SlideShare a Scribd company logo
The Role of Phenazines as an Electron Transporter in Pseudomonas aeruginosa Biofilm
and its Effect on Colony Morphology
Huy Pham
Micro 496 Paper
Introduction:
One of the major challenges facing medical care of modern times is chronic infection of
immunocompromised patients by opportunistic pathogens, like pseudomonas. The gram-negative
Pseudomonas aeruginosa is thought to be strictly aerobic, and is known to infect the respiratory
tract of cystic fibrosis patients and persist via development of biofilm. Once established, the
biofilm plays an important role in sheltering the bacterial colony from environmental factors like
desiccation and the host’s immune system. It is noted that oxygen availability at the center of the
biomass (biofilm) is lower than the expected threshold for which strict aerobes can grow (3),
which leads to the question: what factor(s) can account for the thriving of Pseudomonas in
microaerobic conditions?
Biofilm development illustration. D. Davis, 2007
It is a well known phenomena, frequently observed in cystic fibrosis patients, that
pseudomonas in critical mass, form biofilms via quorum-sensing cascades (5), and secrete
phenazines into the extracellular environment. A readily observed property of phenazine is its
redox-active toxicity to non-Pseudomonas organisms (4), and can be considered an antibiotic.
Phenazine can also be observed as an active electron transport shuttle in the biomass as well,
which can promote O2-independent survival in microaerobic environments, such as the depths of
the biomass. One area of research is looking at the potential link between pyocyanin, a class of
phenazine, and its role in facilitating pseudomonas respiration in the microaerobic region of
biofilms. In recent studies, it has been shown that mutant Pseudomonas with knockout phenazine
expression (∆-phenazine) generate less robust colonies than its wild-type variant. This result
indicates that phenazine plays a crucial role in the survival and growth of Pseudomonas biomass
via extracellular electron transfer, and contributes to their virulence. This paper will look at
studies that examine the possible association between pyocyanin as an electron transport shuttle,
and the ability of Pseudomonas to persist and grow in a microaerobic environment.
The role of phenazine in bacteria, and pyocyanin in
pseudomonas:
As noted in the review article, “Metabolism and
function of phenazines in bacteria: impacts on the
behavior of bacteria in the environment and biotechnological process,” (5) phenazines are a
group of nitrogen-containing heterocyclic compounds that differ in function and properties based
on type and position of functional groups present. Hundreds of phenazine derivatives have been
identified in nature. Bacteria are the only known producer of phenazine in the natural world.
Derived from the shikimic acid pathway, a highly conserved metabolic feature in most
organisms (5), recent studies on phenazines have shown their role in inducing plant defense
pathways, electron transportation, iron chelation, biofilm formation, and even gene expression.
Phenazines are known to form reactive oxygen species, and have been implicated in bacterial
virulence, and can confer competitive advantages over competing organisms as an
antifungal/antibiotic.
The phenazine of interest, pyocyanin, first isolated from patient wounds (5), is
synthesized by the bacterium Pseudomonas aeruginosa, and regulated by quorum sensing
signals. Pyocyanin have been implicated in the inhibition of competing microorganisms during
mixed species lung infections. In addition to acting as a competitive antibiotic, pyocyanin is
found to be secreted into the extracellular region of the pseudomonas biofilm, and research have
assayed its role as an electron transport shuttle, as discussed in the next section.
Studies on pyocyanin as an extracellular electron transport shuttle in Pseudomonas
aeruginosa:
One of the experimental studies that showed how Pseudomonas is able to maintain redox
homeostasis under O2-limited conditions was published in 2007, called, “Pyocyanin Alters
Redox Homeostasis and Carbon Flux through Central Metabolic Pathways in Pseudomonas
aeruginosa.” (6)
In the first part of the study, researchers assayed the oxidized versus reduced state of
pyocyanin as catalyzed by stationary phase LB cultures of Pseudomonas. When left undisturbed
for five minutes, the pyocyanin-laced suspension turned clear, which is indicative of pyocyanin’s
reduced state. When vortexed, the same pyocyanin suspension turned deep blue, which is
indicative of its oxidized state.
Left to Right:
Tube 1: Exponential-phase LB culture.
Tube 2: Stationary-phase LB culture, immediately after
removal fromshakingincubator.
Tube 3: Stationary-phase LB culture, left standingat room
temperature for5 minutes.
Tube 4: 100µM pyocyaninin MOPSbuffer.
Tube 5: Same culture as in tubes 2 and3, resuspendedin
buffer showin tube 4 andleft standingat room temperature
Tube 6: Same suspension as in tube 5, aftervortexing
It is noted that at the air-liquid interface, the suspension is always blue, a good
implication of pyocyanin oxidation by O2. This experimental data suggest that pyocyanin in its
clear, reduced state, is oxidized by an abiotic reaction with oxygen, as a result turning blue, and
when left undisturbed for five minutes, is reduced once again to a clear color by the act of
Pseudomonas donating electrons, as demonstrated by Tube 5. This cycle of oxidation and
reduction can be repeated as many times as desired via resting followed by vortexing, as
demonstrated by Tube 6, to show that phenazine is able to continuously cycle between oxidized
and reduced form, thus making it a suitable electron-transporting candidate.
With prior knowledge that NADH reacts with pyocyanin in vitro, researchers
hypothesized that the presence of pyocyanin would decrease intracellular NADH levels. In the
second part of the study, researchers attempt to measure intracellular NADH/NAD+ ratio in wild-
type versus ∆-phenazine mutant, both of which were in stationary growth phase. The
NADH/NAD+ ratio in the wild-type were less than half of that observed in the ∆-phenazine
mutant. After this observation, pyocyanin was added to the ∆-phenazine mutants, resulting in a
decrease of NADH/NAD+ to wild-type level. Knowing that phenazine can accept electrons from
NADH, it can be inferred from these observations that the intracellular NADH/NAD+ ratio is
influenced by the availability of redox reagents.
To further confirm the findings above, the third part of the study involved assaying
NADH/NAD+ ratio and pyocyanin production in an increasingly O2-depleted environment. The
researchers grew batch cultures in a fermentor at 37C, which allowed them to control
temperature and aeration of the suspension. As O2 levels plummeted in the wild-type batch,
pyocyanin production sharply increased, and a decrease in NADH/NAD+ followed. The previous
decrease in NADH was not observed in the ∆-phenazine mutant; as O2 plummeted, no pyocyanin
was produced, and NADH/NAD+ remained high. Without phenazine in a hypoxic environment,
it became clear that the cells will not have an electron shuttle for redox activities. The outcomes
of this particular experiment demonstrated the importance of pyocyanin in extracellular redox
activities in hypoxic conditions.
Studies on the pyocyanin effect on biofilm morphology:
The previous study has shown evidence that Pseudomonas is capable of extracellular
redox activity through the usage of pyocyanin as an electron shuttle, but what outcome will this
phenomena have on the properties of biofilm, and how does it affect the virulence of the
pseudomonas colony?
An experimental study published in 2008, “Redox-active antibiotics control gene
expression and community behavior in divergent bacteria,” (2) assayed the morphological aspect
of colony development of various strains of pseudomonas with varying levels of pyocyanin
production. The strains involved in the experiment were: wild-type Pseudomonas aeruginosa
strain 14; ∆-phenazine, which has knockout phenazine-encoding genes; Dianne K. Newman
strain 370 (DKN370), which overproduces phenazine; and two other pseudomonas mutant
strains as explained below.
Pyocyanin, in addition to being a redox reagent, is also responsible for the up-regulation
of over 35 genes (2), including the SoxR and mex operon in pseudomonas, which produces
putative monooxygenase upon activation, and efflux pumps respectively. Given that fact,
pyocyanin’s dual role as an extracellular redox reagent and gene expression modulator will
complicate the result in answering the question of how pyocyanin, specifically as an electron
transport shuttle, will directly affect the morphology of the colony. To partially address this
complication, the researchers have included a strain of pseudomonas with SoxR-knockout (∆-
SoxR) and mex-knockout (∆-mex) mutation to partially eliminate gene modulation, and isolate
the electron transport aspect of pyocyanin in the experiment.
35 colonies of each strain was grown on agar plates at room temperature and observed
over eight days. The colony traits observed included surface area coverage, and
wrinkliness/smoothness and pigmentation. Surface area coverage and wrinkliness is an
adaptation to hypoxia (3), and implicative in the reaction of a bacterial colony to oxygen
demand. It is known that oxygen is used up quickly in the colony, and even at shallow depths,
the biofilm environment approaches hypoxia. Given the high organism density and oxygen
demand in the biofilm, the colony arranges itself via quorum sensing factors to maximize oxygen
intake by maximizing surface area exposure. The effect the pigmentation has on the colony
morphology in this experiment is not well understood, and further development is needed to
better understand the mechanisms involved in this expression.
The experimental results, as seen above, shows increasing surface area and wrinkliness
of colony morphology as time elapses, though with varying degrees based on strains. The wild-
type colony shows a steady progression towards increasing wrinkliness as cells rearrange
themselves for maximum oxygen exposure. ∆-phenazine exhibit the most advanced wrinkliness
and surface area coverage as it spreads out and tries to compensate for lack of extracellular
electron shuttle. Note that it is evolutionarily undesirable for colonies to exhibit wrinkliness, as it
exacerbates desiccation (3). DKN370, with its overproduction of pyocyanin, stayed the
smoothest. ∆-SoxR and ∆-mex was measured to have released more pyocyanin into the agar than
wild-type, making them behave similarly to the pyocyanin overproducer DKN370. In this
experiment, there appears to be a direct correlation between the quantity of extracellular
pyocyanin and colony smoothness, which is inferred to be evolutionarily advantageous in terms
of desiccation resistance and survival in hypoxic environment.
The mechanism dictating the phenotypic effects of pigmentation on the colony
morphology is not well understood (2), but because the ∆-phenazine colony is bright red, and the
pyocyanin overproducer DKN370 is pale, it could be inferred that there is an inverse relationship
between pigment production and pyocyanin secretion. There is much to be researched on such a
relationship before a plausible link can be established.
What can be done to further develop hypothesis:
Given our biochemical understanding of how redox reaction works with phenazine, and
the biological plausibility of pyocyanin’s role as an extracellular electron transporter. It can be
strongly inferred that pyocyanin plays a key role as redox reagent in hypoxic environment, as
demonstrated by the redox assay in the first experiment (6). The second study of the effects of
pyocyanin on colony morphology also supported the extracellular redox reagent hypothesis, but
it also opened up a few unanswered questions.
The second study (2) showed that pseudomonas form more robust biofilms with
heightened expression of extracellular phenazines. Knowing that phenazine has more than one
role in the virulence of pseudomonas, the experiment raises more questions about the actual
mechanism involved in the maintaining robustness of the biofilm: how much of the robustness of
the biofilm is attributable to pyocyanin as an electron transporter, and how much of it due to the
modulation of gene expression as a result of its role as a quorum sensing signal?
Of pyocyanin’s regulation of gene expression in pseudomonas, many up-regulation
pathways are currently not well-understood, such as pigmentation production, and therefore not
accounted for, and further advancement is needed to progressively account for the subtle process
in which these genes promote virulence in the organism.
One proposal to indirectly understand the role of pigmentation in the context of gene
regulation is to measure its production in response to various stimuli. An untested hypothesis that
I propose, is that the pigmentation also serve as a response to oxidative stress. There is a
relatively strong association between wrinkliness and pigmentation production that I have
observed from the colony morphology experiment. Perhaps one possible experiment to
determine pigmentation production in response to oxidative stress is to expose strains of
pseudomonas, and their mutant variants, to increasing oxygen saturation, and observe the colony
pigmentation and morphology as time elapses. This experiment may indirectly account for the
role pigmentation play in pseudomonas, and as a result, better resolve the relationship between
exposure to phenazine and colony morphology by ways of better accounting for pigmentation.
Once the up-regulations mechanisms are better mapped out, the experiment may be
improved by introducing new knockout mutations that will more directly assay pyocyanin’s
properties while accounting for its many subtle regulations of gene expression.
Conclusion:
Studies on phenazine as an electron transport and its effect on colony morphology
indicate that there is a causal link between the former and latter. Phenazines are needed as
electron acceptors in hypoxic environments. Pseudomonas colonies that lack pyocyanin cannot
survive well in hypoxic environments, thus forming not-so-robust biofilms that are subject to
desiccation. Multiple studies demonstrate numerous metabolic pathways that involve pyocyanin
beyond the focus of this paper (5), implicating that they serve even more important functions in
the competitive survival of their host than just extracellular electron transport. All of these
studies point to a strong association between phenazines and the evolutionary advantage it
confers to biofilm and the virulence of bacterial colonies.
Now that there is strong evidence showing that phenazine promotes virulence in
pseudomonas by ways of redox, the researchers now need to account for the various regulations
of genes under the promotion of pyocyanin. The colony morphology experiment showed not
only results that further support the pseudomonas extracellular electron transport hypothesis, it
also showed pigmentation changes as a secondary effect of pyocyanin production that is yet to be
accounted for. The difficulty in showing the mechanism of the regulation pathways is that we
still do not know much about how the cohorts of operons interact with one another; it is still
work in progress and there is much research to be done in this field.
The ultimate goal of studies in this field is to progress new findings that will better
resolve current questions about pseudomonas virulence, ask better questions about unresolved
operons, and ultimately lead to better antibiotic lines and treatment of immunocompromised
patients. Pyocyanin, as shown by pseudomonas, can be used not unlike penicillin, to inhibit other
organisms from growing (4), and its derivatives holds good potential in medical and industrial
applications.
Bibliography
1. D. Davis. “5 Stages of Biofilm Development.” March 2007
Doi:info:doi/10.1371/journal.pbio.0050307.g001
2. Dierich, Lars E. P. et al. “Redox-Active Antibiotics Control Gene Expression and
Community Behavior in Divergent Bacteria.” Science, 29 August 2009; 321(5893); 1203-
1206.
3. Newman, D. K. “From Iron Oxides to Infections: Roles for Redox-Active Antibiotics in
Microbial Survival and Development.” T-639 Auditorium, UW-Seattle. 27 Feb 2012.
Lecture
4. Park, GK et al. “Elucidation of antifungal metabolites produced
by Pseudomonas aurantiaca IB5-10 with broad-spectrum antifungal activity.” J
Microbiology Biotechnology, 2012 Mar; 22(3): 326-30
5. Pierson, Leland S. III et al. “Metabolism and function of phenazines in bacteria: impacts
on the behavior of bacteria in the environment and biotechnological processes.”
Published online at Springerlink.com, 30 March 2010.
6. Price-Whelan, Price et al. “Pyocyanin Alters Redox Homeostasis and Carbon Flux
through Central Metabolic Pathways in Pseudomonas aeruginosa PA14.” Journal of
Bacteriology, 24 May 2007; 189(17):6372.
7. Ramos, Itzel et al. “Phenazines affect biofilm formation by Pseudomonas aeruginosa in
similar ways at various scales.” Res. Microbiol., 16 April 2010; 161(3): 187-191.
8. Wang, Yun et al. “Endogenous Phenazine Antibiotics Promote Anaerobic Survival of
Pseudomonas aeruginosa via Extracellular Electron Transfer.” Journal of Bacteriology,
30 October 2009; 192(1):365.

More Related Content

What's hot

General bacteriology / /certified fixed orthodontic courses by Indian dental...
General bacteriology  / /certified fixed orthodontic courses by Indian dental...General bacteriology  / /certified fixed orthodontic courses by Indian dental...
General bacteriology / /certified fixed orthodontic courses by Indian dental...
Indian dental academy
 
Endospores and bacterial nucleic acids
Endospores and bacterial nucleic acidsEndospores and bacterial nucleic acids
Endospores and bacterial nucleic acids
Darshan Dss
 
Cyanobacteria
CyanobacteriaCyanobacteria
Cyanobacteria
Shraddha Chavan
 
General Bacteriology
General BacteriologyGeneral Bacteriology
General Bacteriology
MrudulaBhalke
 
Bacteria ppt
Bacteria pptBacteria ppt
Bacteria ppt
ejazabbasi2001
 
Cyanobacteria lecture
Cyanobacteria lectureCyanobacteria lecture
Cyanobacteria lecture
Shivang Jindal
 
morphology of micro algae ad permanent slide preparation of micro algae and c...
morphology of micro algae ad permanent slide preparation of micro algae and c...morphology of micro algae ad permanent slide preparation of micro algae and c...
morphology of micro algae ad permanent slide preparation of micro algae and c...
sunirmal das
 
Bacteria
BacteriaBacteria
Bacteria
M.Mcfetridge
 
Bacterial morphology
Bacterial morphologyBacterial morphology
Differentiation in microorganisms
Differentiation in microorganismsDifferentiation in microorganisms
Differentiation in microorganisms
Nagaraju Yalavarthi
 
Bacteria
BacteriaBacteria
Bacteria
Renjana Pk
 
Bacterial morphology
Bacterial morphologyBacterial morphology
Bacterial morphology
Abigail Sapico
 
Purification of dna from living cells
Purification   of  dna  from  living cellsPurification   of  dna  from  living cells
Purification of dna from living cells
srimathi1998
 
Flagella, Capsules, Intracellular inclusions of Bacteria
Flagella, Capsules, Intracellular inclusions of BacteriaFlagella, Capsules, Intracellular inclusions of Bacteria
Flagella, Capsules, Intracellular inclusions of Bacteria
Eneutron
 
CAS Biology Option F: Classifying Microbes
CAS Biology Option F: Classifying MicrobesCAS Biology Option F: Classifying Microbes
CAS Biology Option F: Classifying MicrobesRyan Dougherty
 
Acid-Fast Bacteria. Spores of Bacteria. Complete methods of staining
Acid-Fast Bacteria. Spores of Bacteria. Complete methods of stainingAcid-Fast Bacteria. Spores of Bacteria. Complete methods of staining
Acid-Fast Bacteria. Spores of Bacteria. Complete methods of staining
Eneutron
 

What's hot (20)

General bacteriology / /certified fixed orthodontic courses by Indian dental...
General bacteriology  / /certified fixed orthodontic courses by Indian dental...General bacteriology  / /certified fixed orthodontic courses by Indian dental...
General bacteriology / /certified fixed orthodontic courses by Indian dental...
 
Endospores and bacterial nucleic acids
Endospores and bacterial nucleic acidsEndospores and bacterial nucleic acids
Endospores and bacterial nucleic acids
 
Cyanobacteria
CyanobacteriaCyanobacteria
Cyanobacteria
 
General Bacteriology
General BacteriologyGeneral Bacteriology
General Bacteriology
 
Bacteria ppt
Bacteria pptBacteria ppt
Bacteria ppt
 
Cyanobacteria lecture
Cyanobacteria lectureCyanobacteria lecture
Cyanobacteria lecture
 
Bacterial spore
Bacterial sporeBacterial spore
Bacterial spore
 
morphology of micro algae ad permanent slide preparation of micro algae and c...
morphology of micro algae ad permanent slide preparation of micro algae and c...morphology of micro algae ad permanent slide preparation of micro algae and c...
morphology of micro algae ad permanent slide preparation of micro algae and c...
 
Burkholderia spp.
Burkholderia spp.Burkholderia spp.
Burkholderia spp.
 
SPORE ashraf
SPORE ashrafSPORE ashraf
SPORE ashraf
 
Bacteria
BacteriaBacteria
Bacteria
 
Bacterial morphology
Bacterial morphologyBacterial morphology
Bacterial morphology
 
Differentiation in microorganisms
Differentiation in microorganismsDifferentiation in microorganisms
Differentiation in microorganisms
 
Bacteria
BacteriaBacteria
Bacteria
 
Bacterial morphology
Bacterial morphologyBacterial morphology
Bacterial morphology
 
Purification of dna from living cells
Purification   of  dna  from  living cellsPurification   of  dna  from  living cells
Purification of dna from living cells
 
Flagella, Capsules, Intracellular inclusions of Bacteria
Flagella, Capsules, Intracellular inclusions of BacteriaFlagella, Capsules, Intracellular inclusions of Bacteria
Flagella, Capsules, Intracellular inclusions of Bacteria
 
CAS Biology Option F: Classifying Microbes
CAS Biology Option F: Classifying MicrobesCAS Biology Option F: Classifying Microbes
CAS Biology Option F: Classifying Microbes
 
Acid-Fast Bacteria. Spores of Bacteria. Complete methods of staining
Acid-Fast Bacteria. Spores of Bacteria. Complete methods of stainingAcid-Fast Bacteria. Spores of Bacteria. Complete methods of staining
Acid-Fast Bacteria. Spores of Bacteria. Complete methods of staining
 
Bacteria
BacteriaBacteria
Bacteria
 

Viewers also liked

Group 3 final term paper in social psychology
Group 3 final term paper in social psychologyGroup 3 final term paper in social psychology
Group 3 final term paper in social psychology
Rizal Technological University
 
Inclusion in the Classroom
Inclusion in the ClassroomInclusion in the Classroom
Inclusion in the Classroom
jessieholbert
 
Summary Presentation based on healthcare white paper by grail research
Summary Presentation based on healthcare white paper by grail researchSummary Presentation based on healthcare white paper by grail research
Summary Presentation based on healthcare white paper by grail research
jiitian2013
 
Research and writing skills success in 20 minutes a day
Research and writing skills success in 20 minutes a dayResearch and writing skills success in 20 minutes a day
Research and writing skills success in 20 minutes a dayhlksd
 
Play Therapy research paper
Play Therapy research paperPlay Therapy research paper
Play Therapy research paperJenice Crutcher
 
Corporate compliance plan
Corporate compliance planCorporate compliance plan
Corporate compliance planHarrisFred
 
Hannah S. Senior Project Research Paper
Hannah S. Senior Project Research PaperHannah S. Senior Project Research Paper
Hannah S. Senior Project Research Paperhannahis
 
Research on Jane Austen
Research on Jane AustenResearch on Jane Austen
Research on Jane Austenguestdaf645
 
Alternative energy research paper
Alternative energy  research paperAlternative energy  research paper
Alternative energy research paper
jlosh032196
 
Algernon paper structure
Algernon paper structureAlgernon paper structure
Algernon paper structurehharapko
 
Early treatment research paper
Early treatment research paperEarly treatment research paper
Early treatment research paperjrey12
 
Research paper writing (abbreviated version)
Research paper writing (abbreviated version)Research paper writing (abbreviated version)
Research paper writing (abbreviated version)
JasonProff
 
Assembly Line Research Paper
Assembly Line Research PaperAssembly Line Research Paper
Assembly Line Research PaperHunter Fillers
 
Term Paper on Changing Trend Of Marriage : A Sociological Research Based on D...
Term Paper on Changing Trend Of Marriage : A Sociological Research Based on D...Term Paper on Changing Trend Of Marriage : A Sociological Research Based on D...
Term Paper on Changing Trend Of Marriage : A Sociological Research Based on D...Hibblu
 
Myers 9e ch1 - Thinking Critically with Psychological Science
Myers 9e ch1 - Thinking Critically with Psychological ScienceMyers 9e ch1 - Thinking Critically with Psychological Science
Myers 9e ch1 - Thinking Critically with Psychological Science
Julia Isabel Rivera
 
The European Research Centre for Book and Paper Conservation-Restoration
The European Research Centre for Book and Paper Conservation-RestorationThe European Research Centre for Book and Paper Conservation-Restoration
The European Research Centre for Book and Paper Conservation-Restoration
ICARUS - International Centre for Archival Research
 
Writing a research protocol 2011
Writing a research protocol 2011Writing a research protocol 2011
Writing a research protocol 2011Forensic Pathology
 
Jessica garrett research paper 2011 12
Jessica garrett research paper 2011 12Jessica garrett research paper 2011 12
Jessica garrett research paper 2011 12jessicag55
 
The Action Research Process-APA Guidelines
The Action Research Process-APA GuidelinesThe Action Research Process-APA Guidelines
The Action Research Process-APA GuidelinesFrancisco Brizuela
 
History research outline
History research outlineHistory research outline
History research outlineRandom Sandi
 

Viewers also liked (20)

Group 3 final term paper in social psychology
Group 3 final term paper in social psychologyGroup 3 final term paper in social psychology
Group 3 final term paper in social psychology
 
Inclusion in the Classroom
Inclusion in the ClassroomInclusion in the Classroom
Inclusion in the Classroom
 
Summary Presentation based on healthcare white paper by grail research
Summary Presentation based on healthcare white paper by grail researchSummary Presentation based on healthcare white paper by grail research
Summary Presentation based on healthcare white paper by grail research
 
Research and writing skills success in 20 minutes a day
Research and writing skills success in 20 minutes a dayResearch and writing skills success in 20 minutes a day
Research and writing skills success in 20 minutes a day
 
Play Therapy research paper
Play Therapy research paperPlay Therapy research paper
Play Therapy research paper
 
Corporate compliance plan
Corporate compliance planCorporate compliance plan
Corporate compliance plan
 
Hannah S. Senior Project Research Paper
Hannah S. Senior Project Research PaperHannah S. Senior Project Research Paper
Hannah S. Senior Project Research Paper
 
Research on Jane Austen
Research on Jane AustenResearch on Jane Austen
Research on Jane Austen
 
Alternative energy research paper
Alternative energy  research paperAlternative energy  research paper
Alternative energy research paper
 
Algernon paper structure
Algernon paper structureAlgernon paper structure
Algernon paper structure
 
Early treatment research paper
Early treatment research paperEarly treatment research paper
Early treatment research paper
 
Research paper writing (abbreviated version)
Research paper writing (abbreviated version)Research paper writing (abbreviated version)
Research paper writing (abbreviated version)
 
Assembly Line Research Paper
Assembly Line Research PaperAssembly Line Research Paper
Assembly Line Research Paper
 
Term Paper on Changing Trend Of Marriage : A Sociological Research Based on D...
Term Paper on Changing Trend Of Marriage : A Sociological Research Based on D...Term Paper on Changing Trend Of Marriage : A Sociological Research Based on D...
Term Paper on Changing Trend Of Marriage : A Sociological Research Based on D...
 
Myers 9e ch1 - Thinking Critically with Psychological Science
Myers 9e ch1 - Thinking Critically with Psychological ScienceMyers 9e ch1 - Thinking Critically with Psychological Science
Myers 9e ch1 - Thinking Critically with Psychological Science
 
The European Research Centre for Book and Paper Conservation-Restoration
The European Research Centre for Book and Paper Conservation-RestorationThe European Research Centre for Book and Paper Conservation-Restoration
The European Research Centre for Book and Paper Conservation-Restoration
 
Writing a research protocol 2011
Writing a research protocol 2011Writing a research protocol 2011
Writing a research protocol 2011
 
Jessica garrett research paper 2011 12
Jessica garrett research paper 2011 12Jessica garrett research paper 2011 12
Jessica garrett research paper 2011 12
 
The Action Research Process-APA Guidelines
The Action Research Process-APA GuidelinesThe Action Research Process-APA Guidelines
The Action Research Process-APA Guidelines
 
History research outline
History research outlineHistory research outline
History research outline
 

Similar to UW Microbiology Research Paper on Biofilm Formation in P. aeruginosa

SO MR1 Bioremediation
SO MR1 BioremediationSO MR1 Bioremediation
SO MR1 BioremediationMeg Vermilion
 
Aquaporins and their regulation in plants
Aquaporins and their regulation in plants Aquaporins and their regulation in plants
Aquaporins and their regulation in plants
shashi bijapure
 
Transpiratrion: Types, mechanism, factors & significance
Transpiratrion: Types, mechanism, factors & significanceTranspiratrion: Types, mechanism, factors & significance
Transpiratrion: Types, mechanism, factors & significance
Nistarini College, Purulia (W.B) India
 
Dan Bower's Phosphate Thesis
Dan Bower's Phosphate ThesisDan Bower's Phosphate Thesis
Dan Bower's Phosphate ThesisDaniel Bower
 
Presentation on genetics of nitrogen fixation by Tahura Mariyam
Presentation on genetics of nitrogen fixation by Tahura MariyamPresentation on genetics of nitrogen fixation by Tahura Mariyam
Presentation on genetics of nitrogen fixation by Tahura Mariyam
Tahura Mariyam Ansari
 
biotechnological basis of ps effective plants
biotechnological basis of ps effective plantsbiotechnological basis of ps effective plants
biotechnological basis of ps effective plants
deepakrai26
 
Cloning and cDNA Synthesis of PE & PPE Gene of Mycobacterium Strain H37rv5
Cloning and cDNA Synthesis of PE & PPE Gene of Mycobacterium Strain H37rv5Cloning and cDNA Synthesis of PE & PPE Gene of Mycobacterium Strain H37rv5
Cloning and cDNA Synthesis of PE & PPE Gene of Mycobacterium Strain H37rv5
AI Publications
 
Bacteriorhodopsin.pdf
Bacteriorhodopsin.pdfBacteriorhodopsin.pdf
Bacteriorhodopsin.pdf
ssuser9df0b5
 
Microbial Phylogenomics (EVE161) Class 14: Metagenomics
Microbial Phylogenomics (EVE161) Class 14: MetagenomicsMicrobial Phylogenomics (EVE161) Class 14: Metagenomics
Microbial Phylogenomics (EVE161) Class 14: Metagenomics
Jonathan Eisen
 
Photosynthesis in plants.pptx
Photosynthesis in plants.pptxPhotosynthesis in plants.pptx
Photosynthesis in plants.pptx
anonymous
 
plant physiology photorespiration
 plant physiology  photorespiration plant physiology  photorespiration
plant physiology photorespiration
Seenu Suryawanshi
 
phenolic disinfactants moa.pdf
phenolic disinfactants moa.pdfphenolic disinfactants moa.pdf
phenolic disinfactants moa.pdf
RupajitBhattacharjee1
 
Glowing plants
Glowing plantsGlowing plants
Glowing plants
SakshiShiram
 
2009,plant signaling and behaviour, cytosolic alkalinization
2009,plant signaling and behaviour, cytosolic alkalinization2009,plant signaling and behaviour, cytosolic alkalinization
2009,plant signaling and behaviour, cytosolic alkalinizationNupur Srivastava
 
Use of enzymes in bioremediation
Use of enzymes in bioremediationUse of enzymes in bioremediation
Use of enzymes in bioremediationsnehalmenon92
 
Rolfe, RICE et al 2012 Lag Phase of Salmonella Typhimurium - J. Bacteriol.
Rolfe, RICE et al 2012 Lag Phase of Salmonella Typhimurium - J. Bacteriol.Rolfe, RICE et al 2012 Lag Phase of Salmonella Typhimurium - J. Bacteriol.
Rolfe, RICE et al 2012 Lag Phase of Salmonella Typhimurium - J. Bacteriol.Chris Rice
 
2,4-Dinitrophenol or DNP is a pesticide that disrupts cellular respi.pdf
2,4-Dinitrophenol or DNP is a pesticide that disrupts cellular respi.pdf2,4-Dinitrophenol or DNP is a pesticide that disrupts cellular respi.pdf
2,4-Dinitrophenol or DNP is a pesticide that disrupts cellular respi.pdf
eyeonsecuritysystems
 

Similar to UW Microbiology Research Paper on Biofilm Formation in P. aeruginosa (20)

SO MR1 Bioremediation
SO MR1 BioremediationSO MR1 Bioremediation
SO MR1 Bioremediation
 
Genes Dev
Genes DevGenes Dev
Genes Dev
 
Aquaporins and their regulation in plants
Aquaporins and their regulation in plants Aquaporins and their regulation in plants
Aquaporins and their regulation in plants
 
Transpiratrion: Types, mechanism, factors & significance
Transpiratrion: Types, mechanism, factors & significanceTranspiratrion: Types, mechanism, factors & significance
Transpiratrion: Types, mechanism, factors & significance
 
Dan Bower's Phosphate Thesis
Dan Bower's Phosphate ThesisDan Bower's Phosphate Thesis
Dan Bower's Phosphate Thesis
 
Presentation on genetics of nitrogen fixation by Tahura Mariyam
Presentation on genetics of nitrogen fixation by Tahura MariyamPresentation on genetics of nitrogen fixation by Tahura Mariyam
Presentation on genetics of nitrogen fixation by Tahura Mariyam
 
95.full
95.full95.full
95.full
 
biotechnological basis of ps effective plants
biotechnological basis of ps effective plantsbiotechnological basis of ps effective plants
biotechnological basis of ps effective plants
 
Cloning and cDNA Synthesis of PE & PPE Gene of Mycobacterium Strain H37rv5
Cloning and cDNA Synthesis of PE & PPE Gene of Mycobacterium Strain H37rv5Cloning and cDNA Synthesis of PE & PPE Gene of Mycobacterium Strain H37rv5
Cloning and cDNA Synthesis of PE & PPE Gene of Mycobacterium Strain H37rv5
 
Bacteriorhodopsin.pdf
Bacteriorhodopsin.pdfBacteriorhodopsin.pdf
Bacteriorhodopsin.pdf
 
Microbial Phylogenomics (EVE161) Class 14: Metagenomics
Microbial Phylogenomics (EVE161) Class 14: MetagenomicsMicrobial Phylogenomics (EVE161) Class 14: Metagenomics
Microbial Phylogenomics (EVE161) Class 14: Metagenomics
 
Photosynthesis in plants.pptx
Photosynthesis in plants.pptxPhotosynthesis in plants.pptx
Photosynthesis in plants.pptx
 
Os saline
Os salineOs saline
Os saline
 
plant physiology photorespiration
 plant physiology  photorespiration plant physiology  photorespiration
plant physiology photorespiration
 
phenolic disinfactants moa.pdf
phenolic disinfactants moa.pdfphenolic disinfactants moa.pdf
phenolic disinfactants moa.pdf
 
Glowing plants
Glowing plantsGlowing plants
Glowing plants
 
2009,plant signaling and behaviour, cytosolic alkalinization
2009,plant signaling and behaviour, cytosolic alkalinization2009,plant signaling and behaviour, cytosolic alkalinization
2009,plant signaling and behaviour, cytosolic alkalinization
 
Use of enzymes in bioremediation
Use of enzymes in bioremediationUse of enzymes in bioremediation
Use of enzymes in bioremediation
 
Rolfe, RICE et al 2012 Lag Phase of Salmonella Typhimurium - J. Bacteriol.
Rolfe, RICE et al 2012 Lag Phase of Salmonella Typhimurium - J. Bacteriol.Rolfe, RICE et al 2012 Lag Phase of Salmonella Typhimurium - J. Bacteriol.
Rolfe, RICE et al 2012 Lag Phase of Salmonella Typhimurium - J. Bacteriol.
 
2,4-Dinitrophenol or DNP is a pesticide that disrupts cellular respi.pdf
2,4-Dinitrophenol or DNP is a pesticide that disrupts cellular respi.pdf2,4-Dinitrophenol or DNP is a pesticide that disrupts cellular respi.pdf
2,4-Dinitrophenol or DNP is a pesticide that disrupts cellular respi.pdf
 

UW Microbiology Research Paper on Biofilm Formation in P. aeruginosa

  • 1. The Role of Phenazines as an Electron Transporter in Pseudomonas aeruginosa Biofilm and its Effect on Colony Morphology Huy Pham Micro 496 Paper Introduction: One of the major challenges facing medical care of modern times is chronic infection of immunocompromised patients by opportunistic pathogens, like pseudomonas. The gram-negative Pseudomonas aeruginosa is thought to be strictly aerobic, and is known to infect the respiratory tract of cystic fibrosis patients and persist via development of biofilm. Once established, the biofilm plays an important role in sheltering the bacterial colony from environmental factors like desiccation and the host’s immune system. It is noted that oxygen availability at the center of the biomass (biofilm) is lower than the expected threshold for which strict aerobes can grow (3), which leads to the question: what factor(s) can account for the thriving of Pseudomonas in microaerobic conditions? Biofilm development illustration. D. Davis, 2007 It is a well known phenomena, frequently observed in cystic fibrosis patients, that pseudomonas in critical mass, form biofilms via quorum-sensing cascades (5), and secrete
  • 2. phenazines into the extracellular environment. A readily observed property of phenazine is its redox-active toxicity to non-Pseudomonas organisms (4), and can be considered an antibiotic. Phenazine can also be observed as an active electron transport shuttle in the biomass as well, which can promote O2-independent survival in microaerobic environments, such as the depths of the biomass. One area of research is looking at the potential link between pyocyanin, a class of phenazine, and its role in facilitating pseudomonas respiration in the microaerobic region of biofilms. In recent studies, it has been shown that mutant Pseudomonas with knockout phenazine expression (∆-phenazine) generate less robust colonies than its wild-type variant. This result indicates that phenazine plays a crucial role in the survival and growth of Pseudomonas biomass via extracellular electron transfer, and contributes to their virulence. This paper will look at studies that examine the possible association between pyocyanin as an electron transport shuttle, and the ability of Pseudomonas to persist and grow in a microaerobic environment. The role of phenazine in bacteria, and pyocyanin in pseudomonas: As noted in the review article, “Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological process,” (5) phenazines are a group of nitrogen-containing heterocyclic compounds that differ in function and properties based on type and position of functional groups present. Hundreds of phenazine derivatives have been identified in nature. Bacteria are the only known producer of phenazine in the natural world. Derived from the shikimic acid pathway, a highly conserved metabolic feature in most organisms (5), recent studies on phenazines have shown their role in inducing plant defense pathways, electron transportation, iron chelation, biofilm formation, and even gene expression.
  • 3. Phenazines are known to form reactive oxygen species, and have been implicated in bacterial virulence, and can confer competitive advantages over competing organisms as an antifungal/antibiotic. The phenazine of interest, pyocyanin, first isolated from patient wounds (5), is synthesized by the bacterium Pseudomonas aeruginosa, and regulated by quorum sensing signals. Pyocyanin have been implicated in the inhibition of competing microorganisms during mixed species lung infections. In addition to acting as a competitive antibiotic, pyocyanin is found to be secreted into the extracellular region of the pseudomonas biofilm, and research have assayed its role as an electron transport shuttle, as discussed in the next section. Studies on pyocyanin as an extracellular electron transport shuttle in Pseudomonas aeruginosa: One of the experimental studies that showed how Pseudomonas is able to maintain redox homeostasis under O2-limited conditions was published in 2007, called, “Pyocyanin Alters Redox Homeostasis and Carbon Flux through Central Metabolic Pathways in Pseudomonas aeruginosa.” (6) In the first part of the study, researchers assayed the oxidized versus reduced state of pyocyanin as catalyzed by stationary phase LB cultures of Pseudomonas. When left undisturbed for five minutes, the pyocyanin-laced suspension turned clear, which is indicative of pyocyanin’s reduced state. When vortexed, the same pyocyanin suspension turned deep blue, which is indicative of its oxidized state.
  • 4. Left to Right: Tube 1: Exponential-phase LB culture. Tube 2: Stationary-phase LB culture, immediately after removal fromshakingincubator. Tube 3: Stationary-phase LB culture, left standingat room temperature for5 minutes. Tube 4: 100µM pyocyaninin MOPSbuffer. Tube 5: Same culture as in tubes 2 and3, resuspendedin buffer showin tube 4 andleft standingat room temperature Tube 6: Same suspension as in tube 5, aftervortexing It is noted that at the air-liquid interface, the suspension is always blue, a good implication of pyocyanin oxidation by O2. This experimental data suggest that pyocyanin in its clear, reduced state, is oxidized by an abiotic reaction with oxygen, as a result turning blue, and when left undisturbed for five minutes, is reduced once again to a clear color by the act of Pseudomonas donating electrons, as demonstrated by Tube 5. This cycle of oxidation and reduction can be repeated as many times as desired via resting followed by vortexing, as demonstrated by Tube 6, to show that phenazine is able to continuously cycle between oxidized and reduced form, thus making it a suitable electron-transporting candidate. With prior knowledge that NADH reacts with pyocyanin in vitro, researchers hypothesized that the presence of pyocyanin would decrease intracellular NADH levels. In the second part of the study, researchers attempt to measure intracellular NADH/NAD+ ratio in wild- type versus ∆-phenazine mutant, both of which were in stationary growth phase. The NADH/NAD+ ratio in the wild-type were less than half of that observed in the ∆-phenazine mutant. After this observation, pyocyanin was added to the ∆-phenazine mutants, resulting in a decrease of NADH/NAD+ to wild-type level. Knowing that phenazine can accept electrons from NADH, it can be inferred from these observations that the intracellular NADH/NAD+ ratio is influenced by the availability of redox reagents. To further confirm the findings above, the third part of the study involved assaying NADH/NAD+ ratio and pyocyanin production in an increasingly O2-depleted environment. The researchers grew batch cultures in a fermentor at 37C, which allowed them to control
  • 5. temperature and aeration of the suspension. As O2 levels plummeted in the wild-type batch, pyocyanin production sharply increased, and a decrease in NADH/NAD+ followed. The previous decrease in NADH was not observed in the ∆-phenazine mutant; as O2 plummeted, no pyocyanin was produced, and NADH/NAD+ remained high. Without phenazine in a hypoxic environment, it became clear that the cells will not have an electron shuttle for redox activities. The outcomes of this particular experiment demonstrated the importance of pyocyanin in extracellular redox activities in hypoxic conditions. Studies on the pyocyanin effect on biofilm morphology: The previous study has shown evidence that Pseudomonas is capable of extracellular redox activity through the usage of pyocyanin as an electron shuttle, but what outcome will this phenomena have on the properties of biofilm, and how does it affect the virulence of the pseudomonas colony? An experimental study published in 2008, “Redox-active antibiotics control gene expression and community behavior in divergent bacteria,” (2) assayed the morphological aspect of colony development of various strains of pseudomonas with varying levels of pyocyanin production. The strains involved in the experiment were: wild-type Pseudomonas aeruginosa strain 14; ∆-phenazine, which has knockout phenazine-encoding genes; Dianne K. Newman strain 370 (DKN370), which overproduces phenazine; and two other pseudomonas mutant strains as explained below. Pyocyanin, in addition to being a redox reagent, is also responsible for the up-regulation of over 35 genes (2), including the SoxR and mex operon in pseudomonas, which produces putative monooxygenase upon activation, and efflux pumps respectively. Given that fact,
  • 6. pyocyanin’s dual role as an extracellular redox reagent and gene expression modulator will complicate the result in answering the question of how pyocyanin, specifically as an electron transport shuttle, will directly affect the morphology of the colony. To partially address this complication, the researchers have included a strain of pseudomonas with SoxR-knockout (∆- SoxR) and mex-knockout (∆-mex) mutation to partially eliminate gene modulation, and isolate the electron transport aspect of pyocyanin in the experiment. 35 colonies of each strain was grown on agar plates at room temperature and observed over eight days. The colony traits observed included surface area coverage, and wrinkliness/smoothness and pigmentation. Surface area coverage and wrinkliness is an adaptation to hypoxia (3), and implicative in the reaction of a bacterial colony to oxygen demand. It is known that oxygen is used up quickly in the colony, and even at shallow depths, the biofilm environment approaches hypoxia. Given the high organism density and oxygen demand in the biofilm, the colony arranges itself via quorum sensing factors to maximize oxygen intake by maximizing surface area exposure. The effect the pigmentation has on the colony morphology in this experiment is not well understood, and further development is needed to better understand the mechanisms involved in this expression.
  • 7. The experimental results, as seen above, shows increasing surface area and wrinkliness of colony morphology as time elapses, though with varying degrees based on strains. The wild- type colony shows a steady progression towards increasing wrinkliness as cells rearrange themselves for maximum oxygen exposure. ∆-phenazine exhibit the most advanced wrinkliness and surface area coverage as it spreads out and tries to compensate for lack of extracellular electron shuttle. Note that it is evolutionarily undesirable for colonies to exhibit wrinkliness, as it exacerbates desiccation (3). DKN370, with its overproduction of pyocyanin, stayed the smoothest. ∆-SoxR and ∆-mex was measured to have released more pyocyanin into the agar than wild-type, making them behave similarly to the pyocyanin overproducer DKN370. In this
  • 8. experiment, there appears to be a direct correlation between the quantity of extracellular pyocyanin and colony smoothness, which is inferred to be evolutionarily advantageous in terms of desiccation resistance and survival in hypoxic environment. The mechanism dictating the phenotypic effects of pigmentation on the colony morphology is not well understood (2), but because the ∆-phenazine colony is bright red, and the pyocyanin overproducer DKN370 is pale, it could be inferred that there is an inverse relationship between pigment production and pyocyanin secretion. There is much to be researched on such a relationship before a plausible link can be established. What can be done to further develop hypothesis: Given our biochemical understanding of how redox reaction works with phenazine, and the biological plausibility of pyocyanin’s role as an extracellular electron transporter. It can be strongly inferred that pyocyanin plays a key role as redox reagent in hypoxic environment, as demonstrated by the redox assay in the first experiment (6). The second study of the effects of pyocyanin on colony morphology also supported the extracellular redox reagent hypothesis, but it also opened up a few unanswered questions. The second study (2) showed that pseudomonas form more robust biofilms with heightened expression of extracellular phenazines. Knowing that phenazine has more than one role in the virulence of pseudomonas, the experiment raises more questions about the actual mechanism involved in the maintaining robustness of the biofilm: how much of the robustness of the biofilm is attributable to pyocyanin as an electron transporter, and how much of it due to the modulation of gene expression as a result of its role as a quorum sensing signal? Of pyocyanin’s regulation of gene expression in pseudomonas, many up-regulation pathways are currently not well-understood, such as pigmentation production, and therefore not
  • 9. accounted for, and further advancement is needed to progressively account for the subtle process in which these genes promote virulence in the organism. One proposal to indirectly understand the role of pigmentation in the context of gene regulation is to measure its production in response to various stimuli. An untested hypothesis that I propose, is that the pigmentation also serve as a response to oxidative stress. There is a relatively strong association between wrinkliness and pigmentation production that I have observed from the colony morphology experiment. Perhaps one possible experiment to determine pigmentation production in response to oxidative stress is to expose strains of pseudomonas, and their mutant variants, to increasing oxygen saturation, and observe the colony pigmentation and morphology as time elapses. This experiment may indirectly account for the role pigmentation play in pseudomonas, and as a result, better resolve the relationship between exposure to phenazine and colony morphology by ways of better accounting for pigmentation. Once the up-regulations mechanisms are better mapped out, the experiment may be improved by introducing new knockout mutations that will more directly assay pyocyanin’s properties while accounting for its many subtle regulations of gene expression. Conclusion: Studies on phenazine as an electron transport and its effect on colony morphology indicate that there is a causal link between the former and latter. Phenazines are needed as electron acceptors in hypoxic environments. Pseudomonas colonies that lack pyocyanin cannot survive well in hypoxic environments, thus forming not-so-robust biofilms that are subject to desiccation. Multiple studies demonstrate numerous metabolic pathways that involve pyocyanin beyond the focus of this paper (5), implicating that they serve even more important functions in the competitive survival of their host than just extracellular electron transport. All of these
  • 10. studies point to a strong association between phenazines and the evolutionary advantage it confers to biofilm and the virulence of bacterial colonies. Now that there is strong evidence showing that phenazine promotes virulence in pseudomonas by ways of redox, the researchers now need to account for the various regulations of genes under the promotion of pyocyanin. The colony morphology experiment showed not only results that further support the pseudomonas extracellular electron transport hypothesis, it also showed pigmentation changes as a secondary effect of pyocyanin production that is yet to be accounted for. The difficulty in showing the mechanism of the regulation pathways is that we still do not know much about how the cohorts of operons interact with one another; it is still work in progress and there is much research to be done in this field. The ultimate goal of studies in this field is to progress new findings that will better resolve current questions about pseudomonas virulence, ask better questions about unresolved operons, and ultimately lead to better antibiotic lines and treatment of immunocompromised patients. Pyocyanin, as shown by pseudomonas, can be used not unlike penicillin, to inhibit other organisms from growing (4), and its derivatives holds good potential in medical and industrial applications.
  • 11. Bibliography 1. D. Davis. “5 Stages of Biofilm Development.” March 2007 Doi:info:doi/10.1371/journal.pbio.0050307.g001 2. Dierich, Lars E. P. et al. “Redox-Active Antibiotics Control Gene Expression and Community Behavior in Divergent Bacteria.” Science, 29 August 2009; 321(5893); 1203- 1206. 3. Newman, D. K. “From Iron Oxides to Infections: Roles for Redox-Active Antibiotics in Microbial Survival and Development.” T-639 Auditorium, UW-Seattle. 27 Feb 2012. Lecture 4. Park, GK et al. “Elucidation of antifungal metabolites produced by Pseudomonas aurantiaca IB5-10 with broad-spectrum antifungal activity.” J Microbiology Biotechnology, 2012 Mar; 22(3): 326-30 5. Pierson, Leland S. III et al. “Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes.” Published online at Springerlink.com, 30 March 2010. 6. Price-Whelan, Price et al. “Pyocyanin Alters Redox Homeostasis and Carbon Flux through Central Metabolic Pathways in Pseudomonas aeruginosa PA14.” Journal of Bacteriology, 24 May 2007; 189(17):6372. 7. Ramos, Itzel et al. “Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales.” Res. Microbiol., 16 April 2010; 161(3): 187-191. 8. Wang, Yun et al. “Endogenous Phenazine Antibiotics Promote Anaerobic Survival of Pseudomonas aeruginosa via Extracellular Electron Transfer.” Journal of Bacteriology, 30 October 2009; 192(1):365.