SlideShare a Scribd company logo
1 of 17
Download to read offline
Discovering Universal Geometry
in Embeddings with ICA
Hiroki Yamagiwa, Momose Oyama, Hidetoshi Shimodaira
EMNLP2023
仁田智也 (名工大)
概要
n深層学習におけるEmbedding
• 入力データを固定次元のベクトルに変換すること
• Ex. 単語、画像
• 基本的に学習によって得られる
• 人間が解釈するには高次元すぎて難しい
• 各軸の意味を表す成分が特定不可
nEmbeddingの解釈
• 独立成分分析 (ICA)を用いた解析
• 主成分分析と比較してスパースで解釈可能に
• 異なるモーダル間で同じ意味を持つ軸の獲得
Discovering Universal Geometry in Embeddings with ICA
Hiroaki Yamagiwa⇤ 1
Momose Oyama⇤ 1,2
Hidetoshi Shimodaira1,2
1
Kyoto University 2
RIKEN
hiroaki.yamagiwa@sys.i.kyoto-u.ac.jp,
oyama.momose@sys.i.kyoto-u.ac.jp, shimo@i.kyoto-u.ac.jp
Abstract
This study utilizes Independent Component
Analysis (ICA) to unveil a consistent seman-
tic structure within embeddings of words or
images. Our approach extracts independent se-
mantic components from the embeddings of a
pre-trained model by leveraging anisotropic in-
formation that remains after the whitening pro-
cess in Principal Component Analysis (PCA).
We demonstrate that each embedding can be
expressed as a composition of a few intrinsic
interpretable axes and that these semantic axes
remain consistent across different languages,
algorithms, and modalities. The discovery of
a universal semantic structure in the geometric
patterns of embeddings enhances our under-
standing of the representations in embeddings.
[cs.CL]
2
Nov
2023
関連研究
nWord Embeddingの解釈可能性
• 制約を入れた損失関数による学習
• スパース性 (Faruqui+, ACL-
IJCNLP2015)
• スパースオートエンコーダ
(Subramanian+, AAAI2018)
• 𝑙!正則化 (Sun+, ACL-IJCAI2016)
• ICAによる解析 (Musil & Marecek,
arXiv2022), (Honkela+, Natural
Language Engineering2010)
n異なる言語間のEmbedding
• マッピング
• 線形変換 (Mikolov+, arXiv2013)
• 翻訳ペアで学習 (Xing+,
NAACL2015)
• 多言語モデル
• BERT (Devlin+, NAACL2019)を用
いた研究
• 言語横断的な文法知識の獲得
(Chi+, ACL2020)
• Embeddingを通じた他言語知識
の表現に関して (Chang+,
EMNLP2022)
主成分分析 (PCA)
n主成分分析
• データを無相関になるように変換を行う
• ガウス分布に対しては独立成分の分解が可能
• 分散が大きい方向順に直行な軸の獲得
• 𝐙 = 𝐗𝐀
• 𝐗 ∈ ℝ"×$
• 𝑛:サンプル数, 𝑑:次元数
• 𝐀 ∈ ℝ$×$:変換行列
• 共分散行列の固有値ベクトルの行列
• 𝐙 ∈ ℝ"×$
• 主成分の軸に射影されたデータ
• 𝐙⊺𝐙:対角行列
PCA
独立成分分析 (ICA)
nICA
• 変換した基底が独立になる
• 独立成分の尖度、歪度を考慮
• PCAでは独立成分が正規分布に従うと仮定
• 平均、分散のみが考慮
• 𝐒 = 𝐗𝐁
• 𝐁:変換行列
nFastICA
• 白色化したデータ𝐙に対して回転行列𝐑&'(を適用する
• 𝐒 = 𝐙𝐑&'(
• 各成分のエントロピーが最小になるようにニュートン法で最適化
Figure 5: Scatterplots of word embeddings along specific axe
ICA and PCA-transformed embeddings were arranged in des
Figure 6: Measures of non-Gaussianity for each axis of ICA a
the measures for each component of the raw word embedd
baselines. Larger values indicate deviation from the norma
non-Gaussian than those found by PCA. For more details, ref
3.3 Interpretability and low-dimensionality of
ICA-transformed embeddings
Fig. 1 illustrates that the key components of a word
embedding are formed by specific axes that capture
the meanings associated with each word. Specifi-
cally, this figure showcases five axes selected from
the ICA-transformed word embeddings, that is, five
columns of S. The word embeddings X have a
dimensionality of d = 300 and were trained on
the text8 corpus using Skip-gram with negative
sampling. For details of the experiment, refer to
Appendix B.
Interpretability. Each of these axes represents
a distinct meaning and can be interpreted by ex-
amining the top words based on their normalized
component values. For example, words like dishes,
meat, noodles have high values on axis 16, while
is
Q
4
T
IC
fr
m
be
de
S
G
se
im
S
(H
si
PCAでは尖度、歪度が0
Figure 5: Scatterplots of word embeddings along specific axes: (0, 1), (2, 3), (49, 50), and (99, 100). The axes for
ICA and PCA-transformed embeddings were arranged in descending order of skewness and variance, respectively.
Figure 6: Measures of non-Gaussianity for each axis of ICA and PCA-transformed word embeddings. Additionally,
the measures for each component of the raw word embedding and a Gaussian random variable are plotted as
baselines. Larger values indicate deviation from the normal distribution. The axes found by ICA are far more
non-Gaussian than those found by PCA. For more details, refer to Appendix B.
3.3 Interpretability and low-dimensionality of
ICA-transformed embeddings
Fig. 1 illustrates that the key components of a word
embedding are formed by specific axes that capture
the meanings associated with each word. Specifi-
cally, this figure showcases five axes selected from
the ICA-transformed word embeddings, that is, five
is approximately represented by these two axes.
Quantitative evaluation is provided in Section 6.
4 Universality across languages
This section examines the results of conducting
ICA on word embeddings, each trained individually
from different language corpora. Interestingly, the
正規分布とのずれ
独立成分分析の適用
nWord Embeddingに対して独立成分分析の適用
• モデル:MikolovらのSkip-gramモデル (NIPS2013)
• 次元数:300
• データ:text8 (Mahoney, 2011)
• トークン数:17.0×10)
• 語彙:254×10*
Discovering Universal Geometry in Embeddings with ICA
Hiroaki Yamagiwa⇤ 1
Momose Oyama⇤ 1,2
Hidetoshi Shimodaira1,2
1
Kyoto University 2
RIKEN
hiroaki.yamagiwa@sys.i.kyoto-u.ac.jp,
oyama.momose@sys.i.kyoto-u.ac.jp, shimo@i.kyoto-u.ac.jp
Abstract
This study utilizes Independent Component
Analysis (ICA) to unveil a consistent seman-
tic structure within embeddings of words or
images. Our approach extracts independent se-
mantic components from the embeddings of a
pre-trained model by leveraging anisotropic in-
formation that remains after the whitening pro-
cess in Principal Component Analysis (PCA).
We demonstrate that each embedding can be
expressed as a composition of a few intrinsic
interpretable axes and that these semantic axes
remain consistent across different languages,
algorithms, and modalities. The discovery of
a universal semantic structure in the geometric
patterns of embeddings enhances our under-
standing of the representations in embeddings.
Figure 1: (Left) Heatmap of normalized ICA-
2
[cs.CL]
2
Nov
2023
異なる言語間の比較
n異なる言語のEmbeddingでの比較
• Embeddingモデル
• GraveらのfastText学習済みモデル (LREC2018)
• 157言語で異なるコーパスで学習
• 次元数:300
• 語彙:各言語50000語を著者らが選択
• 比較言語
• 英語、スペイン語、ロシア語、アラビア語、ヒンディー語、ロシア語、中国
語
• ICA
• 500軸で分析
異なる言語間の比較
n最初の100軸の相互相関係数
(a) Normalized ICA-transformed word embeddings for seven languages.
(a) Normalized ICA-transformed word embeddings for seven languages.
ICA
PCA
異なる言語間の比較
n各軸に対する単語の反応
• 英語に対して各軸に強く反応した上位5単語を選択
別モデルとの比較
nfastTextとBERTとの比較
• BERTモデル
• トークン数:100000
• 次元数:768
Results. The upper panels of Fig. 3 display the
cross-correlation coefficients between the first 100
axes of English and those of Spanish embeddings.
The significant diagonal elements and negligible
off-diagonal elements observed in Fig. 3a suggest
a strong alignment of axes, indicating a good cor-
respondence between the ICA-transformed embed-
dings. Conversely, the less pronounced diagonal
elements and non-negligible off-diagonal elements
observed in Fig. 3b indicate a less favorable align-
ment between the PCA-transformed embeddings.
The semantic axes identified by ICA, referred to
as ‘independent semantic axes’ or ‘independent se-
mantic components’, appear to be nearly universal,
regardless of the language. In Fig. 2a, heatmaps
visualize the ICA-transformed embeddings. The
upper panels display the top 5 words for each of the (a) ICA (b) PCA
Results. The upper panels of Fig. 3 display the
cross-correlation coefficients between the first 100
axes of English and those of Spanish embeddings.
The significant diagonal elements and negligible
off-diagonal elements observed in Fig. 3a suggest
a strong alignment of axes, indicating a good cor-
respondence between the ICA-transformed embed-
dings. Conversely, the less pronounced diagonal
elements and non-negligible off-diagonal elements
observed in Fig. 3b indicate a less favorable align-
ment between the PCA-transformed embeddings.
The semantic axes identified by ICA, referred to
as ‘independent semantic axes’ or ‘independent se-
mantic components’, appear to be nearly universal,
regardless of the language. In Fig. 2a, heatmaps
visualize the ICA-transformed embeddings. The
upper panels display the top 5 words for each of the (a) ICA (b) PCA
ICA PCA
Image Embeddingの分析
n画像認識モデルとの比較
• データ:ImageNet (Russakovsky+, IJCV2015)
• 1000クラス
• モデル
• Vit-Base (Dosvitskiy+, ICLR2021)
• ResMLP-12 (Touvron+, TPAMI2023)
• Swin-S (Liu+, ICCV2021)
• ResNet-18 (He+, CVPR2016)
• RegNetY-200MF (Han+, CoRR2018)
• 分析対象
• 各クラス100枚に対して分析
• 各モデルの最終層のベクトル
• fastText
• ImageNetのクラス名と対応する単語を分析
Image Embeddingの分析
定量的評価
nWord Intrusion Task
• 似た意味のk個の単語集合から他の意味の単語と分離具合を表す
• ex. {windows, Microsoft, unix, linux, os}とhamster
nAnalogy Task
• 単語の関係性から他の単語を類推するタスク
• ex. France : Paris = Italy : ?
nWord Similarity Task
• 人間が定めた単語間の類似度との一致度合いを表す
Results. In Fig. 8a, the heatmaps of the five im-
age models and fastText exhibit similar patterns,
indicating a shared set of independent semantic
axes in the ICA-transformed embeddings for both
images and words. While we expected a good align-
ment between ViT-Base and fastText, it is note-
worthy that we also observe a good alignment of
ResMLP (Touvron et al., 2023) and Swin Trans-
former (Liu et al., 2021) with fastText. Further-
more, Fig. 3a demonstrates a very good alignment
of axes between ViT-Base and ResMLP. This sug-
gests that the independent semantic components
captured by ICA are not specific to a particular
image model but are shared across multiple mod-
els. On the other hand, PCA gives a less favorable
alignment, as seen in Figs. 3b and 8b.
6 Quantitative evaluation
We quantitatively evaluated the interpretability
ZCA PCA Varimax ICA
DistRatio 1.04 1.13 1.26 1.57
Table 2: A large value of DistRatio indicates the consis-
tency of word meaning in the word intrusion task. We
set k = 5, and the reported score is the average of 10
runs with randomly selected intruder words.
Figure 9: The performance of several whitened word
embeddings when reducing the non-zero components.
The values are averaged over 14 analogy tasks or six
word similarity tasks. The performance of a specific
Results. In Fig. 8a, the heatmaps of the five im-
age models and fastText exhibit similar patterns,
indicating a shared set of independent semantic
axes in the ICA-transformed embeddings for both
images and words. While we expected a good align-
ment between ViT-Base and fastText, it is note-
worthy that we also observe a good alignment of
ResMLP (Touvron et al., 2023) and Swin Trans-
former (Liu et al., 2021) with fastText. Further-
more, Fig. 3a demonstrates a very good alignment
of axes between ViT-Base and ResMLP. This sug-
gests that the independent semantic components
captured by ICA are not specific to a particular
image model but are shared across multiple mod-
els. On the other hand, PCA gives a less favorable
alignment, as seen in Figs. 3b and 8b.
6 Quantitative evaluation
ZCA PCA Varimax ICA
DistRatio 1.04 1.13 1.26 1.57
Table 2: A large value of DistRatio indicates the consis-
tency of word meaning in the word intrusion task. We
set k = 5, and the reported score is the average of 10
runs with randomly selected intruder words.
Figure 9: The performance of several whitened word
embeddings when reducing the non-zero components.
The values are averaged over 14 analogy tasks or six
定量的評価
nCross-Lingual Alignment
• 多言語間の単語の翻訳タスク
Dataset Method Original Rand.
157langs-fastText
LS 84.72 55.28
Proc 84.95 18.72
ICA 19.48 18.60
PCA 0.92 0.64
MUSE-fastText
LS 78.91 51.44
Proc 78.41 20.19
ICA 43.27 43.31
PCA 2.13 0.40
optimal mappi
target language
as well as tran
sider LS as the
Proc performed
beddings, but
the random tra
beddings had v
across languag
まとめ
n既存のモデルのEmbeddingに対してICAで分析
• 定性的、定量的に見て良い軸の獲得
• PCAやZCAよりも向上
• 異なる言語、モデル、モーダル間で同様の意味となる軸を獲得
補足資料
定量的評価
n単語侵入タスク
• 似た意味のk個の単語集合から他の意味の単語と分離具合を表す
• ex. {windows, Microsoft, unix, linux, os}とhamster
• 𝐷𝑖𝑠𝑡𝑅𝑎𝑡𝑖𝑜 =
!
$
∑+,!
$ -"./0123.(+)
-".0+123.(+)
• 𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡 𝑎 = ∑6!,6"∈.9:# + ,
6!;6"
$23.(6!,6")
<(<=!)
• 𝑡𝑜𝑝< 𝑎 :k個の単語集合を各分析手法でa次元で表現したベクトル
• 𝑑𝑖𝑠𝑡:距離関数 (L2ノルム)
• 𝐼𝑛𝑡𝑒𝑟𝐷𝑖𝑠𝑡 𝑎 = ∑6!∈.9:#(+)
$23.(6!,6!$%&'()& + )
<
• 𝑤2".0>$/0 𝑎 :他の意味の単語を各分析手法でa次元で表現したベクトル
!
" な気がする
Fig. 8a, the heatmaps of the five im-
d fastText exhibit similar patterns,
hared set of independent semantic
ZCA PCA Varimax ICA
DistRatio 1.04 1.13 1.26 1.57

More Related Content

What's hot

論文紹介 Amortized bayesian meta learning
論文紹介 Amortized bayesian meta learning論文紹介 Amortized bayesian meta learning
論文紹介 Amortized bayesian meta learningXiangze
 
距離と分類の話
距離と分類の話距離と分類の話
距離と分類の話考司 小杉
 
比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!takehikoihayashi
 
Centerlossを読んでみた_20170618@abeja
Centerlossを読んでみた_20170618@abejaCenterlossを読んでみた_20170618@abeja
Centerlossを読んでみた_20170618@abejaYumaMatsuoka
 
順序データでもベイズモデリング
順序データでもベイズモデリング順序データでもベイズモデリング
順序データでもベイズモデリング. .
 
Res netと派生研究の紹介
Res netと派生研究の紹介Res netと派生研究の紹介
Res netと派生研究の紹介masataka nishimori
 
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...joisino
 
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11Koichi Hamada
 
Bayesian Neural Networks : Survey
Bayesian Neural Networks : SurveyBayesian Neural Networks : Survey
Bayesian Neural Networks : Surveytmtm otm
 
Javaでつくる本格形態素解析器
Javaでつくる本格形態素解析器Javaでつくる本格形態素解析器
Javaでつくる本格形態素解析器Works Applications
 
ベイズファクターとモデル選択
ベイズファクターとモデル選択ベイズファクターとモデル選択
ベイズファクターとモデル選択kazutantan
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習Deep Learning JP
 
トピックモデルの基礎と応用
トピックモデルの基礎と応用トピックモデルの基礎と応用
トピックモデルの基礎と応用Tomonari Masada
 
データサイエンス概論第一=2-1 データ間の距離と類似度
データサイエンス概論第一=2-1 データ間の距離と類似度データサイエンス概論第一=2-1 データ間の距離と類似度
データサイエンス概論第一=2-1 データ間の距離と類似度Seiichi Uchida
 
20180118 一般化線形モデル(glm)
20180118 一般化線形モデル(glm)20180118 一般化線形モデル(glm)
20180118 一般化線形モデル(glm)Masakazu Shinoda
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門joisino
 
機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価Shintaro Fukushima
 

What's hot (20)

LDA入門
LDA入門LDA入門
LDA入門
 
論文紹介 Amortized bayesian meta learning
論文紹介 Amortized bayesian meta learning論文紹介 Amortized bayesian meta learning
論文紹介 Amortized bayesian meta learning
 
正準相関分析
正準相関分析正準相関分析
正準相関分析
 
距離と分類の話
距離と分類の話距離と分類の話
距離と分類の話
 
比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!
 
lsh
lshlsh
lsh
 
Centerlossを読んでみた_20170618@abeja
Centerlossを読んでみた_20170618@abejaCenterlossを読んでみた_20170618@abeja
Centerlossを読んでみた_20170618@abeja
 
順序データでもベイズモデリング
順序データでもベイズモデリング順序データでもベイズモデリング
順序データでもベイズモデリング
 
Res netと派生研究の紹介
Res netと派生研究の紹介Res netと派生研究の紹介
Res netと派生研究の紹介
 
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
 
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
 
Bayesian Neural Networks : Survey
Bayesian Neural Networks : SurveyBayesian Neural Networks : Survey
Bayesian Neural Networks : Survey
 
Javaでつくる本格形態素解析器
Javaでつくる本格形態素解析器Javaでつくる本格形態素解析器
Javaでつくる本格形態素解析器
 
ベイズファクターとモデル選択
ベイズファクターとモデル選択ベイズファクターとモデル選択
ベイズファクターとモデル選択
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習
 
トピックモデルの基礎と応用
トピックモデルの基礎と応用トピックモデルの基礎と応用
トピックモデルの基礎と応用
 
データサイエンス概論第一=2-1 データ間の距離と類似度
データサイエンス概論第一=2-1 データ間の距離と類似度データサイエンス概論第一=2-1 データ間の距離と類似度
データサイエンス概論第一=2-1 データ間の距離と類似度
 
20180118 一般化線形モデル(glm)
20180118 一般化線形モデル(glm)20180118 一般化線形モデル(glm)
20180118 一般化線形モデル(glm)
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
 
機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価
 

Similar to 論文紹介:Discovering Universal Geometry in Embeddings with ICA

Dimensionality Reduction and Feature Selection Methods for Script Identificat...
Dimensionality Reduction and Feature Selection Methods for Script Identificat...Dimensionality Reduction and Feature Selection Methods for Script Identificat...
Dimensionality Reduction and Feature Selection Methods for Script Identificat...ITIIIndustries
 
[Emnlp] what is glo ve part ii - towards data science
[Emnlp] what is glo ve  part ii - towards data science[Emnlp] what is glo ve  part ii - towards data science
[Emnlp] what is glo ve part ii - towards data scienceNikhil Jaiswal
 
Secured Ontology Mapping
Secured Ontology Mapping Secured Ontology Mapping
Secured Ontology Mapping dannyijwest
 
Image Super-Resolution Reconstruction Based On Multi-Dictionary Learning
Image Super-Resolution Reconstruction Based On Multi-Dictionary LearningImage Super-Resolution Reconstruction Based On Multi-Dictionary Learning
Image Super-Resolution Reconstruction Based On Multi-Dictionary LearningIJRESJOURNAL
 
A new survey on biclustering of
A new survey on biclustering ofA new survey on biclustering of
A new survey on biclustering ofcsandit
 
A NEW SURVEY ON BICLUSTERING OF MICROARRAY DATA
A NEW SURVEY ON BICLUSTERING OF MICROARRAY DATAA NEW SURVEY ON BICLUSTERING OF MICROARRAY DATA
A NEW SURVEY ON BICLUSTERING OF MICROARRAY DATAcscpconf
 
Harnessing Deep Neural Networks with Logic Rules
Harnessing Deep Neural Networks with Logic RulesHarnessing Deep Neural Networks with Logic Rules
Harnessing Deep Neural Networks with Logic RulesSho Takase
 
LATTICE-CELL : HYBRID APPROACH FOR TEXT CATEGORIZATION
LATTICE-CELL : HYBRID APPROACH FOR TEXT CATEGORIZATIONLATTICE-CELL : HYBRID APPROACH FOR TEXT CATEGORIZATION
LATTICE-CELL : HYBRID APPROACH FOR TEXT CATEGORIZATIONcscpconf
 
Image-Based Literal Node Matching for Linked Data Integration
Image-Based Literal Node Matching for Linked Data IntegrationImage-Based Literal Node Matching for Linked Data Integration
Image-Based Literal Node Matching for Linked Data IntegrationIJwest
 
Shape matching and object recognition using shape context belongie pami02
Shape matching and object recognition using shape context belongie pami02Shape matching and object recognition using shape context belongie pami02
Shape matching and object recognition using shape context belongie pami02irisshicat
 
Image Restoration and Denoising By Using Nonlocally Centralized Sparse Repres...
Image Restoration and Denoising By Using Nonlocally Centralized Sparse Repres...Image Restoration and Denoising By Using Nonlocally Centralized Sparse Repres...
Image Restoration and Denoising By Using Nonlocally Centralized Sparse Repres...IJERA Editor
 
Learning a Recurrent Visual Representation for Image Caption G
Learning a Recurrent Visual Representation for Image Caption GLearning a Recurrent Visual Representation for Image Caption G
Learning a Recurrent Visual Representation for Image Caption GJospehStull43
 
Learning a Recurrent Visual Representation for Image Caption G.docx
Learning a Recurrent Visual Representation for Image Caption G.docxLearning a Recurrent Visual Representation for Image Caption G.docx
Learning a Recurrent Visual Representation for Image Caption G.docxcroysierkathey
 
So sánh cấu trúc protein_Protein structure comparison
So sánh cấu trúc protein_Protein structure comparisonSo sánh cấu trúc protein_Protein structure comparison
So sánh cấu trúc protein_Protein structure comparisonbomxuan868
 
Word2vec on the italian language: first experiments
Word2vec on the italian language: first experimentsWord2vec on the italian language: first experiments
Word2vec on the italian language: first experimentsVincenzo Lomonaco
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Blei ngjordan2003
Blei ngjordan2003Blei ngjordan2003
Blei ngjordan2003Ajay Ohri
 
An Entity-Driven Recursive Neural Network Model for Chinese Discourse Coheren...
An Entity-Driven Recursive Neural Network Model for Chinese Discourse Coheren...An Entity-Driven Recursive Neural Network Model for Chinese Discourse Coheren...
An Entity-Driven Recursive Neural Network Model for Chinese Discourse Coheren...ijaia
 

Similar to 論文紹介:Discovering Universal Geometry in Embeddings with ICA (20)

Dimensionality Reduction and Feature Selection Methods for Script Identificat...
Dimensionality Reduction and Feature Selection Methods for Script Identificat...Dimensionality Reduction and Feature Selection Methods for Script Identificat...
Dimensionality Reduction and Feature Selection Methods for Script Identificat...
 
[Emnlp] what is glo ve part ii - towards data science
[Emnlp] what is glo ve  part ii - towards data science[Emnlp] what is glo ve  part ii - towards data science
[Emnlp] what is glo ve part ii - towards data science
 
Secured Ontology Mapping
Secured Ontology Mapping Secured Ontology Mapping
Secured Ontology Mapping
 
Image Super-Resolution Reconstruction Based On Multi-Dictionary Learning
Image Super-Resolution Reconstruction Based On Multi-Dictionary LearningImage Super-Resolution Reconstruction Based On Multi-Dictionary Learning
Image Super-Resolution Reconstruction Based On Multi-Dictionary Learning
 
A new survey on biclustering of
A new survey on biclustering ofA new survey on biclustering of
A new survey on biclustering of
 
A NEW SURVEY ON BICLUSTERING OF MICROARRAY DATA
A NEW SURVEY ON BICLUSTERING OF MICROARRAY DATAA NEW SURVEY ON BICLUSTERING OF MICROARRAY DATA
A NEW SURVEY ON BICLUSTERING OF MICROARRAY DATA
 
Www.cs.berkeley.edu kunal
Www.cs.berkeley.edu kunalWww.cs.berkeley.edu kunal
Www.cs.berkeley.edu kunal
 
Harnessing Deep Neural Networks with Logic Rules
Harnessing Deep Neural Networks with Logic RulesHarnessing Deep Neural Networks with Logic Rules
Harnessing Deep Neural Networks with Logic Rules
 
graph_embeddings
graph_embeddingsgraph_embeddings
graph_embeddings
 
LATTICE-CELL : HYBRID APPROACH FOR TEXT CATEGORIZATION
LATTICE-CELL : HYBRID APPROACH FOR TEXT CATEGORIZATIONLATTICE-CELL : HYBRID APPROACH FOR TEXT CATEGORIZATION
LATTICE-CELL : HYBRID APPROACH FOR TEXT CATEGORIZATION
 
Image-Based Literal Node Matching for Linked Data Integration
Image-Based Literal Node Matching for Linked Data IntegrationImage-Based Literal Node Matching for Linked Data Integration
Image-Based Literal Node Matching for Linked Data Integration
 
Shape matching and object recognition using shape context belongie pami02
Shape matching and object recognition using shape context belongie pami02Shape matching and object recognition using shape context belongie pami02
Shape matching and object recognition using shape context belongie pami02
 
Image Restoration and Denoising By Using Nonlocally Centralized Sparse Repres...
Image Restoration and Denoising By Using Nonlocally Centralized Sparse Repres...Image Restoration and Denoising By Using Nonlocally Centralized Sparse Repres...
Image Restoration and Denoising By Using Nonlocally Centralized Sparse Repres...
 
Learning a Recurrent Visual Representation for Image Caption G
Learning a Recurrent Visual Representation for Image Caption GLearning a Recurrent Visual Representation for Image Caption G
Learning a Recurrent Visual Representation for Image Caption G
 
Learning a Recurrent Visual Representation for Image Caption G.docx
Learning a Recurrent Visual Representation for Image Caption G.docxLearning a Recurrent Visual Representation for Image Caption G.docx
Learning a Recurrent Visual Representation for Image Caption G.docx
 
So sánh cấu trúc protein_Protein structure comparison
So sánh cấu trúc protein_Protein structure comparisonSo sánh cấu trúc protein_Protein structure comparison
So sánh cấu trúc protein_Protein structure comparison
 
Word2vec on the italian language: first experiments
Word2vec on the italian language: first experimentsWord2vec on the italian language: first experiments
Word2vec on the italian language: first experiments
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Blei ngjordan2003
Blei ngjordan2003Blei ngjordan2003
Blei ngjordan2003
 
An Entity-Driven Recursive Neural Network Model for Chinese Discourse Coheren...
An Entity-Driven Recursive Neural Network Model for Chinese Discourse Coheren...An Entity-Driven Recursive Neural Network Model for Chinese Discourse Coheren...
An Entity-Driven Recursive Neural Network Model for Chinese Discourse Coheren...
 

More from Toru Tamaki

論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...Toru Tamaki
 
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...Toru Tamaki
 
論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNetToru Tamaki
 
論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A survey論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A surveyToru Tamaki
 
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex ScenesToru Tamaki
 
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...Toru Tamaki
 
論文紹介:Tracking Anything with Decoupled Video Segmentation
論文紹介:Tracking Anything with Decoupled Video Segmentation論文紹介:Tracking Anything with Decoupled Video Segmentation
論文紹介:Tracking Anything with Decoupled Video SegmentationToru Tamaki
 
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
論文紹介:Real-Time Evaluation in Online Continual Learning: A New HopeToru Tamaki
 
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...Toru Tamaki
 
論文紹介:Multitask Vision-Language Prompt Tuning
論文紹介:Multitask Vision-Language Prompt Tuning論文紹介:Multitask Vision-Language Prompt Tuning
論文紹介:Multitask Vision-Language Prompt TuningToru Tamaki
 
論文紹介:MovieCLIP: Visual Scene Recognition in Movies
論文紹介:MovieCLIP: Visual Scene Recognition in Movies論文紹介:MovieCLIP: Visual Scene Recognition in Movies
論文紹介:MovieCLIP: Visual Scene Recognition in MoviesToru Tamaki
 
論文紹介:Efficient Video Action Detection with Token Dropout and Context Refinement
論文紹介:Efficient Video Action Detection with Token Dropout and Context Refinement論文紹介:Efficient Video Action Detection with Token Dropout and Context Refinement
論文紹介:Efficient Video Action Detection with Token Dropout and Context RefinementToru Tamaki
 
論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...
論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...
論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...Toru Tamaki
 
論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...
論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...
論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...Toru Tamaki
 
論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusion
論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusion論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusion
論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusionToru Tamaki
 
論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous Driving
論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous Driving論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous Driving
論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous DrivingToru Tamaki
 
論文紹介:Spatio-Temporal Action Detection Under Large Motion
論文紹介:Spatio-Temporal Action Detection Under Large Motion論文紹介:Spatio-Temporal Action Detection Under Large Motion
論文紹介:Spatio-Temporal Action Detection Under Large MotionToru Tamaki
 
論文紹介:Vision Transformer Adapter for Dense Predictions
論文紹介:Vision Transformer Adapter for Dense Predictions論文紹介:Vision Transformer Adapter for Dense Predictions
論文紹介:Vision Transformer Adapter for Dense PredictionsToru Tamaki
 
動画像理解のための深層学習アプローチ Deep learning approaches to video understanding
動画像理解のための深層学習アプローチ Deep learning approaches to video understanding動画像理解のための深層学習アプローチ Deep learning approaches to video understanding
動画像理解のための深層学習アプローチ Deep learning approaches to video understandingToru Tamaki
 
論文紹介:Masked Vision and Language Modeling for Multi-modal Representation Learning
論文紹介:Masked Vision and Language Modeling for Multi-modal Representation Learning論文紹介:Masked Vision and Language Modeling for Multi-modal Representation Learning
論文紹介:Masked Vision and Language Modeling for Multi-modal Representation LearningToru Tamaki
 

More from Toru Tamaki (20)

論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
論文紹介:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Gene...
 
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
論文紹介:Content-Aware Token Sharing for Efficient Semantic Segmentation With Vis...
 
論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet論文紹介:Automated Classification of Model Errors on ImageNet
論文紹介:Automated Classification of Model Errors on ImageNet
 
論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A survey論文紹介:Semantic segmentation using Vision Transformers: A survey
論文紹介:Semantic segmentation using Vision Transformers: A survey
 
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
論文紹介:MOSE: A New Dataset for Video Object Segmentation in Complex Scenes
 
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
論文紹介:MoLo: Motion-Augmented Long-Short Contrastive Learning for Few-Shot Acti...
 
論文紹介:Tracking Anything with Decoupled Video Segmentation
論文紹介:Tracking Anything with Decoupled Video Segmentation論文紹介:Tracking Anything with Decoupled Video Segmentation
論文紹介:Tracking Anything with Decoupled Video Segmentation
 
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
論文紹介:Real-Time Evaluation in Online Continual Learning: A New Hope
 
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
論文紹介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmenta...
 
論文紹介:Multitask Vision-Language Prompt Tuning
論文紹介:Multitask Vision-Language Prompt Tuning論文紹介:Multitask Vision-Language Prompt Tuning
論文紹介:Multitask Vision-Language Prompt Tuning
 
論文紹介:MovieCLIP: Visual Scene Recognition in Movies
論文紹介:MovieCLIP: Visual Scene Recognition in Movies論文紹介:MovieCLIP: Visual Scene Recognition in Movies
論文紹介:MovieCLIP: Visual Scene Recognition in Movies
 
論文紹介:Efficient Video Action Detection with Token Dropout and Context Refinement
論文紹介:Efficient Video Action Detection with Token Dropout and Context Refinement論文紹介:Efficient Video Action Detection with Token Dropout and Context Refinement
論文紹介:Efficient Video Action Detection with Token Dropout and Context Refinement
 
論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...
論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...
論文紹介:Learning from Noisy Pseudo Labels for Semi-Supervised Temporal Action Lo...
 
論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...
論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...
論文紹介:MeMViT: Memory-Augmented Multiscale Vision Transformer for Efficient Lon...
 
論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusion
論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusion論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusion
論文紹介:Revealing the unseen: Benchmarking video action recognition under occlusion
 
論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous Driving
論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous Driving論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous Driving
論文紹介:Video Task Decathlon: Unifying Image and Video Tasks in Autonomous Driving
 
論文紹介:Spatio-Temporal Action Detection Under Large Motion
論文紹介:Spatio-Temporal Action Detection Under Large Motion論文紹介:Spatio-Temporal Action Detection Under Large Motion
論文紹介:Spatio-Temporal Action Detection Under Large Motion
 
論文紹介:Vision Transformer Adapter for Dense Predictions
論文紹介:Vision Transformer Adapter for Dense Predictions論文紹介:Vision Transformer Adapter for Dense Predictions
論文紹介:Vision Transformer Adapter for Dense Predictions
 
動画像理解のための深層学習アプローチ Deep learning approaches to video understanding
動画像理解のための深層学習アプローチ Deep learning approaches to video understanding動画像理解のための深層学習アプローチ Deep learning approaches to video understanding
動画像理解のための深層学習アプローチ Deep learning approaches to video understanding
 
論文紹介:Masked Vision and Language Modeling for Multi-modal Representation Learning
論文紹介:Masked Vision and Language Modeling for Multi-modal Representation Learning論文紹介:Masked Vision and Language Modeling for Multi-modal Representation Learning
論文紹介:Masked Vision and Language Modeling for Multi-modal Representation Learning
 

Recently uploaded

Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Neo4j
 
Bluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfBluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfngoud9212
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsAndrey Dotsenko
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDGMarianaLemus7
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 

Recently uploaded (20)

Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort ServiceHot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024
 
Bluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfBluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdf
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDG
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 

論文紹介:Discovering Universal Geometry in Embeddings with ICA

  • 1. Discovering Universal Geometry in Embeddings with ICA Hiroki Yamagiwa, Momose Oyama, Hidetoshi Shimodaira EMNLP2023 仁田智也 (名工大)
  • 2. 概要 n深層学習におけるEmbedding • 入力データを固定次元のベクトルに変換すること • Ex. 単語、画像 • 基本的に学習によって得られる • 人間が解釈するには高次元すぎて難しい • 各軸の意味を表す成分が特定不可 nEmbeddingの解釈 • 独立成分分析 (ICA)を用いた解析 • 主成分分析と比較してスパースで解釈可能に • 異なるモーダル間で同じ意味を持つ軸の獲得 Discovering Universal Geometry in Embeddings with ICA Hiroaki Yamagiwa⇤ 1 Momose Oyama⇤ 1,2 Hidetoshi Shimodaira1,2 1 Kyoto University 2 RIKEN hiroaki.yamagiwa@sys.i.kyoto-u.ac.jp, oyama.momose@sys.i.kyoto-u.ac.jp, shimo@i.kyoto-u.ac.jp Abstract This study utilizes Independent Component Analysis (ICA) to unveil a consistent seman- tic structure within embeddings of words or images. Our approach extracts independent se- mantic components from the embeddings of a pre-trained model by leveraging anisotropic in- formation that remains after the whitening pro- cess in Principal Component Analysis (PCA). We demonstrate that each embedding can be expressed as a composition of a few intrinsic interpretable axes and that these semantic axes remain consistent across different languages, algorithms, and modalities. The discovery of a universal semantic structure in the geometric patterns of embeddings enhances our under- standing of the representations in embeddings. [cs.CL] 2 Nov 2023
  • 3. 関連研究 nWord Embeddingの解釈可能性 • 制約を入れた損失関数による学習 • スパース性 (Faruqui+, ACL- IJCNLP2015) • スパースオートエンコーダ (Subramanian+, AAAI2018) • 𝑙!正則化 (Sun+, ACL-IJCAI2016) • ICAによる解析 (Musil & Marecek, arXiv2022), (Honkela+, Natural Language Engineering2010) n異なる言語間のEmbedding • マッピング • 線形変換 (Mikolov+, arXiv2013) • 翻訳ペアで学習 (Xing+, NAACL2015) • 多言語モデル • BERT (Devlin+, NAACL2019)を用 いた研究 • 言語横断的な文法知識の獲得 (Chi+, ACL2020) • Embeddingを通じた他言語知識 の表現に関して (Chang+, EMNLP2022)
  • 4. 主成分分析 (PCA) n主成分分析 • データを無相関になるように変換を行う • ガウス分布に対しては独立成分の分解が可能 • 分散が大きい方向順に直行な軸の獲得 • 𝐙 = 𝐗𝐀 • 𝐗 ∈ ℝ"×$ • 𝑛:サンプル数, 𝑑:次元数 • 𝐀 ∈ ℝ$×$:変換行列 • 共分散行列の固有値ベクトルの行列 • 𝐙 ∈ ℝ"×$ • 主成分の軸に射影されたデータ • 𝐙⊺𝐙:対角行列 PCA
  • 5. 独立成分分析 (ICA) nICA • 変換した基底が独立になる • 独立成分の尖度、歪度を考慮 • PCAでは独立成分が正規分布に従うと仮定 • 平均、分散のみが考慮 • 𝐒 = 𝐗𝐁 • 𝐁:変換行列 nFastICA • 白色化したデータ𝐙に対して回転行列𝐑&'(を適用する • 𝐒 = 𝐙𝐑&'( • 各成分のエントロピーが最小になるようにニュートン法で最適化 Figure 5: Scatterplots of word embeddings along specific axe ICA and PCA-transformed embeddings were arranged in des Figure 6: Measures of non-Gaussianity for each axis of ICA a the measures for each component of the raw word embedd baselines. Larger values indicate deviation from the norma non-Gaussian than those found by PCA. For more details, ref 3.3 Interpretability and low-dimensionality of ICA-transformed embeddings Fig. 1 illustrates that the key components of a word embedding are formed by specific axes that capture the meanings associated with each word. Specifi- cally, this figure showcases five axes selected from the ICA-transformed word embeddings, that is, five columns of S. The word embeddings X have a dimensionality of d = 300 and were trained on the text8 corpus using Skip-gram with negative sampling. For details of the experiment, refer to Appendix B. Interpretability. Each of these axes represents a distinct meaning and can be interpreted by ex- amining the top words based on their normalized component values. For example, words like dishes, meat, noodles have high values on axis 16, while is Q 4 T IC fr m be de S G se im S (H si PCAでは尖度、歪度が0 Figure 5: Scatterplots of word embeddings along specific axes: (0, 1), (2, 3), (49, 50), and (99, 100). The axes for ICA and PCA-transformed embeddings were arranged in descending order of skewness and variance, respectively. Figure 6: Measures of non-Gaussianity for each axis of ICA and PCA-transformed word embeddings. Additionally, the measures for each component of the raw word embedding and a Gaussian random variable are plotted as baselines. Larger values indicate deviation from the normal distribution. The axes found by ICA are far more non-Gaussian than those found by PCA. For more details, refer to Appendix B. 3.3 Interpretability and low-dimensionality of ICA-transformed embeddings Fig. 1 illustrates that the key components of a word embedding are formed by specific axes that capture the meanings associated with each word. Specifi- cally, this figure showcases five axes selected from the ICA-transformed word embeddings, that is, five is approximately represented by these two axes. Quantitative evaluation is provided in Section 6. 4 Universality across languages This section examines the results of conducting ICA on word embeddings, each trained individually from different language corpora. Interestingly, the 正規分布とのずれ
  • 6. 独立成分分析の適用 nWord Embeddingに対して独立成分分析の適用 • モデル:MikolovらのSkip-gramモデル (NIPS2013) • 次元数:300 • データ:text8 (Mahoney, 2011) • トークン数:17.0×10) • 語彙:254×10* Discovering Universal Geometry in Embeddings with ICA Hiroaki Yamagiwa⇤ 1 Momose Oyama⇤ 1,2 Hidetoshi Shimodaira1,2 1 Kyoto University 2 RIKEN hiroaki.yamagiwa@sys.i.kyoto-u.ac.jp, oyama.momose@sys.i.kyoto-u.ac.jp, shimo@i.kyoto-u.ac.jp Abstract This study utilizes Independent Component Analysis (ICA) to unveil a consistent seman- tic structure within embeddings of words or images. Our approach extracts independent se- mantic components from the embeddings of a pre-trained model by leveraging anisotropic in- formation that remains after the whitening pro- cess in Principal Component Analysis (PCA). We demonstrate that each embedding can be expressed as a composition of a few intrinsic interpretable axes and that these semantic axes remain consistent across different languages, algorithms, and modalities. The discovery of a universal semantic structure in the geometric patterns of embeddings enhances our under- standing of the representations in embeddings. Figure 1: (Left) Heatmap of normalized ICA- 2 [cs.CL] 2 Nov 2023
  • 7. 異なる言語間の比較 n異なる言語のEmbeddingでの比較 • Embeddingモデル • GraveらのfastText学習済みモデル (LREC2018) • 157言語で異なるコーパスで学習 • 次元数:300 • 語彙:各言語50000語を著者らが選択 • 比較言語 • 英語、スペイン語、ロシア語、アラビア語、ヒンディー語、ロシア語、中国 語 • ICA • 500軸で分析
  • 8. 異なる言語間の比較 n最初の100軸の相互相関係数 (a) Normalized ICA-transformed word embeddings for seven languages. (a) Normalized ICA-transformed word embeddings for seven languages. ICA PCA
  • 10. 別モデルとの比較 nfastTextとBERTとの比較 • BERTモデル • トークン数:100000 • 次元数:768 Results. The upper panels of Fig. 3 display the cross-correlation coefficients between the first 100 axes of English and those of Spanish embeddings. The significant diagonal elements and negligible off-diagonal elements observed in Fig. 3a suggest a strong alignment of axes, indicating a good cor- respondence between the ICA-transformed embed- dings. Conversely, the less pronounced diagonal elements and non-negligible off-diagonal elements observed in Fig. 3b indicate a less favorable align- ment between the PCA-transformed embeddings. The semantic axes identified by ICA, referred to as ‘independent semantic axes’ or ‘independent se- mantic components’, appear to be nearly universal, regardless of the language. In Fig. 2a, heatmaps visualize the ICA-transformed embeddings. The upper panels display the top 5 words for each of the (a) ICA (b) PCA Results. The upper panels of Fig. 3 display the cross-correlation coefficients between the first 100 axes of English and those of Spanish embeddings. The significant diagonal elements and negligible off-diagonal elements observed in Fig. 3a suggest a strong alignment of axes, indicating a good cor- respondence between the ICA-transformed embed- dings. Conversely, the less pronounced diagonal elements and non-negligible off-diagonal elements observed in Fig. 3b indicate a less favorable align- ment between the PCA-transformed embeddings. The semantic axes identified by ICA, referred to as ‘independent semantic axes’ or ‘independent se- mantic components’, appear to be nearly universal, regardless of the language. In Fig. 2a, heatmaps visualize the ICA-transformed embeddings. The upper panels display the top 5 words for each of the (a) ICA (b) PCA ICA PCA
  • 11. Image Embeddingの分析 n画像認識モデルとの比較 • データ:ImageNet (Russakovsky+, IJCV2015) • 1000クラス • モデル • Vit-Base (Dosvitskiy+, ICLR2021) • ResMLP-12 (Touvron+, TPAMI2023) • Swin-S (Liu+, ICCV2021) • ResNet-18 (He+, CVPR2016) • RegNetY-200MF (Han+, CoRR2018) • 分析対象 • 各クラス100枚に対して分析 • 各モデルの最終層のベクトル • fastText • ImageNetのクラス名と対応する単語を分析
  • 13. 定量的評価 nWord Intrusion Task • 似た意味のk個の単語集合から他の意味の単語と分離具合を表す • ex. {windows, Microsoft, unix, linux, os}とhamster nAnalogy Task • 単語の関係性から他の単語を類推するタスク • ex. France : Paris = Italy : ? nWord Similarity Task • 人間が定めた単語間の類似度との一致度合いを表す Results. In Fig. 8a, the heatmaps of the five im- age models and fastText exhibit similar patterns, indicating a shared set of independent semantic axes in the ICA-transformed embeddings for both images and words. While we expected a good align- ment between ViT-Base and fastText, it is note- worthy that we also observe a good alignment of ResMLP (Touvron et al., 2023) and Swin Trans- former (Liu et al., 2021) with fastText. Further- more, Fig. 3a demonstrates a very good alignment of axes between ViT-Base and ResMLP. This sug- gests that the independent semantic components captured by ICA are not specific to a particular image model but are shared across multiple mod- els. On the other hand, PCA gives a less favorable alignment, as seen in Figs. 3b and 8b. 6 Quantitative evaluation We quantitatively evaluated the interpretability ZCA PCA Varimax ICA DistRatio 1.04 1.13 1.26 1.57 Table 2: A large value of DistRatio indicates the consis- tency of word meaning in the word intrusion task. We set k = 5, and the reported score is the average of 10 runs with randomly selected intruder words. Figure 9: The performance of several whitened word embeddings when reducing the non-zero components. The values are averaged over 14 analogy tasks or six word similarity tasks. The performance of a specific Results. In Fig. 8a, the heatmaps of the five im- age models and fastText exhibit similar patterns, indicating a shared set of independent semantic axes in the ICA-transformed embeddings for both images and words. While we expected a good align- ment between ViT-Base and fastText, it is note- worthy that we also observe a good alignment of ResMLP (Touvron et al., 2023) and Swin Trans- former (Liu et al., 2021) with fastText. Further- more, Fig. 3a demonstrates a very good alignment of axes between ViT-Base and ResMLP. This sug- gests that the independent semantic components captured by ICA are not specific to a particular image model but are shared across multiple mod- els. On the other hand, PCA gives a less favorable alignment, as seen in Figs. 3b and 8b. 6 Quantitative evaluation ZCA PCA Varimax ICA DistRatio 1.04 1.13 1.26 1.57 Table 2: A large value of DistRatio indicates the consis- tency of word meaning in the word intrusion task. We set k = 5, and the reported score is the average of 10 runs with randomly selected intruder words. Figure 9: The performance of several whitened word embeddings when reducing the non-zero components. The values are averaged over 14 analogy tasks or six
  • 14. 定量的評価 nCross-Lingual Alignment • 多言語間の単語の翻訳タスク Dataset Method Original Rand. 157langs-fastText LS 84.72 55.28 Proc 84.95 18.72 ICA 19.48 18.60 PCA 0.92 0.64 MUSE-fastText LS 78.91 51.44 Proc 78.41 20.19 ICA 43.27 43.31 PCA 2.13 0.40 optimal mappi target language as well as tran sider LS as the Proc performed beddings, but the random tra beddings had v across languag
  • 17. 定量的評価 n単語侵入タスク • 似た意味のk個の単語集合から他の意味の単語と分離具合を表す • ex. {windows, Microsoft, unix, linux, os}とhamster • 𝐷𝑖𝑠𝑡𝑅𝑎𝑡𝑖𝑜 = ! $ ∑+,! $ -"./0123.(+) -".0+123.(+) • 𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡 𝑎 = ∑6!,6"∈.9:# + , 6!;6" $23.(6!,6") <(<=!) • 𝑡𝑜𝑝< 𝑎 :k個の単語集合を各分析手法でa次元で表現したベクトル • 𝑑𝑖𝑠𝑡:距離関数 (L2ノルム) • 𝐼𝑛𝑡𝑒𝑟𝐷𝑖𝑠𝑡 𝑎 = ∑6!∈.9:#(+) $23.(6!,6!$%&'()& + ) < • 𝑤2".0>$/0 𝑎 :他の意味の単語を各分析手法でa次元で表現したベクトル ! " な気がする Fig. 8a, the heatmaps of the five im- d fastText exhibit similar patterns, hared set of independent semantic ZCA PCA Varimax ICA DistRatio 1.04 1.13 1.26 1.57