SlideShare a Scribd company logo
1 of 20
OPTIMAL TRAJECTORIES
TOWARDS NEAR-EARTH-OBJECTS
USING SOLAR ELECTRIC
PROPULSION (SEP)
AND GRAVITY ASSISTED
MANEUVER
UR11AE038
JOSHUA
DANIEL
RAJ
INTRODUCTION
Potentially hazardous asteroids
NEO(Asteroid 99942)
SEP
 the 2029-threat
 1/37 ( 2.7%)∼
 Apophis Orbit
99942Orbital characteristics
•
Aphelion.............................. 1.098505744 AU
•
Perihelion.............. .............. 0.746058621 AU
•
Semi-major axis.................0.9222821826 AU
•
Eccentricity...................... 0.1910733664
•
Orbital period......0.8857352528 yr(323.51480 d)
•
Average orbital speed............27.728 km/s
•
Mean anomaly ....................150.996453°
•
Inclination............................ 3.3312800°
•
Longitude of ascending node..........204.45743°
•
Argument of perihelion...............126.3949°
SPACECRAFT
SPECIFICATION
LEO altitude(km)........ 300km
Initial Spacecraft
Mass(kg)....................3100kg
Departure ΔV (km/s)...38.0522km/s
Departure Date..........March 28,2029
Mission Duration(days)....16days
Arrival Angle(deg)............12.238
Arrival Date................April 12,2029
Tolerance on Energy[ ]....... -0.1
Number of Iterations........... 2
Initial Power (KW).............7KW
Specific Impulse(sec)......3100(s)
GRAVITATIONAL SPHERE OF INFLUENCE
INTERPLANETARY
TRAJECTORY: HOHMANN ORBIT
•
Main idea through example of
moving spacecraft from LEO
→ Asteroid
•
Average radius of Earth is
about 6,378 km
•
LEO is at 300 km above
sea level or 6,678 km from
Earth
•
To reach Asteroid.
HOHMANN
TRANSFER
•
We want to move spacecraft from LEO
→ Asteroid
•
Initial LEO orbit has radius R1 and
velocity VD
( )
( )
)(
2
)(
2
212
1
211
2
RRRR
R
R
V
RRRR
R
R
V
A
A
SUN
A
D
D
SUN
D
+=
=
+=
=
µ
µ
•
Asteroid orbit has
radius R2 and
velocity VA
R1=149282593.9km
R2=150660367.1km
LEO
Asteroid Orbit
R1
R2
VD
VA
VD=36.060961km/s
VA=32.010446km/s
LEO
Asteroid orbit
R1
R2
VD
VA
HOHMANN TRANSFER
LEO
Asteroid orbit
R1
R2
VD
VA
V1
R1 is the distance of LEO with
respect to Sun.
R2 is the distance of Asteroid with
respect to Sun.
LEO TO Asteroid USING LOW
THRUST
Hohmann Transfer
Using GMAT
GMAT is a feature rich
system containing high
fidelity space system
models, optimization and
targeting,built in scripting
and programming
infrastructure and
compatible plots, pots and
data products, to enable
flexible analysis and
solutions, for custom and
unique applications. GMAT
can be driven from a fully
featured, interactive GUI
or from a custom script
language. HERE are some
of GMATs key features
layed out by feature group.
Arrival And Deflection
XY Co-
ordinates of
Earth and
Asteroid
intersection
points are
representated
in XY plane.
Red is
Asteroid's orbit
and Blue is
Earth's orbit.
-1.5 -1 -0.5 0 0.5 1 1.5
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
xyast vs xyear
X(AU)
Y(AU)
YZ Co-ordinates of Earth and Asteroid Intersection points
representated in YZ plane.
Red is Asteroid's orbit and Blue is Earth's orbit.
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
yzast vs yzear
Y(AU)
Z(AU)
XZ Co-
ordinates of
Earth and
Asteroid
intersection
points are
representated
in XZ plane.
Red is
Asteroid's
orbit and
Blue is
Earth's orbit. -1.5 -1 -0.5 0 0.5 1 1.5
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
xzast vs xzear
X(AU)
Z(AU)
A-Intersection Point
(-0.9206996046AU,-
0.3662249197 AU,-
0.158953035 AU)
SOI of Earth is 925x10^3 km
(0.0061832430AU)
B-Critical Point
(-0.9268828476AU,-
0.3600416767
AU, -0.152769792AU).
Safe distance =300000 km
(0.00200537614 AU).
C-Deflection Point
(0.93022881148AU,
0.353543398664AU,
0.15471445598504AU)
D-Earth Initial
Blue-Earth orbit
Red-Asteroid orbit
-1.5 -1 -0.5 0 0.5 1 1.5
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
xyast vs xyear
X(A U)
Y(AU)
A
B
C D
A
B
D
Optimal Trajectory
Orbital elements-
•
Angular momentum (kmˆ2/s) = 714.356
•
Eccentricity = 0.999998
•
Inclination (deg) = 44.4508
•
RA of ascending node (deg) = 12.238
•
Argument of perigee (deg) = 118.581
•
True anomaly initial (deg) = 176.092
•
True anomaly final (deg) = 74.1204
•
Semi-major axis (km) = 268215
•
Periapse radius (km) = 0.640122
•
Period-
Seconds = 1.38241e+06
Minutes = 23040.2
Hours = 384.003
Days = 16.0001
Deflection Angle•
Resultant Velocity-
21
2211
21
2211
21
2211
21
2211
,,
)(
mm
vmvm
mm
vmvm
mm
vmvm
vvvV
mm
vmvm
V
zzyyxx
fkfjfif
f
+
+
+
+
+
+
≈
++=
+
+
=
V'f = [29.89207956 9.779269423 6.437960415]
Vf =32.10323761 km/s
Angle of deflection=120.857deg
After Deflection
•
Direction of
sun=121.3005425deg
Thus, we can conclude by determining the
direction of the Sun and the direction of
Asteroid with respect to Sun is same where
near to each other, so the Asteroid is
deflected from the path of the Earth and
pushed into the Sun.
Reference
• Brophy, J. R. and Noca, M., “Electric propulsion for solar system exploration.”
Journal of Propulsion and Power.
• Casalino L. and Colasurdo G., "Missions to Asteroids Using Solar Electric
Propulsion."
• Gomes, V.M., Prado, A.F.B.A, Kuga, H.K., "Orbital maneuvers Using Low
Thrust", Recent Advances in Signal Processing.
• W lodarczyk, I., The impact orbits of the dangerous asteroid (99942) Apophis,
Contributions of the Astronomical Observatory.
• W lodarczyk, I., The potentially dangerous asteroid (99942) Apophis, Monthly
Notices of the Royal Astronomical Society.
Farnocchia, D., et al.: Yarkovsky-driven impact risk analysis for asteroid (99942) Apophis,
Icarus 224, 192 (2013).
Kro´likowska, M., Sitarski, G., So ltan, A. M.: How selection and weighting of astrometric
observations influence the impact probability. The case of asteroid (99942) Apophis, Monthly
Notices of the Royal Astronomical Society 399, 1964 (2009).
Goldberg, David: Genetic Algorithms in Search, Optimization, and Machine Learning.
AddisonWesley, First ed., 1989.
Koza, John: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, Massachusetts: The MIT Press, First ed., 1992.

More Related Content

What's hot

Geostationary satellites
Geostationary satellites Geostationary satellites
Geostationary satellites
k4pital
 
DESIGN OF GEOSYNCHRONOUS AND SUN SYNCHRONOUS ORBIT
DESIGN OF GEOSYNCHRONOUS AND SUN SYNCHRONOUS ORBITDESIGN OF GEOSYNCHRONOUS AND SUN SYNCHRONOUS ORBIT
DESIGN OF GEOSYNCHRONOUS AND SUN SYNCHRONOUS ORBIT
Shahid Iqbal
 

What's hot (20)

Space Debris Removal System
Space Debris Removal SystemSpace Debris Removal System
Space Debris Removal System
 
AAS National Conference 2008: Andy Cheng
AAS National Conference 2008: Andy ChengAAS National Conference 2008: Andy Cheng
AAS National Conference 2008: Andy Cheng
 
solar sail
solar sailsolar sail
solar sail
 
Adcs orbit intro
Adcs orbit introAdcs orbit intro
Adcs orbit intro
 
Geostationary Satellite
Geostationary SatelliteGeostationary Satellite
Geostationary Satellite
 
Satellite orbits
Satellite orbitsSatellite orbits
Satellite orbits
 
Geostationary satellites
Geostationary satellites Geostationary satellites
Geostationary satellites
 
Orbital perturbations
Orbital perturbationsOrbital perturbations
Orbital perturbations
 
Orbital parameters of a satellite
Orbital parameters of a satelliteOrbital parameters of a satellite
Orbital parameters of a satellite
 
"""Program and planning at JAXA-Space Science"" National Research Council Sp...
"""Program and planning at JAXA-Space Science""  National Research Council Sp..."""Program and planning at JAXA-Space Science""  National Research Council Sp...
"""Program and planning at JAXA-Space Science"" National Research Council Sp...
 
CFHT proposed Maunakea Spectroscopic Explorer
CFHT proposed Maunakea Spectroscopic ExplorerCFHT proposed Maunakea Spectroscopic Explorer
CFHT proposed Maunakea Spectroscopic Explorer
 
Orbital mechanics
Orbital mechanicsOrbital mechanics
Orbital mechanics
 
Satellite fundamentals
Satellite fundamentals  Satellite fundamentals
Satellite fundamentals
 
"""ISAS and International collaboration"" IAU Focus meeting 11, Hawaii, 6-7 A...
"""ISAS and International collaboration"" IAU Focus meeting 11, Hawaii, 6-7 A..."""ISAS and International collaboration"" IAU Focus meeting 11, Hawaii, 6-7 A...
"""ISAS and International collaboration"" IAU Focus meeting 11, Hawaii, 6-7 A...
 
Applications of space technology
Applications of space technologyApplications of space technology
Applications of space technology
 
"""Program and planning at ISAS/JAXA space science"" The 50th anniversary of ...
"""Program and planning at ISAS/JAXA space science"" The 50th anniversary of ..."""Program and planning at ISAS/JAXA space science"" The 50th anniversary of ...
"""Program and planning at ISAS/JAXA space science"" The 50th anniversary of ...
 
DESIGN OF GEOSYNCHRONOUS AND SUN SYNCHRONOUS ORBIT
DESIGN OF GEOSYNCHRONOUS AND SUN SYNCHRONOUS ORBITDESIGN OF GEOSYNCHRONOUS AND SUN SYNCHRONOUS ORBIT
DESIGN OF GEOSYNCHRONOUS AND SUN SYNCHRONOUS ORBIT
 
Geo synchronous and Sun synchronous Satellites
Geo synchronous and Sun synchronous SatellitesGeo synchronous and Sun synchronous Satellites
Geo synchronous and Sun synchronous Satellites
 
International Space Station Reference Guide
International Space Station Reference GuideInternational Space Station Reference Guide
International Space Station Reference Guide
 
Mom
MomMom
Mom
 

Viewers also liked

Xsteel egitimi-kucukcekmece
Xsteel egitimi-kucukcekmeceXsteel egitimi-kucukcekmece
Xsteel egitimi-kucukcekmece
sersld85
 
X-Zelit Swedish agricultural trials RUSSIAN
X-Zelit Swedish agricultural trials RUSSIANX-Zelit Swedish agricultural trials RUSSIAN
X-Zelit Swedish agricultural trials RUSSIAN
Vilofoss
 
Xphomes25 11
Xphomes25 11Xphomes25 11
Xphomes25 11
Pháp Sư
 
Xogos e malabares
Xogos e malabaresXogos e malabares
Xogos e malabares
mttq
 
Xsteel egitimi-erzurum
Xsteel egitimi-erzurumXsteel egitimi-erzurum
Xsteel egitimi-erzurum
sersld85
 
Xxvii enapl _programa%20definitivo
Xxvii enapl _programa%20definitivoXxvii enapl _programa%20definitivo
Xxvii enapl _programa%20definitivo
alxarife
 

Viewers also liked (13)

Xsteel egitimi-kucukcekmece
Xsteel egitimi-kucukcekmeceXsteel egitimi-kucukcekmece
Xsteel egitimi-kucukcekmece
 
XP Days UA Pecha kucha
XP Days UA Pecha kuchaXP Days UA Pecha kucha
XP Days UA Pecha kucha
 
Xuizo, testamento2014
Xuizo, testamento2014Xuizo, testamento2014
Xuizo, testamento2014
 
Xustos e xustas das nacións
Xustos e xustas das naciónsXustos e xustas das nacións
Xustos e xustas das nacións
 
X-Zelit Swedish agricultural trials RUSSIAN
X-Zelit Swedish agricultural trials RUSSIANX-Zelit Swedish agricultural trials RUSSIAN
X-Zelit Swedish agricultural trials RUSSIAN
 
XXII Зимние олимпийские игры Сочи-2014. Виды спорта в ребусах
XXII Зимние олимпийские игры Сочи-2014. Виды спорта в ребусахXXII Зимние олимпийские игры Сочи-2014. Виды спорта в ребусах
XXII Зимние олимпийские игры Сочи-2014. Виды спорта в ребусах
 
X terminar erick
X terminar erickX terminar erick
X terminar erick
 
Xtremas.org
Xtremas.orgXtremas.org
Xtremas.org
 
XXXIII Carrera San José. Gran Premio Diputación de Burgos Marzo 2014
XXXIII Carrera San José. Gran Premio Diputación de Burgos Marzo 2014XXXIII Carrera San José. Gran Premio Diputación de Burgos Marzo 2014
XXXIII Carrera San José. Gran Premio Diputación de Burgos Marzo 2014
 
Xphomes25 11
Xphomes25 11Xphomes25 11
Xphomes25 11
 
Xogos e malabares
Xogos e malabaresXogos e malabares
Xogos e malabares
 
Xsteel egitimi-erzurum
Xsteel egitimi-erzurumXsteel egitimi-erzurum
Xsteel egitimi-erzurum
 
Xxvii enapl _programa%20definitivo
Xxvii enapl _programa%20definitivoXxvii enapl _programa%20definitivo
Xxvii enapl _programa%20definitivo
 

Similar to XTERNAL

The final flight_of_lovejoy_comet
The final flight_of_lovejoy_cometThe final flight_of_lovejoy_comet
The final flight_of_lovejoy_comet
Sérgio Sacani
 
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
WellingtonRodrigues2014
 
The internal structure_of_asteroid_itokawa_as_revealed_by_detection_of_yorp_s...
The internal structure_of_asteroid_itokawa_as_revealed_by_detection_of_yorp_s...The internal structure_of_asteroid_itokawa_as_revealed_by_detection_of_yorp_s...
The internal structure_of_asteroid_itokawa_as_revealed_by_detection_of_yorp_s...
Sérgio Sacani
 
The independent pulsations of Jupiter’s northern and southern X-ray auroras
The independent pulsations of Jupiter’s northern and southern X-ray aurorasThe independent pulsations of Jupiter’s northern and southern X-ray auroras
The independent pulsations of Jupiter’s northern and southern X-ray auroras
Sérgio Sacani
 
Gravitational trator to_towing_asteroids
Gravitational trator to_towing_asteroidsGravitational trator to_towing_asteroids
Gravitational trator to_towing_asteroids
Sérgio Sacani
 
A gravitational tractor_for_towing_asteroids
A gravitational tractor_for_towing_asteroidsA gravitational tractor_for_towing_asteroids
A gravitational tractor_for_towing_asteroids
Sérgio Sacani
 
How can Earth's magnetic field be used to give evidence for plate tectonics?
How can Earth's magnetic field be used to give evidence for plate tectonics?How can Earth's magnetic field be used to give evidence for plate tectonics?
How can Earth's magnetic field be used to give evidence for plate tectonics?
Wilfrid Somogyi
 
Appraisal of solar resources
Appraisal of solar resourcesAppraisal of solar resources
Appraisal of solar resources
IrSOLaV Pomares
 

Similar to XTERNAL (20)

Fp3210491056
Fp3210491056Fp3210491056
Fp3210491056
 
Magnetism
MagnetismMagnetism
Magnetism
 
Oort cloud (exo)planets
Oort cloud (exo)planetsOort cloud (exo)planets
Oort cloud (exo)planets
 
The final flight_of_lovejoy_comet
The final flight_of_lovejoy_cometThe final flight_of_lovejoy_comet
The final flight_of_lovejoy_comet
 
The Sun and Life on Planets by Saku Tsuneta
The Sun and Life on Planets by  Saku TsunetaThe Sun and Life on Planets by  Saku Tsuneta
The Sun and Life on Planets by Saku Tsuneta
 
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
 
The internal structure_of_asteroid_itokawa_as_revealed_by_detection_of_yorp_s...
The internal structure_of_asteroid_itokawa_as_revealed_by_detection_of_yorp_s...The internal structure_of_asteroid_itokawa_as_revealed_by_detection_of_yorp_s...
The internal structure_of_asteroid_itokawa_as_revealed_by_detection_of_yorp_s...
 
Geomagnetism of earth.
Geomagnetism of earth.Geomagnetism of earth.
Geomagnetism of earth.
 
The independent pulsations of Jupiter’s northern and southern X-ray auroras
The independent pulsations of Jupiter’s northern and southern X-ray aurorasThe independent pulsations of Jupiter’s northern and southern X-ray auroras
The independent pulsations of Jupiter’s northern and southern X-ray auroras
 
The closest known_flyby_of_a_star_to_the_solar_system
The closest known_flyby_of_a_star_to_the_solar_systemThe closest known_flyby_of_a_star_to_the_solar_system
The closest known_flyby_of_a_star_to_the_solar_system
 
SatelliteOrbit
SatelliteOrbit SatelliteOrbit
SatelliteOrbit
 
Stellar quantities 2018
Stellar quantities 2018Stellar quantities 2018
Stellar quantities 2018
 
PROBING THE SOLAR INTERIOR WITH LENSED GRAVITATIONAL WAVES FROM KNOWN PULSARS
PROBING THE SOLAR INTERIOR WITH LENSED GRAVITATIONAL WAVES FROM KNOWN PULSARSPROBING THE SOLAR INTERIOR WITH LENSED GRAVITATIONAL WAVES FROM KNOWN PULSARS
PROBING THE SOLAR INTERIOR WITH LENSED GRAVITATIONAL WAVES FROM KNOWN PULSARS
 
Aditya l1
Aditya l1Aditya l1
Aditya l1
 
aditya-l1-210625152747 (1).pdmmmmmmmmmmmmmmmmmmmmmmmmmf
aditya-l1-210625152747 (1).pdmmmmmmmmmmmmmmmmmmmmmmmmmfaditya-l1-210625152747 (1).pdmmmmmmmmmmmmmmmmmmmmmmmmmf
aditya-l1-210625152747 (1).pdmmmmmmmmmmmmmmmmmmmmmmmmmf
 
Gravitational trator to_towing_asteroids
Gravitational trator to_towing_asteroidsGravitational trator to_towing_asteroids
Gravitational trator to_towing_asteroids
 
A gravitational tractor_for_towing_asteroids
A gravitational tractor_for_towing_asteroidsA gravitational tractor_for_towing_asteroids
A gravitational tractor_for_towing_asteroids
 
Jupiter
JupiterJupiter
Jupiter
 
How can Earth's magnetic field be used to give evidence for plate tectonics?
How can Earth's magnetic field be used to give evidence for plate tectonics?How can Earth's magnetic field be used to give evidence for plate tectonics?
How can Earth's magnetic field be used to give evidence for plate tectonics?
 
Appraisal of solar resources
Appraisal of solar resourcesAppraisal of solar resources
Appraisal of solar resources
 

XTERNAL

  • 1. OPTIMAL TRAJECTORIES TOWARDS NEAR-EARTH-OBJECTS USING SOLAR ELECTRIC PROPULSION (SEP) AND GRAVITY ASSISTED MANEUVER UR11AE038 JOSHUA DANIEL RAJ
  • 2. INTRODUCTION Potentially hazardous asteroids NEO(Asteroid 99942) SEP  the 2029-threat  1/37 ( 2.7%)∼  Apophis Orbit
  • 3. 99942Orbital characteristics • Aphelion.............................. 1.098505744 AU • Perihelion.............. .............. 0.746058621 AU • Semi-major axis.................0.9222821826 AU • Eccentricity...................... 0.1910733664 • Orbital period......0.8857352528 yr(323.51480 d) • Average orbital speed............27.728 km/s • Mean anomaly ....................150.996453° • Inclination............................ 3.3312800° • Longitude of ascending node..........204.45743° • Argument of perihelion...............126.3949°
  • 4. SPACECRAFT SPECIFICATION LEO altitude(km)........ 300km Initial Spacecraft Mass(kg)....................3100kg Departure ΔV (km/s)...38.0522km/s Departure Date..........March 28,2029 Mission Duration(days)....16days Arrival Angle(deg)............12.238 Arrival Date................April 12,2029 Tolerance on Energy[ ]....... -0.1 Number of Iterations........... 2 Initial Power (KW).............7KW Specific Impulse(sec)......3100(s)
  • 6. INTERPLANETARY TRAJECTORY: HOHMANN ORBIT • Main idea through example of moving spacecraft from LEO → Asteroid • Average radius of Earth is about 6,378 km • LEO is at 300 km above sea level or 6,678 km from Earth • To reach Asteroid.
  • 7. HOHMANN TRANSFER • We want to move spacecraft from LEO → Asteroid • Initial LEO orbit has radius R1 and velocity VD ( ) ( ) )( 2 )( 2 212 1 211 2 RRRR R R V RRRR R R V A A SUN A D D SUN D += = += = µ µ
  • 8. • Asteroid orbit has radius R2 and velocity VA R1=149282593.9km R2=150660367.1km LEO Asteroid Orbit R1 R2 VD VA
  • 10. HOHMANN TRANSFER LEO Asteroid orbit R1 R2 VD VA V1 R1 is the distance of LEO with respect to Sun. R2 is the distance of Asteroid with respect to Sun.
  • 11. LEO TO Asteroid USING LOW THRUST
  • 12. Hohmann Transfer Using GMAT GMAT is a feature rich system containing high fidelity space system models, optimization and targeting,built in scripting and programming infrastructure and compatible plots, pots and data products, to enable flexible analysis and solutions, for custom and unique applications. GMAT can be driven from a fully featured, interactive GUI or from a custom script language. HERE are some of GMATs key features layed out by feature group.
  • 13. Arrival And Deflection XY Co- ordinates of Earth and Asteroid intersection points are representated in XY plane. Red is Asteroid's orbit and Blue is Earth's orbit. -1.5 -1 -0.5 0 0.5 1 1.5 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 xyast vs xyear X(AU) Y(AU)
  • 14. YZ Co-ordinates of Earth and Asteroid Intersection points representated in YZ plane. Red is Asteroid's orbit and Blue is Earth's orbit. -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 yzast vs yzear Y(AU) Z(AU)
  • 15. XZ Co- ordinates of Earth and Asteroid intersection points are representated in XZ plane. Red is Asteroid's orbit and Blue is Earth's orbit. -1.5 -1 -0.5 0 0.5 1 1.5 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 xzast vs xzear X(AU) Z(AU)
  • 16. A-Intersection Point (-0.9206996046AU,- 0.3662249197 AU,- 0.158953035 AU) SOI of Earth is 925x10^3 km (0.0061832430AU) B-Critical Point (-0.9268828476AU,- 0.3600416767 AU, -0.152769792AU). Safe distance =300000 km (0.00200537614 AU). C-Deflection Point (0.93022881148AU, 0.353543398664AU, 0.15471445598504AU) D-Earth Initial Blue-Earth orbit Red-Asteroid orbit -1.5 -1 -0.5 0 0.5 1 1.5 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 xyast vs xyear X(A U) Y(AU) A B C D A B D
  • 17. Optimal Trajectory Orbital elements- • Angular momentum (kmˆ2/s) = 714.356 • Eccentricity = 0.999998 • Inclination (deg) = 44.4508 • RA of ascending node (deg) = 12.238 • Argument of perigee (deg) = 118.581 • True anomaly initial (deg) = 176.092 • True anomaly final (deg) = 74.1204 • Semi-major axis (km) = 268215 • Periapse radius (km) = 0.640122 • Period- Seconds = 1.38241e+06 Minutes = 23040.2 Hours = 384.003 Days = 16.0001
  • 19. After Deflection • Direction of sun=121.3005425deg Thus, we can conclude by determining the direction of the Sun and the direction of Asteroid with respect to Sun is same where near to each other, so the Asteroid is deflected from the path of the Earth and pushed into the Sun.
  • 20. Reference • Brophy, J. R. and Noca, M., “Electric propulsion for solar system exploration.” Journal of Propulsion and Power. • Casalino L. and Colasurdo G., "Missions to Asteroids Using Solar Electric Propulsion." • Gomes, V.M., Prado, A.F.B.A, Kuga, H.K., "Orbital maneuvers Using Low Thrust", Recent Advances in Signal Processing. • W lodarczyk, I., The impact orbits of the dangerous asteroid (99942) Apophis, Contributions of the Astronomical Observatory. • W lodarczyk, I., The potentially dangerous asteroid (99942) Apophis, Monthly Notices of the Royal Astronomical Society. Farnocchia, D., et al.: Yarkovsky-driven impact risk analysis for asteroid (99942) Apophis, Icarus 224, 192 (2013). Kro´likowska, M., Sitarski, G., So ltan, A. M.: How selection and weighting of astrometric observations influence the impact probability. The case of asteroid (99942) Apophis, Monthly Notices of the Royal Astronomical Society 399, 1964 (2009). Goldberg, David: Genetic Algorithms in Search, Optimization, and Machine Learning. AddisonWesley, First ed., 1989. Koza, John: Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, Massachusetts: The MIT Press, First ed., 1992.