SlideShare a Scribd company logo
1 of 44
Download to read offline
The University of Tennessee, Knoxville




Backscattering Spectrometry
                                                        Part 1




                                          Professor C.J.McHargue

                                                Younes Sina
Backscattering spectrometry using ion beams with energies in
the megaelectronvolt range has been used extensively for
accurate determination of stoichiometry , elemental areal
density ,and impurity distributions in thin films.
Kinematic factor




              K E /E
                            i
                   i        1   0




                                                                     2
           (M 2  M 2sin 2 )  M cos       1/ 2
                                      
                        2       1                                1
     K
          
                      M M             
                                         1         2




                                    Z2
                                     M2




         E0    M1      Z1                 M1   Z1       E0 -ΔE
Areal density

                                              Integrated peak count
Areal density, Nt, as atoms per unit area



                             Ai cos i
        Nt                
                      i
                            Qi ( E ,  )

                                                               Cross section
          Incident ions              Detector solid angle
Rutherford scattering cross section



                                      e2≈1.44x10-13


                                                                                  2

              Z Z e2  4[(M 2  M 1 sin 2 )  M 2 cos ]
                             2
                                   2                                1/ 2
 ( E , )          
                  1   2
                             2
 R
              4E         M 2sin 4 (M 2  M 1 sin 2 )
                                                                           1/ 2

                     
                                              2
                                          2




                                       Z2
                                      M2




         E0    M1     Z1                     M1       Z1   E0 -ΔE
The average stoichiometric ratio for the compound film AmBn

                                                           nABN 0
                                                         
                                                    AB
                                             N      B
                                                            MAB
             n NB AB A( E , )
                  .
             m NA AA B ( E , )
                                            Cross section ratio
                      Ratio of measured
                    integrated peak count

           mABN 0
         
    AB
N   A
            MAB
Physical film thickness     AmBn


                          ( Nt ) A       ( Nt ) B
                 t           AB
                                             AB
                          N   A          N   B




           mABN 0                                         nABN 0
                                                        
    AB                                              AB
N   A
            MAB                              N      B
                                                            MAB


                MAB  mMA  nMB
FUNDAMENTALS




              Energy
              separation
                                           dK 
                                 E1  E 0      EM 2
                                           dM 2 


                                  E         Minimum energy separation that can be
                   M 2                     experimentally resolved
                                   dK 
                               E 0      
                                   dM 2 
mass resolution for fixed θ:
Elastic scattering cross section




                                                      Fraction of incident particles
   Average differential cross section
                                                      scattered to the detector



                     1  dQ( E ) 1
        ( , E )   (         )
                     Nt  Q       ( )

                                                               Detector solid angle

               Number of target atoms per unit area
Rutherford cross section



                                                 Z2
                                                 M2




                              E0   M1   Z1              M1   Z1




                                             2
                       Z Z  
  ( E , )  0.02073 
                                                          M 1 
                             sin
                                   1    2        4
   R                                                     2    
                                                       2   M 2 
                       4E  
        Unit: barn/ sr
        1 b(barn)=10-24 cm2
Non-Rutherford cross section

                                                             Low energy



           L’Ecuyer Eq. for Low energy ion

                                                   4/3
                        1 0.049Z 1Z 2
                    
                    R
                                        E   CM



                                                         Center-of-mass kinetic energy (keV)
   Wenzel and Whaling for light ion with
   MeV energy                                                      ECM≈Elab

                                             7/2
               1 0.0326Z 1Z 2
           
           R
                               E   CM
Laboratory projectile kinetic energy
                                                                                     Non-Rutherford
                                               For 1H:

                                                          (0.12  0.01) Z 2  (0.5  0.1)
                                                  NR
                                              E
  Laboratory projectile kinetic energy(MeV)



                                                  Lab



                                              For 4He:


                                                          (0.25  0.01) Z 2  (0.4  0.2)
                                                  NR
                                              E   Lab




                                              For 7Li:


                                                           (0.330  0.005)Z 2  (1.4  0.1)
                                                    NR
                                               E    Lab
Experimental geometry




  θ1

  θ2




  π   1  2          cosθ2= cos (π-θ).cosθ1
Experimental geometry



For IBM geometry


         x                           x
 din                       dout 
       cos  1                     cos  2


For Cornel



        x                             x
din                    dout 
      cos  1                  cos  1, cos  2
Effects of energy loss of ions in solids


                                                Atomic density
        dE
            N                                            Stopping cross section
        dx
stopping power

       For a compound of AmBn:
       εAB =mεA+nεB

               AB
     dE 
                  N                 N A A  N B B
                         AB       AB       AB         AB


     dx 
                                          Atomic density
         Molecular density
Example:                      Calculate the stopping cross section and stopping power of
                              2 MeV 4He+ in Al2O3 using Bragg rule

 From appendix 3:                 εAl= 44x10-15 eVcm2                               εO= 35x10-15 eVcm2
 For a compound of AmBn:
 εAB =mεA+nεB
 εAl2O3=(2x44+3x35)x10-15 =193x10-15eVcm2
                   g           23 molecules
           N 0 4 cm 3  6 10      mol                22 Al2O3molecules
 N  M                                      2.35 10
  Al 2 O 3


                          102
                                g                              cm 3
                              mol
                   Al 2 O 3
 dE                                                                                                        eV
                                                             2.35 10 22 193 10 15  46
                                      Al 2 O 3       Al 2 O 3
                                  N                                                                               0
 dx                                                                                                         A

                                                     Al atoms                                                     O atoms
                                                                                    3  2.35 10 22  7.11022
                                                                        Al 2 O 3
               2  2.35 1022  4.7 1022
    Al 2O 3
N   Al
                                                       cm 3
                                                                    N   O
                                                                                                                    cm 3
Example:

               Al 2 O 3
 dE                                                                                       eV
                        N                             2.35 10 193 10   15
                                                                                      46
                               Al 2 O 3       Al 2 O 3             22
                                                                                                0
 dx                                                                                       A

                                          15                           15            eV
  4.7 10  44 10 22
                                                 7.110  35 10
                                                              22
                                                                               46 10      8

                                                                                       cm
        eV
  46      0
           A

                                 x
                      E   (dE / dx)dx
                                 0
Depth scale                    x
                        E   (dE / dx)dx
                               0                         Energy loss factor

                          E  S  x

             dE              dE       1 
    S    K         1
                                              
              dx in cos  1  dx out cos  2 


   E   N .x                                 Stopping cross section factor



                                                         1 
                             K in   1
                                                  out         
                                       cos  1         cos  2 

                                                       1                  1 
                                          K A  in           out, A
                                    AB             AB             AB
    E A   A N x                                                               
              AB   AB
                                    A
                                                     cos  1            cos  2 
Depth resolution
                                       Calculate the depth- scattered ion energy differences
    Example
                                       for 2 MeV 4He+ in Al2O3
                                       θ1=0°and θ2=10°
                                       K factor for4He on Al=0.5525
                                       K factor for4He on O=03625

                                                          0.5525  2  1.105 MeV
                                                    Al

     E1  KE0                               E   1

                                                          0.3625  2  0.725 MeV
                                                    O
                                            E       1
Using the surface-energy approximation                                               ε at E0,surface
                                                             εAB =mεA+nεB

                   2   in  3   in  2  44 1015  3  35 1015  193 1015 eVcm 2
        Al 2 O 3                  Al            O
        in
                                                                                    ε at E1

 out, Al  2   out, Al  3   out, Al  2  511015  3  46 1015  240 1015 eVcm 2
      Al 2 O 3               Al                 O




               2   out,O  3   out,O  2  54 1015  3  48 1015  252 1015 eVcm 2
    Al 2 O 3            Al                  O
    out,O
Example               We can now calculate the stopping cross section factors

                                                                                        1 
               [ ]
                                                                    1
                                                K Al  in                 out, Al
                                Al 2 O 3                 Al 2 O 3             Al 2 O 3
                                                                                               
                                                                  cos  1              cos  2 
                          0
                                Al
                                                

[ ]
       Al 2O 3
   0                  0.5525 193 1015  240 1015 1.015  350 1015 eVcm 2
       Al


                                                                                  1 
               [ ]
                                                              1
                                           K O  in                 out,O
                              Al 2 O 3             Al 2 O 3             Al 2 O 3
                                                                                         
                                                            cos  1              cos  2 
                      0
                          O
                                           

 [ ]
           Al 2O 3
       0              0.3625 193 1015  252 1015 1.015  326 1015 eVcm 2
           O


       Using the molecular density N Al2O3=2.35x1022 molecules/cm3 we find:


   E Al                  0          Al 2 O 3

                                         Al         N
                                                        Al 2 O 3     
                                                                   x
                                                                     
                                                                           eV 
                                                                      82.3 0   x
                                                                              
                                                                            A 
    EO                   0          Al 2 O 3

                                         O          N
                                                         Al 2 O 3     
                                                                    x
                                                                      
                                                                            eV 
                                                                       76.6 0   x
                                                                               
                                                                             A 
Surface spectrum height
                                                               Energy width per channel

                         ( E )QE
                  H 0  [ ] cos  1
                         0
                                                       stopping cross section factors

Surface height of the two elemental peaks in the compound AmBn are given by


                   A( E 0)QmE
               
H       A, 0
                       0      AB

                                 A
                                       cos  1

                      B ( E 0)QnE
                  
    H      B ,0
                       0      AB

                                 B
                                      cos  2
Mean energy in thin films                                     Surface Energy Approximation


                  Ai cos i                                       SEA
    Nt                                          ( Nt )
           i
                 Qi ( E ,  )        E  E0
                                                                  i



                        r

   E                        ( E ) ( Nt )
               SEA              i                   SEA
               in                       0           i
                       i 1



                                                                       E 0  E in
                                                                                 SEA
                                                            (1)
   Mean energy of the ions in the film ,Ē(1)            E
                                                                               2



                                       E2          E1                    E0
Mean energy in thin films

For the second iteration, the values of (Nt)i(1) should
                                              Ai cos i
 be calculated using                N ti    Qi ( E , )          with

   E= Ē(1) then ∆Ei(1) and Ē(2)
                 r

E                   
        (1)                i                       (1)
        in
                               E   (1)
                                         ( Nt )    i
                i 1

                                                                                  E
                                                                                       (1)
                                                                  ( 2)
                                                             E            E0         in
                                                                                   2


                                             E2              E1            E0
Example               Calculate surface height for 2 MeV 4He+ on Al2O3:
                      Ω=10-3sr
                      E=1 keV/channel
                      Q=6.24x1013 incident particles (10μC charge)
                      θ1=0°, θ2=10° (scattering angle=170°)
From appendix 6: σRAl=0.2128x10-24 & σRO=0.0741x10-24
From previous example:

[ ]                                            [ ]
        Al 2O 3                                        Al 2O 3
  0                 350 1015 eVcm 2             0              326 1015 eVcm 2
        Al                                             O


               A( E 0)QmE
H A, 0 
                    0AB

                        A
                                cos  1
                   AlQ 2 E            0.2128 10 24 10 3  6.24 10 3  2 103
                                                                                    76cnt
H     Al , 0
                    0   Al 2 O 3

                           Al
                                                        350 10   15



                   OQ3E               0.074110 24 10 3  6.24 10 3  3 103
                                                                                   43cnt
H     O,0
                    0   Al 2 O 3

                           O
                                                       326 10   15
For not too thick film



E=Ē(f)
                                          2
                           E( f ) 
                 ( Nt )           ( Nt )
                          (f)                 SEA


                           E0 
                          i                   i

                                  



                                E2   E1           E0
Sample analysis

Typical experimental operating conditions and parameter ranges used during
acquisition of backscattering spectra

 Experimental Parameter                     Units            Values

 Analysis ion energy                        MeV              1.0-5.0

 Beam cross section                         mm x mm          1.5x1.5

 Beam current                               nA               10-200

 Integrated charge                          μC               5-100

 Detector energy resolution for 4He ions    keV              15


 Data acquisition time                      min              5-10

 Vacuum                                     Torr             2x10-6

 Pump-down time                             min              15
Thin-film analysis
The peak integration method
                                    Integrated peak counts
                                    That can be accurately determined
                                    from the spectrum
                                                                           Correction factor


                        Ai cos  1 CBi e  DTR                               Dead time ratio
     ( Nt )i 
                                          
                        Q'  R ( E ,  )( ) i
                                              i

                                          R
 Integrated charge deposited
 on the sample during the run
                                                     Non Rutherford correction factor


                              solid angle subtended by
                              the detector at the target
Example

an application of the peak integration method of analysis of the two-element
thin film



E0=3776 keV
θ=170˚
θ1=0˚
θ2=10˚
Ω=0.78 msr
CBi=(0.99±0.03)
E=(3.742±0.005)keV/channel
É=(8±3) keV        E1= nE+ É
KFe=(170˚)=0.7520      Energy intercept
KGd=(170˚)=0.90390
Example
                     From appendix 6

                            3.521                                    cm 2
         ( E0 ,170 )            10  24          0.2469 10 24
    Fe
    R                            2
                            3.776                                     sr

                                21.53                 cm 2
           ( E0 ,170 )             24
                                 10  1.510 10  24
     Gd              
        R                      2
                          3.776                        sr
                                                         4/3

              From               1 0.049Z 1Z 2
                            R
                                                E   CM




    
                                       4/3
                  (0.049)(2)(26)                           Center-of-mass energy
            1                              0.998
    R  Fe            3776

     
                                        4/3
                  (0.049)(2)(64)
            1                              0.993
     R Gd            3776
Example

         From Trim 1985:



  (3776 keV )  51.4 10
    Fe                             15
                                         eVcm   2



 (3676 keV )  52.2 10
    Fe                            15
                                        eVcm    2




   Gd
          (3776 keV )  86.3 10   15
                                         eVcm   2



   Gd
         (3676 keV )  87.5 10   15
                                        eVcm   2
Example
 Q '  20.01 C
 nB  (757  1)
 nB '  (660  1)
              (1020  20) cts
      AB
 H    A, 0

 DTR  1.008
nA  (910  1)
nA'  (812  1)
              (640  20) cts
     AB
 H   B ,0

Integrated counts in spectral regions of interest (initial
and final channel numbers are listed:
Channels (789-918)=103978 cts; (920-960)=49 cts
Channels (640-767)=64957 cts; (768-788)=79 cts
Example

    From: E1= nE+ É and Ki=Ei1/E0 :

           nB E  E '  (757  1)(3.742  0.005)  (8  3)  (2841  6)keV
      B
  E  1



              nAE  E '  (910  1)(3.742  0.005)  (8  3)  (3413  7)keV
         A
   E  1



        E1  (2841  6)  0.752  0.002
         B                                                          Energy intercept
   KB 
        E0   (3776  5)


      E1  (3413  7)  0.904  0.002
       A
 KA 
      E0   (3776  5)

    Therefore, element A and B are Gd and Fe, respectively. Note that element A
    could also be Tb, because KTb=0.9048
Example

Calculation of elemental areal densities,(Nt)
Values of Ai are calculated from the integrated counts in the
regions of interests




                    79
   AFe     64957     (128)  (64475  261)cts
                    21
                     49
   AGd     103978     (130)  (103823  323)cts
                     41
      In this case, the background correction is almost negligible
Example
  The areal densities in the surface-energy approximation,(Nt)SEA i
  using E=E0                             1
                            Ai cos  1 CBi e  DTR
               ( Nt )i 
                                                      
                            Q'                 
                                           ( E ,  )(
                                       i
                                                        )i
                                       R
                                                                    R
                        Ai             DTR      CBi                             0.998
                                                                    e
      SEA        (64475  261)(1.008)(0.99  0.03)(1.602 1019 ) atoms
( Nt )                    6          3              24
         Fe     (20.0110 )(0.78 10 )(0.2469 10 )(0.998)              cm 2
                   Q’                  Ω                  σ

                              (2.68  0.08) 10         18   atoms
                                                                         cm 2

                         SEA
                 ( Nt )         (0.709  0.021) 1018    atoms
                         Gd                                       cm 2
Example

            The mean energy of the 4He ion in the film, Ē(1), is calculated (to first order)
            using the following equation


                                   r

                  E                   
                       SEA                   i                     SEA
                       in
                                                 ( E 0) ( Nt )
                                                                   i
                                  i 1



      For the first-order energy loss, ΔESEAin ,of the ions in the film:



 E                                                                   
                                                             SEA                                SEA
                                                                  
             SEA            Fe                                             Gd
             in
                                 ( E 0) ( Nt )                                  ( E 0) ( Nt )
                                                             Fe                             Gd

  (51.4 10 15 )(2.68 1018 )  (86.3 10 15 )(0.709 1018 )                                       eV

  199             keV


             E 0  E in
                            SEA
      (1)                                              (1)                 199
  E                                               E          3776            3676    keV
                     2                                                      2
Example

          From the following Eq. we can calculate the areal densities:



                                               2
                            E      (f)      
                                            (N )
                    (f )                                 S EA
          ( Nt )    i
                             E0                        i

                                            

                               2
                3676 
      ( Nt )         (N )
            (1)                        SEA
                                              2.54 1018    atoms / cm 2
                3776 
            Fe                         Fe




                  (1)
      ( Nt )             0.672 1018               atoms / cm 2
                  Gd
Example           Results of an additional iteration of this procedure using the
                  following equations we have: (Note that Fe and Gd are
                  evaluated at Ē(1) )

                                                                                   E
                         r                                                                  (1)

  E                         
           (1)                     i                      (1)       ( 2)
           in
                                       E   (1)
                                                 ( Nt )   i
                                                                E           E0
                                                                                        2
                                                                                            in

                        i 1
                                                                       2
                                        E           ( f )          
                                                                   ( Nt )
                               ( f )                                                S EA
      ( Nt )                   i
                                         E0                                       i

                                                                   
E          (52.2 1015 )(2.54 1018 )  (87.5 1015 )(0.672 1018 ) eV  191 eV
     (1)
     in


                          192
  E              3776       3681 eV
          ( 2)
          in
                           2
                                           2
          3681 
( Nt )         ( Nt )
      ( 2)                                          SEA
                                                               (2.55  0.08) 1018 atoms / cm 2
          3776 
      Fe                                            Fe



                 ( 2)
  ( Nt )                 (0.674  0.021) 1018 atoms / cm 2
                 Gd
Example


  The average stoichiometric ratio for this film using the following Eq.:


                n NB AB A( E , )
                     .
                m NA AA B ( E , )

N Fe
     
       AFe
                      
                             Gd
                                  ( E0 ,170 ) /  R 
                                  ( E ,170 )  /  R 
                             R                                              Gd
                                            .
N Gd   AGd             
                             Fe
                             R        0        
                                                                            Fe

  (64475  261) 21.53 0.993
              .     .       3.78  0.02
  103823  323 3.521 0.998
Example



    If the molecular formula for the film is
    written as GdmFen , then:


    m=0.209±0.001 and n=0.791±0.001


                   n+m=1
Example                            The value of the physical film thickness:


                                  ( Nt ) A        ( Nt ) B
                           t           AB
                                                      AB
                                  N     A         N    B


                                   Fe N 0
Elemental bulk density




                         N Fe                8.44 1022 atoms / cm 3
                                   M Fe
                                  Gd N 0
                         N Gd                3.02 1022 atoms / cm 3
                                   M Gd

                                  2.55 1018                    0.674 1018
                         t Fe                cm  302 nm tGd              cm  223 nm
                                  8.44 10 22
                                                                3.02 10 22



                            tGdFe  525 nm
Thank you




My hometown

More Related Content

What's hot

X ray Photoelectron Spectroscopy (XPS)
X ray Photoelectron Spectroscopy (XPS)X ray Photoelectron Spectroscopy (XPS)
X ray Photoelectron Spectroscopy (XPS)Nano Encryption
 
X-ray Photoelectron Spectrocopy (XPS)
X-ray Photoelectron Spectrocopy (XPS)X-ray Photoelectron Spectrocopy (XPS)
X-ray Photoelectron Spectrocopy (XPS)CNPEM
 
Solid State Lasers and Applns_RK.pdf
Solid State Lasers and Applns_RK.pdfSolid State Lasers and Applns_RK.pdf
Solid State Lasers and Applns_RK.pdfChirag Dalal
 
Electron energy loss spectroscopy
Electron energy loss spectroscopyElectron energy loss spectroscopy
Electron energy loss spectroscopyGulfam Hussain
 
Scanning Electron Microscope.pptx
Scanning Electron Microscope.pptxScanning Electron Microscope.pptx
Scanning Electron Microscope.pptxRABEYABASORI
 
Charged particle interaction with matter
Charged particle interaction with matterCharged particle interaction with matter
Charged particle interaction with matterSabari Kumar
 
Laser Presentation
Laser PresentationLaser Presentation
Laser PresentationAIM iTech
 
x-ray photoelectron spectroscopy
x-ray photoelectron spectroscopyx-ray photoelectron spectroscopy
x-ray photoelectron spectroscopyIshfaq Ahmad
 
Instrumentation presentation - Auger Electron Spectroscopy (AES)
Instrumentation presentation - Auger Electron Spectroscopy (AES)Instrumentation presentation - Auger Electron Spectroscopy (AES)
Instrumentation presentation - Auger Electron Spectroscopy (AES)Amirah Basir
 
Scanning Electron Microscopy
Scanning Electron MicroscopyScanning Electron Microscopy
Scanning Electron MicroscopySejal9787
 
NUCLEAR MODELS
NUCLEAR MODELSNUCLEAR MODELS
NUCLEAR MODELSKC College
 
Transmission electron microscope, high resolution tem and selected area elect...
Transmission electron microscope, high resolution tem and selected area elect...Transmission electron microscope, high resolution tem and selected area elect...
Transmission electron microscope, high resolution tem and selected area elect...Nano Encryption
 
Laser and its applications1
Laser and its applications1Laser and its applications1
Laser and its applications1Elsayed Ramadan
 
Q switching for giant pulses in laser
Q switching for giant pulses in laserQ switching for giant pulses in laser
Q switching for giant pulses in laserkaavyabalachandran
 

What's hot (20)

X ray Photoelectron Spectroscopy (XPS)
X ray Photoelectron Spectroscopy (XPS)X ray Photoelectron Spectroscopy (XPS)
X ray Photoelectron Spectroscopy (XPS)
 
X-ray Photoelectron Spectrocopy (XPS)
X-ray Photoelectron Spectrocopy (XPS)X-ray Photoelectron Spectrocopy (XPS)
X-ray Photoelectron Spectrocopy (XPS)
 
xrd basic
 xrd basic xrd basic
xrd basic
 
Solid State Lasers and Applns_RK.pdf
Solid State Lasers and Applns_RK.pdfSolid State Lasers and Applns_RK.pdf
Solid State Lasers and Applns_RK.pdf
 
Electron energy loss spectroscopy
Electron energy loss spectroscopyElectron energy loss spectroscopy
Electron energy loss spectroscopy
 
Scanning Electron Microscope.pptx
Scanning Electron Microscope.pptxScanning Electron Microscope.pptx
Scanning Electron Microscope.pptx
 
Charged particle interaction with matter
Charged particle interaction with matterCharged particle interaction with matter
Charged particle interaction with matter
 
Laser Presentation
Laser PresentationLaser Presentation
Laser Presentation
 
Rietveld Refinements ppt
Rietveld Refinements pptRietveld Refinements ppt
Rietveld Refinements ppt
 
x-ray photoelectron spectroscopy
x-ray photoelectron spectroscopyx-ray photoelectron spectroscopy
x-ray photoelectron spectroscopy
 
Instrumentation presentation - Auger Electron Spectroscopy (AES)
Instrumentation presentation - Auger Electron Spectroscopy (AES)Instrumentation presentation - Auger Electron Spectroscopy (AES)
Instrumentation presentation - Auger Electron Spectroscopy (AES)
 
Quantum Magnetism
Quantum MagnetismQuantum Magnetism
Quantum Magnetism
 
Scanning Electron Microscopy
Scanning Electron MicroscopyScanning Electron Microscopy
Scanning Electron Microscopy
 
NUCLEAR MODELS
NUCLEAR MODELSNUCLEAR MODELS
NUCLEAR MODELS
 
Transmission electron microscope, high resolution tem and selected area elect...
Transmission electron microscope, high resolution tem and selected area elect...Transmission electron microscope, high resolution tem and selected area elect...
Transmission electron microscope, high resolution tem and selected area elect...
 
Laser and its applications1
Laser and its applications1Laser and its applications1
Laser and its applications1
 
Q switching for giant pulses in laser
Q switching for giant pulses in laserQ switching for giant pulses in laser
Q switching for giant pulses in laser
 
Taramalı Elektron Mikroskobu
Taramalı Elektron MikroskobuTaramalı Elektron Mikroskobu
Taramalı Elektron Mikroskobu
 
Neutron diffraction
Neutron diffraction Neutron diffraction
Neutron diffraction
 
WDS
WDSWDS
WDS
 

Similar to Here are the key steps:1) Get the stopping cross sections (ε) for Al and O from literature: εAl = 44 x 10-15 eVcm2 εO = 35 x 10-15 eVcm2 2) Calculate the stopping cross section for Al2O3 using Bragg's rule: εAl2O3 = (2 x εAl) + (3 x εO) = (2 x 44 + 3 x 35) x 10-15 eVcm2 = 193 x 10-15 eVcm23) Get the atomic density of Al2O3: Density of Al2O3 = 3.95 g/cm3 M

Structure of atom
Structure of atom Structure of atom
Structure of atom sahil9100
 
227th ACS BZ Oral Presentation
227th ACS  BZ Oral Presentation227th ACS  BZ Oral Presentation
227th ACS BZ Oral Presentationbinzhao2004
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003Nityanand Gopalika
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...grssieee
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...grssieee
 
Introduction to nanophotonics
Introduction to nanophotonicsIntroduction to nanophotonics
Introduction to nanophotonicsajayrampelli
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxidesnirupam12
 
Principle Of A F S
Principle Of  A F SPrinciple Of  A F S
Principle Of A F Sguestc5e21a
 
Cluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationCluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationColm Connaughton
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopynirupam12
 
Atmospheric aberrations in coherent laser systems
Atmospheric aberrations in coherent laser systemsAtmospheric aberrations in coherent laser systems
Atmospheric aberrations in coherent laser systemswtyru1989
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
The inverse droplet coagulation problem
The inverse droplet coagulation problemThe inverse droplet coagulation problem
The inverse droplet coagulation problemColm Connaughton
 

Similar to Here are the key steps:1) Get the stopping cross sections (ε) for Al and O from literature: εAl = 44 x 10-15 eVcm2 εO = 35 x 10-15 eVcm2 2) Calculate the stopping cross section for Al2O3 using Bragg's rule: εAl2O3 = (2 x εAl) + (3 x εO) = (2 x 44 + 3 x 35) x 10-15 eVcm2 = 193 x 10-15 eVcm23) Get the atomic density of Al2O3: Density of Al2O3 = 3.95 g/cm3 M (20)

Talk spinoam photon
Talk spinoam photonTalk spinoam photon
Talk spinoam photon
 
non linear optics
non linear opticsnon linear optics
non linear optics
 
Structure of atom
Structure of atom Structure of atom
Structure of atom
 
227th ACS BZ Oral Presentation
227th ACS  BZ Oral Presentation227th ACS  BZ Oral Presentation
227th ACS BZ Oral Presentation
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
 
Waveguide
WaveguideWaveguide
Waveguide
 
Recent advances of MEIS for near surface analysis
Recent advances of MEIS for near surface analysis Recent advances of MEIS for near surface analysis
Recent advances of MEIS for near surface analysis
 
Introduction to nanophotonics
Introduction to nanophotonicsIntroduction to nanophotonics
Introduction to nanophotonics
 
Photoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional OxidesPhotoelectron Spectroscopy for Functional Oxides
Photoelectron Spectroscopy for Functional Oxides
 
17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko17.04.2012 seminar trions_kochereshko
17.04.2012 seminar trions_kochereshko
 
Principle Of A F S
Principle Of  A F SPrinciple Of  A F S
Principle Of A F S
 
Cluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentationCluster-cluster aggregation with (complete) collisional fragmentation
Cluster-cluster aggregation with (complete) collisional fragmentation
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
 
Schrodingermaxwell
SchrodingermaxwellSchrodingermaxwell
Schrodingermaxwell
 
Atmospheric aberrations in coherent laser systems
Atmospheric aberrations in coherent laser systemsAtmospheric aberrations in coherent laser systems
Atmospheric aberrations in coherent laser systems
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
662 magnetrons
662 magnetrons662 magnetrons
662 magnetrons
 
The inverse droplet coagulation problem
The inverse droplet coagulation problemThe inverse droplet coagulation problem
The inverse droplet coagulation problem
 

More from Younes Sina

Physics by Younes Sina
Physics by Younes SinaPhysics by Younes Sina
Physics by Younes SinaYounes Sina
 
ICDIM 2012 presentation
ICDIM 2012 presentationICDIM 2012 presentation
ICDIM 2012 presentationYounes Sina
 
Phase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 SystemPhase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 SystemYounes Sina
 
Electron irradiation effect on Al2O3
Electron irradiation effect on Al2O3Electron irradiation effect on Al2O3
Electron irradiation effect on Al2O3Younes Sina
 
Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)Younes Sina
 
توسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصدتوسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصدYounes Sina
 
Nuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclidesNuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclidesYounes Sina
 

More from Younes Sina (20)

Physics by Younes Sina
Physics by Younes SinaPhysics by Younes Sina
Physics by Younes Sina
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
 
Chapter 8
Chapter 8Chapter 8
Chapter 8
 
Chapter 7
Chapter 7Chapter 7
Chapter 7
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
ICDIM 2012 presentation
ICDIM 2012 presentationICDIM 2012 presentation
ICDIM 2012 presentation
 
Phase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 SystemPhase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 System
 
Electron irradiation effect on Al2O3
Electron irradiation effect on Al2O3Electron irradiation effect on Al2O3
Electron irradiation effect on Al2O3
 
Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)
 
توسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصدتوسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصد
 
Nuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclidesNuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclides
 

Recently uploaded

Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 

Recently uploaded (20)

Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 

Here are the key steps:1) Get the stopping cross sections (ε) for Al and O from literature: εAl = 44 x 10-15 eVcm2 εO = 35 x 10-15 eVcm2 2) Calculate the stopping cross section for Al2O3 using Bragg's rule: εAl2O3 = (2 x εAl) + (3 x εO) = (2 x 44 + 3 x 35) x 10-15 eVcm2 = 193 x 10-15 eVcm23) Get the atomic density of Al2O3: Density of Al2O3 = 3.95 g/cm3 M

  • 1. The University of Tennessee, Knoxville Backscattering Spectrometry Part 1 Professor C.J.McHargue Younes Sina
  • 2. Backscattering spectrometry using ion beams with energies in the megaelectronvolt range has been used extensively for accurate determination of stoichiometry , elemental areal density ,and impurity distributions in thin films.
  • 3. Kinematic factor K E /E i i 1 0 2  (M 2  M 2sin 2 )  M cos  1/ 2   2 1 1 K   M M   1 2 Z2 M2 E0 M1 Z1 M1 Z1 E0 -ΔE
  • 4.
  • 5. Areal density Integrated peak count Areal density, Nt, as atoms per unit area Ai cos i Nt  i Qi ( E ,  ) Cross section Incident ions Detector solid angle
  • 6. Rutherford scattering cross section e2≈1.44x10-13 2  Z Z e2  4[(M 2  M 1 sin 2 )  M 2 cos ] 2 2 1/ 2  ( E , )    1 2 2 R  4E  M 2sin 4 (M 2  M 1 sin 2 ) 1/ 2   2 2 Z2 M2 E0 M1 Z1 M1 Z1 E0 -ΔE
  • 7. The average stoichiometric ratio for the compound film AmBn nABN 0  AB N B MAB n NB AB A( E , )   . m NA AA B ( E , ) Cross section ratio Ratio of measured integrated peak count mABN 0  AB N A MAB
  • 8. Physical film thickness AmBn ( Nt ) A ( Nt ) B t AB  AB N A N B mABN 0 nABN 0   AB AB N A MAB N B MAB MAB  mMA  nMB
  • 9. FUNDAMENTALS Energy separation  dK  E1  E 0 EM 2  dM 2  E Minimum energy separation that can be M 2  experimentally resolved  dK  E 0   dM 2  mass resolution for fixed θ:
  • 10.
  • 11. Elastic scattering cross section Fraction of incident particles Average differential cross section scattered to the detector  1  dQ( E ) 1  ( , E )   ( )  Nt  Q ( ) Detector solid angle Number of target atoms per unit area
  • 12. Rutherford cross section Z2 M2 E0 M1 Z1 M1 Z1 2  Z Z    ( E , )  0.02073      M 1   sin 1 2 4 R    2   2   M 2   4E   Unit: barn/ sr 1 b(barn)=10-24 cm2
  • 13. Non-Rutherford cross section Low energy L’Ecuyer Eq. for Low energy ion 4/3   1 0.049Z 1Z 2  R E CM Center-of-mass kinetic energy (keV) Wenzel and Whaling for light ion with MeV energy ECM≈Elab 7/2   1 0.0326Z 1Z 2  R E CM
  • 14. Laboratory projectile kinetic energy Non-Rutherford For 1H:  (0.12  0.01) Z 2  (0.5  0.1) NR E Laboratory projectile kinetic energy(MeV) Lab For 4He:  (0.25  0.01) Z 2  (0.4  0.2) NR E Lab For 7Li:  (0.330  0.005)Z 2  (1.4  0.1) NR E Lab
  • 15.
  • 16. Experimental geometry θ1 θ2   π   1  2 cosθ2= cos (π-θ).cosθ1
  • 17. Experimental geometry For IBM geometry x x din  dout  cos  1 cos  2 For Cornel x x din  dout  cos  1 cos  1, cos  2
  • 18. Effects of energy loss of ions in solids Atomic density dE  N Stopping cross section dx stopping power For a compound of AmBn: εAB =mεA+nεB AB  dE    N   N A A  N B B AB AB AB AB  dx  Atomic density Molecular density
  • 19. Example: Calculate the stopping cross section and stopping power of 2 MeV 4He+ in Al2O3 using Bragg rule From appendix 3: εAl= 44x10-15 eVcm2 εO= 35x10-15 eVcm2 For a compound of AmBn: εAB =mεA+nεB εAl2O3=(2x44+3x35)x10-15 =193x10-15eVcm2 g 23 molecules N 0 4 cm 3  6 10 mol 22 Al2O3molecules N  M   2.35 10 Al 2 O 3 102 g cm 3 mol Al 2 O 3  dE  eV      2.35 10 22 193 10 15  46 Al 2 O 3 Al 2 O 3 N 0  dx  A Al atoms O atoms  3  2.35 10 22  7.11022 Al 2 O 3  2  2.35 1022  4.7 1022 Al 2O 3 N Al cm 3 N O cm 3
  • 20. Example: Al 2 O 3  dE  eV   N   2.35 10 193 10 15  46 Al 2 O 3 Al 2 O 3 22 0  dx  A 15 15 eV  4.7 10  44 10 22  7.110  35 10 22  46 10 8 cm eV  46 0 A x E   (dE / dx)dx 0
  • 21. Depth scale x E   (dE / dx)dx 0 Energy loss factor E  S  x   dE   dE  1  S    K   1      dx in cos  1  dx out cos  2  E   N .x Stopping cross section factor  1      K in 1   out   cos  1 cos  2   1 1     K A  in   out, A AB AB AB E A   A N x  AB AB A  cos  1 cos  2 
  • 22. Depth resolution Calculate the depth- scattered ion energy differences Example for 2 MeV 4He+ in Al2O3 θ1=0°and θ2=10° K factor for4He on Al=0.5525 K factor for4He on O=03625  0.5525  2  1.105 MeV Al E1  KE0 E 1  0.3625  2  0.725 MeV O E 1 Using the surface-energy approximation ε at E0,surface εAB =mεA+nεB   2   in  3   in  2  44 1015  3  35 1015  193 1015 eVcm 2 Al 2 O 3 Al O in ε at E1  out, Al  2   out, Al  3   out, Al  2  511015  3  46 1015  240 1015 eVcm 2 Al 2 O 3 Al O   2   out,O  3   out,O  2  54 1015  3  48 1015  252 1015 eVcm 2 Al 2 O 3 Al O out,O
  • 23. Example We can now calculate the stopping cross section factors  1  [ ] 1   K Al  in   out, Al Al 2 O 3 Al 2 O 3 Al 2 O 3  cos  1 cos  2  0 Al  [ ] Al 2O 3 0  0.5525 193 1015  240 1015 1.015  350 1015 eVcm 2 Al  1  [ ] 1   K O  in   out,O Al 2 O 3 Al 2 O 3 Al 2 O 3  cos  1 cos  2  0 O  [ ] Al 2O 3 0  0.3625 193 1015  252 1015 1.015  326 1015 eVcm 2 O Using the molecular density N Al2O3=2.35x1022 molecules/cm3 we find:  E Al   0 Al 2 O 3 Al N Al 2 O 3  x  eV   82.3 0   x  A   EO   0 Al 2 O 3 O N Al 2 O 3  x  eV   76.6 0   x  A 
  • 24. Surface spectrum height Energy width per channel  ( E )QE H 0  [ ] cos  1 0 stopping cross section factors Surface height of the two elemental peaks in the compound AmBn are given by A( E 0)QmE  H A, 0  0 AB A cos  1 B ( E 0)QnE  H B ,0  0 AB B cos  2
  • 25. Mean energy in thin films Surface Energy Approximation Ai cos i SEA Nt   ( Nt ) i Qi ( E ,  ) E  E0 i r E   ( E ) ( Nt ) SEA i SEA in 0 i i 1  E 0  E in SEA (1) Mean energy of the ions in the film ,Ē(1) E 2 E2 E1 E0
  • 26. Mean energy in thin films For the second iteration, the values of (Nt)i(1) should Ai cos i be calculated using N ti  Qi ( E , ) with E= Ē(1) then ∆Ei(1) and Ē(2) r E   (1) i (1) in E (1) ( Nt ) i i 1 E (1) ( 2) E  E0  in 2 E2 E1 E0
  • 27. Example Calculate surface height for 2 MeV 4He+ on Al2O3: Ω=10-3sr E=1 keV/channel Q=6.24x1013 incident particles (10μC charge) θ1=0°, θ2=10° (scattering angle=170°) From appendix 6: σRAl=0.2128x10-24 & σRO=0.0741x10-24 From previous example: [ ] [ ] Al 2O 3 Al 2O 3 0  350 1015 eVcm 2 0  326 1015 eVcm 2 Al O A( E 0)QmE H A, 0   0AB A cos  1 AlQ 2 E 0.2128 10 24 10 3  6.24 10 3  2 103    76cnt H Al , 0  0 Al 2 O 3 Al 350 10 15 OQ3E 0.074110 24 10 3  6.24 10 3  3 103    43cnt H O,0  0 Al 2 O 3 O 326 10 15
  • 28. For not too thick film E=Ē(f) 2  E( f )  ( Nt )    ( Nt ) (f) SEA  E0  i i   E2 E1 E0
  • 29. Sample analysis Typical experimental operating conditions and parameter ranges used during acquisition of backscattering spectra Experimental Parameter Units Values Analysis ion energy MeV 1.0-5.0 Beam cross section mm x mm 1.5x1.5 Beam current nA 10-200 Integrated charge μC 5-100 Detector energy resolution for 4He ions keV 15 Data acquisition time min 5-10 Vacuum Torr 2x10-6 Pump-down time min 15
  • 30. Thin-film analysis The peak integration method Integrated peak counts That can be accurately determined from the spectrum Correction factor Ai cos  1 CBi e  DTR Dead time ratio ( Nt )i   Q'  R ( E ,  )( ) i i R Integrated charge deposited on the sample during the run Non Rutherford correction factor solid angle subtended by the detector at the target
  • 31. Example an application of the peak integration method of analysis of the two-element thin film E0=3776 keV θ=170˚ θ1=0˚ θ2=10˚ Ω=0.78 msr CBi=(0.99±0.03) E=(3.742±0.005)keV/channel É=(8±3) keV E1= nE+ É KFe=(170˚)=0.7520 Energy intercept KGd=(170˚)=0.90390
  • 32. Example From appendix 6 3.521 cm 2  ( E0 ,170 )  10  24  0.2469 10 24 Fe R 2 3.776 sr 21.53 cm 2  ( E0 ,170 )   24 10  1.510 10  24 Gd  R 2 3.776 sr 4/3 From   1 0.049Z 1Z 2 R E CM   4/3 (0.049)(2)(26) Center-of-mass energy    1  0.998  R  Fe 3776   4/3 (0.049)(2)(64)    1  0.993  R Gd 3776
  • 33. Example From Trim 1985:  (3776 keV )  51.4 10 Fe 15 eVcm 2  (3676 keV )  52.2 10 Fe 15 eVcm 2  Gd (3776 keV )  86.3 10 15 eVcm 2  Gd (3676 keV )  87.5 10 15 eVcm 2
  • 34. Example Q '  20.01 C nB  (757  1) nB '  (660  1)  (1020  20) cts AB H A, 0 DTR  1.008 nA  (910  1) nA'  (812  1)  (640  20) cts AB H B ,0 Integrated counts in spectral regions of interest (initial and final channel numbers are listed: Channels (789-918)=103978 cts; (920-960)=49 cts Channels (640-767)=64957 cts; (768-788)=79 cts
  • 35. Example From: E1= nE+ É and Ki=Ei1/E0 :  nB E  E '  (757  1)(3.742  0.005)  (8  3)  (2841  6)keV B E 1  nAE  E '  (910  1)(3.742  0.005)  (8  3)  (3413  7)keV A E 1 E1  (2841  6)  0.752  0.002 B Energy intercept KB  E0 (3776  5) E1  (3413  7)  0.904  0.002 A KA  E0 (3776  5) Therefore, element A and B are Gd and Fe, respectively. Note that element A could also be Tb, because KTb=0.9048
  • 36. Example Calculation of elemental areal densities,(Nt) Values of Ai are calculated from the integrated counts in the regions of interests 79 AFe  64957  (128)  (64475  261)cts 21 49 AGd  103978  (130)  (103823  323)cts 41 In this case, the background correction is almost negligible
  • 37. Example The areal densities in the surface-energy approximation,(Nt)SEA i using E=E0 1 Ai cos  1 CBi e  DTR ( Nt )i   Q'   ( E ,  )( i )i R R Ai DTR CBi 0.998 e SEA (64475  261)(1.008)(0.99  0.03)(1.602 1019 ) atoms ( Nt )  6 3  24 Fe (20.0110 )(0.78 10 )(0.2469 10 )(0.998) cm 2 Q’ Ω σ  (2.68  0.08) 10 18 atoms cm 2 SEA ( Nt )  (0.709  0.021) 1018 atoms Gd cm 2
  • 38. Example The mean energy of the 4He ion in the film, Ē(1), is calculated (to first order) using the following equation r E   SEA i SEA in ( E 0) ( Nt ) i i 1 For the first-order energy loss, ΔESEAin ,of the ions in the film: E   SEA SEA   SEA Fe Gd in ( E 0) ( Nt ) ( E 0) ( Nt ) Fe Gd  (51.4 10 15 )(2.68 1018 )  (86.3 10 15 )(0.709 1018 ) eV  199 keV  E 0  E in SEA (1) (1) 199 E  E  3776   3676 keV 2 2
  • 39. Example From the following Eq. we can calculate the areal densities: 2 E (f)    (N ) (f ) S EA ( Nt ) i  E0  i   2  3676  ( Nt )    (N ) (1) SEA  2.54 1018 atoms / cm 2  3776  Fe Fe (1) ( Nt )  0.672 1018 atoms / cm 2 Gd
  • 40. Example Results of an additional iteration of this procedure using the following equations we have: (Note that Fe and Gd are evaluated at Ē(1) )  E r (1) E   (1) i (1) ( 2) in E (1) ( Nt ) i E  E0 2 in i 1 2 E ( f )    ( Nt ) ( f ) S EA ( Nt ) i  E0  i   E  (52.2 1015 )(2.54 1018 )  (87.5 1015 )(0.672 1018 ) eV  191 eV (1) in 192 E  3776   3681 eV ( 2) in 2 2  3681  ( Nt )    ( Nt ) ( 2) SEA  (2.55  0.08) 1018 atoms / cm 2  3776  Fe Fe ( 2) ( Nt )  (0.674  0.021) 1018 atoms / cm 2 Gd
  • 41. Example The average stoichiometric ratio for this film using the following Eq.: n NB AB A( E , )   . m NA AA B ( E , ) N Fe  AFe   Gd ( E0 ,170 ) /  R  ( E ,170 )  /  R  R Gd . N Gd AGd  Fe R 0  Fe (64475  261) 21.53 0.993  . .  3.78  0.02 103823  323 3.521 0.998
  • 42. Example If the molecular formula for the film is written as GdmFen , then: m=0.209±0.001 and n=0.791±0.001 n+m=1
  • 43. Example The value of the physical film thickness: ( Nt ) A ( Nt ) B t AB  AB N A N B  Fe N 0 Elemental bulk density N Fe   8.44 1022 atoms / cm 3 M Fe Gd N 0 N Gd   3.02 1022 atoms / cm 3 M Gd 2.55 1018 0.674 1018 t Fe  cm  302 nm tGd  cm  223 nm 8.44 10 22 3.02 10 22 tGdFe  525 nm