SlideShare a Scribd company logo
1 of 25
Lasers and Fiber
optics
LASERS
History of the LASER
• Invented in 1958 by Charles Townes (Nobel prize
in Physics 1964) and Arthur Schawlow of Bell
Laboratories
• Was based on Einstein’s idea of the “particlewave
duality” of light, more than 30 years earlier
• Originally called MASER (m = “microwave”)
Laser printer Laser pointer
Laser: everywhere in your life
What is Laser?
Light Amplification by Stimulated
Emission of Radiation
•A device produces a coherent beam of optical
radiation by stimulating electronic, ionic, or
molecular transitions to higher energy levels
•When they return to lower energy levels by
stimulated emission, they emit energy.
Properties of Laser
5
 The light emitted from a laser is monochromatic, that is, it is of one
color/wavelength. In contrast, ordinary white light is a combination of many
colors (or wavelengths) of light.
 Lasers emit light that is highly directional, that is, laser light is emitted as
a relatively narrow beam in a specific direction. Ordinary light, such as
from a light bulb, is emitted in many directions away from the source.
 The light from a laser is said to be coherent, which means that the
wavelengths of the laser light are in phase in space and time. Ordinary
light can be a mixture of many wavelengths.
These three properties of laser light are what can make it more
hazardous than ordinary light. Laser light can deposit a lot of energy
within a small area.
Monochromacity
Nearly monochromatic light
Example:
He-Ne Laser
λ0 = 632.5 nm
Δλ = 0.2 nm
Diode Laser
λ0 = 900 nm
Δλ = 10 nm
Comparison of the wavelengths of red and
blue light
Directionality
Conventional light source Divergence angle (θd)
Beam divergence: θd= β λ /D
β ~ 1 = f(type of light amplitude distribution, definition of beam diameter)
λ = wavelength
D = beam diameter
Coherence
Incoherent light waves Coherent light waves
9
Incandescent vs. Laser Light
1. Many wavelengths
2. Multidirectional
3. Incoherent
1. Monochromatic
2. Directional
3. Coherent
Basic concepts for a laser
• Absorption
• Spontaneous Emission
• Stimulated Emission
• Population inversion
Absorption
•Energy is absorbed by an atom, the electrons are
excited into vacant energy shells.
Spontaneous Emission
•The atom decays from level 2 to level 1 through the
emission of a photon with the energy hv. It is a
completely random process.
Stimulated Emission
atoms in an upper energy level can be triggered or
stimulated in phase by an incoming photon of a
specific energy.
Stimulated Emission
The stimulated photons have unique properties:
•In phase with the incident photon
•Same wavelength as the incident photon
•Travel in same direction as incident photon
Population Inversion
•A state in which a substance has been energized, or
excited to specific energy levels.
•More atoms or molecules are in a higher excited state.
•The process of producing a population inversion is
called pumping.
•Examples:
→by lamps of appropriate intensity
→by electrical discharge
Pumping
•Optical: Uses flashlamps and high-energy light sources (Ruby
Laser)
•Electrical Discharge: application of a potential difference across
the laser medium (He-Ne Laser)
•Inelastic Collisions between Atoms: Atoms exchange energies
with other by in-elastic collisions and gets excited due to
additional absorbed energy. (He-Ne Laser)
•Direct Conversion: Electrical energy is directly converted into
optical energy as LASER beam (Gallium Arsenide
semiconducting Laser)
•Chemical Reaction: Many exothermic reactions provide
essential energy for pumping of atoms.
Two level system
absorption Spontaneous
emission
Stimulated
emission
hn hn
hn
E1
E2
E1
E2
hn =E2-E1
E1
E2
• n1 - the number of electrons of energy E1
• n2 - the number of electrons of energy E2
•Population inversion-
n2>>n1
2 2 1
1
( )
exp
n E E
n kT
 
 
  
 
Boltzmann’s equation
example: T=3000 K E2-E1=2.0
eV
4
2
1
4.4 10
n
n

 
Resonance Cavities
and Longitudinal Modes
Since the wavelengths involved with lasers and
masers spread over small ranges, and are also
absolutely small, most cavities will achieve
lengthwise resonance
Plane
parallel
resonator
Concentric
resonator
Confocal
resonator
Unstable
resonator
Hemispheric
al resonator
Hemifocal
resonator
c
c
f
f
c: center of curvature, f: focal point
L = nλ
Transverse Modes
TEM00:
I(r) = (2P/πd2)*exp(-2r2/d2)
(d is spot size measured
to the 1/e2 points)
Due to boundary conditions and
quantum mechanical wave
equations
Einstein’s coefficients
Probability of stimulated absorption R1-2
R1-2 = r (n) B1-2
Probability of stimulated and spontaneous emission :
R2-1 = r (n) B2-1 + A2-1
assumption: n1 atoms of energy e 1 and n2 atoms of energy e 2 are in thermal
equilibrium at temperature T with the radiation of spectral density r (n):
n1 R1-2 = n2 R2-1 n1r (n) B1-2 = n2 (r (n) B2-1 + A2-1)

2 1 2 1
1 1 2
2 2 1
/
=
1
A B
n B
n B
r n  


 

E1
E2
B1-2/B2-1 = 1
According to Boltzman statistics:
r (n) = =
1
2 1
2
exp( ) / exp( / )
n
E E kT h kT
n
n
  
1
)
exp(
/
1
2
2
1
1
2
1
2





kT
h
B
B
B
A
n 1
)
/
exp(
/
8 3
3

kT
h
c
h
n
n

3
3
1
2
1
2 8
c
h
B
A n




Planck’s law
The probability of spontaneous emission A2-1 /the probability of
stimulated emission B2-1r(n :
1. Visible photons, energy: 1.6eV – 3.1eV.
2. kT at 300K ~ 0.025eV.
3. stimulated emission dominates solely when hn /kT <<1!
(for microwaves: hn <0.0015eV)
The frequency of emission acts to the absorption:
if hn /kT <<1.
1
)
/
exp(
)
(
1
2
1
2 


 kT
h
B
A
n
n
r
1
2
1
2
1
2
1
2
2
1
1
1
2
2
1
2
2 ]
)
(
1
[
)
(
)
(
n
n
n
n
B
A
B
n
B
n
A
n
x 









n
r
n
r
n
r
x~ n2/n1
Condition for the laser operation
If n1 > n2
• radiation is mostly absorbed absorbowane
• spontaneous radiation dominates.
• most atoms occupy level E2, weak absorption
• stimulated emission prevails
• light is amplified
if n2 >> n1 - population inversion
Necessary condition:
population inversion
E1
E2
How to realize the population inversion?
Thermal excitation:
2
1
exp
n E
n kT

 
  
 
Optically,
electrically.
impossible.
The system has to be „pumped”
E1
E2

More Related Content

Similar to laser-ppt.ppt

Introduction to laser to know mire .pptx
Introduction to laser to know mire .pptxIntroduction to laser to know mire .pptx
Introduction to laser to know mire .pptxalphanumeric7
 
Chem 101 week 8 ch7
Chem 101 week 8 ch7Chem 101 week 8 ch7
Chem 101 week 8 ch7tdean1
 
2. Introduction to Spectroscopy 2022.pptx
2. Introduction to Spectroscopy 2022.pptx2. Introduction to Spectroscopy 2022.pptx
2. Introduction to Spectroscopy 2022.pptxWilliamkambi
 
Spectrum & orbitals
Spectrum & orbitalsSpectrum & orbitals
Spectrum & orbitalstdresch
 
CHM260 - Spectroscopy Method
CHM260 - Spectroscopy MethodCHM260 - Spectroscopy Method
CHM260 - Spectroscopy MethodAlia Najiha
 
Laser for engineering students
Laser for engineering studentsLaser for engineering students
Laser for engineering studentsKallu Madhusudhana
 
Optical properties and hall effect
Optical properties and hall effectOptical properties and hall effect
Optical properties and hall effectutpal sarkar
 
Black body radiation.
Black body radiation.Black body radiation.
Black body radiation.Suni Pm
 
Chem 101 week 7 pt1
Chem 101 week 7 pt1Chem 101 week 7 pt1
Chem 101 week 7 pt1tdean1
 
spectroscopy, Atomic absorption & Atomic emission
spectroscopy, Atomic absorption & Atomic emissionspectroscopy, Atomic absorption & Atomic emission
spectroscopy, Atomic absorption & Atomic emissionaparnakhandelwal5
 
Ch 3 -properties of light
Ch 3 -properties of lightCh 3 -properties of light
Ch 3 -properties of lightcphsastronomy
 
PPT-303192101-5 (1).pdf
PPT-303192101-5 (1).pdfPPT-303192101-5 (1).pdf
PPT-303192101-5 (1).pdfRehanRaza56
 

Similar to laser-ppt.ppt (20)

Introduction to laser to know mire .pptx
Introduction to laser to know mire .pptxIntroduction to laser to know mire .pptx
Introduction to laser to know mire .pptx
 
Chem 101 week 8 ch7
Chem 101 week 8 ch7Chem 101 week 8 ch7
Chem 101 week 8 ch7
 
2. Introduction to Spectroscopy 2022.pptx
2. Introduction to Spectroscopy 2022.pptx2. Introduction to Spectroscopy 2022.pptx
2. Introduction to Spectroscopy 2022.pptx
 
Spectrum & orbitals
Spectrum & orbitalsSpectrum & orbitals
Spectrum & orbitals
 
CHM260 - Spectroscopy Method
CHM260 - Spectroscopy MethodCHM260 - Spectroscopy Method
CHM260 - Spectroscopy Method
 
Strawberry model2new
Strawberry model2newStrawberry model2new
Strawberry model2new
 
Laser for engineering students
Laser for engineering studentsLaser for engineering students
Laser for engineering students
 
Laser and fiber optics
Laser and fiber opticsLaser and fiber optics
Laser and fiber optics
 
Optical properties and hall effect
Optical properties and hall effectOptical properties and hall effect
Optical properties and hall effect
 
lasers.pdf
lasers.pdflasers.pdf
lasers.pdf
 
Black body radiation.
Black body radiation.Black body radiation.
Black body radiation.
 
Chem 101 week 7 pt1
Chem 101 week 7 pt1Chem 101 week 7 pt1
Chem 101 week 7 pt1
 
LASER (1) (1).pdf
LASER (1) (1).pdfLASER (1) (1).pdf
LASER (1) (1).pdf
 
Laser1
Laser1Laser1
Laser1
 
spectroscopy, Atomic absorption & Atomic emission
spectroscopy, Atomic absorption & Atomic emissionspectroscopy, Atomic absorption & Atomic emission
spectroscopy, Atomic absorption & Atomic emission
 
Laser part 1
Laser part 1Laser part 1
Laser part 1
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Laser
LaserLaser
Laser
 
Ch 3 -properties of light
Ch 3 -properties of lightCh 3 -properties of light
Ch 3 -properties of light
 
PPT-303192101-5 (1).pdf
PPT-303192101-5 (1).pdfPPT-303192101-5 (1).pdf
PPT-303192101-5 (1).pdf
 

Recently uploaded

Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 

Recently uploaded (20)

Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 

laser-ppt.ppt

  • 2. LASERS History of the LASER • Invented in 1958 by Charles Townes (Nobel prize in Physics 1964) and Arthur Schawlow of Bell Laboratories • Was based on Einstein’s idea of the “particlewave duality” of light, more than 30 years earlier • Originally called MASER (m = “microwave”)
  • 3. Laser printer Laser pointer Laser: everywhere in your life
  • 4. What is Laser? Light Amplification by Stimulated Emission of Radiation •A device produces a coherent beam of optical radiation by stimulating electronic, ionic, or molecular transitions to higher energy levels •When they return to lower energy levels by stimulated emission, they emit energy.
  • 5. Properties of Laser 5  The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light is a combination of many colors (or wavelengths) of light.  Lasers emit light that is highly directional, that is, laser light is emitted as a relatively narrow beam in a specific direction. Ordinary light, such as from a light bulb, is emitted in many directions away from the source.  The light from a laser is said to be coherent, which means that the wavelengths of the laser light are in phase in space and time. Ordinary light can be a mixture of many wavelengths. These three properties of laser light are what can make it more hazardous than ordinary light. Laser light can deposit a lot of energy within a small area.
  • 6. Monochromacity Nearly monochromatic light Example: He-Ne Laser λ0 = 632.5 nm Δλ = 0.2 nm Diode Laser λ0 = 900 nm Δλ = 10 nm Comparison of the wavelengths of red and blue light
  • 7. Directionality Conventional light source Divergence angle (θd) Beam divergence: θd= β λ /D β ~ 1 = f(type of light amplitude distribution, definition of beam diameter) λ = wavelength D = beam diameter
  • 8. Coherence Incoherent light waves Coherent light waves
  • 9. 9 Incandescent vs. Laser Light 1. Many wavelengths 2. Multidirectional 3. Incoherent 1. Monochromatic 2. Directional 3. Coherent
  • 10. Basic concepts for a laser • Absorption • Spontaneous Emission • Stimulated Emission • Population inversion
  • 11. Absorption •Energy is absorbed by an atom, the electrons are excited into vacant energy shells.
  • 12. Spontaneous Emission •The atom decays from level 2 to level 1 through the emission of a photon with the energy hv. It is a completely random process.
  • 13. Stimulated Emission atoms in an upper energy level can be triggered or stimulated in phase by an incoming photon of a specific energy.
  • 14. Stimulated Emission The stimulated photons have unique properties: •In phase with the incident photon •Same wavelength as the incident photon •Travel in same direction as incident photon
  • 15. Population Inversion •A state in which a substance has been energized, or excited to specific energy levels. •More atoms or molecules are in a higher excited state. •The process of producing a population inversion is called pumping. •Examples: →by lamps of appropriate intensity →by electrical discharge
  • 16. Pumping •Optical: Uses flashlamps and high-energy light sources (Ruby Laser) •Electrical Discharge: application of a potential difference across the laser medium (He-Ne Laser) •Inelastic Collisions between Atoms: Atoms exchange energies with other by in-elastic collisions and gets excited due to additional absorbed energy. (He-Ne Laser) •Direct Conversion: Electrical energy is directly converted into optical energy as LASER beam (Gallium Arsenide semiconducting Laser) •Chemical Reaction: Many exothermic reactions provide essential energy for pumping of atoms.
  • 17. Two level system absorption Spontaneous emission Stimulated emission hn hn hn E1 E2 E1 E2 hn =E2-E1
  • 18. E1 E2 • n1 - the number of electrons of energy E1 • n2 - the number of electrons of energy E2 •Population inversion- n2>>n1 2 2 1 1 ( ) exp n E E n kT          Boltzmann’s equation example: T=3000 K E2-E1=2.0 eV 4 2 1 4.4 10 n n   
  • 19. Resonance Cavities and Longitudinal Modes Since the wavelengths involved with lasers and masers spread over small ranges, and are also absolutely small, most cavities will achieve lengthwise resonance Plane parallel resonator Concentric resonator Confocal resonator Unstable resonator Hemispheric al resonator Hemifocal resonator c c f f c: center of curvature, f: focal point L = nλ
  • 20. Transverse Modes TEM00: I(r) = (2P/πd2)*exp(-2r2/d2) (d is spot size measured to the 1/e2 points) Due to boundary conditions and quantum mechanical wave equations
  • 21. Einstein’s coefficients Probability of stimulated absorption R1-2 R1-2 = r (n) B1-2 Probability of stimulated and spontaneous emission : R2-1 = r (n) B2-1 + A2-1 assumption: n1 atoms of energy e 1 and n2 atoms of energy e 2 are in thermal equilibrium at temperature T with the radiation of spectral density r (n): n1 R1-2 = n2 R2-1 n1r (n) B1-2 = n2 (r (n) B2-1 + A2-1)  2 1 2 1 1 1 2 2 2 1 / = 1 A B n B n B r n        E1 E2
  • 22. B1-2/B2-1 = 1 According to Boltzman statistics: r (n) = = 1 2 1 2 exp( ) / exp( / ) n E E kT h kT n n    1 ) exp( / 1 2 2 1 1 2 1 2      kT h B B B A n 1 ) / exp( / 8 3 3  kT h c h n n  3 3 1 2 1 2 8 c h B A n     Planck’s law
  • 23. The probability of spontaneous emission A2-1 /the probability of stimulated emission B2-1r(n : 1. Visible photons, energy: 1.6eV – 3.1eV. 2. kT at 300K ~ 0.025eV. 3. stimulated emission dominates solely when hn /kT <<1! (for microwaves: hn <0.0015eV) The frequency of emission acts to the absorption: if hn /kT <<1. 1 ) / exp( ) ( 1 2 1 2     kT h B A n n r 1 2 1 2 1 2 1 2 2 1 1 1 2 2 1 2 2 ] ) ( 1 [ ) ( ) ( n n n n B A B n B n A n x           n r n r n r x~ n2/n1
  • 24. Condition for the laser operation If n1 > n2 • radiation is mostly absorbed absorbowane • spontaneous radiation dominates. • most atoms occupy level E2, weak absorption • stimulated emission prevails • light is amplified if n2 >> n1 - population inversion Necessary condition: population inversion E1 E2
  • 25. How to realize the population inversion? Thermal excitation: 2 1 exp n E n kT         Optically, electrically. impossible. The system has to be „pumped” E1 E2