PDH SDH BY SKG30 CHL PCM PDH SDH BY SKG
30 CHL PCM PDH SDH BY SKG
 
PCM (Pulse Code Modulation)
PCM (Pulse Code Modulation)PCM (Pulse Code Modulation)
PCM (Pulse Code Modulation)
 
Chapter 6m
Chapter 6mChapter 6m
Chapter 6m
 
Digital Communication 1
Digital Communication 1Digital Communication 1
Digital Communication 1
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulation
 
Pulse code modulation
Pulse code modulationPulse code modulation
Pulse code modulation
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulation
 

Similar to Pulse code mod

Digital Transmission
Digital TransmissionDigital Transmission
Digital Transmission
anuragyadav94
 
4. Analog to digital conversation (1).ppt
4. Analog to digital conversation (1).ppt4. Analog to digital conversation (1).ppt
4. Analog to digital conversation (1).ppt
test22333
 
Ch04
Ch04Ch04
Ch04
H K
 
Lecture7 encodingmodulation
Lecture7 encodingmodulationLecture7 encodingmodulation
Lecture7 encodingmodulation
H K
 

Similar to Pulse code mod (20)

PCM and delta modulation.ppt
PCM and delta modulation.pptPCM and delta modulation.ppt
PCM and delta modulation.ppt
 
DIGITAL TRANSMISSION
DIGITAL TRANSMISSIONDIGITAL TRANSMISSION
DIGITAL TRANSMISSION
 
Ch4 2 v1
Ch4 2 v1Ch4 2 v1
Ch4 2 v1
 
Ch4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kuraleCh4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kurale
 
Digital Transmission
Digital TransmissionDigital Transmission
Digital Transmission
 
TeleCom Lecture 07.ppt
TeleCom Lecture 07.pptTeleCom Lecture 07.ppt
TeleCom Lecture 07.ppt
 
4. Analog to digital conversation (1).ppt
4. Analog to digital conversation (1).ppt4. Analog to digital conversation (1).ppt
4. Analog to digital conversation (1).ppt
 
ch4_2_v1.ppt
ch4_2_v1.pptch4_2_v1.ppt
ch4_2_v1.ppt
 
Analog_to_Digital.pdf
Analog_to_Digital.pdfAnalog_to_Digital.pdf
Analog_to_Digital.pdf
 
Ch04
Ch04Ch04
Ch04
 
_Pulse-Modulation-Techniqnes.pdf
_Pulse-Modulation-Techniqnes.pdf_Pulse-Modulation-Techniqnes.pdf
_Pulse-Modulation-Techniqnes.pdf
 
1 PCM & Encoding
1  PCM & Encoding1  PCM & Encoding
1 PCM & Encoding
 
Te 4 pulse_modulation
Te 4 pulse_modulationTe 4 pulse_modulation
Te 4 pulse_modulation
 
Unit 3.pptx
Unit 3.pptxUnit 3.pptx
Unit 3.pptx
 
Digitization
DigitizationDigitization
Digitization
 
EC6651 COMMUNICATION ENGINEERING UNIT 2
EC6651 COMMUNICATION ENGINEERING UNIT 2EC6651 COMMUNICATION ENGINEERING UNIT 2
EC6651 COMMUNICATION ENGINEERING UNIT 2
 
Ch04
Ch04Ch04
Ch04
 
Chapter 4 - Digital Transmission
Chapter 4 - Digital TransmissionChapter 4 - Digital Transmission
Chapter 4 - Digital Transmission
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Lecture7 encodingmodulation
Lecture7 encodingmodulationLecture7 encodingmodulation
Lecture7 encodingmodulation
 

Recently uploaded

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Recently uploaded (20)

A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 

Pulse code mod

  • 1. Pulse Code Modulation 4.# 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
  • 2. ANALOG-TO-DIGITAL CONVERSION A digital signal is superior to an analog signal because it is more robust to noise and can easily be recovered, corrected and amplified. For this reason, the tendency today is to change an analog signal to digital data. In this section we describe two techniques, pulse code modulation and delta modulation. Topics discussed in this section:  Pulse Code Modulation (PCM)  Delta Modulation (DM) 4.# 2
  • 3. PCM  PCM consists of three steps to digitize an analog signal: n Sampling n Quantization n Binary encoding  Before we sample, we have to filter the signal to limit the maximum frequency of the signal as it affects the sampling rate.  Filtering should ensure that we do not distort the signal, ie remove high frequency components that affect the signal shape. 4.# 3
  • 4. Figure 4.21 Components of PCM encoder 4.# 4
  • 5. Sampling  Analog signal is sampled every TS secs.  Ts is referred to as the sampling interval.  fs = 1/Ts is called the sampling rate or sampling frequency.  There are 3 sampling methods:  Ideal - an impulse at each sampling instant  Natural - a pulse of short width with varying amplitude  Flattop - sample and hold, like natural but with single amplitude value  The process is referred to as pulse amplitude modulation PAM and the outcome is a signal with analog (non integer) values 4.# 5
  • 6. Figure 4.22 Three different sampling methods for PCM 4.# 6
  • 7. Note According to the Nyquist theorem, the sampling rate must be at least 2 times the highest frequency contained in the signal. 4.# 7
  • 8. Figure 4.23 Nyquist sampling rate for low-pass and bandpass signals 4.# 8
  • 9. Example 4.6 For an intuitive example of the Nyquist theorem, let us sample a simple sine wave at three sampling rates: fs = 4f (2 times the Nyquist rate), fs = 2f (Nyquist rate), and fs = f (one-half the Nyquist rate). Figure 4.24 shows the sampling and the subsequent recovery of the signal. It can be seen that sampling at the Nyquist rate can create a good approximation of the original sine wave (part a). Oversampling in part b can also create the same approximation, but it is redundant and unnecessary. Sampling below the Nyquist rate (part c) does not produce a signal that looks like the original sine wave. 4.# 9
  • 10. Figure 4.24 Recovery of a sampled sine wave for different sampling rates 4.# 10
  • 11. Quantization  Sampling results in a series of pulses of varying amplitude values ranging between two limits: a min and a max.  The amplitude values are infinite between the two limits.  We need to map the infinite amplitude values onto a finite set of known values.  This is achieved by dividing the distance between min and max into L zones, each of height ∆. ∆ = (max - min)/L 4.# 11
  • 12. Quantization Levels  The midpoint of each zone is assigned a value from 0 to L-1 (resulting in L values)  Each sample falling in a zone is then approximated to the value of the midpoint. 4.# 12
  • 13. Quantization Zones  Assume we have a voltage signal with amplitutes Vmin=-20V and Vmax=+20V.  We want to use L=8 quantization levels.  Zone width ∆ = (20 - -20)/8 = 5  The 8 zones are: -20 to -15, -15 to -10, -10 to -5, -5 to 0, 0 to +5, +5 to +10, +10 to +15, +15 to +20  The midpoints are: -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5 4.# 13
  • 14. Assigning Codes to Zones  Each zone is then assigned a binary code.  The number of bits required to encode the zones, or the number of bits per sample as it is commonly referred to, is obtained as follows: nb = log2 L  Given our example, nb = 3  The 8 zone (or level) codes are therefore: 000, 001, 010, 011, 100, 101, 110, and 111  Assigning codes to zones:  000 will refer to zone -20 to -15  001 to zone -15 to -10, etc. 4.# 14
  • 15. Figure 4.26 Quantization and encoding of a sampled signal 4.# 15
  • 16. Quantization Error  When a signal is quantized, we introduce an error - the coded signal is an approximation of the actual amplitude value.  The difference between actual and coded value (midpoint) is referred to as the quantization error.  The more zones, the smaller ∆ which results in smaller errors.  BUT, the more zones the more bits required to encode the samples -> higher bit rate 4.# 16
  • 17. Bit rate and bandwidth requirements of PCM  The bit rate of a PCM signal can be calculated form the number of bits per sample x the sampling rate Bit rate = nb x fs  The bandwidth required to transmit this signal depends on the type of line encoding used. Refer to previous section for discussion and formulas.  A digitized signal will always need more bandwidth than the original analog signal. Price we pay for robustness and other features of digital transmission. 4.# 17