Schleicher, OECD, Bildung in die Zukunft steuern

642 views

Published on

Schleicher, OECD
im Rahmen des Bildungstalks 2010

Video of presentation
http://ichmachpolitik.at

download version at
http://www.vavoida.org/uploads/schleicher.ppt

  • Be the first to comment

  • Be the first to like this

Schleicher, OECD, Bildung in die Zukunft steuern

  1. 1. Bildung in die Zukunft steuern Wien, 15. April 2010 Prof. Andreas Schleicher Advisor of the OECD Secretary-General on Education Policy OECD Directorate for Education
  2. 2. Neue Herausforderungen Stabil Dynamisch Märkte National Global Wettbewerb Hierarchisch Vernetzt Organisationsformen Massenproduktion Flexible Produktion –embedded services Produktion Mechanisierung Digitalisierung, Miniaturisierung Wachstumsimpulse „ Economies of scale“ Innovation, Zeitnähe Wettbewerbsvorteil Einzelbetrieb „ Co-petition” – Allianzen Firmenmodell Vollbeschäftigung „ Employability” Politische Ziele Klare Identität im berufsspezifischen Kontext Konvergenz und Transformation Berufsprofile Berufsspezifisch Multi-dimensional Kompetenzen Formale Qualifikation Lebensbegleitendes Lernen Bildung Gestern Heute
  3. 3. There is nowhere to hide Why the yardstick for success is no longer improvement by national educational standards
  4. 4. Tertiary-type A graduation rate Spitzenqualifikationen Graduate supply Cost per student
  5. 5. Tertiary-type A graduation rate Spitzenqualifikationen United States Finland Graduate supply Cost per student Austria
  6. 6. Tertiary-type A graduation rate Spitzenqualifikationen Australia Finland United Kingdom Poland
  7. 7. Tertiary-type A graduation rate Spitzenqualifikationen
  8. 8. Tertiary-type A graduation rate Spitzenqualifikationen
  9. 9. Tertiary-type A graduation rate Spitzenqualifikationen
  10. 10. Tertiary-type A graduation rate Spitzenqualifikationen
  11. 11. Tertiary-type A graduation rate Spitzenqualifikationen
  12. 12. Tertiary-type A graduation rate Spitzenqualifikationen United States Australia Finland Austria
  13. 13. Veränderungen in der Nachfrage nach Kompetenzen Economy-wide measures of routine and non-routine task input (US) (Levy and Murnane) Mean task input as percentiles of the 1960 task distribution The dilemma of schools : The skills that are easiest to teach and test are also the ones that are easiest to digitise, automate and outsource
  14. 14. Latin America then… Hanushek 2009 GDP/pop 1960 Years schooling Asia 1891 4 Sub-Saharan Africa 2304 3.3 MENA 2599 2.7 Latin America 4152 4.7 Europe 7469 7.4 Orig. OECD 11252 9.5
  15. 15. Latin America then and now… Hanushek 2009 GDP/pop 1960 Years schooling Growth 1960-2000 GDP/pop 2000 Asia 1891 4 4.5 13571 Sub-Saharan Africa 2304 3.3 1.4 3792 MENA 2599 2.7 2.7 8415 Latin America 4152 4.7 1.8 8063 Europe 7469 7.4 2.9 21752 Orig. OECD 11252 9.5 2.1 26147
  16. 16. Latin America then and now… Why quality is the key Hanushek 2009 GDP/pop 1960 Years schooling Growth 1960-2000 GDP/pop 2000 Test score Asia 1891 4 4.5 13571 480 Sub-Saharan Africa 2304 3.3 1.4 3792 360 MENA 2599 2.7 2.7 8415 412 Latin America 4152 4.7 1.8 8063 388 Europe 7469 7.4 2.9 21752 492 Orig. OECD 11252 9.5 2.1 26147 500
  17. 17. Increased likelihood of tertiary particip. at age 19/21 associated with PISA reading proficiency at age 15 (Canada) after accounting for school engagement, gender, mother tongue, place of residence, parental, education and family income (reference group PISA Level 1) Increased chance of successful tertiary participation School marks at age 15 PISA performance at age 15
  18. 18. Handlungsfelder Some policy levers that emerge from international comparisons
  19. 19. Hohe Erwartungen und anspruchsvolle Standards Zugang zu guter Praxis und berufliche Weiterentwicklung als integraler Bestandteil des Berufsfeldes
  20. 20. Standards und Unterst ützung Geringe Unterstützung Gute Unterstützung der Einrichtungen Unklare Anforderungen Anspruchsvolle Standards Starke Leistungen Systemische Verbesserungen Schwache Leistungen Verbesserungen bleiben Einzelfall Konflikt Demoralisierung Schwache Leistungen Stagnation
  21. 21. Hohe Erwartungen und anspruchsvolle Standards Zugang zu guter Praxis und berufliche Weiterentwicklung als integraler Bestandteil des Berufsfeldes Freiräume und Handlungsfähigkeit der Bildungs-einrichtungen Evaluation, motivierende Leistungsrückmeldungen und Intervention invers zum Erfolg
  22. 22. School autonomy, standards-based examinations and science performance School autonomy in selecting teachers for hire PISA score in science
  23. 23. Local responsibility and national prescription National prescription Schools leading reform Schools today The industrial model, detailed prescription of what schools do Schools tomorrow? Building capacity Finland today Every school an effective school Towards system-wide sustainable reform
  24. 24. Freiräume und Handlungsfähigkeit der Schulen Evaluation, motivierende Leistungsrückmeldungen und Intervention invers zum Erfolg Hohe Erwartungen und anspruchsvolle Standards Zugang zu guter Praxis und berufliche Weiterentwicklung als integraler Bestandteil des Berufsfeldes Individualisierung von Lernen Offene und vernetzte Bildungswege statt früher Selektion Qualifikationsrahmen
  25. 25. Durchschnittliche Schülerleistungen im Bereich Mathematik Low average performance Large socio-economic disparities High average performance Large socio-economic disparities Low average performance High social equity High average performance High social equity Strong socio-economic impact on student performance Socially equitable distribution of learning opportunities High science performance Low science performance <ul><li>Early selection and institutional differentiation </li></ul><ul><ul><li>High degree of stratification </li></ul></ul><ul><ul><li>Low degree of stratification </li></ul></ul>
  26. 26. Hohe Erwartungen und anspruchsvolle Standards Zugang zu guter Praxis und berufliche Weiterentwicklung als integraler Bestandteil des Berufsfeldes Evaluation und Intervention invers zum Erfolg Offene und integrierte Bildungswege Freiräume und Handlungsfähigkeit der Schulen Individulalisierung von Lernen
  27. 27. Pooled international dataset, effects of selected school/system factors on science performance after accounting for all other factors in the model OECD (2007), PISA 2006 – Science Competencies from Tomorrow’s World , Table 6.1a 20 Schools practicing ability grouping (gross and net) One additional hour of out-of-school lessons (gross and net) Each additional 10% of public funding (gross only) School principal’s perception that lack of qualified teachers hinders instruction (gross only) Measured effect Effect after accounting for the socio-economic background of students, schools and countries Academically selective schools (gross and net) but no system-wide effect School results posted publicly (gross and net) One additional hour of science learning at school (gross and net) One additional hour of self-study or homework (gross and net) School activities to promote science learning (gross and net) Schools with greater autonomy (resources) (gross and net) Schools with more competing schools (gross only) School principal’s positive evaluation of quality of educational materials (gross only)
  28. 28. Paradigm shifts The old bureaucratic system The modern enabling system Hit and miss  Universal high standards Uniformity  Embracing diversity Provision  Outcomes Bureaucratic look-up  Devolved – look outwards Talk equity  Deliver equity Prescription  Informed profession Conformity  Ingenious Curriculum-centred  Learner-centred Interactive  Participative Individualised  Community-centred Delivered wisdom  User-generated wisdom Management  Leadership Public vs private  Public with private Culture as obstacle  Culture as capital
  29. 29. Thank you ! <ul><ul><li>www.oecd.org; www.pisa.oecd.org </li></ul></ul><ul><ul><ul><li>All national and international publications </li></ul></ul></ul><ul><ul><ul><li>The complete micro-level database </li></ul></ul></ul><ul><ul><li>email: pisa@oecd.org </li></ul></ul><ul><ul><li>[email_address] </li></ul></ul><ul><ul><li>… and remember: </li></ul></ul><ul><ul><li>Without data, you are just another person with an opinion </li></ul></ul>

×