SlideShare a Scribd company logo
1 of 29
Download to read offline
Capturing Effective Permeabilities of 
     Field Compaction bands 

with Level Set and Hybrid Lattice Boltzmann/Finite Element 
                       Simulations



           WaiChing Sun, Northwestern University
   Prof. Jose E. Andrade, California Institute of Technology
2



                                    Motivation
                                                              Significant porosity and 
                                                            permeability reductions are 
                                                           observed in compaction bands 



                                                                 Are compaction bands 
                                                                 efficient flow barriers?



                                                                 If so,  What are the 
                                                            geometrical features that lead 
                                                             to permeability reductions?
    Aztec Sandstone, Holcomb et al 2007




7/24/2010                           WCCM/APCOM 2010, Sydney, Australia 
Effective Permeability Measurement 
                via Lattice Boltzmann method




            Flow outside CB                Flow in transition zone                     Flow inside CB
            k11  8.6 1013 m 2              k11  1.8 1013 m 2                  k11  2.4 1013 m 2
             f  0.21                           f  0.13                           f  0.15
             intrinsic permeability tensor of REV is computed by finding volume average velocity of Lattice
              Boltzmann cube with prescribed hydraulic gradient on a 150x150x150 voxels
                                                                 
                                              kij   vi ( x)
                                                                h j
             Reynold’s number must be less than 1 to ensure the validity of Darcy’s law
7/24/2010                             WCCM/APCOM 2010, Sydney, Australia                    3
Question:

      1. How does the micro‐structural 
         change cause permeability 
         reduction? 

      2.    How about scale effect?

      3. How can we verify our results?

7/24/2010          WCCM/APCOM 2010, Sydney, Australia    4
5




                                    Outline
                                                              Raw Tomography Images
  1. Background
  2. Tools used to study                                Image Segmentation

     characteristics of                                                Binary Images
     compaction band                                      Level Set Method
        i.     Medial Axis (use level set)
                                                                        Medial Axis
        ii.    Tortuosity (use weight 
               graph)                                       SPS Algorithm
        iii.   Isolated Pore Space (use                              Shortest Flow Path
               graph)
        iv.    Effective permeability (use               Recursive Function

               FEM/LBM)                                              Isolated Pore Space
  3. Results on Aztec                                        FEM/LBM
     sandstone
  4. Conclusion                                                 Effective Permeability



7/24/2010                      WCCM/APCOM 2010, Sydney, Australia 
Image Segmentation
                       Raw Tomography Images

              Image Segmentation

                             Binary Images

               Level Set Method

                               Medial Axis
               Dijkstra’s Algorithm

                           Shortest Flow Path
               Recursive Function

                          Isolated Pore Space

               FEM/LBM

                         Effective Permeability



7/24/2010          WCCM/APCOM 2010, Sydney, Australia    6
Aztec Sandstone Specimen 
              3D tomographic images are 
              taken from Aztec sandstone 
                collected at Valley of Fire 
                  State Park,  Nevada. 



               A threshold is defined to 
              distinguish pore space and 
                       skeleton.




                A binary 3D images are 
              crated from the original 3D 
                        images.




             Connected and isolated pore 
             space are not distinguished.
                                                              Work conducted by Dr. Leonir
                                                            Aztec Sandstone Image, Leonir, et al 2010
7/24/2010                         WCCM/APCOM 2010, Sydney, Australia                        7
Level Set Method
                      Raw Tomography Images

             Image Segmentation

                            Binary Images

             Level Set Method

                              Medial Axis
              Dijkstra’s Algorithm

                          Shortest Flow Path
             Recursive Function

                         Isolated Pore Space

              FEM/LBM

                        Effective Permeability



7/24/2010         WCCM/APCOM 2010, Sydney, Australia    8
Medial Axis of Flow Paths

                                                         Le




                      Sirjani and Cross, 1991
                                                          L



• Medial axis is the spine of a volume filling object
• Media axis  is a union of curves that represent the 
  topology and geometry of the volume 
7/24/2010          WCCM/APCOM 2010, Sydney, Australia         9
Relation between Level Set Function 
             and Medial Axis 




   • Local minimum of the signed distance function  are 
     located at medial axis. 
   • Use level set scheme to obtain signed distance function

7/24/2010              WCCM/APCOM 2010, Sydney, Australia      10
Locating Medial Axis of Flow Path via 
                Level Set




            Convert binary 
                                                  Extract Local 
            image into level 
                                                  minimum of level 
            set via semi‐
                                                  set function
            implicit scheme
7/24/2010              WCCM/APCOM 2010, Sydney, Australia             11
Formulation of Variational Level Set 
                              Method
            Penalize  the deviation 
              of from a signed 
                   distance function 
• Action functional (Li et al 2005)


                                 Drive  = 0 at the object 
• Governing  equation                  boundaries




                             The discrete Laplacian
•   Semi‐Implicit Finite Difference Scheme
                                term is treated 
                                   implicitly 




    7/24/2010                 WCCM/APCOM 2010, Sydney, Australia    12
Shortest Path Searching Algorithm
                              Raw Tomography Images

                      Image Segmentation

                                     Binary Images

                      Level Set Method

                                      Medial Axis
            SPS Algorithm (Dijkstra, 1953)

                                  Shortest Flow Path
                       Recursive Function

                                  Isolated Pore Space

                       FEM/LBM

                                 Effective Permeability



7/24/2010                  WCCM/APCOM 2010, Sydney, Australia    13
Graph Theory




   Extract    Each fluid           Connected                Assign       Form 
  topology     voxel as            nodes with              weight to    weighted 
    info        nodes                edges                  edges        graph


                               Determine                  Determine 
                                                                        Apply SPS 
                              Geometrical                  shortest 
                                                                        algorithm
                               tortuosity                 Flow Path

7/24/2010                   WCCM/APCOM 2010, Sydney, Australia                       14
Weighted Graph
                                   Distance 
                                       = 
                                   Weight  



                                  Fluid 
                                 voxel = 
                                  node




7/24/2010     WCCM/APCOM 2010, Sydney, Australia    15
Shortest Path Searching Algorithm
                                                                   1
                                                                       [19]
                                            [19+14=33]                        [19+6=25]
                                                                   2
                                                       4
                                                                               3
                                             [45]       [45]           [35]        [37]
                                                  7            8        5
                                                                                    6
                                          [51]                                          [46]
                                             10
                                                                                          9
                                      [59]            [55]
                                [66] 13                                                       [56]
                                                        11
                              [74] 14                                                           12
                                             [70]
                              17     [75]     16                                           [69]
                          [78]       18                                20
                             19                                                                15

7/24/2010   WCCM/APCOM 2010, Sydney, Australia                                                 16
Shortest Flow Path Inside and Outside 
                Compaction Bands
                                 0.5
                                                                                                              0.5
                                                                                                                                                                                                 0.5
                                 0.4


INSIDE CB
                                                                                                              0.4                                                                                0.4

                                 0.3




                         z, mm
                                                                                                              0.3




                                                                                                      z, mm
                                                                                                                                                                                                 0.3




                                                                                                                                                                                         z, mm
                                 0.2



  = 0.14
                                                                                                              0.2                                                                                0.2

                                 0.1
                                                                                                              0.1                                                                                0.1


                                  0.5
                                                                                                              0.5                                                                                 0.5
                                         0.4
                                                                                                                      0.4                                                                                 0.4                                                              0.5
                                                0.3                                                                                                                          0.5                                                                                     0.4
                                                                                             0.4                             0.3                                                                                  0.3
                                                      0.2                                                                                                             0.4                                                                                     0.3
                                                                                      0.3                                          0.2                        0.3                                                           0.2                       0.2
                                                            0.1                0.2
                                                                                                                                         0.1           0.2                                                                        0.1           0.1
                                              y, mm                     0.1                                                                     0.1
                                                                                      x, mm                            y, mm                                                                                y, mm                                           x, mm
                                                                                                                                                                   x, mm




               = 2.79                                                                               = 2.15                                                                             = 2.56
               K= 3.4e‐13 m2                                                                         K= 5.3e‐13 m2                                                                       K= 4.4e‐13 m2


                       0.5                                                                                                                                                                                      0.5
                                                                                                              0.5

                       0.4                                                                                                                                                                                      0.4
                                                                                                              0.4

OUTSIDE CB             0.3
               z, mm




                                                                                                              0.3                                                                                               0.3




                                                                                                                                                                                                        z, mm
                                                                                                      z, mm
                       0.2                                                                                    0.2                                                                                               0.2



  = 0.21              0.1                                                                                    0.1                                                                                               0.1



                                                                                                                0.5
                                 0.4                                                                                                                                                                                  0.4
                                                                                               0.5                     0.4                                                         0.5
                                        0.3                                                                                                                                 0.4                                              0.3                                                 0.4
                                                                                       0.4                                    0.3                                                                                                                                          0.3
                                               0.2                                                                                                                   0.3                                                            0.2
                                                                                0.3                                                 0.2                                                                                                                             0.2
                                                      0.1                                                                                                    0.2                                                                          0.1
                                                                         0.2                                                                                                                                                                                0.1
                                                                                                                                          0.1         0.1
                                   y, mm                          0.1                                                  y, mm                                                                                            y, mm
                                                                                 x, mm                                                                              x, mm                                                                                             x, mm




               = 1.77                                                                               = 1.76                                                                             = 1.81
               K= 1.3e‐12 m2                                                                         K= 1.2e‐12 m2                                                                       K= 1.3e‐12 m2
7/24/2010                                             WCCM/APCOM 2010, Sydney, Australia                                                                                                                                                                                               17
Recursive Function
                      Raw Tomography Images

              Image Segmentation

                             Binary Images

              Level Set Method

                              Medial Axis
               Dijkstra’s Algorithm

                          Shortest Flow Path
              Recursive Function

                          Isolated Pore Space

               FEM/LBM

                        Effective Permeability



7/24/2010          WCCM/APCOM 2010, Sydney, Australia    18
Connected Porosity vs. Porosity
    • Only the 
   connected pore 
  space affects the     Connected 
       effective 




                                                                   Flow  Direction
                        Pore Space
     permeability

• Isolated pore 
  space should be 
     treated as 
 inactive voxels in     Isolated 
  LBM simulation       Pore Space
     to reduce 
   computational 
        cost



7/24/2010               WCCM/APCOM 2010, Sydney, Australia    19
Recursive Functions
                                    1                            PROGRAM MAIN
                                                                 1.   Activate all vertices along the flow path 
                                                                      as active nodes and mark them as visited 
                                                                      vertices
                                    2                            2.   While there exists at least one active 
                           4                                          node 
                                               3                 3.   call the recursive function 
                                                                      MARKNEIGHBOR
                                                                 EXIT
                       7        8       5
                                                   6             FUNCTION MARKNEIGHBOR
                                                                 1.   IF at least one neighbors of the active 
                                                                      nodes has not yet been visited
                  10                                                    1.        Activate the unvisited neighbor vertices
                                                        9
                                                                        2.        Mark them as visited vertices.  
                                                                        3.        Deactivate the old active nodes with 
             13                                                                   unvisited neighbor(s). 
                           11                                           4.        Call the recursive function 
                                                                                  MARKNEIGHBOR
        14                                                  12
                                                                 2.     ELSE
                                                                        1.        Deactivate the active nodes with no 
  17                                                                              unvisited neighbor. 
                   16
                                        20                       3.   EXIT
        18                                                  15
  19                                                             EXIT

7/24/2010                                   WCCM/APCOM 2010, Sydney, Australia                                           20
Connected and Isolated Pore Space of 
             Compaction Bands

                                     CB1



                                     CB2

Inside CB
                                     CB3



                                 OUTSIDE1



                                 OUTSIDE2



                                 OUTSIDE3
Outside CB
                                       0.00E+00   5.00E‐02   1.00E‐01   1.50E‐01   2.00E‐01   2.50E‐01

                                                  CONNECTED POROSITY      OCCLUDED POROSITY

    7/24/2010    WCCM/APCOM 2010, Sydney, Australia                                               21
Finite Element/Lattice Boltzmann 
                  Hybrid Method
                        Raw Tomography Images

                Image Segmentation

                               Binary Images

                Level Set Method

                                Medial Axis
                 Dijkstra’s Algorithm

                            Shortest Flow Path
                 Recursive Function

                            Isolated Pore Space

                     FEM/LBM

                          Effective Permeability



7/24/2010            WCCM/APCOM 2010, Sydney, Australia    22
Homogenization of Effective 
             Permeability Across scale




                   LBM
                                                   FEM




7/24/2010          WCCM/APCOM 2010, Sydney, Australia    23
Lattice Boltzmann/Finite Element Flow 
         Transport Simulation
  • Statistical ensemble
        – Equation of state
            
               f  v f  0
            t
        – Balance of momentum
           p       
         (    F   p ) f  0                                            P1
          t m

                                                                      Kij1        Kij2
  • Macroscopic  Continuum
        – Balance of mass
             
                  v   0                                         Kij3        Kij4
             t

        – Balance of momentum
                                                                             P2
                            1
                u  (u )u  p  0
             t              

7/24/2010                           WCCM/APCOM 2010, Sydney, Australia                   24
Size of Representative Elementary 
                    Volume 




7/24/2010        WCCM/APCOM 2010, Sydney, Australia    25
Effective Permeabilities Inside and 
             Outside Compaction Bands
                       FEM/LBM Scheme




Inside CB                                                 K zz = 3.5e‐13 
                                                                m2



                                                          K zz = 14.0e‐
Outside CB                                                    13 m2

   7/24/2010        WCCM/APCOM 2010, Sydney, Australia             26
Conclusion
• The geometrical changes of micro‐structure 
  due to the formation of compaction bands are 
  examined.
• Level set, graph theory, lattice Boltzmann and 
  finite element methods are used as tools in 
  this study.
• Increased tortuosity, reduction of connected 
  porosity are main factors that lead to 
  permeability reduction of compaction band. 

7/24/2010        WCCM/APCOM 2010, Sydney, Australia    27
Acknowledgement


• Dr. Nicolas Leonir from Ecole des Ponts Paris Tech, 
  Université Paris‐Est
• Dr. David Salac from Northwestern University
• Prof. John Rudnicki from Northwestern University




7/24/2010         WCCM/APCOM 2010, Sydney, Australia    28
Thank you for your attention!




7/24/2010            WCCM/APCOM 2010, Sydney, Australia    29

More Related Content

What's hot

Exosomes: Exploiting the Diagnostic and Therapeutic Potential of Nature’s Bio...
Exosomes: Exploiting the Diagnostic and Therapeutic Potential of Nature’s Bio...Exosomes: Exploiting the Diagnostic and Therapeutic Potential of Nature’s Bio...
Exosomes: Exploiting the Diagnostic and Therapeutic Potential of Nature’s Bio...HORIBA Particle
 
The Computational Microscope Images Biomolecular Machines and Nanodevices - K...
The Computational Microscope Images Biomolecular Machines and Nanodevices - K...The Computational Microscope Images Biomolecular Machines and Nanodevices - K...
The Computational Microscope Images Biomolecular Machines and Nanodevices - K...TCBG
 
Vladan Mlinar 2009 Materials Research Society Spring Meeting
Vladan Mlinar 2009 Materials Research Society Spring MeetingVladan Mlinar 2009 Materials Research Society Spring Meeting
Vladan Mlinar 2009 Materials Research Society Spring MeetingVladan Mlinar
 
Feature Tracking of Objects in Underwater Video Sequences
Feature Tracking of Objects in Underwater Video SequencesFeature Tracking of Objects in Underwater Video Sequences
Feature Tracking of Objects in Underwater Video SequencesIDES Editor
 
4. fable
4. fable4. fable
4. fabledjhutch
 
Snotra - scanning probe nanotomography technology
Snotra - scanning probe nanotomography technologySnotra - scanning probe nanotomography technology
Snotra - scanning probe nanotomography technologyAnton Efimov
 
ADAPTIVE SEGMENTATION OF CELLS AND PARTICLES IN FLUORESCENT MICROSCOPE IMAGE
ADAPTIVE SEGMENTATION OF CELLS AND PARTICLES IN FLUORESCENT MICROSCOPE IMAGEADAPTIVE SEGMENTATION OF CELLS AND PARTICLES IN FLUORESCENT MICROSCOPE IMAGE
ADAPTIVE SEGMENTATION OF CELLS AND PARTICLES IN FLUORESCENT MICROSCOPE IMAGEJournal For Research
 
Einstein-Beckham modeling of "NMR-difficult" proteins
Einstein-Beckham modeling of "NMR-difficult" proteins Einstein-Beckham modeling of "NMR-difficult" proteins
Einstein-Beckham modeling of "NMR-difficult" proteins Mark Berjanskii
 
Xrd amct presentation final 2
Xrd amct presentation final 2Xrd amct presentation final 2
Xrd amct presentation final 2Hamza Suharwardi
 
Jiangnan zhang sigma xi showcase
Jiangnan zhang sigma xi showcaseJiangnan zhang sigma xi showcase
Jiangnan zhang sigma xi showcasehughrivers
 
A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galax...
A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galax...A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galax...
A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galax...Sérgio Sacani
 
From DMS to CMS: a characterization protocol
From DMS to CMS: a characterization protocolFrom DMS to CMS: a characterization protocol
From DMS to CMS: a characterization protocolmau-rov
 
Image restoration model with wavelet based fusion
Image restoration model with wavelet based fusionImage restoration model with wavelet based fusion
Image restoration model with wavelet based fusionAlexander Decker
 

What's hot (20)

Exosomes: Exploiting the Diagnostic and Therapeutic Potential of Nature’s Bio...
Exosomes: Exploiting the Diagnostic and Therapeutic Potential of Nature’s Bio...Exosomes: Exploiting the Diagnostic and Therapeutic Potential of Nature’s Bio...
Exosomes: Exploiting the Diagnostic and Therapeutic Potential of Nature’s Bio...
 
X ray crystallography
X ray crystallographyX ray crystallography
X ray crystallography
 
X ray spectroscopy
X ray spectroscopyX ray spectroscopy
X ray spectroscopy
 
The Computational Microscope Images Biomolecular Machines and Nanodevices - K...
The Computational Microscope Images Biomolecular Machines and Nanodevices - K...The Computational Microscope Images Biomolecular Machines and Nanodevices - K...
The Computational Microscope Images Biomolecular Machines and Nanodevices - K...
 
Vladan Mlinar 2009 Materials Research Society Spring Meeting
Vladan Mlinar 2009 Materials Research Society Spring MeetingVladan Mlinar 2009 Materials Research Society Spring Meeting
Vladan Mlinar 2009 Materials Research Society Spring Meeting
 
X ray
X  rayX  ray
X ray
 
Phys 4710 lec 6,7
Phys 4710 lec 6,7Phys 4710 lec 6,7
Phys 4710 lec 6,7
 
Feature Tracking of Objects in Underwater Video Sequences
Feature Tracking of Objects in Underwater Video SequencesFeature Tracking of Objects in Underwater Video Sequences
Feature Tracking of Objects in Underwater Video Sequences
 
4. fable
4. fable4. fable
4. fable
 
Snotra - scanning probe nanotomography technology
Snotra - scanning probe nanotomography technologySnotra - scanning probe nanotomography technology
Snotra - scanning probe nanotomography technology
 
No2422242227
No2422242227No2422242227
No2422242227
 
ADAPTIVE SEGMENTATION OF CELLS AND PARTICLES IN FLUORESCENT MICROSCOPE IMAGE
ADAPTIVE SEGMENTATION OF CELLS AND PARTICLES IN FLUORESCENT MICROSCOPE IMAGEADAPTIVE SEGMENTATION OF CELLS AND PARTICLES IN FLUORESCENT MICROSCOPE IMAGE
ADAPTIVE SEGMENTATION OF CELLS AND PARTICLES IN FLUORESCENT MICROSCOPE IMAGE
 
Einstein-Beckham modeling of "NMR-difficult" proteins
Einstein-Beckham modeling of "NMR-difficult" proteins Einstein-Beckham modeling of "NMR-difficult" proteins
Einstein-Beckham modeling of "NMR-difficult" proteins
 
Xrd amct presentation final 2
Xrd amct presentation final 2Xrd amct presentation final 2
Xrd amct presentation final 2
 
Jiangnan zhang sigma xi showcase
Jiangnan zhang sigma xi showcaseJiangnan zhang sigma xi showcase
Jiangnan zhang sigma xi showcase
 
Gixrd
GixrdGixrd
Gixrd
 
A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galax...
A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galax...A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galax...
A weak lensing_mass_reconstruction_of _the_large_scale_filament_massive_galax...
 
From DMS to CMS: a characterization protocol
From DMS to CMS: a characterization protocolFrom DMS to CMS: a characterization protocol
From DMS to CMS: a characterization protocol
 
X-Ray Diffraction
X-Ray DiffractionX-Ray Diffraction
X-Ray Diffraction
 
Image restoration model with wavelet based fusion
Image restoration model with wavelet based fusionImage restoration model with wavelet based fusion
Image restoration model with wavelet based fusion
 

Viewers also liked

Macro heterogeneity of high porosity and permeability reservoirin Bozhong 25-...
Macro heterogeneity of high porosity and permeability reservoirin Bozhong 25-...Macro heterogeneity of high porosity and permeability reservoirin Bozhong 25-...
Macro heterogeneity of high porosity and permeability reservoirin Bozhong 25-...iosrjce
 
Basics of groundwater hydrology in geotechnical engineering: Permeability - P...
Basics of groundwater hydrology in geotechnical engineering: Permeability - P...Basics of groundwater hydrology in geotechnical engineering: Permeability - P...
Basics of groundwater hydrology in geotechnical engineering: Permeability - P...ohamza
 
Darcy´s law
Darcy´s lawDarcy´s law
Darcy´s lawNatalia
 
In situ permeability testing in boreholes
In situ permeability testing in boreholesIn situ permeability testing in boreholes
In situ permeability testing in boreholesMartin Preene
 
Methods of in site Permeability Test
Methods of in site Permeability TestMethods of in site Permeability Test
Methods of in site Permeability TestGaurang Kakadiya
 
SOIL PERMEABILITY PPT
SOIL PERMEABILITY PPTSOIL PERMEABILITY PPT
SOIL PERMEABILITY PPTJISMI JACOB
 
Permeability and factors affecting permeability
Permeability and factors affecting permeability Permeability and factors affecting permeability
Permeability and factors affecting permeability roshan mankhair
 
Darcy´s law
Darcy´s lawDarcy´s law
Darcy´s lawoscar
 

Viewers also liked (11)

Macro heterogeneity of high porosity and permeability reservoirin Bozhong 25-...
Macro heterogeneity of high porosity and permeability reservoirin Bozhong 25-...Macro heterogeneity of high porosity and permeability reservoirin Bozhong 25-...
Macro heterogeneity of high porosity and permeability reservoirin Bozhong 25-...
 
Lecture 19
Lecture 19Lecture 19
Lecture 19
 
Chapter 1: Darcy's law
Chapter 1: Darcy's lawChapter 1: Darcy's law
Chapter 1: Darcy's law
 
Basics of groundwater hydrology in geotechnical engineering: Permeability - P...
Basics of groundwater hydrology in geotechnical engineering: Permeability - P...Basics of groundwater hydrology in geotechnical engineering: Permeability - P...
Basics of groundwater hydrology in geotechnical engineering: Permeability - P...
 
Darcy´s law
Darcy´s lawDarcy´s law
Darcy´s law
 
In situ permeability testing in boreholes
In situ permeability testing in boreholesIn situ permeability testing in boreholes
In situ permeability testing in boreholes
 
Methods of in site Permeability Test
Methods of in site Permeability TestMethods of in site Permeability Test
Methods of in site Permeability Test
 
Darcy's law
Darcy's lawDarcy's law
Darcy's law
 
SOIL PERMEABILITY PPT
SOIL PERMEABILITY PPTSOIL PERMEABILITY PPT
SOIL PERMEABILITY PPT
 
Permeability and factors affecting permeability
Permeability and factors affecting permeability Permeability and factors affecting permeability
Permeability and factors affecting permeability
 
Darcy´s law
Darcy´s lawDarcy´s law
Darcy´s law
 

Similar to Capturing Effective Permeabilities of Field Compaction bands

A New Approach for video denoising and enhancement using optical flow Estimation
A New Approach for video denoising and enhancement using optical flow EstimationA New Approach for video denoising and enhancement using optical flow Estimation
A New Approach for video denoising and enhancement using optical flow EstimationIRJET Journal
 
Monocular simultaneous localization and generalized object mapping with undel...
Monocular simultaneous localization and generalized object mapping with undel...Monocular simultaneous localization and generalized object mapping with undel...
Monocular simultaneous localization and generalized object mapping with undel...Chen-Han Hsiao
 
Detection of Bridges using Different Types of High Resolution Satellite Images
Detection of Bridges using Different Types of High Resolution Satellite ImagesDetection of Bridges using Different Types of High Resolution Satellite Images
Detection of Bridges using Different Types of High Resolution Satellite Imagesidescitation
 
Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...
Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...
Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...IDES Editor
 
Chapter 10 Image Segmentation.ppt
Chapter 10 Image Segmentation.pptChapter 10 Image Segmentation.ppt
Chapter 10 Image Segmentation.pptssuser998718
 
Electron backscatter diffraction in materials
Electron backscatter diffraction in materialsElectron backscatter diffraction in materials
Electron backscatter diffraction in materialsImtiaz Ali
 
Geometric wavelet transform for optical flow estimation algorithm
Geometric wavelet transform for optical flow estimation algorithmGeometric wavelet transform for optical flow estimation algorithm
Geometric wavelet transform for optical flow estimation algorithmijcga
 
Image Denoising Based On Wavelet for Satellite Imagery: A Review
Image Denoising Based On Wavelet for Satellite Imagery: A  ReviewImage Denoising Based On Wavelet for Satellite Imagery: A  Review
Image Denoising Based On Wavelet for Satellite Imagery: A ReviewIJMER
 
An efficient image segmentation approach through enhanced watershed algorithm
An efficient image segmentation approach through enhanced watershed algorithmAn efficient image segmentation approach through enhanced watershed algorithm
An efficient image segmentation approach through enhanced watershed algorithmAlexander Decker
 
Attentional Object Detection - introductory slides.
Attentional Object Detection - introductory slides.Attentional Object Detection - introductory slides.
Attentional Object Detection - introductory slides.Sergey Karayev
 
IRJET- Human Fall Detection using Co-Saliency-Enhanced Deep Recurrent Convolu...
IRJET- Human Fall Detection using Co-Saliency-Enhanced Deep Recurrent Convolu...IRJET- Human Fall Detection using Co-Saliency-Enhanced Deep Recurrent Convolu...
IRJET- Human Fall Detection using Co-Saliency-Enhanced Deep Recurrent Convolu...IRJET Journal
 
Literature study article
Literature study articleLiterature study article
Literature study articleakaspers
 
An Image Analysis Technique to Estimate the Porosity of Rock Samples
An Image Analysis Technique to Estimate the Porosity of Rock SamplesAn Image Analysis Technique to Estimate the Porosity of Rock Samples
An Image Analysis Technique to Estimate the Porosity of Rock SamplesIJSRD
 
3 di metrology-slideshare
3 di metrology-slideshare3 di metrology-slideshare
3 di metrology-slideshareKeshab Paudel
 

Similar to Capturing Effective Permeabilities of Field Compaction bands (20)

Miller - Remote Sensing and Imaging Physics - Spring Review 2012
Miller - Remote Sensing and Imaging Physics - Spring Review 2012Miller - Remote Sensing and Imaging Physics - Spring Review 2012
Miller - Remote Sensing and Imaging Physics - Spring Review 2012
 
A New Approach for video denoising and enhancement using optical flow Estimation
A New Approach for video denoising and enhancement using optical flow EstimationA New Approach for video denoising and enhancement using optical flow Estimation
A New Approach for video denoising and enhancement using optical flow Estimation
 
Monocular simultaneous localization and generalized object mapping with undel...
Monocular simultaneous localization and generalized object mapping with undel...Monocular simultaneous localization and generalized object mapping with undel...
Monocular simultaneous localization and generalized object mapping with undel...
 
Detection of Bridges using Different Types of High Resolution Satellite Images
Detection of Bridges using Different Types of High Resolution Satellite ImagesDetection of Bridges using Different Types of High Resolution Satellite Images
Detection of Bridges using Different Types of High Resolution Satellite Images
 
Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...
Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...
Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...
 
[IJCT-V3I2P37] Authors: Amritpal Singh, Prithvipal Singh
[IJCT-V3I2P37] Authors: Amritpal Singh, Prithvipal Singh[IJCT-V3I2P37] Authors: Amritpal Singh, Prithvipal Singh
[IJCT-V3I2P37] Authors: Amritpal Singh, Prithvipal Singh
 
Chapter 10 Image Segmentation.ppt
Chapter 10 Image Segmentation.pptChapter 10 Image Segmentation.ppt
Chapter 10 Image Segmentation.ppt
 
Electron backscatter diffraction in materials
Electron backscatter diffraction in materialsElectron backscatter diffraction in materials
Electron backscatter diffraction in materials
 
Geometric wavelet transform for optical flow estimation algorithm
Geometric wavelet transform for optical flow estimation algorithmGeometric wavelet transform for optical flow estimation algorithm
Geometric wavelet transform for optical flow estimation algorithm
 
Plasmonics based VLSI Processes
Plasmonics based VLSI ProcessesPlasmonics based VLSI Processes
Plasmonics based VLSI Processes
 
Image Denoising Based On Wavelet for Satellite Imagery: A Review
Image Denoising Based On Wavelet for Satellite Imagery: A  ReviewImage Denoising Based On Wavelet for Satellite Imagery: A  Review
Image Denoising Based On Wavelet for Satellite Imagery: A Review
 
An efficient image segmentation approach through enhanced watershed algorithm
An efficient image segmentation approach through enhanced watershed algorithmAn efficient image segmentation approach through enhanced watershed algorithm
An efficient image segmentation approach through enhanced watershed algorithm
 
Attentional Object Detection - introductory slides.
Attentional Object Detection - introductory slides.Attentional Object Detection - introductory slides.
Attentional Object Detection - introductory slides.
 
IRJET- Human Fall Detection using Co-Saliency-Enhanced Deep Recurrent Convolu...
IRJET- Human Fall Detection using Co-Saliency-Enhanced Deep Recurrent Convolu...IRJET- Human Fall Detection using Co-Saliency-Enhanced Deep Recurrent Convolu...
IRJET- Human Fall Detection using Co-Saliency-Enhanced Deep Recurrent Convolu...
 
906882
906882906882
906882
 
Literature study article
Literature study articleLiterature study article
Literature study article
 
D04402024029
D04402024029D04402024029
D04402024029
 
ASEG-PESA_GMO
ASEG-PESA_GMOASEG-PESA_GMO
ASEG-PESA_GMO
 
An Image Analysis Technique to Estimate the Porosity of Rock Samples
An Image Analysis Technique to Estimate the Porosity of Rock SamplesAn Image Analysis Technique to Estimate the Porosity of Rock Samples
An Image Analysis Technique to Estimate the Porosity of Rock Samples
 
3 di metrology-slideshare
3 di metrology-slideshare3 di metrology-slideshare
3 di metrology-slideshare
 

Capturing Effective Permeabilities of Field Compaction bands

  • 1. Capturing Effective Permeabilities of  Field Compaction bands  with Level Set and Hybrid Lattice Boltzmann/Finite Element  Simulations WaiChing Sun, Northwestern University Prof. Jose E. Andrade, California Institute of Technology
  • 2. 2 Motivation Significant porosity and  permeability reductions are  observed in compaction bands  Are compaction bands  efficient flow barriers? If so,  What are the  geometrical features that lead  to permeability reductions? Aztec Sandstone, Holcomb et al 2007 7/24/2010 WCCM/APCOM 2010, Sydney, Australia 
  • 3. Effective Permeability Measurement  via Lattice Boltzmann method Flow outside CB Flow in transition zone Flow inside CB k11  8.6 1013 m 2 k11  1.8 1013 m 2 k11  2.4 1013 m 2  f  0.21  f  0.13  f  0.15  intrinsic permeability tensor of REV is computed by finding volume average velocity of Lattice Boltzmann cube with prescribed hydraulic gradient on a 150x150x150 voxels  kij   vi ( x) h j  Reynold’s number must be less than 1 to ensure the validity of Darcy’s law 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  3
  • 4. Question: 1. How does the micro‐structural  change cause permeability  reduction?  2. How about scale effect? 3. How can we verify our results? 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  4
  • 5. 5 Outline Raw Tomography Images 1. Background 2. Tools used to study  Image Segmentation characteristics of  Binary Images compaction band Level Set Method i. Medial Axis (use level set) Medial Axis ii. Tortuosity (use weight  graph) SPS Algorithm iii. Isolated Pore Space (use  Shortest Flow Path graph) iv. Effective permeability (use  Recursive Function FEM/LBM) Isolated Pore Space 3. Results on Aztec  FEM/LBM sandstone 4. Conclusion Effective Permeability 7/24/2010 WCCM/APCOM 2010, Sydney, Australia 
  • 6. Image Segmentation Raw Tomography Images Image Segmentation Binary Images Level Set Method Medial Axis Dijkstra’s Algorithm Shortest Flow Path Recursive Function Isolated Pore Space FEM/LBM Effective Permeability 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  6
  • 7. Aztec Sandstone Specimen  3D tomographic images are  taken from Aztec sandstone  collected at Valley of Fire  State Park,  Nevada.  A threshold is defined to  distinguish pore space and  skeleton. A binary 3D images are  crated from the original 3D  images. Connected and isolated pore  space are not distinguished. Work conducted by Dr. Leonir Aztec Sandstone Image, Leonir, et al 2010 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  7
  • 8. Level Set Method Raw Tomography Images Image Segmentation Binary Images Level Set Method Medial Axis Dijkstra’s Algorithm Shortest Flow Path Recursive Function Isolated Pore Space FEM/LBM Effective Permeability 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  8
  • 9. Medial Axis of Flow Paths Le Sirjani and Cross, 1991 L • Medial axis is the spine of a volume filling object • Media axis  is a union of curves that represent the  topology and geometry of the volume  7/24/2010 WCCM/APCOM 2010, Sydney, Australia  9
  • 10. Relation between Level Set Function  and Medial Axis  • Local minimum of the signed distance function  are  located at medial axis.  • Use level set scheme to obtain signed distance function 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  10
  • 11. Locating Medial Axis of Flow Path via  Level Set Convert binary  Extract Local  image into level  minimum of level  set via semi‐ set function implicit scheme 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  11
  • 12. Formulation of Variational Level Set  Method Penalize  the deviation  of from a signed  distance function  • Action functional (Li et al 2005) Drive  = 0 at the object  • Governing  equation boundaries The discrete Laplacian • Semi‐Implicit Finite Difference Scheme term is treated  implicitly  7/24/2010 WCCM/APCOM 2010, Sydney, Australia  12
  • 13. Shortest Path Searching Algorithm Raw Tomography Images Image Segmentation Binary Images Level Set Method Medial Axis SPS Algorithm (Dijkstra, 1953) Shortest Flow Path Recursive Function Isolated Pore Space FEM/LBM Effective Permeability 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  13
  • 14. Graph Theory Extract  Each fluid  Connected Assign Form  topology  voxel as  nodes with  weight to  weighted  info nodes edges edges graph Determine  Determine  Apply SPS  Geometrical  shortest  algorithm tortuosity Flow Path 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  14
  • 15. Weighted Graph Distance  =  Weight   Fluid  voxel =  node 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  15
  • 16. Shortest Path Searching Algorithm 1 [19] [19+14=33] [19+6=25] 2 4 3 [45] [45] [35] [37] 7 8 5 6 [51] [46] 10 9 [59] [55] [66] 13 [56] 11 [74] 14 12 [70] 17 [75] 16 [69] [78] 18 20 19 15 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  16
  • 17. Shortest Flow Path Inside and Outside  Compaction Bands 0.5 0.5 0.5 0.4 INSIDE CB 0.4 0.4 0.3 z, mm 0.3 z, mm 0.3 z, mm 0.2  = 0.14 0.2 0.2 0.1 0.1 0.1 0.5 0.5 0.5 0.4 0.4 0.4 0.5 0.3 0.5 0.4 0.4 0.3 0.3 0.2 0.4 0.3 0.3 0.2 0.3 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.1 y, mm 0.1 0.1 x, mm y, mm y, mm x, mm x, mm = 2.79 = 2.15 = 2.56 K= 3.4e‐13 m2 K= 5.3e‐13 m2 K= 4.4e‐13 m2 0.5 0.5 0.5 0.4 0.4 0.4 OUTSIDE CB 0.3 z, mm 0.3 0.3 z, mm z, mm 0.2 0.2 0.2  = 0.21 0.1 0.1 0.1 0.5 0.4 0.4 0.5 0.4 0.5 0.3 0.4 0.3 0.4 0.4 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.1 y, mm 0.1 y, mm y, mm x, mm x, mm x, mm = 1.77 = 1.76 = 1.81 K= 1.3e‐12 m2 K= 1.2e‐12 m2 K= 1.3e‐12 m2 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  17
  • 18. Recursive Function Raw Tomography Images Image Segmentation Binary Images Level Set Method Medial Axis Dijkstra’s Algorithm Shortest Flow Path Recursive Function Isolated Pore Space FEM/LBM Effective Permeability 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  18
  • 19. Connected Porosity vs. Porosity • Only the  connected pore  space affects the  Connected  effective  Flow  Direction Pore Space permeability • Isolated pore  space should be  treated as  inactive voxels in  Isolated  LBM simulation  Pore Space to reduce  computational  cost 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  19
  • 20. Recursive Functions 1 PROGRAM MAIN 1. Activate all vertices along the flow path  as active nodes and mark them as visited  vertices 2 2. While there exists at least one active  4 node  3 3. call the recursive function  MARKNEIGHBOR EXIT 7 8 5 6 FUNCTION MARKNEIGHBOR 1. IF at least one neighbors of the active  nodes has not yet been visited 10 1. Activate the unvisited neighbor vertices 9 2. Mark them as visited vertices.   3. Deactivate the old active nodes with  13 unvisited neighbor(s).  11 4. Call the recursive function  MARKNEIGHBOR 14 12 2. ELSE 1. Deactivate the active nodes with no  17 unvisited neighbor.  16 20 3. EXIT 18 15 19 EXIT 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  20
  • 21. Connected and Isolated Pore Space of  Compaction Bands CB1 CB2 Inside CB CB3 OUTSIDE1 OUTSIDE2 OUTSIDE3 Outside CB 0.00E+00 5.00E‐02 1.00E‐01 1.50E‐01 2.00E‐01 2.50E‐01 CONNECTED POROSITY OCCLUDED POROSITY 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  21
  • 22. Finite Element/Lattice Boltzmann  Hybrid Method Raw Tomography Images Image Segmentation Binary Images Level Set Method Medial Axis Dijkstra’s Algorithm Shortest Flow Path Recursive Function Isolated Pore Space FEM/LBM Effective Permeability 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  22
  • 23. Homogenization of Effective  Permeability Across scale LBM FEM 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  23
  • 24. Lattice Boltzmann/Finite Element Flow  Transport Simulation • Statistical ensemble – Equation of state  f  v f  0 t – Balance of momentum  p  (    F   p ) f  0 P1 t m Kij1 Kij2 • Macroscopic  Continuum – Balance of mass    v   0 Kij3 Kij4 t – Balance of momentum P2  1 u  (u )u  p  0 t  7/24/2010 WCCM/APCOM 2010, Sydney, Australia  24
  • 25. Size of Representative Elementary  Volume  7/24/2010 WCCM/APCOM 2010, Sydney, Australia  25
  • 26. Effective Permeabilities Inside and  Outside Compaction Bands FEM/LBM Scheme Inside CB K zz = 3.5e‐13  m2 K zz = 14.0e‐ Outside CB 13 m2 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  26
  • 27. Conclusion • The geometrical changes of micro‐structure  due to the formation of compaction bands are  examined. • Level set, graph theory, lattice Boltzmann and  finite element methods are used as tools in  this study. • Increased tortuosity, reduction of connected  porosity are main factors that lead to  permeability reduction of compaction band.  7/24/2010 WCCM/APCOM 2010, Sydney, Australia  27
  • 28. Acknowledgement • Dr. Nicolas Leonir from Ecole des Ponts Paris Tech,  Université Paris‐Est • Dr. David Salac from Northwestern University • Prof. John Rudnicki from Northwestern University 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  28
  • 29. Thank you for your attention! 7/24/2010 WCCM/APCOM 2010, Sydney, Australia  29