Visualizing... networks
Francisco Restivo
fjr@fe.up.pt
slideshare.net/frestivo
Topics
•
The explosion of Big Data
•
Data
•
Social Networks
•
Technologies
•
Tools
•
Projects
2SSIIM, 2019/10/07
About me
3SSIIM, 2019/10/07
Lic. EE (6 anos) D.Phil. Prof. Assoc. Director Prof. Assoc
Signals DSP Multiprocessor systems Biomedical Systems Complex systems
Manufacturing systems Multi-agent systems Social systems Networks
Lic. EE (6 anos) D.Phil. Prof. Assoc. Director Prof. AssocLic. EE (6 anos) D.Phil. Prof. Assoc. Director Prof. Assoc
Internet timeline
4SSIIM, 2019/10/07
Apollo 11 1969
5SSIIM, 2019/10/07
Porto 1970
6SSIIM, 2019/10/07
IBM PC 1981
7SSIIM, 2019/10/07
8SSIIM, 2019/10/07
9SSIIM, 2019/10/07
Networks
•
Networks are everywhere
•
Social, biological, financial, etc
•
Complex networks
•
Communities
•
Contagion
•
Controversies
•
Society!
10SSIIM, 2019/10/07
Society!
•
Social
•
Education
•
Industry
•
Economy
•
Influence
•
Politics
•
Digital transformation
11SSIIM, 2019/10/07
Social networks
•
Like, comment, share, cite
•
Dating
•
e-Commerce
•
Payments
•
Digital marketing
•
Political marketing
•
Crime
12SSIIM, 2019/10/07
Where are we?
●
Complex networks
●
Actors influencing and being influenced
by other actors
●
But humans are not software agents
●
Difficult to establish consensus
●
Intelligence highly needed
●
Maybe biology could inspire us...
SSIIM, 2019/10/07 13
Artificial intelligence
SSIIM, 2019/10/07 14
Artificial Intelligence
MAS + ML + NN + DL + etc
Data + networks
People
RIPON Voter Engagement Platform
SSIIM, 2019/10/07 15
Recommender systems
SSIIM, 2019/10/07 16
Influencers
SSIIM, 2019/10/07 17
SO?!
SSIIM, 2019/10/07 18
•
Let's have a look at networks and graphs
Euler 1707 - 1783
SSIIM, 2019/10/07 19
Basics of graphs and networks
•
G = (V, E)
•
O(G) = |V| order
•
S(G) = |E| size
•
A adjacency matrix
• Ki
degree of vertex i
•
Directed/undirected
SSIIM, 2019/10/07 20
Representations of networks
•
Matrixes, graphs, edge lists, etc
A B C D E
A 0 1 1 1 0
B 1 0 1 0 1
C 0 0 0 1 0
D 0 1 1 0 0
E 1 1 0 0 0
A B
A C
A D
B A
B C
B E
C D
D B
D C
E A
E B
SSIIM, 2019/10/07 21
•
Equivalence relations
– Reflexive, symmetric, transitive
– Equivalence classes
•
Order relations (partial, total or linear)
– reflexive, anti-symmetrical, transitive
– Hasse diagrams
– ∀x,y xRy ∨ yRx (total)
SSIIM, 2019/10/07 22
a ≤ b
x taller than y
Be born in the same year
Live in the same street
Binary relations
23
Composition of relations
A Juventus Wolves City PSV Barcelona
Ronaldo 1 0 0 0 0
Moutinho 0 1 0 0 0
0 0 1 0 0
Bernardo 0 0 1 0 0
Bruma 0 0 0 1 0
Rúben 0 1 0 0 0
0 0 0 0 1
(jogador, clube)
Cancelo
Semedo
x B Espanha
Juventus 1 0 0 0
Wolves 0 1 0 0
City 0 1 0 0
PSV 0 0 1 0
Barcelona 0 0 0 1
(clube, país)
Itália Inglaterra Holanda
= AB Espanha
Ronaldo 1 0 0 0
Moutinho 0 1 0 0
0 1 0 0
Bernardo 0 1 0 0
Bruma 0 0 1 0
Rúben 0 1 0 0
0 0 0 1
(jogador, país)
Itália Inglaterra Holanda
Cancelo
Semedo
SSIIM, 2019/10/07
SSIIM, 2019/10/07 24
Eigenvalues and eigenvectors
•
Usually not transitive (a likes b and b likes c
but ...)
•
“Equivalence” relations
– No equivalence classes
– But communities, clusters, etc
•
“Order” relations (partial, total)
– No Hasse diagrams
– Rankings, proeminence indexes, etc
SSIIM, 2019/10/07 25
Real life relations
Global metrics
•
Number of vertexes 5
•
Number of edges 11
•
Number of components 1
•
Diameter 2
•
Density 0.55
SSIIM, 2019/10/07 26
Centrality Measures
•
Degree centrality
– Edges per node
•
Closeness centrality
– How close the node is to every other node
•
Betweenness centrality
– How many shortest paths go through the edge node
•
Bibliometric + Internet style (quality of edges)
– PageRank, eigenvector
27SSIIM, 2019/10/07
Common Tasks
•
Measuring “importance”
– Centrality, prestige, influence (incoming links)
•
Diffusion modeling
– Epidemiological
•
Clustering
– Leiden, Girvan-Newman, Chinese whisper
•
Visualization/Privacy/etc.
28SSIIM, 2019/10/07
Dynamics
•
Networks may have a temporal dimension
•
Interactions – follow, like, share,
mention, retweet, hashtag, etc – occur in
sequence
•
Network properties evolve in time
SSIIM, 2019/10/07 29
People
30SSIIM, 2019/10/07
SSIIM, 2019/10/07 31
SSIIM, 2019/10/07 32
SSIIM, 2019/10/07 33
Books
34SSIIM, 2019/10/07
SSIIM, 2019/10/07 35
Tools
SSIIM, 2019/10/07 36
37SSIIM, 2019/10/07
38SSIIM, 2019/10/07
39SSIIM, 2019/10/07
40SSIIM, 2019/10/07
Datasets
SSIIM, 2019/10/07 41
SSIIM, 2019/10/07 42
SSIIM, 2019/10/07 43
polsys.net
Ideas?
44SSIIM, 2019/10/07
45SSIIM, 2019/10/07
46SSIIM, 2019/10/07
47SSIIM, 2019/10/07
Spectral!
Computational Thinking
●
Formulating problems in a way that a
programmable machine can solve them
efficiently
●
Understanding the way programmable
machines operate
●
Understanding of the role computation
can play in solving problems
SSIIM, 2019/10/07 48
Ideas?
●
Find and use APIs
●
Graph databases | Neo4j | GQL
●
Visualize citation networks
●
Hashtags co-occurrences (Twitter,
Tumblr)
●
Detect fake/abnormal behaviours
●
Use your imagination!
SSIIM, 2019/10/07 49
Thank you!
SSIIM, 2019/10/07 50

Visualizing networks