SlideShare a Scribd company logo
1 of 25
Unit-IV
Lasers and Fiber
optics
LASERS
History of the LASER
• Invented in 1958 by Charles Townes (Nobel prize
in Physics 1964) and Arthur Schawlow of Bell
Laboratories
• Was based on Einstein’s idea of the “particlewave
duality” of light, more than 30 years earlier
• Originally called MASER (m = “microwave”)
Laser printer Laser pointer
Laser: everywhere in your life
What is Laser?
Light Amplification by Stimulated
Emission of Radiation
• A device produces a coherent beam of
optical radiation by stimulating electronic,
ionic, or molecular transitions to higher
energy levels
• When they return to lower energy levels by
stimulated emission, they emit energy.
5
Properties of Laser
 The light emitted from a laser is monochromatic, that is, it is of one
color/wavelength. In contrast, ordinary white light is a combination of many
colors (or wavelengths) of light.
 Lasers emit light that is highly directional, that is, laser light is emitted as
a relatively narrow beam in a specific direction. Ordinary light, such as
from a light bulb, is emitted in many directions away from the source.
 The light from a laser is said to be coherent, which means that the
wavelengths of the laser light are in phase in space and time. Ordinary
light can be a mixture of many wavelengths.
These three properties of laser light are what can make it more
hazardous than ordinary light. Laser light can deposit a lot of energy
within a small area.
Monochromacity
Nearly monochromatic light
Example:
He-Ne Laser
λ0 = 632.5 nm
Δλ = 0.2 nm
Diode Laser
λ0 = 900 nm
Δλ = 10 nm
Comparison of the wavelengths of red and
blue light
Directionality
Conventional light source Divergence angle (θd)
Beam divergence: θd= β λ /D
β ~ 1 = f(type of light amplitude distribution, definition of beam diameter)
λ = wavelength
D = beam diameter
Coherence
Incoherent light waves Coherent light waves
9
Incandescent vs. Laser Light
1. Many wavelengths
2. Multidirectional
3. Incoherent
1. Monochromatic
2. Directional
3. Coherent
Basic concepts for a laser
• Absorption
• Spontaneous Emission
• Stimulated Emission
• Population inversion
Absorption
• Energy is absorbed by an atom, the electrons
are excited into vacant energy shells.
Spontaneous Emission
• The atom decays from level 2 to level 1 through
the emission of a photon with the energy hv. It is
a completely random process.
Stimulated Emission
atoms in an upper energy level can be triggered
or stimulated in phase by an incoming photon of
a specific energy.
Stimulated Emission
The stimulated photons have unique properties:
– In phase with the incident photon
– Same wavelength as the incident photon
– Travel in same direction as incident photon
Population Inversion
• A state in which a substance has been
energized, or excited to specific energy levels.
• More atoms or molecules are in a higher excited
state.
• The process of producing a population inversion
is called pumping.
• Examples:
→by lamps of appropriate intensity
→by electrical discharge
Pumping
•Optical: Uses flashlamps and high-energy light sources (Ruby
Laser)
•Electrical Discharge: application of a potential difference across
the laser medium (He-Ne Laser)
•Inelastic Collisions between Atoms: Atoms exchange energies
with other by in-elastic collisions and gets excited due to
additional absorbed energy. (He-Ne Laser)
•Direct Conversion: Electrical energy is directly converted into
optical energy as LASER beam (Gallium Arsenide
semiconducting Laser)
•Chemical Reaction: Many exothermic reactions provide
essential energy for pumping of atoms.
Two level system
absorption Spontaneous
emission
Stimulated
emission
hn hn
hn
E1
E2
E1
E2
hn =E2-E1
E1
E2
• n1 - the number of electrons of energy E1
• n2 - the number of electrons of energy E2
•Population inversion-
n2>>n1
2 2 1
1
( )
exp
n E E
n kT
 
 
  
 
Boltzmann’s equation
example: T=3000 K E2-E1=2.0
eV
4
2
1
4.4 10
n
n

 
Resonance Cavities
and Longitudinal Modes
Since the wavelengths involved with lasers and
masers spread over small ranges, and are also
absolutely small, most cavities will achieve
lengthwise resonance
Plane
parallel
resonator
Concentric
resonator
Confocal
resonator
Unstable
resonator
Hemispheric
al resonator
Hemifocal
resonator
c
c
f
f
c: center of curvature, f: focal point
L = nλ
Transverse Modes
TEM00:
I(r) = (2P/πd2)*exp(-2r2/d2)
(d is spot size measured
to the 1/e2 points)
Due to boundary conditions and
quantum mechanical wave
equations
Einstein’s coefficients
Probability of stimulated absorption R1-2
R1-2 = r (n) B1-2
Probability of stimulated and spontaneous emission :
R2-1 = r (n) B2-1 + A2-1
assumption: n1 atoms of energy e 1 and n2 atoms of energy e 2 are in thermal
equilibrium at temperature T with the radiation of spectral density r (n):
n1 R1-2 = n2 R2-1 n1r (n) B1-2 = n2 (r (n) B2-1 + A2-1)

2 1 2 1
1 1 2
2 2 1
/
=
1
A B
n B
n B
r n  


 

E1
E2
B1-2/B2-1 = 1
According to Boltzman statistics:
r (n) = =
1
2 1
2
exp( ) / exp( / )
n
E E kT h kT
n
n
  
1
)
exp(
/
1
2
2
1
1
2
1
2





kT
h
B
B
B
A
n 1
)
/
exp(
/
8 3
3

kT
h
c
h
n
n

3
3
1
2
1
2 8
c
h
B
A n




Planck’s law
The probability of spontaneous emission A2-1 /the probability of
stimulated emission B2-1r(n :
1. Visible photons, energy: 1.6eV – 3.1eV.
2. kT at 300K ~ 0.025eV.
3. stimulated emission dominates solely when hn /kT <<1!
(for microwaves: hn <0.0015eV)
The frequency of emission acts to the absorption:
if hn /kT <<1.
1
)
/
exp(
)
(
1
2
1
2 


 kT
h
B
A
n
n
r
1
2
1
2
1
2
1
2
2
1
1
1
2
2
1
2
2 ]
)
(
1
[
)
(
)
(
n
n
n
n
B
A
B
n
B
n
A
n
x 









n
r
n
r
n
r
x~ n2/n1
Condition for the laser operation
If n1 > n2
• radiation is mostly absorbed absorbowane
• spontaneous radiation dominates.
• most atoms occupy level E2, weak absorption
• stimulated emission prevails
• light is amplified
if n2 >> n1 - population inversion
Necessary condition:
population inversion
E1
E2
How to realize the population inversion?
Thermal excitation:
2
1
exp
n E
n kT

 
  
 
Optically,
electrically.
impossible.
The system has to be „pumped”
E1
E2

More Related Content

Similar to laser-ppt.ppt

2. Introduction to Spectroscopy 2022.pptx
2. Introduction to Spectroscopy 2022.pptx2. Introduction to Spectroscopy 2022.pptx
2. Introduction to Spectroscopy 2022.pptxWilliamkambi
 
BASICS OF LASER AND IT'S USE IN DERMATOLOGY
BASICS OF LASER AND IT'S USE IN DERMATOLOGYBASICS OF LASER AND IT'S USE IN DERMATOLOGY
BASICS OF LASER AND IT'S USE IN DERMATOLOGYRohit Singh
 
Chem 101 week 8 ch7
Chem 101 week 8 ch7Chem 101 week 8 ch7
Chem 101 week 8 ch7tdean1
 
Spectrum & orbitals
Spectrum & orbitalsSpectrum & orbitals
Spectrum & orbitalstdresch
 
Optical properties and hall effect
Optical properties and hall effectOptical properties and hall effect
Optical properties and hall effectutpal sarkar
 
CHM260 - Spectroscopy Method
CHM260 - Spectroscopy MethodCHM260 - Spectroscopy Method
CHM260 - Spectroscopy MethodAlia Najiha
 
PPT-303192101-5 (1).pdf
PPT-303192101-5 (1).pdfPPT-303192101-5 (1).pdf
PPT-303192101-5 (1).pdfRehanRaza56
 
LASERS, CHARACTERISTICS, STIMULATED ABSORPTION, SPONTANEOUS EMISSION, STIMULA...
LASERS, CHARACTERISTICS, STIMULATED ABSORPTION, SPONTANEOUS EMISSION, STIMULA...LASERS, CHARACTERISTICS, STIMULATED ABSORPTION, SPONTANEOUS EMISSION, STIMULA...
LASERS, CHARACTERISTICS, STIMULATED ABSORPTION, SPONTANEOUS EMISSION, STIMULA...LIFE SCIENCES
 
Basics and history of geometrical optics
Basics and history of geometrical opticsBasics and history of geometrical optics
Basics and history of geometrical opticsLABISHETTY CHARAN
 
Laser for engineering students
Laser for engineering studentsLaser for engineering students
Laser for engineering studentsKallu Madhusudhana
 
Optical sources - Principle of Lasers
Optical sources  - Principle of LasersOptical sources  - Principle of Lasers
Optical sources - Principle of LasersCKSunith1
 
Black body radiation.
Black body radiation.Black body radiation.
Black body radiation.Suni Pm
 

Similar to laser-ppt.ppt (20)

2. Introduction to Spectroscopy 2022.pptx
2. Introduction to Spectroscopy 2022.pptx2. Introduction to Spectroscopy 2022.pptx
2. Introduction to Spectroscopy 2022.pptx
 
Laser part 1
Laser part 1Laser part 1
Laser part 1
 
BASICS OF LASER AND IT'S USE IN DERMATOLOGY
BASICS OF LASER AND IT'S USE IN DERMATOLOGYBASICS OF LASER AND IT'S USE IN DERMATOLOGY
BASICS OF LASER AND IT'S USE IN DERMATOLOGY
 
Laser1
Laser1Laser1
Laser1
 
Chem 101 week 8 ch7
Chem 101 week 8 ch7Chem 101 week 8 ch7
Chem 101 week 8 ch7
 
Laser
LaserLaser
Laser
 
Laser and fiber optics
Laser and fiber opticsLaser and fiber optics
Laser and fiber optics
 
Spectrum & orbitals
Spectrum & orbitalsSpectrum & orbitals
Spectrum & orbitals
 
Optical properties and hall effect
Optical properties and hall effectOptical properties and hall effect
Optical properties and hall effect
 
CHM260 - Spectroscopy Method
CHM260 - Spectroscopy MethodCHM260 - Spectroscopy Method
CHM260 - Spectroscopy Method
 
PPT-303192101-5 (1).pdf
PPT-303192101-5 (1).pdfPPT-303192101-5 (1).pdf
PPT-303192101-5 (1).pdf
 
LASER (1) (1).pdf
LASER (1) (1).pdfLASER (1) (1).pdf
LASER (1) (1).pdf
 
LASERS, CHARACTERISTICS, STIMULATED ABSORPTION, SPONTANEOUS EMISSION, STIMULA...
LASERS, CHARACTERISTICS, STIMULATED ABSORPTION, SPONTANEOUS EMISSION, STIMULA...LASERS, CHARACTERISTICS, STIMULATED ABSORPTION, SPONTANEOUS EMISSION, STIMULA...
LASERS, CHARACTERISTICS, STIMULATED ABSORPTION, SPONTANEOUS EMISSION, STIMULA...
 
Strawberry model2new
Strawberry model2newStrawberry model2new
Strawberry model2new
 
Basics and history of geometrical optics
Basics and history of geometrical opticsBasics and history of geometrical optics
Basics and history of geometrical optics
 
Laser for engineering students
Laser for engineering studentsLaser for engineering students
Laser for engineering students
 
Optical sources - Principle of Lasers
Optical sources  - Principle of LasersOptical sources  - Principle of Lasers
Optical sources - Principle of Lasers
 
Black body radiation.
Black body radiation.Black body radiation.
Black body radiation.
 
Unit III
Unit IIIUnit III
Unit III
 
Spectroscopy
SpectroscopySpectroscopy
Spectroscopy
 

Recently uploaded

FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.takadzanijustinmaime
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceAlex Henderson
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .Poonam Aher Patil
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCherry
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learninglevieagacer
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...Scintica Instrumentation
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACherry
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIADr. TATHAGAT KHOBRAGADE
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
 
Pteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecyclePteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecycleCherry
 
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.Cherry
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptxArvind Kumar
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCherry
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCherry
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxDiariAli
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....muralinath2
 
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsKanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsDeepika Singh
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspectsmuralinath2
 

Recently uploaded (20)

FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 
BHUBANESHWAR ODIA CALL GIRL SEIRVEC ❣️ 72051//37929❣️ CALL GIRL IN ODIA HAND ...
BHUBANESHWAR ODIA CALL GIRL SEIRVEC ❣️ 72051//37929❣️ CALL GIRL IN ODIA HAND ...BHUBANESHWAR ODIA CALL GIRL SEIRVEC ❣️ 72051//37929❣️ CALL GIRL IN ODIA HAND ...
BHUBANESHWAR ODIA CALL GIRL SEIRVEC ❣️ 72051//37929❣️ CALL GIRL IN ODIA HAND ...
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
Pteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecyclePteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecycle
 
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demerits
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptx
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsKanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 

laser-ppt.ppt

  • 2. LASERS History of the LASER • Invented in 1958 by Charles Townes (Nobel prize in Physics 1964) and Arthur Schawlow of Bell Laboratories • Was based on Einstein’s idea of the “particlewave duality” of light, more than 30 years earlier • Originally called MASER (m = “microwave”)
  • 3. Laser printer Laser pointer Laser: everywhere in your life
  • 4. What is Laser? Light Amplification by Stimulated Emission of Radiation • A device produces a coherent beam of optical radiation by stimulating electronic, ionic, or molecular transitions to higher energy levels • When they return to lower energy levels by stimulated emission, they emit energy.
  • 5. 5 Properties of Laser  The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light is a combination of many colors (or wavelengths) of light.  Lasers emit light that is highly directional, that is, laser light is emitted as a relatively narrow beam in a specific direction. Ordinary light, such as from a light bulb, is emitted in many directions away from the source.  The light from a laser is said to be coherent, which means that the wavelengths of the laser light are in phase in space and time. Ordinary light can be a mixture of many wavelengths. These three properties of laser light are what can make it more hazardous than ordinary light. Laser light can deposit a lot of energy within a small area.
  • 6. Monochromacity Nearly monochromatic light Example: He-Ne Laser λ0 = 632.5 nm Δλ = 0.2 nm Diode Laser λ0 = 900 nm Δλ = 10 nm Comparison of the wavelengths of red and blue light
  • 7. Directionality Conventional light source Divergence angle (θd) Beam divergence: θd= β λ /D β ~ 1 = f(type of light amplitude distribution, definition of beam diameter) λ = wavelength D = beam diameter
  • 8. Coherence Incoherent light waves Coherent light waves
  • 9. 9 Incandescent vs. Laser Light 1. Many wavelengths 2. Multidirectional 3. Incoherent 1. Monochromatic 2. Directional 3. Coherent
  • 10. Basic concepts for a laser • Absorption • Spontaneous Emission • Stimulated Emission • Population inversion
  • 11. Absorption • Energy is absorbed by an atom, the electrons are excited into vacant energy shells.
  • 12. Spontaneous Emission • The atom decays from level 2 to level 1 through the emission of a photon with the energy hv. It is a completely random process.
  • 13. Stimulated Emission atoms in an upper energy level can be triggered or stimulated in phase by an incoming photon of a specific energy.
  • 14. Stimulated Emission The stimulated photons have unique properties: – In phase with the incident photon – Same wavelength as the incident photon – Travel in same direction as incident photon
  • 15. Population Inversion • A state in which a substance has been energized, or excited to specific energy levels. • More atoms or molecules are in a higher excited state. • The process of producing a population inversion is called pumping. • Examples: →by lamps of appropriate intensity →by electrical discharge
  • 16. Pumping •Optical: Uses flashlamps and high-energy light sources (Ruby Laser) •Electrical Discharge: application of a potential difference across the laser medium (He-Ne Laser) •Inelastic Collisions between Atoms: Atoms exchange energies with other by in-elastic collisions and gets excited due to additional absorbed energy. (He-Ne Laser) •Direct Conversion: Electrical energy is directly converted into optical energy as LASER beam (Gallium Arsenide semiconducting Laser) •Chemical Reaction: Many exothermic reactions provide essential energy for pumping of atoms.
  • 17. Two level system absorption Spontaneous emission Stimulated emission hn hn hn E1 E2 E1 E2 hn =E2-E1
  • 18. E1 E2 • n1 - the number of electrons of energy E1 • n2 - the number of electrons of energy E2 •Population inversion- n2>>n1 2 2 1 1 ( ) exp n E E n kT          Boltzmann’s equation example: T=3000 K E2-E1=2.0 eV 4 2 1 4.4 10 n n   
  • 19. Resonance Cavities and Longitudinal Modes Since the wavelengths involved with lasers and masers spread over small ranges, and are also absolutely small, most cavities will achieve lengthwise resonance Plane parallel resonator Concentric resonator Confocal resonator Unstable resonator Hemispheric al resonator Hemifocal resonator c c f f c: center of curvature, f: focal point L = nλ
  • 20. Transverse Modes TEM00: I(r) = (2P/πd2)*exp(-2r2/d2) (d is spot size measured to the 1/e2 points) Due to boundary conditions and quantum mechanical wave equations
  • 21. Einstein’s coefficients Probability of stimulated absorption R1-2 R1-2 = r (n) B1-2 Probability of stimulated and spontaneous emission : R2-1 = r (n) B2-1 + A2-1 assumption: n1 atoms of energy e 1 and n2 atoms of energy e 2 are in thermal equilibrium at temperature T with the radiation of spectral density r (n): n1 R1-2 = n2 R2-1 n1r (n) B1-2 = n2 (r (n) B2-1 + A2-1)  2 1 2 1 1 1 2 2 2 1 / = 1 A B n B n B r n        E1 E2
  • 22. B1-2/B2-1 = 1 According to Boltzman statistics: r (n) = = 1 2 1 2 exp( ) / exp( / ) n E E kT h kT n n    1 ) exp( / 1 2 2 1 1 2 1 2      kT h B B B A n 1 ) / exp( / 8 3 3  kT h c h n n  3 3 1 2 1 2 8 c h B A n     Planck’s law
  • 23. The probability of spontaneous emission A2-1 /the probability of stimulated emission B2-1r(n : 1. Visible photons, energy: 1.6eV – 3.1eV. 2. kT at 300K ~ 0.025eV. 3. stimulated emission dominates solely when hn /kT <<1! (for microwaves: hn <0.0015eV) The frequency of emission acts to the absorption: if hn /kT <<1. 1 ) / exp( ) ( 1 2 1 2     kT h B A n n r 1 2 1 2 1 2 1 2 2 1 1 1 2 2 1 2 2 ] ) ( 1 [ ) ( ) ( n n n n B A B n B n A n x           n r n r n r x~ n2/n1
  • 24. Condition for the laser operation If n1 > n2 • radiation is mostly absorbed absorbowane • spontaneous radiation dominates. • most atoms occupy level E2, weak absorption • stimulated emission prevails • light is amplified if n2 >> n1 - population inversion Necessary condition: population inversion E1 E2
  • 25. How to realize the population inversion? Thermal excitation: 2 1 exp n E n kT         Optically, electrically. impossible. The system has to be „pumped” E1 E2