SlideShare a Scribd company logo
1 of 26
Tutorial:
Impedance
Sergio Calatroni & Benoît Salvant- CERN
Tutorial
• Goals
- Get acquainted with the main concepts related to beam impedance
- Understand the effect of different materials, and different geometries
• Means
- Experimental measurements with Vector Network Analyser (VNA)
- Sincere thanks to Jean-Jacques Gratier from Keysight / Computer
Controls for kindly providing a E5080A VNA for free for the school
- Computational exercises with CST Studio Suite and ImpedanceWake2D
(IW2D)
- Sincere thanks to Monika Balk from CST / 3DS for providing several free
full licenses for Studio Suite for the duration of the school
- Short explanations of theoretical background
• The students group will be divided in two for the experimental work
• Computer work will be done in teams of 2.
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 3
Plan of the tutorial
• Introduction
- Surface impedance (10’ Sergio)
- Recap on beam impedance, introduction to CST studio Suite and IW2D (20’ Benoît)
• Work with network analyser 1 (60’ Sergio)
- Measurement of induction of different materials with solenoid
- Identification of materials and coatings
• And in parallel: first practice with CST Studio Suite (60’ Benoît)
- Different runs on predefined models: tubes, cavities, bellows…
• Guided simulations with IW2D (30’)
- Dependence of impedance on chamber diameter, bunch length, coating, …
• Work with network analyser 2 (30’)
- Measurement of resonances (with/without RF fingers)
• And in parallel: simulations à la carte (30’)
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 4
Ice-cream break
What is impedance?
• A term with many meanings, depending on context
- Impedance in electrical circuits
- Impedance of materials
- Surface impedance
- Beam coupling impedance
• There is a common rationale:
-
- Voltage and current flowing in the circuit, the material, the
surface
- The beam current, and the potential it generates on the
vacuum pipe
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 5
I
V
Z 
Square resistance and surface resistance
Consider a square sheet of metal and calculate its resistance to a
transverse current flow:
This is the so-called square resistance often indicated as 𝑅∎
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 6
current a
d
a


R
d
a
a
d


Square resistance and surface resistance
And now imagine that instead of DC we have RF, and the RF current is
confined in a skin depth:
This is a (simplified) definition of surface resistance Rs
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 7

2
0





s
R
current a
d
a


R
d
a
a
d






0
2

Surface impedance
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 8
 
)
0
(
)
0
(
)
0
(
)
0
(
)
0
(
0
x
z
z
z
z
z
s
s
s
H
E
J
E
dy
y
J
E
iX
R
Z 








I
V
Zs 
 




0
;
)
0
( dy
y
J
d
I
x
dE
V z
z ;
 



0
)
0
(
1
dy
y
J
J
z
z

S=d2
V~
)
0
(
z
E
)
(y
Jz
y
z
x
2
2
2
2
1
2
1
)
( x
s
s
tot H
d
R
I
R
t
P 

2
2
2
1
2
1
/ 










o
rf
s
rf
s
rf
B
R
H
R
P
S
P

)
0
(
z
H
Normal metals in the local limit
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 9
  
y
z
z e
J
y
J

 )
0
(
o



2

)
1
(
2
)
1
(
)
0
(
)
0
(
i
i
J
E
iX
R
Z o
z
z
n
n
n 



















2
2
1 o
o
s
s X
R 



 )
( 

n
R
  








t
i
e
J
t
J 
)
0
(
d
Rsquare

 (in DC)
Surface impedance practice
• For a bulk metal:
• Thin film over a substrate (metal)?
- Depends on substrate
- Depends on thickness wrt skin depth
• Practice: open two-layers.xlsx
- Thanks to Patrick Krkotić and Uwe Niedermayer for the paper
“Iterative Model for Calculating the Surface Impedance of
Multilayers”, 2016
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 10
2

o
s
s X
R 

d
o





2
o



2

Coil measurement from 100 kHz to 2 MHz
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 11
How the measurement is done
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 12
• We’ll measure S11
• (i.e. S11) power from port 1 going back into port 1
• 𝑆11 =
𝑃𝑅𝐸𝐹
𝑃𝐹𝑊𝐷
• If no power dissipated by the coil: 𝑆11 = 1
• Output from VNA is always in dB = −10 × 𝑙𝑜𝑔10 𝑆11
• What happens when we put a material (with or without
coating!) facing the coil?
Cavity measurement with Keysight VNA up to 1.5 GHz
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 13
How the measurement is done
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 14
• We’ll measure S21
• (i.e. S21) power from port 1 going into port 2
• 𝑆21 =
𝑃𝑇𝑅𝐴𝑁𝑆
𝑃𝐹𝑊𝐷
• Output from VNA is always in dB = −10 × 𝑙𝑜𝑔10 𝑆21
• Compare modules with perfect and damaged fingers
• How to identify a resonance?
Impedance in accelerators
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 15
Impedance: image charges
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 16
Image charges flow on the surface of the beampipe
The wakefields potential is proportional to surface impedance
of the vacuum chamber surface b
s
I
V
Z 
 = 2𝑏
Bunch frequency spectrum: LHC case
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 17
Gaussian bunches of 1011 protons, 8 cm long
Beam instantaneous image current
Line spacing:
revolution frequency
(11 KHz for LHC)
From: E. Métral
Frequency spectrum (Fourier transform)
Real bunches
Power dissipation from wakes is
where is a summation of
over the bunch frequency spectrum
( is the accelerator circumference)
( is the vacuum chamber circumference)
)
Re(
2 eff
s
b
loss Z
MI
P 
  s
Z
b
R 
 2
2
eff
s
Z
R

2
b

2
Transverse impedance
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 18
 
]
/
[
2
0
m
I
ds
B
c
E
j
Z
R





 


F. Sacherer in: Proceedings of the First Course of the International School of Particle Accelerators, CERN 77-13, p. 198
From wakefields to impedance
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 19
Wakefields have an effect on beam stability, in particular the transverse plane
Risetime of resistive-wall instability depends on the transverse impedance
)
Re(
1 eff
T
b
Z
EL
M
I

 s
T Z
b
c
R
Z



3
2

with at the frequency of the unstable mode
Betatron motion – simplified model
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 20
0
2
0
, 
 x
x 



)
(
0
0
,
)
(

 

t
j
e
x
t
x
Unperturbed motion of single particle with and
R
c

0

0
0
, 
 x
Q
 x
x R
Q 

Adding a perturbation to the beam that changes focussing:
Fx
x
x 

 2
0
,




Quadrupoles give the restoring (focussing) force -> harmonic oscillations
    0
,
2
0
,
2
0
,
2
2 


 




 F
F 











 





Im
)
Re
(
0
)
( e
e
x
t
x
t
j




 Im
1
Growth rate of instability
Anomalous skin effect
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 21
Limits for conductivity and skin effect
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 22



1. Normal skin effect if: e.g.: high temperature, low frequency
0
2


 

1
~

2. Anomalous skin effect if: 

 e.g.: low temperature, high frequency
Note: 1 & 2 valid under the implicit assumption 1


1 & 2 can also be rewritten (in advanced theory) as:
  4
3
2
2
1 





It derives that 1 can be true for and also for
1

 1


Mean free path and skin depth
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 23
Skin depth
Mean free path




0
2


1
~

.
2
0
const

 


 





F
e
eff
F
e v
m
ne
v
m
ne 


2
2
0 





0
n
neff 
Anomalous skin effect
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 24
Understood by Pippard, Proc. Roy. Soc. A191 (1947) 370
Exact calculations Reuter, Sondheimer, Proc. Roy. Soc. A195 (1948) 336
Normal skin effect
Anomalous skin effect
Asymptotic value
Two-layers
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 25
Iterative model
Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 26

More Related Content

Similar to Tutorial_-_Impedance_-_practice.pptx

13925cbse guess 5
13925cbse guess 513925cbse guess 5
13925cbse guess 5
ashikjose
 
Vlassis Petoussis Sensorcomm 2009
Vlassis Petoussis Sensorcomm 2009Vlassis Petoussis Sensorcomm 2009
Vlassis Petoussis Sensorcomm 2009
petousis
 
EEE 117L Network Analysis Laboratory Lab 1 1
EEE 117L Network Analysis Laboratory  Lab 1     1  EEE 117L Network Analysis Laboratory  Lab 1     1
EEE 117L Network Analysis Laboratory Lab 1 1
EvonCanales257
 
physics investogatory project class 12t.docx
physics investogatory project class 12t.docxphysics investogatory project class 12t.docx
physics investogatory project class 12t.docx
AshAsh279282
 
Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)
mycbseguide
 

Similar to Tutorial_-_Impedance_-_practice.pptx (20)

Seminar_Jan_2010.pdf
Seminar_Jan_2010.pdfSeminar_Jan_2010.pdf
Seminar_Jan_2010.pdf
 
n-p-p Silicon solar Cells.PDF
n-p-p Silicon solar Cells.PDFn-p-p Silicon solar Cells.PDF
n-p-p Silicon solar Cells.PDF
 
Lecture15
Lecture15Lecture15
Lecture15
 
13925cbse guess 5
13925cbse guess 513925cbse guess 5
13925cbse guess 5
 
Cbse physisc question paper 2014 1
Cbse physisc question paper 2014 1Cbse physisc question paper 2014 1
Cbse physisc question paper 2014 1
 
Abc introducción-al-diseño-y-construcción-de-elementos-pretensados
Abc introducción-al-diseño-y-construcción-de-elementos-pretensadosAbc introducción-al-diseño-y-construcción-de-elementos-pretensados
Abc introducción-al-diseño-y-construcción-de-elementos-pretensados
 
Mechanical Engineering Assignment Help
Mechanical Engineering Assignment HelpMechanical Engineering Assignment Help
Mechanical Engineering Assignment Help
 
Microelectromechanical Assignment Help
Microelectromechanical Assignment HelpMicroelectromechanical Assignment Help
Microelectromechanical Assignment Help
 
Maxwell Equations (2)
Maxwell Equations (2)Maxwell Equations (2)
Maxwell Equations (2)
 
Vlassis Petoussis Sensorcomm 2009
Vlassis Petoussis Sensorcomm 2009Vlassis Petoussis Sensorcomm 2009
Vlassis Petoussis Sensorcomm 2009
 
2023 Physics New Pattern
2023 Physics New Pattern 2023 Physics New Pattern
2023 Physics New Pattern
 
Lecture 6: Junction Characterisation
Lecture 6:   Junction CharacterisationLecture 6:   Junction Characterisation
Lecture 6: Junction Characterisation
 
EEE 117L Network Analysis Laboratory Lab 1 1
EEE 117L Network Analysis Laboratory  Lab 1     1  EEE 117L Network Analysis Laboratory  Lab 1     1
EEE 117L Network Analysis Laboratory Lab 1 1
 
MS 2018- Phy Theory bhsec.pptx
MS 2018- Phy Theory bhsec.pptxMS 2018- Phy Theory bhsec.pptx
MS 2018- Phy Theory bhsec.pptx
 
physics investogatory project class 12t.docx
physics investogatory project class 12t.docxphysics investogatory project class 12t.docx
physics investogatory project class 12t.docx
 
Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)Cbse class 12 physics sample paper 02 (for 2014)
Cbse class 12 physics sample paper 02 (for 2014)
 
Resonant Response of RLC Circuits
Resonant Response of RLC Circuits Resonant Response of RLC Circuits
Resonant Response of RLC Circuits
 
Electrical characterization of capacitance and interface traps
Electrical characterization of capacitance and interface trapsElectrical characterization of capacitance and interface traps
Electrical characterization of capacitance and interface traps
 
EEE 3
EEE 3EEE 3
EEE 3
 
Ch 21 Alternating Current
Ch 21 Alternating CurrentCh 21 Alternating Current
Ch 21 Alternating Current
 

Recently uploaded

Recently uploaded (20)

Software Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdfSoftware Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdf
 
21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university
 
Lab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docxLab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docx
 
CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference Modal
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
 
Low Altitude Air Defense (LAAD) Gunner’s Handbook
Low Altitude Air Defense (LAAD) Gunner’s HandbookLow Altitude Air Defense (LAAD) Gunner’s Handbook
Low Altitude Air Defense (LAAD) Gunner’s Handbook
 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
 
"United Nations Park" Site Visit Report.
"United Nations Park" Site  Visit Report."United Nations Park" Site  Visit Report.
"United Nations Park" Site Visit Report.
 
Autodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxAutodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptx
 
Geometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfGeometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdf
 
Operating System chapter 9 (Virtual Memory)
Operating System chapter 9 (Virtual Memory)Operating System chapter 9 (Virtual Memory)
Operating System chapter 9 (Virtual Memory)
 
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
 
Piping and instrumentation diagram p.pdf
Piping and instrumentation diagram p.pdfPiping and instrumentation diagram p.pdf
Piping and instrumentation diagram p.pdf
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
Artificial Intelligence in due diligence
Artificial Intelligence in due diligenceArtificial Intelligence in due diligence
Artificial Intelligence in due diligence
 
Linux Systems Programming: Semaphores, Shared Memory, and Message Queues
Linux Systems Programming: Semaphores, Shared Memory, and Message QueuesLinux Systems Programming: Semaphores, Shared Memory, and Message Queues
Linux Systems Programming: Semaphores, Shared Memory, and Message Queues
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
 
AI in Healthcare Innovative use cases and applications.pdf
AI in Healthcare Innovative use cases and applications.pdfAI in Healthcare Innovative use cases and applications.pdf
AI in Healthcare Innovative use cases and applications.pdf
 
Introduction to Artificial Intelligence and History of AI
Introduction to Artificial Intelligence and History of AIIntroduction to Artificial Intelligence and History of AI
Introduction to Artificial Intelligence and History of AI
 

Tutorial_-_Impedance_-_practice.pptx

  • 1.
  • 3. Tutorial • Goals - Get acquainted with the main concepts related to beam impedance - Understand the effect of different materials, and different geometries • Means - Experimental measurements with Vector Network Analyser (VNA) - Sincere thanks to Jean-Jacques Gratier from Keysight / Computer Controls for kindly providing a E5080A VNA for free for the school - Computational exercises with CST Studio Suite and ImpedanceWake2D (IW2D) - Sincere thanks to Monika Balk from CST / 3DS for providing several free full licenses for Studio Suite for the duration of the school - Short explanations of theoretical background • The students group will be divided in two for the experimental work • Computer work will be done in teams of 2. Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 3
  • 4. Plan of the tutorial • Introduction - Surface impedance (10’ Sergio) - Recap on beam impedance, introduction to CST studio Suite and IW2D (20’ Benoît) • Work with network analyser 1 (60’ Sergio) - Measurement of induction of different materials with solenoid - Identification of materials and coatings • And in parallel: first practice with CST Studio Suite (60’ Benoît) - Different runs on predefined models: tubes, cavities, bellows… • Guided simulations with IW2D (30’) - Dependence of impedance on chamber diameter, bunch length, coating, … • Work with network analyser 2 (30’) - Measurement of resonances (with/without RF fingers) • And in parallel: simulations à la carte (30’) Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 4 Ice-cream break
  • 5. What is impedance? • A term with many meanings, depending on context - Impedance in electrical circuits - Impedance of materials - Surface impedance - Beam coupling impedance • There is a common rationale: - - Voltage and current flowing in the circuit, the material, the surface - The beam current, and the potential it generates on the vacuum pipe Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 5 I V Z 
  • 6. Square resistance and surface resistance Consider a square sheet of metal and calculate its resistance to a transverse current flow: This is the so-called square resistance often indicated as 𝑅∎ Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 6 current a d a   R d a a d  
  • 7. Square resistance and surface resistance And now imagine that instead of DC we have RF, and the RF current is confined in a skin depth: This is a (simplified) definition of surface resistance Rs Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 7  2 0      s R current a d a   R d a a d       0 2 
  • 8. Surface impedance Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 8   ) 0 ( ) 0 ( ) 0 ( ) 0 ( ) 0 ( 0 x z z z z z s s s H E J E dy y J E iX R Z          I V Zs        0 ; ) 0 ( dy y J d I x dE V z z ;      0 ) 0 ( 1 dy y J J z z  S=d2 V~ ) 0 ( z E ) (y Jz y z x 2 2 2 2 1 2 1 ) ( x s s tot H d R I R t P   2 2 2 1 2 1 /            o rf s rf s rf B R H R P S P  ) 0 ( z H
  • 9. Normal metals in the local limit Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 9    y z z e J y J   ) 0 ( o    2  ) 1 ( 2 ) 1 ( ) 0 ( ) 0 ( i i J E iX R Z o z z n n n                     2 2 1 o o s s X R      ) (   n R            t i e J t J  ) 0 ( d Rsquare   (in DC)
  • 10. Surface impedance practice • For a bulk metal: • Thin film over a substrate (metal)? - Depends on substrate - Depends on thickness wrt skin depth • Practice: open two-layers.xlsx - Thanks to Patrick Krkotić and Uwe Niedermayer for the paper “Iterative Model for Calculating the Surface Impedance of Multilayers”, 2016 Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 10 2  o s s X R   d o      2 o    2 
  • 11. Coil measurement from 100 kHz to 2 MHz Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 11
  • 12. How the measurement is done Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 12 • We’ll measure S11 • (i.e. S11) power from port 1 going back into port 1 • 𝑆11 = 𝑃𝑅𝐸𝐹 𝑃𝐹𝑊𝐷 • If no power dissipated by the coil: 𝑆11 = 1 • Output from VNA is always in dB = −10 × 𝑙𝑜𝑔10 𝑆11 • What happens when we put a material (with or without coating!) facing the coil?
  • 13. Cavity measurement with Keysight VNA up to 1.5 GHz Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 13
  • 14. How the measurement is done Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 14 • We’ll measure S21 • (i.e. S21) power from port 1 going into port 2 • 𝑆21 = 𝑃𝑇𝑅𝐴𝑁𝑆 𝑃𝐹𝑊𝐷 • Output from VNA is always in dB = −10 × 𝑙𝑜𝑔10 𝑆21 • Compare modules with perfect and damaged fingers • How to identify a resonance?
  • 15. Impedance in accelerators Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 15
  • 16. Impedance: image charges Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 16 Image charges flow on the surface of the beampipe The wakefields potential is proportional to surface impedance of the vacuum chamber surface b s I V Z   = 2𝑏
  • 17. Bunch frequency spectrum: LHC case Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 17 Gaussian bunches of 1011 protons, 8 cm long Beam instantaneous image current Line spacing: revolution frequency (11 KHz for LHC) From: E. Métral Frequency spectrum (Fourier transform) Real bunches Power dissipation from wakes is where is a summation of over the bunch frequency spectrum ( is the accelerator circumference) ( is the vacuum chamber circumference) ) Re( 2 eff s b loss Z MI P    s Z b R   2 2 eff s Z R  2 b  2
  • 18. Transverse impedance Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 18   ] / [ 2 0 m I ds B c E j Z R          F. Sacherer in: Proceedings of the First Course of the International School of Particle Accelerators, CERN 77-13, p. 198
  • 19. From wakefields to impedance Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 19 Wakefields have an effect on beam stability, in particular the transverse plane Risetime of resistive-wall instability depends on the transverse impedance ) Re( 1 eff T b Z EL M I   s T Z b c R Z    3 2  with at the frequency of the unstable mode
  • 20. Betatron motion – simplified model Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 20 0 2 0 ,   x x     ) ( 0 0 , ) (     t j e x t x Unperturbed motion of single particle with and R c  0  0 0 ,   x Q  x x R Q   Adding a perturbation to the beam that changes focussing: Fx x x    2 0 ,     Quadrupoles give the restoring (focussing) force -> harmonic oscillations     0 , 2 0 , 2 0 , 2 2           F F                    Im ) Re ( 0 ) ( e e x t x t j      Im 1 Growth rate of instability
  • 21. Anomalous skin effect Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 21
  • 22. Limits for conductivity and skin effect Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 22    1. Normal skin effect if: e.g.: high temperature, low frequency 0 2      1 ~  2. Anomalous skin effect if:    e.g.: low temperature, high frequency Note: 1 & 2 valid under the implicit assumption 1   1 & 2 can also be rewritten (in advanced theory) as:   4 3 2 2 1       It derives that 1 can be true for and also for 1   1  
  • 23. Mean free path and skin depth Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 23 Skin depth Mean free path     0 2   1 ~  . 2 0 const             F e eff F e v m ne v m ne    2 2 0       0 n neff 
  • 24. Anomalous skin effect Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 24 Understood by Pippard, Proc. Roy. Soc. A191 (1947) 370 Exact calculations Reuter, Sondheimer, Proc. Roy. Soc. A195 (1948) 336 Normal skin effect Anomalous skin effect Asymptotic value
  • 25. Two-layers Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 25
  • 26. Iterative model Tutorial: Impedance CAS Vacuum 2017 - S.C. & B.S. 26