SlideShare a Scribd company logo
1 of 43
4.1
Chapter 4
Digital Transmission
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
4.2
4-2 ANALOG-TO-DIGITAL CONVERSION4-2 ANALOG-TO-DIGITAL CONVERSION
A digital signal is superior to an analog signal becauseA digital signal is superior to an analog signal because
it is more robust to noise and can easily be recovered,it is more robust to noise and can easily be recovered,
corrected and amplified. For this reason, the tendencycorrected and amplified. For this reason, the tendency
today is to change an analog signal to digital data. Intoday is to change an analog signal to digital data. In
this section we describe two techniques,this section we describe two techniques, pulse codepulse code
modulationmodulation andand delta modulationdelta modulation..
 Pulse Code Modulation (PCM)
 Delta Modulation (DM)
Topics discussed in this section:Topics discussed in this section:
4.3
PCM
 PCM consists of three steps to digitize an
analog signal:
1. Sampling
2. Quantization
3. Binary encoding
 Before we sample, we have to filter the
signal to limit the maximum frequency of the
signal as it affects the sampling rate.
 Filtering should ensure that we do not
distort the signal, ie remove high frequency
components that affect the signal shape.
4.4
Figure 4.21 Components of PCM encoder
4.5
Sampling
 Analog signal is sampled every TS secs.
 Ts is referred to as the sampling interval.
 fs = 1/Ts is called the sampling rate or
sampling frequency.
 There are 3 sampling methods:
 Ideal - an impulse at each sampling instant
 Natural - a pulse of short width with varying
amplitude
 Flattop - sample and hold, like natural but with
single amplitude value
 The process is referred to as pulse amplitude
modulation PAM and the outcome is a signal
with analog (non integer) values
4.6
Figure 4.22 Three different sampling methods for PCM
4.7
According to the Nyquist theorem, the
sampling rate must be
at least 2 times the highest frequency
contained in the signal.
Note
4.8
Figure 4.23 Nyquist sampling rate for low-pass and bandpass signals
4.9
For an intuitive example of the Nyquist theorem, let us
sample a simple sine wave at three sampling rates: fs = 4f
(2 times the Nyquist rate), fs = 2f (Nyquist rate), and
fs = f (one-half the Nyquist rate). Figure 4.24 shows the
sampling and the subsequent recovery of the signal.
It can be seen that sampling at the Nyquist rate can create
a good approximation of the original sine wave (part a).
Oversampling in part b can also create the same
approximation, but it is redundant and unnecessary.
Sampling below the Nyquist rate (part c) does not produce
a signal that looks like the original sine wave.
Example 4.6
4.10
Figure 4.24 Recovery of a sampled sine wave for different sampling rates
4.11
Consider the revolution of a hand of a clock. The second
hand of a clock has a period of 60 s. According to the
Nyquist theorem, we need to sample the hand every 30 s
(Ts = T or fs = 2f ). In Figure 4.25a, the sample points, in
order, are 12, 6, 12, 6, 12, and 6. The receiver of the
samples cannot tell if the clock is moving forward or
backward. In part b, we sample at double the Nyquist rate
(every 15 s). The sample points are 12, 3, 6, 9, and 12.
The clock is moving forward. In part c, we sample below
the Nyquist rate (Ts = T or fs = f ). The sample points are
12, 9, 6, 3, and 12. Although the clock is moving forward,
the receiver thinks that the clock is moving backward.
Example 4.7
4.12
Figure 4.25 Sampling of a clock with only one hand
4.13
An example related to Example 4.7 is the seemingly
backward rotation of the wheels of a forward-moving car
in a movie. This can be explained by under-sampling. A
movie is filmed at 24 frames per second. If a wheel is
rotating more than 12 times per second, the under-
sampling creates the impression of a backward rotation.
Example 4.8
4.14
Telephone companies digitize voice by assuming a
maximum frequency of 4000 Hz. The sampling rate
therefore is 8000 samples per second.
Example 4.9
4.15
A complex low-pass signal has a bandwidth of 200 kHz.
What is the minimum sampling rate for this signal?
Solution
The bandwidth of a low-pass signal is between 0 and f,
where f is the maximum frequency in the signal.
Therefore, we can sample this signal at 2 times the
highest frequency (200 kHz). The sampling rate is
therefore 400,000 samples per second.
Example 4.10
4.16
A complex bandpass signal has a bandwidth of 200 kHz.
What is the minimum sampling rate for this signal?
Solution
We cannot find the minimum sampling rate in this case
because we do not know where the bandwidth starts or
ends. We do not know the maximum frequency in the
signal.
Example 4.11
4.17
Quantization
 Sampling results in a series of pulses of
varying amplitude values ranging between
two limits: a min and a max.
 The amplitude values are infinite between the
two limits.
 We need to map the infinite amplitude values
onto a finite set of known values.
 This is achieved by dividing the distance
between min and max into L zones, each of
height ∆.
∆ = (max - min)/L
4.18
Quantization Levels
 The midpoint of each zone is assigned
a value from 0 to L-1 (resulting in L
values)
 Each sample falling in a zone is then
approximated to the value of the
midpoint.
4.19
Quantization Zones
 Assume we have a voltage signal with
amplitutes Vmin=-20V and Vmax=+20V.
 We want to use L=8 quantization levels.
 Zone width ∆ = (20 - -20)/8 = 5
 The 8 zones are: -20 to -15, -15 to -10,
-10 to -5, -5 to 0, 0 to +5, +5 to +10, +10
to +15, +15 to +20
 The midpoints are: -17.5, -12.5, -7.5,
-2.5, 2.5, 7.5, 12.5, 17.5
4.20
Assigning Codes to Zones
 Each zone is then assigned a binary code.
 The number of bits required to encode the
zones, or the number of bits per sample as it
is commonly referred to, is obtained as
follows:
nb = log2 L
 Given our example, nb = 3
 The 8 zone (or level) codes are therefore:
000, 001, 010, 011, 100, 101, 110, and 111
 Assigning codes to zones:
 000 will refer to zone -20 to -15
 001 to zone -15 to -10, etc.
4.21
Figure 4.26 Quantization and encoding of a sampled signal
4.22
Quantization Error
 When a signal is quantized, we introduce an
error - the coded signal is an approximation of
the actual amplitude value.
 The difference between actual and coded
value (midpoint) is referred to as the
quantization error.
 The more zones, the smaller ∆ which results
in smaller errors.
 BUT, the more zones the more bits required
to encode the samples -> higher bit rate
4.23
Quantization Error and SNQR
 Signals with lower amplitude values will suffer
more from quantization error as the error
range: ∆/2, is fixed for all signal levels.
 Non linear quantization is used to alleviate
this problem. Goal is to keep SNQR fixed for
all sample values.
 Two approaches:
 The quantization levels follow a logarithmic curve.
Smaller ∆’s at lower amplitudes and larger ∆’s at
higher amplitudes.
 Companding: The sample values are compressed
at the sender into logarithmic zones, and then
expanded at the receiver. The zones are fixed in
height.
4.24
Bit rate and bandwidth
requirements of PCM
 The bit rate of a PCM signal can be calculated form
the number of bits per sample x the sampling rate
Bit rate = nb x fs
 The bandwidth required to transmit this signal
depends on the type of line encoding used. Refer to
previous section for discussion and formulas.
 A digitized signal will always need more bandwidth
than the original analog signal. Price we pay for
robustness and other features of digital transmission.
4.25
We want to digitize the human voice. What is the bit rate,
assuming 8 bits per sample?
Solution
The human voice normally contains frequencies from 0
to 4000 Hz. So the sampling rate and bit rate are
calculated as follows:
Example 4.14
4.26
PCM Decoder
 To recover an analog signal from a digitized
signal we follow the following steps:
 We use a hold circuit that holds the amplitude
value of a pulse till the next pulse arrives.
 We pass this signal through a low pass filter with a
cutoff frequency that is equal to the highest
frequency in the pre-sampled signal.
 The higher the value of L, the less distorted a
signal is recovered.
4.27
Figure 4.27 Components of a PCM decoder
4.28
We have a low-pass analog signal of 4 kHz. If we send the
analog signal, we need a channel with a minimum
bandwidth of 4 kHz. If we digitize the signal and send 8
bits per sample, we need a channel with a minimum
bandwidth of 8 × 4 kHz = 32 kHz.
Example 4.15
4.29
Delta Modulation
 This scheme sends only the difference
between pulses, if the pulse at time tn+1 is
higher in amplitude value than the pulse at
time tn, then a single bit, say a “1”, is used to
indicate the positive value.
 If the pulse is lower in value, resulting in a
negative value, a “0” is used.
 This scheme works well for small changes in
signal values between samples.
 If changes in amplitude are large, this will
result in large errors.
4.30
Figure 4.28 The process of delta modulation
4.31
Figure 4.29 Delta modulation components
4.32
Figure 4.30 Delta demodulation components
4.33
Delta PCM (DPCM)
 Instead of using one bit to indicate positive
and negative differences, we can use more
bits -> quantization of the difference.
 Each bit code is used to represent the value
of the difference.
 The more bits the more levels -> the higher
the accuracy.
4.34
4-3 TRANSMISSION MODES4-3 TRANSMISSION MODES
The transmission of binary data across a link can beThe transmission of binary data across a link can be
accomplished in either parallel or serial mode. Inaccomplished in either parallel or serial mode. In
parallel mode, multiple bits are sent with each clockparallel mode, multiple bits are sent with each clock
tick. In serial mode, 1 bit is sent with each clock tick.tick. In serial mode, 1 bit is sent with each clock tick.
While there is only one way to send parallel data, thereWhile there is only one way to send parallel data, there
are three subclasses of serial transmission:are three subclasses of serial transmission:
asynchronous, synchronous, and isochronous.asynchronous, synchronous, and isochronous.
 Parallel Transmission
 Serial Transmission
Topics discussed in this section:Topics discussed in this section:
4.35
Figure 4.31 Data transmission and modes
4.36
Figure 4.32 Parallel transmission
4.37
Figure 4.33 Serial transmission
4.38
In asynchronous transmission, we send
1 start bit (0) at the beginning and 1 or
more stop bits (1s) at the end of each
byte. There may be a gap between
each byte.
Note
4.39
Asynchronous here means
“asynchronous at the byte level,”
but the bits are still synchronized;
their durations are the same.
Note
4.40
Figure 4.34 Asynchronous transmission
4.41
In synchronous transmission, we send
bits one after another without start or
stop bits or gaps. It is the responsibility
of the receiver to group the bits. The bits
are usually sent as bytes and many
bytes are grouped in a frame. A frame is
identified with a start and an end byte.
Note
4.42
Figure 4.35 Synchronous transmission
4.43
Isochronous
 In isochronous transmission we cannot
have uneven gaps between frames.
 Transmission of bits is fixed with equal
gaps.

More Related Content

What's hot

Data Communication And Networking - DATA RATE LIMITS
Data Communication And Networking - DATA RATE LIMITSData Communication And Networking - DATA RATE LIMITS
Data Communication And Networking - DATA RATE LIMITS
Avijeet Negel
 
Analog Transmissions
Analog TransmissionsAnalog Transmissions
Analog Transmissions
TechiNerd
 

What's hot (20)

Ch3 3 v1
Ch3 3 v1Ch3 3 v1
Ch3 3 v1
 
Asynchronous Transfer Mode ATM
Asynchronous Transfer Mode  ATMAsynchronous Transfer Mode  ATM
Asynchronous Transfer Mode ATM
 
Error detection correction (CRC)
Error detection correction  (CRC)Error detection correction  (CRC)
Error detection correction (CRC)
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
neural networksNnf
neural networksNnfneural networksNnf
neural networksNnf
 
Basics of signals data communication
Basics of signals data communicationBasics of signals data communication
Basics of signals data communication
 
Sonet (synchronous optical networking )
Sonet (synchronous optical networking )Sonet (synchronous optical networking )
Sonet (synchronous optical networking )
 
YUV, Y CB CR and Subsampling
YUV, Y CB CR and SubsamplingYUV, Y CB CR and Subsampling
YUV, Y CB CR and Subsampling
 
Transmission impairments
Transmission impairmentsTransmission impairments
Transmission impairments
 
4. block coding
4. block coding 4. block coding
4. block coding
 
Data Communication And Networking - DATA RATE LIMITS
Data Communication And Networking - DATA RATE LIMITSData Communication And Networking - DATA RATE LIMITS
Data Communication And Networking - DATA RATE LIMITS
 
MPEG-1 Part 2 Video Encoding
MPEG-1 Part 2 Video EncodingMPEG-1 Part 2 Video Encoding
MPEG-1 Part 2 Video Encoding
 
Data encoding and modulation
Data encoding and modulationData encoding and modulation
Data encoding and modulation
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Analog Transmissions
Analog TransmissionsAnalog Transmissions
Analog Transmissions
 
Lecture 5
Lecture 5Lecture 5
Lecture 5
 
Ch2 network models
Ch2 network modelsCh2 network models
Ch2 network models
 
Cs8591 Computer Networks
Cs8591 Computer NetworksCs8591 Computer Networks
Cs8591 Computer Networks
 
Image restoration
Image restorationImage restoration
Image restoration
 
Huffman codes
Huffman codesHuffman codes
Huffman codes
 

Viewers also liked

Chap4 d t-d conversion
Chap4 d t-d conversionChap4 d t-d conversion
Chap4 d t-d conversion
arslan_akbar90
 
Copy of mcse 514 communication_system
Copy of mcse 514 communication_systemCopy of mcse 514 communication_system
Copy of mcse 514 communication_system
Selim Reza
 
Naperville north tech workshop day 1
Naperville north tech workshop day 1Naperville north tech workshop day 1
Naperville north tech workshop day 1
joeewilson
 

Viewers also liked (20)

Chap4 d t-d conversion
Chap4 d t-d conversionChap4 d t-d conversion
Chap4 d t-d conversion
 
Copy of mcse 514 communication_system
Copy of mcse 514 communication_systemCopy of mcse 514 communication_system
Copy of mcse 514 communication_system
 
Usb
UsbUsb
Usb
 
Ec305.13 buses mgl
Ec305.13 buses mglEc305.13 buses mgl
Ec305.13 buses mgl
 
Profibus vs profinet
Profibus vs profinetProfibus vs profinet
Profibus vs profinet
 
Ch03
Ch03Ch03
Ch03
 
Unit 4
Unit 4Unit 4
Unit 4
 
Ch3 1 v1
Ch3 1 v1Ch3 1 v1
Ch3 1 v1
 
Investing in the Front End of Compliance
Investing in the Front End of ComplianceInvesting in the Front End of Compliance
Investing in the Front End of Compliance
 
Ch3 5 v1
Ch3 5 v1Ch3 5 v1
Ch3 5 v1
 
Food Safety Webcast: Allergen Management
Food Safety Webcast: Allergen ManagementFood Safety Webcast: Allergen Management
Food Safety Webcast: Allergen Management
 
Construyendo la reputacion corporativa desde el principio
Construyendo la reputacion corporativa desde el principioConstruyendo la reputacion corporativa desde el principio
Construyendo la reputacion corporativa desde el principio
 
CMU Portugal inRes Initiative Presentation April 2014
CMU Portugal inRes Initiative Presentation April 2014CMU Portugal inRes Initiative Presentation April 2014
CMU Portugal inRes Initiative Presentation April 2014
 
Why AWS's Redshift is a Game Changer
Why AWS's Redshift is a Game ChangerWhy AWS's Redshift is a Game Changer
Why AWS's Redshift is a Game Changer
 
Presentation encuesta
Presentation encuesta Presentation encuesta
Presentation encuesta
 
Research guides tour (February 2016)
Research guides tour (February 2016)Research guides tour (February 2016)
Research guides tour (February 2016)
 
Chapter01
Chapter01Chapter01
Chapter01
 
10 Things About the Library Website
10 Things About the Library Website10 Things About the Library Website
10 Things About the Library Website
 
Ch4 1 v1
Ch4 1 v1Ch4 1 v1
Ch4 1 v1
 
Naperville north tech workshop day 1
Naperville north tech workshop day 1Naperville north tech workshop day 1
Naperville north tech workshop day 1
 

Similar to Ch4 2 v1

Digital Transmission
Digital TransmissionDigital Transmission
Digital Transmission
anuragyadav94
 
Ch04
Ch04Ch04
Ch04
H K
 
Data Communication and Networking
Data Communication and NetworkingData Communication and Networking
Data Communication and Networking
Edlynne Ogena
 
Digital Transmission
Digital TransmissionDigital Transmission
Digital Transmission
TechiNerd
 
Lecture7 encodingmodulation
Lecture7 encodingmodulationLecture7 encodingmodulation
Lecture7 encodingmodulation
H K
 

Similar to Ch4 2 v1 (20)

Digital Transmission
Digital TransmissionDigital Transmission
Digital Transmission
 
ch4_2_v1.ppt
ch4_2_v1.pptch4_2_v1.ppt
ch4_2_v1.ppt
 
PCM and delta modulation.ppt
PCM and delta modulation.pptPCM and delta modulation.ppt
PCM and delta modulation.ppt
 
Ch4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kuraleCh4 1 Data communication and networking by neha g. kurale
Ch4 1 Data communication and networking by neha g. kurale
 
Ch04
Ch04Ch04
Ch04
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Chapter 4 digital transmission computer_network
Chapter 4 digital transmission  computer_networkChapter 4 digital transmission  computer_network
Chapter 4 digital transmission computer_network
 
Data Communication and Networking
Data Communication and NetworkingData Communication and Networking
Data Communication and Networking
 
04 Digital Transmission
04 Digital Transmission04 Digital Transmission
04 Digital Transmission
 
Digital Transmission
Digital TransmissionDigital Transmission
Digital Transmission
 
Ch04
Ch04Ch04
Ch04
 
Pulse code mod
Pulse code modPulse code mod
Pulse code mod
 
Lecture 3.ppt
Lecture 3.pptLecture 3.ppt
Lecture 3.ppt
 
Ch04
Ch04Ch04
Ch04
 
Line_Coding.ppt for engineering students for ug and pg
Line_Coding.ppt for engineering students for ug and pgLine_Coding.ppt for engineering students for ug and pg
Line_Coding.ppt for engineering students for ug and pg
 
TeleCom Lecture 07.ppt
TeleCom Lecture 07.pptTeleCom Lecture 07.ppt
TeleCom Lecture 07.ppt
 
LECTURE-4 (Data Communication) ~www.fida.com.bd
LECTURE-4 (Data Communication) ~www.fida.com.bdLECTURE-4 (Data Communication) ~www.fida.com.bd
LECTURE-4 (Data Communication) ~www.fida.com.bd
 
digital layer
digital layerdigital layer
digital layer
 
1 PCM & Encoding
1  PCM & Encoding1  PCM & Encoding
1 PCM & Encoding
 
Lecture7 encodingmodulation
Lecture7 encodingmodulationLecture7 encodingmodulation
Lecture7 encodingmodulation
 

More from bhagavanprasad

More from bhagavanprasad (20)

Chapter03
Chapter03Chapter03
Chapter03
 
Chapter03
Chapter03Chapter03
Chapter03
 
Chapter02
Chapter02Chapter02
Chapter02
 
Chapter01
Chapter01Chapter01
Chapter01
 
Chapter08
Chapter08Chapter08
Chapter08
 
Chapter07
Chapter07Chapter07
Chapter07
 
Chapter06
Chapter06Chapter06
Chapter06
 
Chapter05
Chapter05 Chapter05
Chapter05
 
Chapter04
Chapter04Chapter04
Chapter04
 
Ch10 2 v1
Ch10 2 v1Ch10 2 v1
Ch10 2 v1
 
Ch10 1 v1
Ch10 1 v1Ch10 1 v1
Ch10 1 v1
 
Ch7 1 v1
Ch7 1 v1Ch7 1 v1
Ch7 1 v1
 
Ch6 2 v1
Ch6 2 v1Ch6 2 v1
Ch6 2 v1
 
Ch6 1 v1
Ch6 1 v1Ch6 1 v1
Ch6 1 v1
 
Ch5 2 v1
Ch5 2 v1Ch5 2 v1
Ch5 2 v1
 
Ch5 1 v1
Ch5 1 v1Ch5 1 v1
Ch5 1 v1
 
Ch3 4 v1
Ch3 4 v1Ch3 4 v1
Ch3 4 v1
 
Ch3 2 v1
Ch3 2 v1Ch3 2 v1
Ch3 2 v1
 
Ch3 1 v1
Ch3 1 v1Ch3 1 v1
Ch3 1 v1
 
Ch2 v1
Ch2 v1Ch2 v1
Ch2 v1
 

Recently uploaded

VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Recently uploaded (20)

UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 

Ch4 2 v1

  • 1. 4.1 Chapter 4 Digital Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
  • 2. 4.2 4-2 ANALOG-TO-DIGITAL CONVERSION4-2 ANALOG-TO-DIGITAL CONVERSION A digital signal is superior to an analog signal becauseA digital signal is superior to an analog signal because it is more robust to noise and can easily be recovered,it is more robust to noise and can easily be recovered, corrected and amplified. For this reason, the tendencycorrected and amplified. For this reason, the tendency today is to change an analog signal to digital data. Intoday is to change an analog signal to digital data. In this section we describe two techniques,this section we describe two techniques, pulse codepulse code modulationmodulation andand delta modulationdelta modulation..  Pulse Code Modulation (PCM)  Delta Modulation (DM) Topics discussed in this section:Topics discussed in this section:
  • 3. 4.3 PCM  PCM consists of three steps to digitize an analog signal: 1. Sampling 2. Quantization 3. Binary encoding  Before we sample, we have to filter the signal to limit the maximum frequency of the signal as it affects the sampling rate.  Filtering should ensure that we do not distort the signal, ie remove high frequency components that affect the signal shape.
  • 4. 4.4 Figure 4.21 Components of PCM encoder
  • 5. 4.5 Sampling  Analog signal is sampled every TS secs.  Ts is referred to as the sampling interval.  fs = 1/Ts is called the sampling rate or sampling frequency.  There are 3 sampling methods:  Ideal - an impulse at each sampling instant  Natural - a pulse of short width with varying amplitude  Flattop - sample and hold, like natural but with single amplitude value  The process is referred to as pulse amplitude modulation PAM and the outcome is a signal with analog (non integer) values
  • 6. 4.6 Figure 4.22 Three different sampling methods for PCM
  • 7. 4.7 According to the Nyquist theorem, the sampling rate must be at least 2 times the highest frequency contained in the signal. Note
  • 8. 4.8 Figure 4.23 Nyquist sampling rate for low-pass and bandpass signals
  • 9. 4.9 For an intuitive example of the Nyquist theorem, let us sample a simple sine wave at three sampling rates: fs = 4f (2 times the Nyquist rate), fs = 2f (Nyquist rate), and fs = f (one-half the Nyquist rate). Figure 4.24 shows the sampling and the subsequent recovery of the signal. It can be seen that sampling at the Nyquist rate can create a good approximation of the original sine wave (part a). Oversampling in part b can also create the same approximation, but it is redundant and unnecessary. Sampling below the Nyquist rate (part c) does not produce a signal that looks like the original sine wave. Example 4.6
  • 10. 4.10 Figure 4.24 Recovery of a sampled sine wave for different sampling rates
  • 11. 4.11 Consider the revolution of a hand of a clock. The second hand of a clock has a period of 60 s. According to the Nyquist theorem, we need to sample the hand every 30 s (Ts = T or fs = 2f ). In Figure 4.25a, the sample points, in order, are 12, 6, 12, 6, 12, and 6. The receiver of the samples cannot tell if the clock is moving forward or backward. In part b, we sample at double the Nyquist rate (every 15 s). The sample points are 12, 3, 6, 9, and 12. The clock is moving forward. In part c, we sample below the Nyquist rate (Ts = T or fs = f ). The sample points are 12, 9, 6, 3, and 12. Although the clock is moving forward, the receiver thinks that the clock is moving backward. Example 4.7
  • 12. 4.12 Figure 4.25 Sampling of a clock with only one hand
  • 13. 4.13 An example related to Example 4.7 is the seemingly backward rotation of the wheels of a forward-moving car in a movie. This can be explained by under-sampling. A movie is filmed at 24 frames per second. If a wheel is rotating more than 12 times per second, the under- sampling creates the impression of a backward rotation. Example 4.8
  • 14. 4.14 Telephone companies digitize voice by assuming a maximum frequency of 4000 Hz. The sampling rate therefore is 8000 samples per second. Example 4.9
  • 15. 4.15 A complex low-pass signal has a bandwidth of 200 kHz. What is the minimum sampling rate for this signal? Solution The bandwidth of a low-pass signal is between 0 and f, where f is the maximum frequency in the signal. Therefore, we can sample this signal at 2 times the highest frequency (200 kHz). The sampling rate is therefore 400,000 samples per second. Example 4.10
  • 16. 4.16 A complex bandpass signal has a bandwidth of 200 kHz. What is the minimum sampling rate for this signal? Solution We cannot find the minimum sampling rate in this case because we do not know where the bandwidth starts or ends. We do not know the maximum frequency in the signal. Example 4.11
  • 17. 4.17 Quantization  Sampling results in a series of pulses of varying amplitude values ranging between two limits: a min and a max.  The amplitude values are infinite between the two limits.  We need to map the infinite amplitude values onto a finite set of known values.  This is achieved by dividing the distance between min and max into L zones, each of height ∆. ∆ = (max - min)/L
  • 18. 4.18 Quantization Levels  The midpoint of each zone is assigned a value from 0 to L-1 (resulting in L values)  Each sample falling in a zone is then approximated to the value of the midpoint.
  • 19. 4.19 Quantization Zones  Assume we have a voltage signal with amplitutes Vmin=-20V and Vmax=+20V.  We want to use L=8 quantization levels.  Zone width ∆ = (20 - -20)/8 = 5  The 8 zones are: -20 to -15, -15 to -10, -10 to -5, -5 to 0, 0 to +5, +5 to +10, +10 to +15, +15 to +20  The midpoints are: -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5, 17.5
  • 20. 4.20 Assigning Codes to Zones  Each zone is then assigned a binary code.  The number of bits required to encode the zones, or the number of bits per sample as it is commonly referred to, is obtained as follows: nb = log2 L  Given our example, nb = 3  The 8 zone (or level) codes are therefore: 000, 001, 010, 011, 100, 101, 110, and 111  Assigning codes to zones:  000 will refer to zone -20 to -15  001 to zone -15 to -10, etc.
  • 21. 4.21 Figure 4.26 Quantization and encoding of a sampled signal
  • 22. 4.22 Quantization Error  When a signal is quantized, we introduce an error - the coded signal is an approximation of the actual amplitude value.  The difference between actual and coded value (midpoint) is referred to as the quantization error.  The more zones, the smaller ∆ which results in smaller errors.  BUT, the more zones the more bits required to encode the samples -> higher bit rate
  • 23. 4.23 Quantization Error and SNQR  Signals with lower amplitude values will suffer more from quantization error as the error range: ∆/2, is fixed for all signal levels.  Non linear quantization is used to alleviate this problem. Goal is to keep SNQR fixed for all sample values.  Two approaches:  The quantization levels follow a logarithmic curve. Smaller ∆’s at lower amplitudes and larger ∆’s at higher amplitudes.  Companding: The sample values are compressed at the sender into logarithmic zones, and then expanded at the receiver. The zones are fixed in height.
  • 24. 4.24 Bit rate and bandwidth requirements of PCM  The bit rate of a PCM signal can be calculated form the number of bits per sample x the sampling rate Bit rate = nb x fs  The bandwidth required to transmit this signal depends on the type of line encoding used. Refer to previous section for discussion and formulas.  A digitized signal will always need more bandwidth than the original analog signal. Price we pay for robustness and other features of digital transmission.
  • 25. 4.25 We want to digitize the human voice. What is the bit rate, assuming 8 bits per sample? Solution The human voice normally contains frequencies from 0 to 4000 Hz. So the sampling rate and bit rate are calculated as follows: Example 4.14
  • 26. 4.26 PCM Decoder  To recover an analog signal from a digitized signal we follow the following steps:  We use a hold circuit that holds the amplitude value of a pulse till the next pulse arrives.  We pass this signal through a low pass filter with a cutoff frequency that is equal to the highest frequency in the pre-sampled signal.  The higher the value of L, the less distorted a signal is recovered.
  • 27. 4.27 Figure 4.27 Components of a PCM decoder
  • 28. 4.28 We have a low-pass analog signal of 4 kHz. If we send the analog signal, we need a channel with a minimum bandwidth of 4 kHz. If we digitize the signal and send 8 bits per sample, we need a channel with a minimum bandwidth of 8 × 4 kHz = 32 kHz. Example 4.15
  • 29. 4.29 Delta Modulation  This scheme sends only the difference between pulses, if the pulse at time tn+1 is higher in amplitude value than the pulse at time tn, then a single bit, say a “1”, is used to indicate the positive value.  If the pulse is lower in value, resulting in a negative value, a “0” is used.  This scheme works well for small changes in signal values between samples.  If changes in amplitude are large, this will result in large errors.
  • 30. 4.30 Figure 4.28 The process of delta modulation
  • 31. 4.31 Figure 4.29 Delta modulation components
  • 32. 4.32 Figure 4.30 Delta demodulation components
  • 33. 4.33 Delta PCM (DPCM)  Instead of using one bit to indicate positive and negative differences, we can use more bits -> quantization of the difference.  Each bit code is used to represent the value of the difference.  The more bits the more levels -> the higher the accuracy.
  • 34. 4.34 4-3 TRANSMISSION MODES4-3 TRANSMISSION MODES The transmission of binary data across a link can beThe transmission of binary data across a link can be accomplished in either parallel or serial mode. Inaccomplished in either parallel or serial mode. In parallel mode, multiple bits are sent with each clockparallel mode, multiple bits are sent with each clock tick. In serial mode, 1 bit is sent with each clock tick.tick. In serial mode, 1 bit is sent with each clock tick. While there is only one way to send parallel data, thereWhile there is only one way to send parallel data, there are three subclasses of serial transmission:are three subclasses of serial transmission: asynchronous, synchronous, and isochronous.asynchronous, synchronous, and isochronous.  Parallel Transmission  Serial Transmission Topics discussed in this section:Topics discussed in this section:
  • 35. 4.35 Figure 4.31 Data transmission and modes
  • 37. 4.37 Figure 4.33 Serial transmission
  • 38. 4.38 In asynchronous transmission, we send 1 start bit (0) at the beginning and 1 or more stop bits (1s) at the end of each byte. There may be a gap between each byte. Note
  • 39. 4.39 Asynchronous here means “asynchronous at the byte level,” but the bits are still synchronized; their durations are the same. Note
  • 41. 4.41 In synchronous transmission, we send bits one after another without start or stop bits or gaps. It is the responsibility of the receiver to group the bits. The bits are usually sent as bytes and many bytes are grouped in a frame. A frame is identified with a start and an end byte. Note
  • 43. 4.43 Isochronous  In isochronous transmission we cannot have uneven gaps between frames.  Transmission of bits is fixed with equal gaps.