SlideShare a Scribd company logo
1 of 13
T.Chhay




               Appendix A. karKNna              nigkarviPaKedaylkçN³)aøsÞic
                                Plastic Analysis and Design
A >1> esckþIepþIm Introduction
        eyIg)anENnaMBIKMniténkar)ak;eday)aøsÞic (plastic collapse) enAkñúgEpñk 5>2/ “ kugRtaMg
Bt; nigm:Um:g)aøsÞic” . kar)ak;rbs;eRKOgbgÁúMnwgekIteLIgenAeBlbnÞúkbegáItsnøak;)aøsÞicRKb;RKan;edIm,I
             ;
begáItCa mechanism EdlnwgeFVIeGaymanPaBdabedayminmankarekIneLIgbnÞúk. enAkñúgFñwmEdl
kMNt;edaysþaTic eKRtUvkarEtsnøak;)aøsÞicmYyEtb:ueNÑaH. dUcbgðajenAkñúgrUbTI A>1 snøak;nwgekIt
manenAkEnøgNaEdlmanm:Um:g;Gtibrma ¬krNIenHKWenAkNþalElVg¦. enAeBlEdlm:Um:g;Bt;mantMél
FMRKb;RKan;edIm,IeFVIeGaymuxkat;TaMgmUl yield/ enaHvaminGacTb;nwgkarekIneLIgrbs;m:Um:g;EfmeTot/
ehIysnøak;)aøsÞick¾RtUv)anbegáIteLIg. snøak;)aøsÞicenHRsedogKñanwgsnøak;FmμtaEdr EtxusRtg;fa
snøak;)aøsÞicmanlT§PaBTb;nwgm:m:g;xøH EdldUcKñay:agxøaMgnwg rusty hinge.
                                U




                                             460                                         Appendix A
NPIC




lT§PaBm:Um:g;)aøsÞic (plastic moment capacity) EdlsMKal;eday M p Cam:Um:g;Bt;EdlekIt
manenARtg;snøak;)aøsÞic. vamantMélesμInwgm:Um:g;Tb;xagkñúgEdlekItBIkarEbgEckkugRtaMgEdlbgðaj
enAkñúgrUbTI A>1 c EtmanTisedApÞúyKña. eKGackMNt;m:Um:g;)aøsÞicenAeBlEdleKsÁal; yield stress
nigrUbragmuxkat; dUcbgðajenAkñúgrUbTI A>2. RbsinebIkarEbgEckkugRtaMgenAkñúglkçxNÐ)aøsÞiceBj
RtUv)anCMnYsedaykMlaMgsmmUlsþaTicBIrEdlmantMéldUcKña nigTisedApÞúyKña enaHvanwgbegáIt couple.
GaMgtg;sIueténkMlaMgnImYy²esμInwgplKuNrvag yield stress nigBak;kNþalRkLaépÞmuxkat;srub.
m:Um:g;EdlbegáIteday couple xagkñúgenHKW
                  A
       M p = Fy     a = Fy Z x
                  2
Edl A CaRkLaépÞmuxkat;srub/ a CacMgayrvagTIRbCMuTMgn;énRkLaépÞBak;kNþalBIr nig Z x Cam:U
Dulmuxkat;)aøsÞic. emKuNsuvtßiPaBcenøaHsßanPaB yielding dMbUg nigsßanPaB)aøsÞiceBjRtUv)ansM
EdgenAkñúgm:UDulmuxkat;. BIrUbTI A>1 b eKGacsresrm:Um:g;EdlbegáIt yield dMbUg
                          M p Fy Z x Z x
       M y = Fy S x nig         =       =
                          M y     F S
                                 y x     xS

pleFobenHCatMélefrsMrab;rUbragmuxkat;EdlsÁal; nigRtUv)aneKehAfa emKuNrUbrag. sMrab;Fñwm
EdlKNnaeday allowable stress theory vaCargVas;én reserve capacity ehIymantMélmFüm 1.12
sMrab; W-shapes.




        enAkñúgFñwm b¤eRKagsþaTicminkMNt; eKRtUvkarsnøak;)aøsÞiceRcInCagmYyedIm,IbegáIt collapse
mechanism. snøak;TaMgenHnwgRtUv)anbegáIttamlMdab;lMeday eTaHbICaeKmincaM)ac;dwgBIlMdab;k¾eday.

eKnwgBicarNakarviPaKrcnasm<n§½sþaTicminkMNt;eRkayBIkarBiPakSatMrUvkarrbs; Specification.


                                             461                                   Appendix A
T.Chhay




A>2>   AISC Requirements

       AISC Specification      GnuBaØatieGayeRbI plastic analysis and design enAeBl eRKOg
bgÁúMenArkSaPaBlMnwgTaMg local nigTaMgmUl Rtg;cMnuc plastic collapse. edaysareKtMrUveGayFñwm
b¤eRKagrgnUvPaBdabFMenAeBlEdlsnøak;)aøsÞicRtUv)anbegáIt eKRtUvkar lateral bracing CaBiess.
         edIm,IkarBar local buckling, AISC B5.2 TamTarfaGgát;man compact cross-sectional
shape Edl λ ≤ λ p sMrab;TaMgRTnug nigsøab. sMrab;Ggát; I-shaped shape dUcCa W nig S-shapes

pleFobTTwgelIkMras;EdlkMNt;BI Table B5.2 KW
        bf         65             bf         170
              ≤           (US)           ≤           (IS)
       2t f        Fy             2t f        Fy

nig     h
       tw
          ≤
            640
             Fy
                          (US)
                                   h 1680
                                  tw
                                     ≤
                                       Fy
                                                     (IS)


       edIm,IkarBar lateral buckling, AISC F1.2d kMNt; unbraced length Gtibrma       Lb   Rtg;
TItaMgsnøak;)aøsÞicCa L pd EdlsMrab; I-shaped member
                  3600 + 2200(M 1 / M 2 )
       L pd =                             ry         (US)         (AISC Equation F1-17)
                           Fy
                  24820 + 15170(M 1 / M 2 )
       L pd =                               ry       (IS)
                            Fy

enAkñúgsmIkarenH M 1 Cam:Um:g;EdltUcCagenARtg;cugén unbraced length nig M 2 CamU:m:g;EdlFMCag.
pleFob M 1 / M 2 KwviC¢manenAeBlEdl M 1 nig M 2 Bt;Ggát;eGaymankMeNagDub nigmantMél
GviC¢manenAeBlEdlvabegáItkMeNageTal.
        sMrab; compact shape Edlman lateral bracing RKb;RKan; eKGacyk M n esμInwg M p sMrab;
eRbIenAkñúg plastic analysis. b:uEnþ AISC F1.2d kMNt;faenAkñúgtMbn;EdlekItmansnøak;)aøsÞiccug
eRkay nigenAkñúgtMbn;EdlminEk,rsnøak;)aøsÞic eKRtUveRbIviFIFmμtaedIm,IkMNt; M n .
        AISC Specification provision epSgeTotEdlTak;Tgnwg plastic analysis and design

mandUcxageRkam.
        A5.1 Plastic analysis RtUv)anGnuBaØatsMrab;Et Fy ≤ 65ksi .

        C2.2 kMlaMgtamG½kSEdlbegáItedaybnÞúkTMnajemKuN nigbnÞúktamTisedkemKuNminRtUvFM

                Cag 0.75φc Ag Fy .

                                                   462                            Appendix A
NPIC




       E1.2   sMrab;ssr slenderness parameter λc minRtUvFMCag 1.5K Edl K CaemKuNRbEvg
              RbsiT§PaB.
A >3> karviPaK Analysis
RbsinebIvaGacman collapse mechanism eRcInCamYy dUcCaFñwmCab;EdlbgðajenAkñúgrUbTI A>3
eKGacrk)annUv collapse mechanism EdlRtwmRtUv ehIyviPaKCamYynwgCMnYyénRTwsþIeKalcMnYnbIrbs;
plaxtic analysis EdleGayenATIenHedayKμankarRsaybBa¢ak;.




       !>   Lower-bound    theorem    (static    theorem):    RbsinebIeKGacrk)annUvkarEbgEck
          m:Um:g;d¾mansuvtßiPaB ¬Edlm:Um:g;mYytUcCag b¤esμInwg M p RKb;kEnøg¦ ehIyvaGacTTYl
          bnÞúkedaysþaTic ¬lMnwgRtUv)anbMeBj¦ bnÞab;mkbnÞúkEdlRtUvKñaRtUvtUcCag b¤esμI
          collapse load.

       @> Upper-bound theorem (kinetic theorem): bnÞúkEdlRtUvnwg mechanism snμt;RtUvEtFM
          Cag b¤esμInwg collapse load. Cavi)ak RbsinebIeKGegát mechanism EdlGacmanTaMg
          Gs; mechanism mYyNaEdlRtUvkarbnÞúktUcCageKCa mechanism EdlRtwmRtUv.
       #> Uniqueness theorem: RbsineKmankarEbgEckm:Um:g;EdlGacTTYlyk)anedaysþaTic
          nigmansuvtßiPaB EdlenAkñúgenaH snøak;)aøsÞicRKb;RKan;begáIt collapse mechanism enaH


                                           463                                   Appendix A
T.Chhay




            bnÞúkEdlRtUvKñaCa collapse load EdlRbsinebI mechanism bMeBjTaMg upper-boud
            theorem nig lower-bound theorem vaCa mechanism EdlRtwmRtUv.

karviPaKEdlQrelI lower-bound theorem RtUv)aneKehAfa equilibrium method ehIyRtUv)an
bgðajenAkñúg]TahrN_ A>1.

]TahrN_ A>1³ rkbnÞúkcugeRkay      (ultimate load) sMrab;FñwmEdlbgðajenAkñúgrUbTI A>4a eday
equilibrium method rbs; plastic analysis. snμt;eKeRbI continuous lateral support nig EdlRb

ePT A36 .




dMeNaHRsay³ Edk A36 muxkat; W 30 × 99 Ca comapact shape ehIyCamYynwg continuous lateral
support, tMrUvkar lateral bracing KWRKb;RKan; dUcenHeKGacTTYlyk plastic analysis.
        dMNak;karénkardak;bnÞúkelIFñwm BI working load eTAdl; collapse load
RtUv)anKUsbBa¢ak;enAkñúgrUbTI A>4a-d. enAeBl working load muneBl yielding ekIteLIgRKb;TIkEnøg
karEbgEckm:Um:g;Bt;RtUv)anbgðajenAkñúgrUbTI A>4a CamYynwgm:Um:g;GtibrmaEdlekItmanRtg;TMrbgáb;.
enAeBlEdlbnÞúkekIneLIgbnþicmþg² yielding cab;epþImekItmanRtg;TMr enAeBlEdlm:Um:g;Bt;eTAdl;
M y = Fy S x . enAeBlEdlbnÞúkekIneLIgkan;EtFM vanwgekItmansnøak;)aøsÞickñúgeBldMNalKñaenA

Rtg;cugnImYy² enAeBlEdl M p = Fy Z x . enARtg;kMrwténkardak;bnÞúkenH eRKOgbgÁúMenAmanesßrPaB

                                          464                                      Appendix A
NPIC




enAeLIy FñwmRtUv)anERbkøayeTACasþaTickMNt;edaykarekItmansnøak;)aøsÞicBIr. Mechanism nwgekIt
anEtenAeBlEdlekItmansnøak;)aøsÞicTIbI. vaGacekItmanenAeBlEdlm:Um:g;viC¢manGtibrmamantMél
 M p . edayGaRs½ynwg uniqueness theorem/ bnÞúkEdlRtUvKñaCa collapse load BIeRBaHkarEbgEck

m:Um:g;KWsuvtßiPaB ehIyGacTTYlyk)anedaysþaTic.
          enARKb;tMNak;kalénkardak;bnÞúk plbUkénéldac;xaténm:Um:g;viC¢man nigm:Um:g;GviC¢manGti-
brmaKW wL2 / 8 . enAeBl collapse, plbUkenHkøayeTACa
                                              16M p
          M p + M p = wu L2 b¤
                       1
                                        wu =
                       8                        L2
eKRtUvEteRbobeFobbnÞúkemKuNCamYynwgersIusþg;emKuN dUcenHeKeRcIneRbI φb M p Cag M p enAkñúg
smIkarBIxagedIm. b:uEnþedIm,IrkSanimitþsBaØaeGaymanlkçN³samBaØ eyIgeRbI M p enARKb;]TahrN_
TaMgGs;rhUtdl;CMhancugeRkayeTIbeyIgCMnYs φb M p eTAkñúgsmIkar. lT§plEdlRtwmRtUv
sMrab;]TahrN_enHKW
                  16φb M p
        wu =
                     L2
sMrab; W 30 × 99
                             36(312 )
        M p = Fy Z x =                = 936 ft − kips
                               12
ehIy φb M p = 0.9(936) = 842.4 ft − kips
eKk¾GacTTYltMélrbs; φb M p edaypÞal;BI Load Factor Design Selection Table enAkñúg Part 4 of
the Manual.
                  16(842.4 )
cemøIy³ w u   =
                    (30)2
                               = 15.0kips / ft



]TahrN_ A>2³RbsinebIFñwmenAkñúg]TahrN_ A>1 minman continuous lateral support cUrkMNt;TItaMg
EdlRtUvBRgwg.
dMeNaHRsay³ snøak;)aøsÞicenAxagcugekIteLIgkñúgeBldMNalKña ehIymuneBlsnøak;enAkNþalElVg
ekIteLIg. dUcenHeKKYrEtRtYtBinitü unbraced length GtibrmaedayeFobeTAnwgcug ¬snøak;cugeRkay
EdlekIteLIgmintMrUvkar bracing sMrab; plastic analysis eT¦.



                                                   465                              Appendix A
T.Chhay




       edayeFobnwgsnøak;enAcugxageqVg snμt;facMnucBRgwgKWenAkNþalElVg. kñúgkrNIenH M 1 =
M 2 = M p dUcenHFñwmmankMeNagDub ¬m:Um:g;TaMgBIrmansBaØadUcKña¦ dUcenH M 1 / M 2 = +1 BI AISC

Equation F1-17, unbraced length GtibrmaKW
                 3600 + 2200(M 1 / M 2 )      3600 + 2200(1.0)
        L pd =                           ry =                  (2.10) = 338.3in. = 28.2 ft
                          Fy                         36

cMNaMfa FñwmenHesÞIrEtRKb;RKan;edayminRtUvkar lateral bracing.
        CamYynwg lateral mYyTl;enAkNþalElVg
        L p = 15 ft < 28.2 ft    (OK)

Unbraced length       EdlRtUvBicarNarYmKWrYbbBa©ÚlTaMgsnøak;enAkNþalElVg. vaminmantMbn;Edlmin
enACab;nwgsnøak;)aøsÞiceT dUcenHvaminRtUvkarkarKNna design strength eT.
cemøIy³ eRbI lateral brace mYyenAkNþalElVg.

       Mechanism method          KWQrelI    upper-bound theoremnigRtUvakrGegátRKb; collapse
mechanism EdlGacekItman. Collapse mechanism NaEdlRtUvkarbnÞúktUcCageKnwglub eyIy

bnÞúkEdlRtUvKñaCa collapse laod. eKRtUvGnuvtþeKalkarN_rbs; virtual work sMrab;viPaK
mechanism nImYy². Mechanism snμt;RtUvrgnUv virtual displacement RsbeTAtamclnaEdl

GacekItmanrbs; mechanism ehIyeKeGaykmμnþxageRkA nigkmμnþxagkñúgesμIKña. bnÞab;mkeKGacrk
TMnak;TMngrvagbnÞúk niglT§PaBTb;m:Um:g;)aøsÞic M p . bec©keTsenHRtUv)anbgðajenAkñúg]TahrN_
A>3 nig A>4.



]TahrN_ A>3³ FñwmCab;EdlRtUv)anbgðajenAkñúgrUbTI A>5 man compact cross section Edlman
design strength φb M p = 1040 ft − kips    . eRbI mechanism method edIm,Irk collapse load Pu .
snμt; continuous lateral support.
dMeNaHRsay³ eKman failure mechanism sMrab;FñwmenHBIry:ag. dUcEdlbgðajenAkñúgrUbTI A>5
vamanlkçN³RsedogKñaEdlkMNat;Ggát;nImYy²rgnUv rigid-body motion. edIm,IGegát mechanism
enAkñúgElVg AB dak; vitual rotation θ Rtg; A. karvilEdlRtUvKñaenARtg;snøak;)aøsÞicRtUv)anbgðaj
enAkñúgrUbTI A>5b ehIybMlas;TItamTisQrébnÞúkKW 10θ . BIeKalkarN_rbs; virtual work
         kmμnþxageRkA = kmμnþxagkñúg
                                              466                                        Appendix A
NPIC




        P(10θ ) = M p (2θ ) + M pθ

¬vaminmankmμnþxagkñúgenARtg; A eT eRBaHvaminmansnøak;)aøsÞic¦
       collapse load KW
                 3M p
        Pu =
                  10
Mechanism   sMrab;ElVg AB manlkçN³xusKñabnþic³ RKb;snøak;TaMgbICasnøak;)aøsÞic.
Virtual work xagkñúg nig virtual work xageRkAkñúgkrNIKW

        2 Pu (15θ ) = M pθ + M p (2θ ) + M pθ

enaH Pu = 15 M p
             2


lT§PaBTIBIrenHRtUvkarbnÞúktUcCag dUcenHvaCa mechanism EdlRtwmRtUv. Collapse load Edlnwg
TTYl)anedayeRbI φb M p CMnYseGay M p
cemøIy³ Pu   =
                  2
                 15
                    φb M p = (1040) = 139kips
                             2
                            15




                                                467                               Appendix A
T.Chhay




]TahrN_ A>4³ kMNt; collapse load P sMrab; rigid frame EdlbgðajenAkñúgrUbTI A>6. Ggát;
                                      u

nImYy²rbs;eRKagKW W 21×147 Edlman Fy = 50ksi . snμt; lateral support Cab;.




dMeNaHRsay³ W 21×147 Ca compact shape sMrab; F      y   = 50ksi   nigman lateral support Cab; dUc
enHvabMeBjlkçxNÐkñúgkareRbIR)as; plastic analysis.
        dUcbgðajenAkñúgrUbTI A>6 eKman failure mode cMnYnbIsMrab;eRKagenH³ Fñwm mechanism enA
kñúgGgát; BC / sway mechanism nigmYyeTotCabnSMén mechanism BIrdMbUg. eyIgcab;epþImkarviPaK
mechanism nImYy²edaydak; virtual rotation θ enARtg;snøak;mYy ehIysresrsmIkarCaGnuKmn_

eTAnwgmMuenH.

                                          468                                         Appendix A
NPIC




       Virtual displacement    rbs;Fñwm mechanism RtUv)anbgðajenAkñúgrUbTI A>6 b. BIsmPaBén
kmμnþxageRkA nigkmμnþxagkñúg
                               ⎛5 ⎞        ⎛2 ⎞
        Pu (10θ ) = M pθ + M p ⎜ θ ⎟ + M p ⎜ θ ⎟
                               ⎝3 ⎠        ⎝3 ⎠
EdleKeRbI M p CMnYseGay φb M p . edaHRsayrk Pu
        Pu = 0.3333M p

RbsinebIeKminKit axial strain enAkñúgGgát; BC / sway mechanism nwgxUcRTg;RTaydUcbgðaj
enAkñúgrUbTI A>6 c CamYynwgbMlas;TItamTisedkdUcKñaRtg; B nig C . Cavi)ak muMrgVilénRKb;snøak;
TaMgGs;KWlkçN³RsedogKña³
          Pu (15θ ) = M p (4θ ) b¤   Pu = 0.2667 M p

BIrUbTI A>6d/ eKalkarN_én virtual work sMrab; combined mechanism eGay
                                           ⎛5 ⎞        ⎛2      ⎞
        Pu (15θ ) + Pu (10θ ) = M pθ + M p ⎜ θ ⎟ + M p ⎜ θ + θ ⎟ + M pθ
                                           ⎝3 ⎠        ⎝3      ⎠
        Pu = 0.2133M p         ¬lub¦
cemøIy³ Collapse load sMrab;eRKagKW Pu = 0.2133φb M p = 0.2133(1400) = 299kips

         cMNaMfa vamancMnucdUcKñaxøHrvagviFIénkarviPaKTaMgBIr. eTaHbICa equilibrium method
minRtUvkarBicarNaRKb; mechanism k¾eday k¾vaRtUvkareGayeyIgdwgBI mechanism enAeBlEdlkar
EbgEcgm:Um:g;snμt;RsbeTAnwg mechanism mYy. viFITaMgBIrRtUvkarkarsnμt; failure mechanism b:uEnþ
enAkñúg equilibrium method eKRtUvRtYtBinitükarsnμt;nImYy²sMrab;suvtßiPaB nigkarEbgEckm:Um:g;Edl
GacTTYlyk)anedaysþaTic ehIyvaminRtUvkarkarGegátRKb; mechanism eT.
A >4> karKNnamuxkat; Design
       dMeNIrkarénkarKNnaKWRsedogKñanwgkarviPaKEdr EtvaxusKñaRtg;faGBaØtiEdlRtUvrkCalT§
PaBm:Umg;)aøsÞicEdlRtUvkar M p . eKsÁal; collapse load EdlTTYl)anBIkarKuN service load nwgem
KuNbnÞúk.

]TahrN_ A>4³ FñwmCab;bIElVgdUcbgðajenAkñúgrUbTI A>7 RtUvRTnUv gravity service load. bnÞúknI-
mYy²pSMeLIgedaybnÞúkefr 25% nigbnÞúkGefr 75% . eKeRbI cover plate enAkñúgElVg BC nig CD
                                             469                                   Appendix A
T.Chhay




edIm,ITTYl)an moment strength dUcEdl)anbgðaj. snμt; continuous lateral support nigeRCIs
erIsrUbragEdksMrab;RbePT A36 .




dMeNaHRsay³ Collapse load EdlTTYl)anedaykarKuN service load edayemKuNbnÞúksmRsb.
sMrab; service load 45kips
        Pu = 1.2(0.25 × 45) + 1.60(0.75 × 45) = 67.5kips
sMrab; service load 75kips
        Pu = 1.2(0.25 × 75) + 1.60(0.75 × 75) = 85.5kips
eKRtUvGegát          bIEdlman mechanism mYyenAelIElVgmYy. rUbTI A>7 c-e bgðajBI
              mechanism

mechanism nImYy²eRkayBIrgnUv virtual displacement. enAeBlEdlsnøak;)aøsÞicekIteLIgenARtg;




                                            470                               Appendix A
NPIC




TMrEdlGgát;nImYy²minmanersIusþg;esμIKña vanwgekIteLIgenAeBlEdlm:Um:g;Bt;esμInwglT§PaBm:Um:g;)aøsÞic
rbs;Ggát;EdlexSayCag.
          sMrab;ElVg AB
                  kmμnþxageRkA = kmμnþxagkñúg
                  67.5(5θ ) = M p (2θ + θ )        b¤ M p = 112.5 ft − kips
          sMrab;ElVg BC
                  85.5(10θ ) = M pθ + 2M p (2θ ) + M pθ
                                                     5
                                                     3
                                                                  b¤ M p = 128.2 ft − kips
          sMrab;ElVg CD
                  85.5(10θ ) = M p (θ + 2θ + θ )
                               5
                               3
                                                          b¤ M p = 128.2 ft − kips
Upper-bound theorem RtUv)anbkRsaydUcxageRkam³ tMélénm:Um:g;)aøsÞicEdlRtUvKñanwg mechanism

Edlsnμt;KWtUcCag b¤esμInwgm:Um:g;)aøsÞicsMrab; collapse load. dUcenH mechanism EdlTamTarlT§PaB
m:Um:g;FMCageKCa mechanism EdlRtwmRtUv. Mechanism TaMgBIrcugeRkaymantMél M p dUcKña ehIy
GacnwgekIteLIgkñúgeBldMNalKña. CaTUeTAersIusþg;EdlRtUvkarCa design strength EdlRtUvkar dUc
enH
         φb M p = 128.2 ft − kips
BI   Load Factor Design Selection Table,       rUbragEdlRsalCageKKW W 16 × 31 Edlman        design
strength θ b M p = 146 ft − kips

         sakl,g W 16 × 31 ehIyRtYtBinitükMlaMgkat; ¬eyagtamrUbTI A>8¦
         sMrab;ElVg AB
                 ∑ M B = V A (10 ) − 67.5(5) + 128.2 = 0

                V A = 20.93kips

                VB = 20.93 − 67.5 = −46.57 kips
         sMrab;ElVg BC
                                           ⎛5⎞
                ∑ M B = − M p + 85.5(10) + ⎜ ⎟ M p − VC (20) = 0
                                           ⎝3⎠
                     85.5(10) + (2 / 3)M p 855 + (2 / 3)(128.2)
                VC =                      =                     = 47.02kips
                              20                    20
                VB = 85.5 − 47.02 = 38.48kips



                                               471                                     Appendix A
T.Chhay




       sMrab;ElVg CD
                ∑ M C = − M p + M p + 85.5(10) − VD (20) = 0
                         5     5
                         3     3
               VD = 42.75kips = VC
        dUcenH kMlaMgkat;TTwgGtibrma VC KW)anmkBIElVg BC b¤esμIKña 47.02kips .
        BItaragbnÞúkBRgayesμIemKuNenAkñúg Part 4 of the Manual, shear design strength rbs;
W 16 × 31 KW
        φvVn = 84.9kips > 47.02kips         (OK)
cemøIy³ eRbI W 16 × 31 .

A >5> karsnñidæan Conclusion Remark
        karviPaKén mechanism EdlrgbnÞúkBRgaybgðajBIPaBsμúKsμajbEnßmeTotEdlmin)anerob
rab;enATIenH. bBaðaCak;EsþgenAkñúg plastic analysis or design rYmbBa©ÚlnUvkardak;bnÞúkEbbenH
y:agCak;Esþg. elIsBIenH eKKYrGegátGnþrGMeBIénT§iBlrbs;kMlaMgtamG½kS nigm:Um:g;Bt;sMrab;Ggát;
EdlrgTaMgkMlaMgtamG½kS nigm:Um:g;Bt; dUcenA rigid frame enAkñúg]TahrN_ A>4 .
        cMeBaHviFIviPaKEdlmanlkçN³TUeTAdUcCa equilibrium method manniyayy:aglMGitenAkñúg
the plastic methods of structural analysis (Neal, 1977). ehIyvamanrUbmnþEdlman

lkçN³sμúKsμajsMrab; mechanism method eTotpg. CamYynwgviFIenH EdleKsÁal;faCa method of
inequalities eKGackMNt; mechanism EdlRtwmRtUveday linear programming technique eday

pÞal;. eKGaceRbI plastic design FmμtasMrab;KNnaeRKOgbgÁúMPaKeRcIn b:uEnþCaTUeTA mechanism
method EdlbgðajenAkñúg]bsm<½n§enHKWRKb;RKan;ehIy.




                                          472                                     Appendix A

More Related Content

What's hot

Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofXi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofChhay Teng
 
X. connections for prestressed concrete element
X. connections for prestressed concrete elementX. connections for prestressed concrete element
X. connections for prestressed concrete elementChhay Teng
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structuresChhay Teng
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bendingChhay Teng
 
9.composite construction
9.composite construction9.composite construction
9.composite constructionChhay Teng
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic conceptsChhay Teng
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concreteChhay Teng
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loadsChhay Teng
 
3. analysis of statically determinate trusses
3. analysis of statically determinate trusses3. analysis of statically determinate trusses
3. analysis of statically determinate trussesChhay Teng
 

What's hot (12)

Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofXi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
 
X. connections for prestressed concrete element
X. connections for prestressed concrete elementX. connections for prestressed concrete element
X. connections for prestressed concrete element
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic concepts
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loads
 
RNA-seq tutorial
RNA-seq tutorialRNA-seq tutorial
RNA-seq tutorial
 
Spindle Torque
Spindle TorqueSpindle Torque
Spindle Torque
 
3. analysis of statically determinate trusses
3. analysis of statically determinate trusses3. analysis of statically determinate trusses
3. analysis of statically determinate trusses
 
Jonathan Partsch GIS Portfolio
Jonathan Partsch GIS PortfolioJonathan Partsch GIS Portfolio
Jonathan Partsch GIS Portfolio
 

Viewers also liked

Module4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sirModule4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sirSHAMJITH KM
 
Plastic analysis
Plastic analysisPlastic analysis
Plastic analysisJess Sadler
 
Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3SHAMJITH KM
 
Module4 rajesh sir
Module4 rajesh sirModule4 rajesh sir
Module4 rajesh sirSHAMJITH KM
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic membersChhay Teng
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension memberChhay Teng
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connectionsChhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy methodChhay Teng
 
7.simple connections
7.simple connections7.simple connections
7.simple connectionsChhay Teng
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness methodChhay Teng
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concreteChhay Teng
 
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlChhay Teng
 
10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force methodChhay Teng
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining wallsChhay Teng
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design Chhay Teng
 

Viewers also liked (20)

Module4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sirModule4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sir
 
Plastic analysis
Plastic analysisPlastic analysis
Plastic analysis
 
5 plastic analysis
5 plastic analysis5 plastic analysis
5 plastic analysis
 
Final Year Projects 2008-09
Final Year Projects 2008-09Final Year Projects 2008-09
Final Year Projects 2008-09
 
Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3
 
Module4 rajesh sir
Module4 rajesh sirModule4 rajesh sir
Module4 rajesh sir
 
5.beams
5.beams5.beams
5.beams
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension member
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connections
 
Xviii stairs
Xviii stairsXviii stairs
Xviii stairs
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 
7.simple connections
7.simple connections7.simple connections
7.simple connections
 
Appendix
AppendixAppendix
Appendix
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concrete
 
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
 
10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining walls
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
 

Similar to Appendix a plastic analysis and design

Xii slender column
Xii slender columnXii slender column
Xii slender columnChhay Teng
 
4.compression members
4.compression members4.compression members
4.compression membersChhay Teng
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking Chhay Teng
 
3.tension members
3.tension members3.tension members
3.tension membersChhay Teng
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteChhay Teng
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distributionChhay Teng
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structureChhay Teng
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded columnChhay Teng
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tensionChhay Teng
 
1.introduction
1.introduction1.introduction
1.introductionChhay Teng
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsionChhay Teng
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural membersChhay Teng
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slabChhay Teng
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stressesChhay Teng
 
Ix. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systemsIx. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systemsChhay Teng
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practiceChhay Teng
 
A.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdocA.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdocChhay Teng
 

Similar to Appendix a plastic analysis and design (18)

Xii slender column
Xii slender columnXii slender column
Xii slender column
 
4.compression members
4.compression members4.compression members
4.compression members
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
 
3.tension members
3.tension members3.tension members
3.tension members
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
 
8. deflection
8. deflection8. deflection
8. deflection
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structure
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tension
 
1.introduction
1.introduction1.introduction
1.introduction
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsion
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slab
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
 
Ix. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systemsIx. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systems
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practice
 
A.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdocA.matrix algebra for structural analysisdoc
A.matrix algebra for structural analysisdoc
 

More from Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_studentsChhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countriesChhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix designChhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelinesChhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto contentChhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 

More from Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

Appendix a plastic analysis and design

  • 1. T.Chhay Appendix A. karKNna nigkarviPaKedaylkçN³)aøsÞic Plastic Analysis and Design A >1> esckþIepþIm Introduction eyIg)anENnaMBIKMniténkar)ak;eday)aøsÞic (plastic collapse) enAkñúgEpñk 5>2/ “ kugRtaMg Bt; nigm:Um:g)aøsÞic” . kar)ak;rbs;eRKOgbgÁúMnwgekIteLIgenAeBlbnÞúkbegáItsnøak;)aøsÞicRKb;RKan;edIm,I ; begáItCa mechanism EdlnwgeFVIeGaymanPaBdabedayminmankarekIneLIgbnÞúk. enAkñúgFñwmEdl kMNt;edaysþaTic eKRtUvkarEtsnøak;)aøsÞicmYyEtb:ueNÑaH. dUcbgðajenAkñúgrUbTI A>1 snøak;nwgekIt manenAkEnøgNaEdlmanm:Um:g;Gtibrma ¬krNIenHKWenAkNþalElVg¦. enAeBlEdlm:Um:g;Bt;mantMél FMRKb;RKan;edIm,IeFVIeGaymuxkat;TaMgmUl yield/ enaHvaminGacTb;nwgkarekIneLIgrbs;m:Um:g;EfmeTot/ ehIysnøak;)aøsÞick¾RtUv)anbegáIteLIg. snøak;)aøsÞicenHRsedogKñanwgsnøak;FmμtaEdr EtxusRtg;fa snøak;)aøsÞicmanlT§PaBTb;nwgm:m:g;xøH EdldUcKñay:agxøaMgnwg rusty hinge. U 460 Appendix A
  • 2. NPIC lT§PaBm:Um:g;)aøsÞic (plastic moment capacity) EdlsMKal;eday M p Cam:Um:g;Bt;EdlekIt manenARtg;snøak;)aøsÞic. vamantMélesμInwgm:Um:g;Tb;xagkñúgEdlekItBIkarEbgEckkugRtaMgEdlbgðaj enAkñúgrUbTI A>1 c EtmanTisedApÞúyKña. eKGackMNt;m:Um:g;)aøsÞicenAeBlEdleKsÁal; yield stress nigrUbragmuxkat; dUcbgðajenAkñúgrUbTI A>2. RbsinebIkarEbgEckkugRtaMgenAkñúglkçxNÐ)aøsÞiceBj RtUv)anCMnYsedaykMlaMgsmmUlsþaTicBIrEdlmantMéldUcKña nigTisedApÞúyKña enaHvanwgbegáIt couple. GaMgtg;sIueténkMlaMgnImYy²esμInwgplKuNrvag yield stress nigBak;kNþalRkLaépÞmuxkat;srub. m:Um:g;EdlbegáIteday couple xagkñúgenHKW A M p = Fy a = Fy Z x 2 Edl A CaRkLaépÞmuxkat;srub/ a CacMgayrvagTIRbCMuTMgn;énRkLaépÞBak;kNþalBIr nig Z x Cam:U Dulmuxkat;)aøsÞic. emKuNsuvtßiPaBcenøaHsßanPaB yielding dMbUg nigsßanPaB)aøsÞiceBjRtUv)ansM EdgenAkñúgm:UDulmuxkat;. BIrUbTI A>1 b eKGacsresrm:Um:g;EdlbegáIt yield dMbUg M p Fy Z x Z x M y = Fy S x nig = = M y F S y x xS pleFobenHCatMélefrsMrab;rUbragmuxkat;EdlsÁal; nigRtUv)aneKehAfa emKuNrUbrag. sMrab;Fñwm EdlKNnaeday allowable stress theory vaCargVas;én reserve capacity ehIymantMélmFüm 1.12 sMrab; W-shapes. enAkñúgFñwm b¤eRKagsþaTicminkMNt; eKRtUvkarsnøak;)aøsÞiceRcInCagmYyedIm,IbegáIt collapse mechanism. snøak;TaMgenHnwgRtUv)anbegáIttamlMdab;lMeday eTaHbICaeKmincaM)ac;dwgBIlMdab;k¾eday. eKnwgBicarNakarviPaKrcnasm<n§½sþaTicminkMNt;eRkayBIkarBiPakSatMrUvkarrbs; Specification. 461 Appendix A
  • 3. T.Chhay A>2> AISC Requirements AISC Specification GnuBaØatieGayeRbI plastic analysis and design enAeBl eRKOg bgÁúMenArkSaPaBlMnwgTaMg local nigTaMgmUl Rtg;cMnuc plastic collapse. edaysareKtMrUveGayFñwm b¤eRKagrgnUvPaBdabFMenAeBlEdlsnøak;)aøsÞicRtUv)anbegáIt eKRtUvkar lateral bracing CaBiess. edIm,IkarBar local buckling, AISC B5.2 TamTarfaGgát;man compact cross-sectional shape Edl λ ≤ λ p sMrab;TaMgRTnug nigsøab. sMrab;Ggát; I-shaped shape dUcCa W nig S-shapes pleFobTTwgelIkMras;EdlkMNt;BI Table B5.2 KW bf 65 bf 170 ≤ (US) ≤ (IS) 2t f Fy 2t f Fy nig h tw ≤ 640 Fy (US) h 1680 tw ≤ Fy (IS) edIm,IkarBar lateral buckling, AISC F1.2d kMNt; unbraced length Gtibrma Lb Rtg; TItaMgsnøak;)aøsÞicCa L pd EdlsMrab; I-shaped member 3600 + 2200(M 1 / M 2 ) L pd = ry (US) (AISC Equation F1-17) Fy 24820 + 15170(M 1 / M 2 ) L pd = ry (IS) Fy enAkñúgsmIkarenH M 1 Cam:Um:g;EdltUcCagenARtg;cugén unbraced length nig M 2 CamU:m:g;EdlFMCag. pleFob M 1 / M 2 KwviC¢manenAeBlEdl M 1 nig M 2 Bt;Ggát;eGaymankMeNagDub nigmantMél GviC¢manenAeBlEdlvabegáItkMeNageTal. sMrab; compact shape Edlman lateral bracing RKb;RKan; eKGacyk M n esμInwg M p sMrab; eRbIenAkñúg plastic analysis. b:uEnþ AISC F1.2d kMNt;faenAkñúgtMbn;EdlekItmansnøak;)aøsÞiccug eRkay nigenAkñúgtMbn;EdlminEk,rsnøak;)aøsÞic eKRtUveRbIviFIFmμtaedIm,IkMNt; M n . AISC Specification provision epSgeTotEdlTak;Tgnwg plastic analysis and design mandUcxageRkam. A5.1 Plastic analysis RtUv)anGnuBaØatsMrab;Et Fy ≤ 65ksi . C2.2 kMlaMgtamG½kSEdlbegáItedaybnÞúkTMnajemKuN nigbnÞúktamTisedkemKuNminRtUvFM Cag 0.75φc Ag Fy . 462 Appendix A
  • 4. NPIC E1.2 sMrab;ssr slenderness parameter λc minRtUvFMCag 1.5K Edl K CaemKuNRbEvg RbsiT§PaB. A >3> karviPaK Analysis RbsinebIvaGacman collapse mechanism eRcInCamYy dUcCaFñwmCab;EdlbgðajenAkñúgrUbTI A>3 eKGacrk)annUv collapse mechanism EdlRtwmRtUv ehIyviPaKCamYynwgCMnYyénRTwsþIeKalcMnYnbIrbs; plaxtic analysis EdleGayenATIenHedayKμankarRsaybBa¢ak;. !> Lower-bound theorem (static theorem): RbsinebIeKGacrk)annUvkarEbgEck m:Um:g;d¾mansuvtßiPaB ¬Edlm:Um:g;mYytUcCag b¤esμInwg M p RKb;kEnøg¦ ehIyvaGacTTYl bnÞúkedaysþaTic ¬lMnwgRtUv)anbMeBj¦ bnÞab;mkbnÞúkEdlRtUvKñaRtUvtUcCag b¤esμI collapse load. @> Upper-bound theorem (kinetic theorem): bnÞúkEdlRtUvnwg mechanism snμt;RtUvEtFM Cag b¤esμInwg collapse load. Cavi)ak RbsinebIeKGegát mechanism EdlGacmanTaMg Gs; mechanism mYyNaEdlRtUvkarbnÞúktUcCageKCa mechanism EdlRtwmRtUv. #> Uniqueness theorem: RbsineKmankarEbgEckm:Um:g;EdlGacTTYlyk)anedaysþaTic nigmansuvtßiPaB EdlenAkñúgenaH snøak;)aøsÞicRKb;RKan;begáIt collapse mechanism enaH 463 Appendix A
  • 5. T.Chhay bnÞúkEdlRtUvKñaCa collapse load EdlRbsinebI mechanism bMeBjTaMg upper-boud theorem nig lower-bound theorem vaCa mechanism EdlRtwmRtUv. karviPaKEdlQrelI lower-bound theorem RtUv)aneKehAfa equilibrium method ehIyRtUv)an bgðajenAkñúg]TahrN_ A>1. ]TahrN_ A>1³ rkbnÞúkcugeRkay (ultimate load) sMrab;FñwmEdlbgðajenAkñúgrUbTI A>4a eday equilibrium method rbs; plastic analysis. snμt;eKeRbI continuous lateral support nig EdlRb ePT A36 . dMeNaHRsay³ Edk A36 muxkat; W 30 × 99 Ca comapact shape ehIyCamYynwg continuous lateral support, tMrUvkar lateral bracing KWRKb;RKan; dUcenHeKGacTTYlyk plastic analysis. dMNak;karénkardak;bnÞúkelIFñwm BI working load eTAdl; collapse load RtUv)anKUsbBa¢ak;enAkñúgrUbTI A>4a-d. enAeBl working load muneBl yielding ekIteLIgRKb;TIkEnøg karEbgEckm:Um:g;Bt;RtUv)anbgðajenAkñúgrUbTI A>4a CamYynwgm:Um:g;GtibrmaEdlekItmanRtg;TMrbgáb;. enAeBlEdlbnÞúkekIneLIgbnþicmþg² yielding cab;epþImekItmanRtg;TMr enAeBlEdlm:Um:g;Bt;eTAdl; M y = Fy S x . enAeBlEdlbnÞúkekIneLIgkan;EtFM vanwgekItmansnøak;)aøsÞickñúgeBldMNalKñaenA Rtg;cugnImYy² enAeBlEdl M p = Fy Z x . enARtg;kMrwténkardak;bnÞúkenH eRKOgbgÁúMenAmanesßrPaB 464 Appendix A
  • 6. NPIC enAeLIy FñwmRtUv)anERbkøayeTACasþaTickMNt;edaykarekItmansnøak;)aøsÞicBIr. Mechanism nwgekIt anEtenAeBlEdlekItmansnøak;)aøsÞicTIbI. vaGacekItmanenAeBlEdlm:Um:g;viC¢manGtibrmamantMél M p . edayGaRs½ynwg uniqueness theorem/ bnÞúkEdlRtUvKñaCa collapse load BIeRBaHkarEbgEck m:Um:g;KWsuvtßiPaB ehIyGacTTYlyk)anedaysþaTic. enARKb;tMNak;kalénkardak;bnÞúk plbUkénéldac;xaténm:Um:g;viC¢man nigm:Um:g;GviC¢manGti- brmaKW wL2 / 8 . enAeBl collapse, plbUkenHkøayeTACa 16M p M p + M p = wu L2 b¤ 1 wu = 8 L2 eKRtUvEteRbobeFobbnÞúkemKuNCamYynwgersIusþg;emKuN dUcenHeKeRcIneRbI φb M p Cag M p enAkñúg smIkarBIxagedIm. b:uEnþedIm,IrkSanimitþsBaØaeGaymanlkçN³samBaØ eyIgeRbI M p enARKb;]TahrN_ TaMgGs;rhUtdl;CMhancugeRkayeTIbeyIgCMnYs φb M p eTAkñúgsmIkar. lT§plEdlRtwmRtUv sMrab;]TahrN_enHKW 16φb M p wu = L2 sMrab; W 30 × 99 36(312 ) M p = Fy Z x = = 936 ft − kips 12 ehIy φb M p = 0.9(936) = 842.4 ft − kips eKk¾GacTTYltMélrbs; φb M p edaypÞal;BI Load Factor Design Selection Table enAkñúg Part 4 of the Manual. 16(842.4 ) cemøIy³ w u = (30)2 = 15.0kips / ft ]TahrN_ A>2³RbsinebIFñwmenAkñúg]TahrN_ A>1 minman continuous lateral support cUrkMNt;TItaMg EdlRtUvBRgwg. dMeNaHRsay³ snøak;)aøsÞicenAxagcugekIteLIgkñúgeBldMNalKña ehIymuneBlsnøak;enAkNþalElVg ekIteLIg. dUcenHeKKYrEtRtYtBinitü unbraced length GtibrmaedayeFobeTAnwgcug ¬snøak;cugeRkay EdlekIteLIgmintMrUvkar bracing sMrab; plastic analysis eT¦. 465 Appendix A
  • 7. T.Chhay edayeFobnwgsnøak;enAcugxageqVg snμt;facMnucBRgwgKWenAkNþalElVg. kñúgkrNIenH M 1 = M 2 = M p dUcenHFñwmmankMeNagDub ¬m:Um:g;TaMgBIrmansBaØadUcKña¦ dUcenH M 1 / M 2 = +1 BI AISC Equation F1-17, unbraced length GtibrmaKW 3600 + 2200(M 1 / M 2 ) 3600 + 2200(1.0) L pd = ry = (2.10) = 338.3in. = 28.2 ft Fy 36 cMNaMfa FñwmenHesÞIrEtRKb;RKan;edayminRtUvkar lateral bracing. CamYynwg lateral mYyTl;enAkNþalElVg L p = 15 ft < 28.2 ft (OK) Unbraced length EdlRtUvBicarNarYmKWrYbbBa©ÚlTaMgsnøak;enAkNþalElVg. vaminmantMbn;Edlmin enACab;nwgsnøak;)aøsÞiceT dUcenHvaminRtUvkarkarKNna design strength eT. cemøIy³ eRbI lateral brace mYyenAkNþalElVg. Mechanism method KWQrelI upper-bound theoremnigRtUvakrGegátRKb; collapse mechanism EdlGacekItman. Collapse mechanism NaEdlRtUvkarbnÞúktUcCageKnwglub eyIy bnÞúkEdlRtUvKñaCa collapse laod. eKRtUvGnuvtþeKalkarN_rbs; virtual work sMrab;viPaK mechanism nImYy². Mechanism snμt;RtUvrgnUv virtual displacement RsbeTAtamclnaEdl GacekItmanrbs; mechanism ehIyeKeGaykmμnþxageRkA nigkmμnþxagkñúgesμIKña. bnÞab;mkeKGacrk TMnak;TMngrvagbnÞúk niglT§PaBTb;m:Um:g;)aøsÞic M p . bec©keTsenHRtUv)anbgðajenAkñúg]TahrN_ A>3 nig A>4. ]TahrN_ A>3³ FñwmCab;EdlRtUv)anbgðajenAkñúgrUbTI A>5 man compact cross section Edlman design strength φb M p = 1040 ft − kips . eRbI mechanism method edIm,Irk collapse load Pu . snμt; continuous lateral support. dMeNaHRsay³ eKman failure mechanism sMrab;FñwmenHBIry:ag. dUcEdlbgðajenAkñúgrUbTI A>5 vamanlkçN³RsedogKñaEdlkMNat;Ggát;nImYy²rgnUv rigid-body motion. edIm,IGegát mechanism enAkñúgElVg AB dak; vitual rotation θ Rtg; A. karvilEdlRtUvKñaenARtg;snøak;)aøsÞicRtUv)anbgðaj enAkñúgrUbTI A>5b ehIybMlas;TItamTisQrébnÞúkKW 10θ . BIeKalkarN_rbs; virtual work kmμnþxageRkA = kmμnþxagkñúg 466 Appendix A
  • 8. NPIC P(10θ ) = M p (2θ ) + M pθ ¬vaminmankmμnþxagkñúgenARtg; A eT eRBaHvaminmansnøak;)aøsÞic¦ collapse load KW 3M p Pu = 10 Mechanism sMrab;ElVg AB manlkçN³xusKñabnþic³ RKb;snøak;TaMgbICasnøak;)aøsÞic. Virtual work xagkñúg nig virtual work xageRkAkñúgkrNIKW 2 Pu (15θ ) = M pθ + M p (2θ ) + M pθ enaH Pu = 15 M p 2 lT§PaBTIBIrenHRtUvkarbnÞúktUcCag dUcenHvaCa mechanism EdlRtwmRtUv. Collapse load Edlnwg TTYl)anedayeRbI φb M p CMnYseGay M p cemøIy³ Pu = 2 15 φb M p = (1040) = 139kips 2 15 467 Appendix A
  • 9. T.Chhay ]TahrN_ A>4³ kMNt; collapse load P sMrab; rigid frame EdlbgðajenAkñúgrUbTI A>6. Ggát; u nImYy²rbs;eRKagKW W 21×147 Edlman Fy = 50ksi . snμt; lateral support Cab;. dMeNaHRsay³ W 21×147 Ca compact shape sMrab; F y = 50ksi nigman lateral support Cab; dUc enHvabMeBjlkçxNÐkñúgkareRbIR)as; plastic analysis. dUcbgðajenAkñúgrUbTI A>6 eKman failure mode cMnYnbIsMrab;eRKagenH³ Fñwm mechanism enA kñúgGgát; BC / sway mechanism nigmYyeTotCabnSMén mechanism BIrdMbUg. eyIgcab;epþImkarviPaK mechanism nImYy²edaydak; virtual rotation θ enARtg;snøak;mYy ehIysresrsmIkarCaGnuKmn_ eTAnwgmMuenH. 468 Appendix A
  • 10. NPIC Virtual displacement rbs;Fñwm mechanism RtUv)anbgðajenAkñúgrUbTI A>6 b. BIsmPaBén kmμnþxageRkA nigkmμnþxagkñúg ⎛5 ⎞ ⎛2 ⎞ Pu (10θ ) = M pθ + M p ⎜ θ ⎟ + M p ⎜ θ ⎟ ⎝3 ⎠ ⎝3 ⎠ EdleKeRbI M p CMnYseGay φb M p . edaHRsayrk Pu Pu = 0.3333M p RbsinebIeKminKit axial strain enAkñúgGgát; BC / sway mechanism nwgxUcRTg;RTaydUcbgðaj enAkñúgrUbTI A>6 c CamYynwgbMlas;TItamTisedkdUcKñaRtg; B nig C . Cavi)ak muMrgVilénRKb;snøak; TaMgGs;KWlkçN³RsedogKña³ Pu (15θ ) = M p (4θ ) b¤ Pu = 0.2667 M p BIrUbTI A>6d/ eKalkarN_én virtual work sMrab; combined mechanism eGay ⎛5 ⎞ ⎛2 ⎞ Pu (15θ ) + Pu (10θ ) = M pθ + M p ⎜ θ ⎟ + M p ⎜ θ + θ ⎟ + M pθ ⎝3 ⎠ ⎝3 ⎠ Pu = 0.2133M p ¬lub¦ cemøIy³ Collapse load sMrab;eRKagKW Pu = 0.2133φb M p = 0.2133(1400) = 299kips cMNaMfa vamancMnucdUcKñaxøHrvagviFIénkarviPaKTaMgBIr. eTaHbICa equilibrium method minRtUvkarBicarNaRKb; mechanism k¾eday k¾vaRtUvkareGayeyIgdwgBI mechanism enAeBlEdlkar EbgEcgm:Um:g;snμt;RsbeTAnwg mechanism mYy. viFITaMgBIrRtUvkarkarsnμt; failure mechanism b:uEnþ enAkñúg equilibrium method eKRtUvRtYtBinitükarsnμt;nImYy²sMrab;suvtßiPaB nigkarEbgEckm:Um:g;Edl GacTTYlyk)anedaysþaTic ehIyvaminRtUvkarkarGegátRKb; mechanism eT. A >4> karKNnamuxkat; Design dMeNIrkarénkarKNnaKWRsedogKñanwgkarviPaKEdr EtvaxusKñaRtg;faGBaØtiEdlRtUvrkCalT§ PaBm:Umg;)aøsÞicEdlRtUvkar M p . eKsÁal; collapse load EdlTTYl)anBIkarKuN service load nwgem KuNbnÞúk. ]TahrN_ A>4³ FñwmCab;bIElVgdUcbgðajenAkñúgrUbTI A>7 RtUvRTnUv gravity service load. bnÞúknI- mYy²pSMeLIgedaybnÞúkefr 25% nigbnÞúkGefr 75% . eKeRbI cover plate enAkñúgElVg BC nig CD 469 Appendix A
  • 11. T.Chhay edIm,ITTYl)an moment strength dUcEdl)anbgðaj. snμt; continuous lateral support nigeRCIs erIsrUbragEdksMrab;RbePT A36 . dMeNaHRsay³ Collapse load EdlTTYl)anedaykarKuN service load edayemKuNbnÞúksmRsb. sMrab; service load 45kips Pu = 1.2(0.25 × 45) + 1.60(0.75 × 45) = 67.5kips sMrab; service load 75kips Pu = 1.2(0.25 × 75) + 1.60(0.75 × 75) = 85.5kips eKRtUvGegát bIEdlman mechanism mYyenAelIElVgmYy. rUbTI A>7 c-e bgðajBI mechanism mechanism nImYy²eRkayBIrgnUv virtual displacement. enAeBlEdlsnøak;)aøsÞicekIteLIgenARtg; 470 Appendix A
  • 12. NPIC TMrEdlGgát;nImYy²minmanersIusþg;esμIKña vanwgekIteLIgenAeBlEdlm:Um:g;Bt;esμInwglT§PaBm:Um:g;)aøsÞic rbs;Ggát;EdlexSayCag. sMrab;ElVg AB kmμnþxageRkA = kmμnþxagkñúg 67.5(5θ ) = M p (2θ + θ ) b¤ M p = 112.5 ft − kips sMrab;ElVg BC 85.5(10θ ) = M pθ + 2M p (2θ ) + M pθ 5 3 b¤ M p = 128.2 ft − kips sMrab;ElVg CD 85.5(10θ ) = M p (θ + 2θ + θ ) 5 3 b¤ M p = 128.2 ft − kips Upper-bound theorem RtUv)anbkRsaydUcxageRkam³ tMélénm:Um:g;)aøsÞicEdlRtUvKñanwg mechanism Edlsnμt;KWtUcCag b¤esμInwgm:Um:g;)aøsÞicsMrab; collapse load. dUcenH mechanism EdlTamTarlT§PaB m:Um:g;FMCageKCa mechanism EdlRtwmRtUv. Mechanism TaMgBIrcugeRkaymantMél M p dUcKña ehIy GacnwgekIteLIgkñúgeBldMNalKña. CaTUeTAersIusþg;EdlRtUvkarCa design strength EdlRtUvkar dUc enH φb M p = 128.2 ft − kips BI Load Factor Design Selection Table, rUbragEdlRsalCageKKW W 16 × 31 Edlman design strength θ b M p = 146 ft − kips sakl,g W 16 × 31 ehIyRtYtBinitükMlaMgkat; ¬eyagtamrUbTI A>8¦ sMrab;ElVg AB ∑ M B = V A (10 ) − 67.5(5) + 128.2 = 0 V A = 20.93kips VB = 20.93 − 67.5 = −46.57 kips sMrab;ElVg BC ⎛5⎞ ∑ M B = − M p + 85.5(10) + ⎜ ⎟ M p − VC (20) = 0 ⎝3⎠ 85.5(10) + (2 / 3)M p 855 + (2 / 3)(128.2) VC = = = 47.02kips 20 20 VB = 85.5 − 47.02 = 38.48kips 471 Appendix A
  • 13. T.Chhay sMrab;ElVg CD ∑ M C = − M p + M p + 85.5(10) − VD (20) = 0 5 5 3 3 VD = 42.75kips = VC dUcenH kMlaMgkat;TTwgGtibrma VC KW)anmkBIElVg BC b¤esμIKña 47.02kips . BItaragbnÞúkBRgayesμIemKuNenAkñúg Part 4 of the Manual, shear design strength rbs; W 16 × 31 KW φvVn = 84.9kips > 47.02kips (OK) cemøIy³ eRbI W 16 × 31 . A >5> karsnñidæan Conclusion Remark karviPaKén mechanism EdlrgbnÞúkBRgaybgðajBIPaBsμúKsμajbEnßmeTotEdlmin)anerob rab;enATIenH. bBaðaCak;EsþgenAkñúg plastic analysis or design rYmbBa©ÚlnUvkardak;bnÞúkEbbenH y:agCak;Esþg. elIsBIenH eKKYrGegátGnþrGMeBIénT§iBlrbs;kMlaMgtamG½kS nigm:Um:g;Bt;sMrab;Ggát; EdlrgTaMgkMlaMgtamG½kS nigm:Um:g;Bt; dUcenA rigid frame enAkñúg]TahrN_ A>4 . cMeBaHviFIviPaKEdlmanlkçN³TUeTAdUcCa equilibrium method manniyayy:aglMGitenAkñúg the plastic methods of structural analysis (Neal, 1977). ehIyvamanrUbmnþEdlman lkçN³sμúKsμajsMrab; mechanism method eTotpg. CamYynwgviFIenH EdleKsÁal;faCa method of inequalities eKGackMNt; mechanism EdlRtwmRtUveday linear programming technique eday pÞal;. eKGaceRbI plastic design FmμtasMrab;KNnaeRKOgbgÁúMPaKeRcIn b:uEnþCaTUeTA mechanism method EdlbgðajenAkñúg]bsm<½n§enHKWRKb;RKan;ehIy. 472 Appendix A