Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources




                                                                                Well Placement Optimization
                                                                                                                                         Zyed Bouzarkouna (IFP)
                                                                                                                                         Didier Yu Ding (IFP)
                                                                                                                                         Anne Auger (INRIA)
© 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                                                      ECMOR 2010 – 08/09/2010
Outline

                                                                  Well placement optimization

                                                                  Covariance Matrix Adaptation – ES (CMA-ES)
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                  Comparison with the genetic algorithm

                                                                  CMA-ES with meta-models

                                                                  Summary



2
Well Placement Optimization Problem

                                                                  multi-modal
                                                                  non-smooth
                                                                  non-convex
                                                                   non-separable
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                               
                                                                  with a large dimension
                                                                  computationally expensive
                                                                  ...                               Onwunalu & Durlofsky (2010)



                                                                      The use of a stochastic optimization algorithm
3
CMA-ES
                                                               Covariance Matrix Adaptation – Evolution Strategy (Hansen &
                                                               Ostermeier, 2001)

                                                                                          Initial population
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                              Evaluating individuals


                                                                  Next
                                                                generation       x i( g 1)  m ( g )   ( g )N i (0, C( g ) )  i  1..



                                                                                                  New population
4
5
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                              CMA-ES (Cont’d)
                                                               Covariance Matrix Adaptation
CMA-ES (Cont’d)

                                                                  Moving the mean
                                                                                                             
                                                                                        m   ( g 1)
                                                                                                         i x i(:λ1)
                                                                                                                  g

                                                                                                          i 1
                                                                                                         
                                                                                        with            
                                                                                                        i 1
                                                                                                                   i    1, 1  2  ...     0


                                                                  Adapting the covariance matrix                                                 rank-one update
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                                                                                                                             rank-μ update


                                                                                                                                                                                           
                                                                                                                                       ccov                                        1
                                                                                                                                                                                         ) i y i(:g 1) y i(:g 1)
                                                                                                                                                               T                                                       T
                                                                                         C( g 1)  (1  ccov )C( g )                            p cg 1)p cg 1)  ccov (1 
                                                                                                                                                    (       (
                                                                                                                                                                                                              
                                                                                                                                        cov                                     cov      i 1
                                                                                                                                                                             ( g 1)
                                                                                                                                                                         m              m( g )
                                                                                         where p                  ( g 1)
                                                                                                                             (1  cc )p    (g)
                                                                                                                                                   cc (2  cc )  eff
                                                                                                                                                                                  (g)
                                                                                                                  c                         c




                                                                   Step-size control                                            p σg 1)
                                                                                                                                  (
                                                                                                                          c
                                                                                            ( g 1)
                                                                                                               (g)
                                                                                                                       exp( (              1))
                                                                                                                           d E N (0, I )
                                                                                                                                                                              1
                                                                                                                                                                          (g)2    m ( g 1)  m ( g )
                                                                                        where p                  ( g 1)
                                                                                                                             (1  c )p   (g)
                                                                                                                                                  c (2  c )  eff C
                                                                                                                                                                                           (g)
                                                                                                                 σ                         σ



6
Handling Constraints with CMA-ES
                                                                  Adaptive penalization with rejection
                                                                      Adaptive penalization
                                                                           m = nbconstraints
                                                                                                                          2
                                                                                                                 1 m    dj
                                                                                                f ( x)  f ( x)    j
                                                                                                                 m j 1  j
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                           where j are weights increased if the distribution mean moved
                                                                            away from the feasible domain.


                                                                      Rejecting and resampling
                                                                           If an individual is far away from the feasible domain.



7
Why CMA-ES ?

                                                                  A problem difficult to solve
                                                                          multimodal;
                                                                          non-smooth;
                                                                          non-separable;
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                          with a high dimension;
                                                                          an expensive objective function;
                                                                          ....


                                                                       CMA-ES is one of the most powerful continuous
                                                                       optimization algorithms (Hansen et al. 2010)

8
Comparison with the Genetic Algorithm
                                                               Genetic Algorithm
                                                                                        Initial population


                                                                                           Evaluating individuals
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                 Next
                                                               generation
                                                                                   Selection, Crossover, Mutation


                                                                                              New population


                                                                 constraints handled with Genocop III (Emerick et al. 2009)
9
Test Case
                                                                                                                     Di
                                                                                                                        me
                                                                                                                           ns
                                                                                                                              ion
                                                               PUNQ S-3: 19 x 28 x 5.                                            =    12

                                                               2 wells to be placed:
                                                                                                        vertical, horizontal or deviated.
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                   1 unilateral producer
                                                                   1 unilateral injector               Lmax = 1000 m.


                                                               NPV = the objective function
                                                                                           T
                                                                                         Qo   Co 
                                                                                        Q  C  )  C
                                                                       Y
                                                                                1
                                                                NPV   (             n  g  g
                                                                      n 1 (1  APR )
                                                                                                        d

                                                                                        Qw  n Cw  n
                                                                                           
10
11
     © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                14 runs
                                                                          CMA-ES vs. GA
CMA-ES vs. GA (Cont’d)
                                                            Position of solution wells (Producers, Injectors)
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                        CMA-ES                                  GA



12
13
     © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                CMA-ES: Handling Constraints
First Conclusions

                                                               CMA-ES outperforms GA: Higher NPV with less
                                                                simulations.

                                                                CMA-ES proposes solutions in a well-defined zone.
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                            


                                                               Well configurations generated by CMA-ES are, in
                                                                general, either feasible or close to feasible domain.



14
Meta-Models (MM)

                                                                  f : 'true' objective                   ˆ
                                                                                                         f : approximate
                                                                         function                          function (MM)


                                                               Local quadratic regression
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                             point q to be evaluated
                                                                                             points used to evaluate q
                                                                                             other points from the training set




15
Approximate Ranking Procedure
                                                                                      ^                                    ^                                         ^
                                                                 evaluate with       f              evaluate with        f                   evaluate with        f
                                                                              ^                                     ^                                         ^
                                                                 rank with   f (Rank0)              rank with     f (Rank1)                  rank with     f (Ranki)
Training Set                                                                                                                         ...
n elements                                                       evaluate with f the                if (NO criteria)                         if (NO criteria)
                                                                  best from Rank0                          evaluate with f the                       evaluate with f the best
                                                                                                           best from Rank1                           with Ranki
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                     ad




                                                                                                                                                     ad
                                                                                                           ad
                                                                       dt




                                                                                                                                                       dt
                                                                                                             dt
                                                                       ot




                                                                                                                                                       ot
                                                                                                             ot
                                                                        he




                                                                                                                                                         he
                                                                                                               he
                                                                           Tra




                                                                                                                                                            Tra
                                                                                                                  Tra
                                                                               ini




                                                                                                                                                                ini
                                                                                                                      ini
                                                                                  ng




                                                                                                                                                                   ng
                                                                                                                         ng
                                                                                     Se




                                                                                                                                                                      Se
                                                                                                                            Se
                                                                                       t




                                                                                                                                                                        t
                                                                                                                              t



                                                                                    Training Set                          Training Set                              Training Set
                                                                                  (n + 1 ) elements                     (n + 2 ) elements                         (n + i ) elements

16
MM Acceptance Criteria (nlmm-CMA)
                                                            Bouzarkouna et al. (2010)

                                                                The meta-model is accepted if it succeeds in keeping:

                                                                     the best individual and the set of the best individuals unchanged
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                 

                                                            or
                                                                    the best individual unchanged, if more than one fourth of the
                                                                     population is evaluated.




17
Well Placement with lmm-CMA
                                                            10 runs
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                 The number of reservoir simulations is reduced by 19 - 25%

18
Well Placement with lmm-CMA (Cont’d)
                                                                       n layers
                                                              Map of    S      o
                                                                         k 1




                                                                                         Engineer's proposed config.
                                                               INJ-2                         Producers: Horizontal in layer 1;
                                                                           INJ-1
                                                                                              Injectors: Horizontal in layer 5.
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                          
                                                            INJ-O

                                                                    PROD-O               Optimized config.
                                                                                             Wells: inclined in layer 3.

                                                                    PROD-1/2



19
Well Placement with lmm-CMA (Cont’d)
                                                                       n layers       Production Curves
                                                              Map of    S      o
                                                                         k 1




                                                               INJ-2
                                                                           INJ-1
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                            INJ-O

                                                                    PROD-O


                                                                    PROD-1/2



20
Meta-Models: Conclusions

                                                               Using Meta-Models reduces the number of simulations
                                                                by ≈ 20%.
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                               The methodology adds ≈ 60% to engineer's proposed
                                                                well configurations' cumulative oil production.




21
Summary

                                                               A successful application of CMA-ES in well placement
                                                                optimization.

                                                                Constraints handled using an adaptive penalization with
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                            
                                                                rejection technique.

                                                               Meta-Models coupled to CMA-ES to reduce the number
                                                                of simulations.


22
Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources




                                                                              Thank You for Your Attention
© 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                                         Zyed.Bouzarkouna@ifp.fr

                                                                                                                      ECMOR 2010 – 08/09/2010
Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources




                                                                                Well Placement Optimization
                                                                                                                                         Zyed Bouzarkouna (IFP)
                                                                                                                                         Didier Yu Ding (IFP)
                                                                                                                                         Anne Auger (INRIA)
© 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                                         Zyed.Bouzarkouna@ifp.fr

                                                                                                                      ECMOR 2010 – 08/09/2010

Well placement optimization

  • 1.
    Renewable energies |Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources Well Placement Optimization Zyed Bouzarkouna (IFP) Didier Yu Ding (IFP) Anne Auger (INRIA) © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France ECMOR 2010 – 08/09/2010
  • 2.
    Outline  Well placement optimization  Covariance Matrix Adaptation – ES (CMA-ES) © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France  Comparison with the genetic algorithm  CMA-ES with meta-models  Summary 2
  • 3.
    Well Placement OptimizationProblem  multi-modal  non-smooth  non-convex non-separable © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France   with a large dimension  computationally expensive  ... Onwunalu & Durlofsky (2010) The use of a stochastic optimization algorithm 3
  • 4.
    CMA-ES Covariance Matrix Adaptation – Evolution Strategy (Hansen & Ostermeier, 2001) Initial population © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Evaluating individuals Next generation x i( g 1)  m ( g )   ( g )N i (0, C( g ) )  i  1.. New population 4
  • 5.
    5 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France CMA-ES (Cont’d) Covariance Matrix Adaptation
  • 6.
    CMA-ES (Cont’d)  Moving the mean  m ( g 1)   i x i(:λ1) g i 1  with  i 1 i  1, 1  2  ...     0  Adapting the covariance matrix rank-one update © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France rank-μ update  ccov 1 ) i y i(:g 1) y i(:g 1) T T C( g 1)  (1  ccov )C( g )  p cg 1)p cg 1)  ccov (1  ( (    cov cov i 1 ( g 1) m  m( g ) where p ( g 1)  (1  cc )p (g)  cc (2  cc )  eff  (g) c c Step-size control p σg 1) (  c  ( g 1)  (g) exp( (  1)) d E N (0, I ) 1 (g)2 m ( g 1)  m ( g ) where p ( g 1)  (1  c )p (g)  c (2  c )  eff C  (g) σ σ 6
  • 7.
    Handling Constraints withCMA-ES  Adaptive penalization with rejection  Adaptive penalization  m = nbconstraints 2 1 m dj f ( x)  f ( x)    j m j 1  j © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France  where j are weights increased if the distribution mean moved away from the feasible domain.  Rejecting and resampling  If an individual is far away from the feasible domain. 7
  • 8.
    Why CMA-ES ?  A problem difficult to solve  multimodal;  non-smooth;  non-separable; © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France  with a high dimension;  an expensive objective function;  .... CMA-ES is one of the most powerful continuous optimization algorithms (Hansen et al. 2010) 8
  • 9.
    Comparison with theGenetic Algorithm Genetic Algorithm Initial population Evaluating individuals © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Next generation Selection, Crossover, Mutation New population constraints handled with Genocop III (Emerick et al. 2009) 9
  • 10.
    Test Case Di me ns ion  PUNQ S-3: 19 x 28 x 5. = 12  2 wells to be placed: vertical, horizontal or deviated. © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France  1 unilateral producer  1 unilateral injector Lmax = 1000 m.  NPV = the objective function T  Qo   Co  Q  C  )  C Y 1 NPV   ( n  g  g n 1 (1  APR ) d Qw  n Cw  n     10
  • 11.
    11 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France 14 runs CMA-ES vs. GA
  • 12.
    CMA-ES vs. GA(Cont’d) Position of solution wells (Producers, Injectors) © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France CMA-ES GA 12
  • 13.
    13 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France CMA-ES: Handling Constraints
  • 14.
    First Conclusions  CMA-ES outperforms GA: Higher NPV with less simulations. CMA-ES proposes solutions in a well-defined zone. © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France   Well configurations generated by CMA-ES are, in general, either feasible or close to feasible domain. 14
  • 15.
    Meta-Models (MM) f : 'true' objective ˆ f : approximate function function (MM)  Local quadratic regression © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France point q to be evaluated points used to evaluate q other points from the training set 15
  • 16.
    Approximate Ranking Procedure ^ ^ ^  evaluate with f  evaluate with f  evaluate with f ^ ^ ^  rank with f (Rank0)  rank with f (Rank1)  rank with f (Ranki) Training Set ... n elements  evaluate with f the  if (NO criteria)  if (NO criteria) best from Rank0 evaluate with f the evaluate with f the best best from Rank1 with Ranki © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France ad ad ad dt dt dt ot ot ot he he he Tra Tra Tra ini ini ini ng ng ng Se Se Se t t t Training Set Training Set Training Set (n + 1 ) elements (n + 2 ) elements (n + i ) elements 16
  • 17.
    MM Acceptance Criteria(nlmm-CMA) Bouzarkouna et al. (2010)  The meta-model is accepted if it succeeds in keeping: the best individual and the set of the best individuals unchanged © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France  or  the best individual unchanged, if more than one fourth of the population is evaluated. 17
  • 18.
    Well Placement withlmm-CMA 10 runs © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France The number of reservoir simulations is reduced by 19 - 25% 18
  • 19.
    Well Placement withlmm-CMA (Cont’d) n layers Map of    S o k 1  Engineer's proposed config. INJ-2  Producers: Horizontal in layer 1; INJ-1 Injectors: Horizontal in layer 5. © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France  INJ-O PROD-O  Optimized config.  Wells: inclined in layer 3. PROD-1/2 19
  • 20.
    Well Placement withlmm-CMA (Cont’d) n layers Production Curves Map of    S o k 1 INJ-2 INJ-1 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France INJ-O PROD-O PROD-1/2 20
  • 21.
    Meta-Models: Conclusions  Using Meta-Models reduces the number of simulations by ≈ 20%. © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France  The methodology adds ≈ 60% to engineer's proposed well configurations' cumulative oil production. 21
  • 22.
    Summary  A successful application of CMA-ES in well placement optimization. Constraints handled using an adaptive penalization with © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France  rejection technique.  Meta-Models coupled to CMA-ES to reduce the number of simulations. 22
  • 23.
    Renewable energies |Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources Thank You for Your Attention © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Zyed.Bouzarkouna@ifp.fr ECMOR 2010 – 08/09/2010
  • 24.
    Renewable energies |Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources Well Placement Optimization Zyed Bouzarkouna (IFP) Didier Yu Ding (IFP) Anne Auger (INRIA) © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Zyed.Bouzarkouna@ifp.fr ECMOR 2010 – 08/09/2010