SlideShare a Scribd company logo
1 of 26
B.SC.II
PAPER-B
(OPTICS and LASERS)
Submitted by
Dr. Sarvpreet Kaur
Assistant Professor
PGGCG-11, Chandigarh
Unit-IV
Lasers and Fiber
optics
LASERS
History of the LASER
• Invented in 1958 by Charles Townes (Nobel prize
in Physics 1964) and Arthur Schawlow of Bell
Laboratories
• Was based on Einstein’s idea of the “particlewave
duality” of light, more than 30 years earlier
• Originally called MASER (m = “microwave”)
Laser printer Laser pointer
Laser: everywhere in your life
What is Laser?
Light Amplification by Stimulated
Emission of Radiation
• A device produces a coherent beam of
optical radiation by stimulating electronic,
ionic, or molecular transitions to higher
energy levels
• When they return to lower energy levels by
stimulated emission, they emit energy.
6
Properties of Laser
 The light emitted from a laser is monochromatic, that is, it is of one
color/wavelength. In contrast, ordinary white light is a combination of many
colors (or wavelengths) of light.
 Lasers emit light that is highly directional, that is, laser light is emitted as
a relatively narrow beam in a specific direction. Ordinary light, such as
from a light bulb, is emitted in many directions away from the source.
 The light from a laser is said to be coherent, which means that the
wavelengths of the laser light are in phase in space and time. Ordinary
light can be a mixture of many wavelengths.
These three properties of laser light are what can make it more
hazardous than ordinary light. Laser light can deposit a lot of energy
within a small area.
Monochromacity
Nearly monochromatic light
Example:
He-Ne Laser
λ0 = 632.5 nm
Δλ = 0.2 nm
Diode Laser
λ0 = 900 nm
Δλ = 10 nm
Comparison of the wavelengths of red and
blue light
Directionality
Conventional light source Divergence angle (θd)
Beam divergence: θd= β λ /D
β ~ 1 = f(type of light amplitude distribution, definition of beam diameter)
λ = wavelength
D = beam diameter
Coherence
Incoherent light waves Coherent light waves
10
Incandescent vs. Laser Light
1. Many wavelengths
2. Multidirectional
3. Incoherent
1. Monochromatic
2. Directional
3. Coherent
Basic concepts for a laser
• Absorption
• Spontaneous Emission
• Stimulated Emission
• Population inversion
Absorption
• Energy is absorbed by an atom, the electrons
are excited into vacant energy shells.
Spontaneous Emission
• The atom decays from level 2 to level 1 through
the emission of a photon with the energy hv. It is
a completely random process.
Stimulated Emission
atoms in an upper energy level can be triggered
or stimulated in phase by an incoming photon of
a specific energy.
Stimulated Emission
The stimulated photons have unique properties:
– In phase with the incident photon
– Same wavelength as the incident photon
– Travel in same direction as incident photon
Population Inversion
• A state in which a substance has been
energized, or excited to specific energy levels.
• More atoms or molecules are in a higher excited
state.
• The process of producing a population inversion
is called pumping.
• Examples:
→by lamps of appropriate intensity
→by electrical discharge
Pumping
•Optical: flashlamps and high-energy light sources
•Electrical: application of a potential difference across
the laser medium
•Semiconductor: movement of electrons in
“junctions,” between “holes”
Two level system
absorption Spontaneous
emission
Stimulated
emission
hn hn
hn
E1
E2
E1
E2
hn =E2-E1
E1
E2
• n1 - the number of electrons of energy E1
• n2 - the number of electrons of energy E2
•Population inversion-
n2>>n1
2 2 1
1
( )
exp
n E E
n kT
 
 
  
 
Boltzmann’s equation
example: T=3000 K E2-E1=2.0
eV
4
2
1
4.4 10
n
n

 
Resonance Cavities
and Longitudinal
Modes
Since the wavelengths involved with lasers and
masers spread over small ranges, and are also
absolutely small, most cavities will achieve
lengthwise resonance
Plane
parallel
resonator
Concentric
resonator
Confocal
resonator
Unstable
resonator
Hemispheric
al resonator
Hemifocal
resonator
c
c
f
f
c: center of curvature, f: focal point
L = nλ
Transverse
Modes
TEM00:
I(r) = (2P/πd2)*exp(-2r2/d2)
(d is spot size measured
to the 1/e2 points)
Due to boundary conditions and
quantum mechanical wave
equations
Einstein’s coefficients
Probability of stimulated absorption R1-2
R1-2 = r (n) B1-2
Probability of stimulated and spontaneous emission :
R2-1 = r (n) B2-1 + A2-1
assumption: n1 atoms of energy e 1 and n2 atoms of energy e 2 are in thermal
equilibrium at temperature T with the radiation of spectral density r (n):
n1 R1-2 = n2 R2-1 n1r (n) B1-2 = n2 (r (n) B2-1 + A2-1)

2 1 2 1
1 1 2
2 2 1
/
=
1
A B
n B
n B
r n  


 

E1
E2
B1-2/B2-1 = 1
According to Boltzman statistics:
r (n) = =
1
2 1
2
exp( ) / exp( / )
n
E E kT h kT
n
n
  
1
)
exp(
/
1
2
2
1
1
2
1
2





kT
h
B
B
B
A
n 1
)
/
exp(
/
8 3
3

kT
h
c
h
n
n

3
3
1
2
1
2 8
c
h
B
A n




Planck’s law
The probability of spontaneous emission A2-1 /the probability of
stimulated emission B2-1r(n :
1. Visible photons, energy: 1.6eV – 3.1eV.
2. kT at 300K ~ 0.025eV.
3. stimulated emission dominates solely when hn /kT <<1!
(for microwaves: hn <0.0015eV)
The frequency of emission acts to the absorption:
if hn /kT <<1.
1
)
/
exp(
)
(
1
2
1
2 


 kT
h
B
A
n
n
r
1
2
1
2
1
2
1
2
2
1
1
1
2
2
1
2
2 ]
)
(
1
[
)
(
)
(
n
n
n
n
B
A
B
n
B
n
A
n
x 









n
r
n
r
n
r
x~ n2/n1
Condition for the laser operation
If n1 > n2
• radiation is mostly absorbed absorbowane
• spontaneous radiation dominates.
• most atoms occupy level E2, weak absorption
• stimulated emission prevails
• light is amplified
if n2 >> n1 - population inversion
Necessary condition:
population inversion
E1
E2
How to realize the population inversion?
Thermal excitation:
2
1
exp
n E
n kT

 
  
 
Optically,
electrically.
impossible.
The system has to be „pumped”
E1
E2

More Related Content

Similar to Lasers1.ppt

2. Introduction to Spectroscopy 2022.pptx
2. Introduction to Spectroscopy 2022.pptx2. Introduction to Spectroscopy 2022.pptx
2. Introduction to Spectroscopy 2022.pptxWilliamkambi
 
33-LIGHT-AND-ILLUMINATION.pptx
33-LIGHT-AND-ILLUMINATION.pptx33-LIGHT-AND-ILLUMINATION.pptx
33-LIGHT-AND-ILLUMINATION.pptxROLENCEMAERACSA
 
introduction to laser and introductory concepts
introduction to laser and introductory conceptsintroduction to laser and introductory concepts
introduction to laser and introductory conceptsUOG PHYSICISTS !!!!!
 
Lasers and Optical Fibres
Lasers and Optical FibresLasers and Optical Fibres
Lasers and Optical FibresSreelathaMudiam
 
Laser & Laser Applications
Laser & Laser ApplicationsLaser & Laser Applications
Laser & Laser ApplicationsAmol Kumbhar
 
Optical properties and hall effect
Optical properties and hall effectOptical properties and hall effect
Optical properties and hall effectutpal sarkar
 
PHYA4-LASERS.ppt, for first year B.E./BTech
PHYA4-LASERS.ppt, for first year B.E./BTechPHYA4-LASERS.ppt, for first year B.E./BTech
PHYA4-LASERS.ppt, for first year B.E./BTechishnlakhina
 
Ir spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P KhobragadeIr spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P KhobragadeBhavanaKhobragade
 
Lec (1 2-3) ch one- optical analytical instrumentation
Lec (1 2-3)  ch one- optical analytical instrumentationLec (1 2-3)  ch one- optical analytical instrumentation
Lec (1 2-3) ch one- optical analytical instrumentationcairo university
 
Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02Cleophas Rwemera
 
Structure of atom plus one focus area notes
Structure of atom plus one focus area notesStructure of atom plus one focus area notes
Structure of atom plus one focus area notessaranyaHC1
 
Photometry
Photometry Photometry
Photometry Mero Eye
 

Similar to Lasers1.ppt (20)

2. Introduction to Spectroscopy 2022.pptx
2. Introduction to Spectroscopy 2022.pptx2. Introduction to Spectroscopy 2022.pptx
2. Introduction to Spectroscopy 2022.pptx
 
Ap chem unit 7
Ap chem unit 7Ap chem unit 7
Ap chem unit 7
 
33-LIGHT-AND-ILLUMINATION.pptx
33-LIGHT-AND-ILLUMINATION.pptx33-LIGHT-AND-ILLUMINATION.pptx
33-LIGHT-AND-ILLUMINATION.pptx
 
Laser matter interaction
Laser matter interactionLaser matter interaction
Laser matter interaction
 
introduction to laser and introductory concepts
introduction to laser and introductory conceptsintroduction to laser and introductory concepts
introduction to laser and introductory concepts
 
Laser matter interaction
Laser matter interactionLaser matter interaction
Laser matter interaction
 
Laser and fiber optics
Laser and fiber opticsLaser and fiber optics
Laser and fiber optics
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Lasers and Optical Fibres
Lasers and Optical FibresLasers and Optical Fibres
Lasers and Optical Fibres
 
Laser & Laser Applications
Laser & Laser ApplicationsLaser & Laser Applications
Laser & Laser Applications
 
Heat 4e chap12_lecture
Heat 4e chap12_lectureHeat 4e chap12_lecture
Heat 4e chap12_lecture
 
Optical properties and hall effect
Optical properties and hall effectOptical properties and hall effect
Optical properties and hall effect
 
PHYA4-LASERS.ppt, for first year B.E./BTech
PHYA4-LASERS.ppt, for first year B.E./BTechPHYA4-LASERS.ppt, for first year B.E./BTech
PHYA4-LASERS.ppt, for first year B.E./BTech
 
Chapter 1b
Chapter 1bChapter 1b
Chapter 1b
 
Ir spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P KhobragadeIr spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P Khobragade
 
Lec (1 2-3) ch one- optical analytical instrumentation
Lec (1 2-3)  ch one- optical analytical instrumentationLec (1 2-3)  ch one- optical analytical instrumentation
Lec (1 2-3) ch one- optical analytical instrumentation
 
Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02Apchemunit7 111006100549-phpapp02
Apchemunit7 111006100549-phpapp02
 
Structure of atom plus one focus area notes
Structure of atom plus one focus area notesStructure of atom plus one focus area notes
Structure of atom plus one focus area notes
 
Chemistry 11
Chemistry 11Chemistry 11
Chemistry 11
 
Photometry
Photometry Photometry
Photometry
 

Recently uploaded

PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINsankalpkumarsahoo174
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 

Recently uploaded (20)

PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 

Lasers1.ppt

  • 1. B.SC.II PAPER-B (OPTICS and LASERS) Submitted by Dr. Sarvpreet Kaur Assistant Professor PGGCG-11, Chandigarh
  • 3. LASERS History of the LASER • Invented in 1958 by Charles Townes (Nobel prize in Physics 1964) and Arthur Schawlow of Bell Laboratories • Was based on Einstein’s idea of the “particlewave duality” of light, more than 30 years earlier • Originally called MASER (m = “microwave”)
  • 4. Laser printer Laser pointer Laser: everywhere in your life
  • 5. What is Laser? Light Amplification by Stimulated Emission of Radiation • A device produces a coherent beam of optical radiation by stimulating electronic, ionic, or molecular transitions to higher energy levels • When they return to lower energy levels by stimulated emission, they emit energy.
  • 6. 6 Properties of Laser  The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light is a combination of many colors (or wavelengths) of light.  Lasers emit light that is highly directional, that is, laser light is emitted as a relatively narrow beam in a specific direction. Ordinary light, such as from a light bulb, is emitted in many directions away from the source.  The light from a laser is said to be coherent, which means that the wavelengths of the laser light are in phase in space and time. Ordinary light can be a mixture of many wavelengths. These three properties of laser light are what can make it more hazardous than ordinary light. Laser light can deposit a lot of energy within a small area.
  • 7. Monochromacity Nearly monochromatic light Example: He-Ne Laser λ0 = 632.5 nm Δλ = 0.2 nm Diode Laser λ0 = 900 nm Δλ = 10 nm Comparison of the wavelengths of red and blue light
  • 8. Directionality Conventional light source Divergence angle (θd) Beam divergence: θd= β λ /D β ~ 1 = f(type of light amplitude distribution, definition of beam diameter) λ = wavelength D = beam diameter
  • 9. Coherence Incoherent light waves Coherent light waves
  • 10. 10 Incandescent vs. Laser Light 1. Many wavelengths 2. Multidirectional 3. Incoherent 1. Monochromatic 2. Directional 3. Coherent
  • 11. Basic concepts for a laser • Absorption • Spontaneous Emission • Stimulated Emission • Population inversion
  • 12. Absorption • Energy is absorbed by an atom, the electrons are excited into vacant energy shells.
  • 13. Spontaneous Emission • The atom decays from level 2 to level 1 through the emission of a photon with the energy hv. It is a completely random process.
  • 14. Stimulated Emission atoms in an upper energy level can be triggered or stimulated in phase by an incoming photon of a specific energy.
  • 15. Stimulated Emission The stimulated photons have unique properties: – In phase with the incident photon – Same wavelength as the incident photon – Travel in same direction as incident photon
  • 16. Population Inversion • A state in which a substance has been energized, or excited to specific energy levels. • More atoms or molecules are in a higher excited state. • The process of producing a population inversion is called pumping. • Examples: →by lamps of appropriate intensity →by electrical discharge
  • 17. Pumping •Optical: flashlamps and high-energy light sources •Electrical: application of a potential difference across the laser medium •Semiconductor: movement of electrons in “junctions,” between “holes”
  • 18. Two level system absorption Spontaneous emission Stimulated emission hn hn hn E1 E2 E1 E2 hn =E2-E1
  • 19. E1 E2 • n1 - the number of electrons of energy E1 • n2 - the number of electrons of energy E2 •Population inversion- n2>>n1 2 2 1 1 ( ) exp n E E n kT          Boltzmann’s equation example: T=3000 K E2-E1=2.0 eV 4 2 1 4.4 10 n n   
  • 20. Resonance Cavities and Longitudinal Modes Since the wavelengths involved with lasers and masers spread over small ranges, and are also absolutely small, most cavities will achieve lengthwise resonance Plane parallel resonator Concentric resonator Confocal resonator Unstable resonator Hemispheric al resonator Hemifocal resonator c c f f c: center of curvature, f: focal point L = nλ
  • 21. Transverse Modes TEM00: I(r) = (2P/πd2)*exp(-2r2/d2) (d is spot size measured to the 1/e2 points) Due to boundary conditions and quantum mechanical wave equations
  • 22. Einstein’s coefficients Probability of stimulated absorption R1-2 R1-2 = r (n) B1-2 Probability of stimulated and spontaneous emission : R2-1 = r (n) B2-1 + A2-1 assumption: n1 atoms of energy e 1 and n2 atoms of energy e 2 are in thermal equilibrium at temperature T with the radiation of spectral density r (n): n1 R1-2 = n2 R2-1 n1r (n) B1-2 = n2 (r (n) B2-1 + A2-1)  2 1 2 1 1 1 2 2 2 1 / = 1 A B n B n B r n        E1 E2
  • 23. B1-2/B2-1 = 1 According to Boltzman statistics: r (n) = = 1 2 1 2 exp( ) / exp( / ) n E E kT h kT n n    1 ) exp( / 1 2 2 1 1 2 1 2      kT h B B B A n 1 ) / exp( / 8 3 3  kT h c h n n  3 3 1 2 1 2 8 c h B A n     Planck’s law
  • 24. The probability of spontaneous emission A2-1 /the probability of stimulated emission B2-1r(n : 1. Visible photons, energy: 1.6eV – 3.1eV. 2. kT at 300K ~ 0.025eV. 3. stimulated emission dominates solely when hn /kT <<1! (for microwaves: hn <0.0015eV) The frequency of emission acts to the absorption: if hn /kT <<1. 1 ) / exp( ) ( 1 2 1 2     kT h B A n n r 1 2 1 2 1 2 1 2 2 1 1 1 2 2 1 2 2 ] ) ( 1 [ ) ( ) ( n n n n B A B n B n A n x           n r n r n r x~ n2/n1
  • 25. Condition for the laser operation If n1 > n2 • radiation is mostly absorbed absorbowane • spontaneous radiation dominates. • most atoms occupy level E2, weak absorption • stimulated emission prevails • light is amplified if n2 >> n1 - population inversion Necessary condition: population inversion E1 E2
  • 26. How to realize the population inversion? Thermal excitation: 2 1 exp n E n kT         Optically, electrically. impossible. The system has to be „pumped” E1 E2