Using causal inference to
better understand the search
intent.
Dateme Tubotamuno | SemanticGeek
SLIDESHARE.NET/DATEMETUBOTAMUNO
@DATEMET
Graph
Theory
Family
Marathon
Knowledge
Graphs
Knowledge
Representation &
Reasoning
Cognitive
semantics
Arsenal
F.C
Commonsense
Knowledge
Graph
Semantic Geek
@datemeT #BrightonSEO
The
search
intent is
complex
@datemeT #BrightonSEO
Complex
like the
Theory of
Yawning
@datemeT #BrightonSEO
Search
Intent
&
User
Intent
are
Identical
@datemeT #BrightonSEO
Is Sometimes
Mistaken for
Query
Classification
Intent
Classification
@datemeT #BrightonSEO
CROCODILE
ALLIGATOR
@datemeT #BrightonSEO
Classification of
Location Queries
@datemeT #BrightonSEO
E.g: How do you get
to Jersey from
london
Source: https://www.vs.inf.ethz.ch/edu/SS2006/DS/slides/01_location_models.pdf
1
E.g: Where is the
Brighton Centre?
Position Queries
@datemeT #BrightonSEO
E.g: How do you get
to Jersey from
london
Source: https://www.vs.inf.ethz.ch/edu/SS2006/DS/slides/01_location_models.pdf
2
E.g: Hotels near
Brighton Centre?
Nearest Neighbour Queries
@datemeT #BrightonSEO
E.g: How do you get
to Jersey from
london
Source: https://www.vs.inf.ethz.ch/edu/SS2006/DS/slides/01_location_models.pdf
3
E.g: How do you get to
Brighton from London?
Navigation Queries
@datemeT #BrightonSEO
E.g: How do you get
to Jersey from
london
Source: https://www.vs.inf.ethz.ch/edu/SS2006/DS/slides/01_location_models.pdf
4
E.g: Caesars Palace top
floor suite ?
Range Queries
@datemeT #BrightonSEO
Source: https://www.thinkwithgoogle.com/consumer-insights/consumer-journey/i-want-to-go-micro-
moments/
@datemeT #BrightonSEO
or
Intent Classification
Intent Mining?
@datemeT #BrightonSEO
@datemeT #BrightonSEO
Intent ‘What’
Intent ‘Why’
@datemeT #BrightonSEO
@datemeT #BrightonSEO
Some sources for intent mining
CRM
@datemeT #BrightonSEO
Source: Trey Grainger: https://bit.ly/3ArGoLJ
Dimensions of User Intent
Content
Understanding
User
Understanding
Domain
Understanding
@datemeT #BrightonSEO
Content Understanding
@datemeT #BrightonSEO
User Understanding
@datemeT #BrightonSEO
Domain Understanding
@datemeT #BrightonSEO
"Search is far from a solved Problem"
Pandu Nayak - Head of Search Ranking, Google
https://www.youtube.com/watch?v=tFq6Q_muwG0
@datemeT #BrightonSEO
SEARCH INTENT
IS INDEED COMPLEX
@datemeT #BrightonSEO
Poor result for ‘homely animals.’
@datemeT #BrightonSEO
Google Translate is not right for query
@datemeT #BrightonSEO
CAUSAL
INFERENCE
@datemeT #BrightonSEO
The power of ‘Cause and Effect’
@datemeT #BrightonSEO
Cause and Effect
Causal
Inference
Causal
Calculus
https://towardsdatascience.com/implementing-causal-inference-a-key-step-towards-agi-
de2cde8ea599
Inferring Causes
from data
@datemeT #BrightonSEO
Source: https://github.com/commonsense/conceptnet5/wiki/Relations
P(x|do(y))
i.e. the probability of x given that y is done
@datemeT #BrightonSEO
Cause
Effect
Cause
THE SEARCH INTENT IS LIKE A SEQUENCE
Purpose
HasEvent
Search Query
HasFirstSubevent
Action
HasLastSubevent
@datemeT #BrightonSEO
Estimation of Unobserved Quantities
@datemeT #BrightonSEO
CI questions around a vacation query
Source: https://www.kdnuggets.com/2020/08/microsoft-dowhy-framework-causal-inference.html
Would we
have fun?
How would we
feel after?
What should we
do on vacation?
@datemeT #BrightonSEO
Observing
effects of
going on
vacation
Or not
going on
vacation.
NOT BOTH
@datemeT #BrightonSEO
Confounder
Result/
Action
Search
Query
Intent
Confounder is a common cause
for cause and effect
@datemeT #BrightonSEO
E.g. of CAUSE relation on ConceptNet
@datemeT #BrightonSEO
Intent as a CAUSE relation
Source: https://github.com/commonsense/conceptnet5/wiki/Relations
@datemeT #BrightonSEO
Quora as an intent research resource
Source: https://github.com/commonsense/conceptnet5/wiki/Relations
@datemeT #BrightonSEO
@datemeT #BrightonSEO
@datemeT #BrightonSEO
@datemeT #BrightonSEO
List of Keywords that converted
@datemeT #BrightonSEO
Dimension One of the User Intent
@datemeT #BrightonSEO
Dimension Two of the User Intent
@datemeT #BrightonSEO
Dimension Three of the User Intent
@datemeT #BrightonSEO
Causal
Inference
in
Action
@datemeT #BrightonSEO
Definition of variables
@datemeT #BrightonSEO
Modules Installation
@datemeT #BrightonSEO
Reading of the CSV Table in
Pandas
@datemeT #BrightonSEO
Generating a Causal Graph View
@datemeT #BrightonSEO
Generating a Causal Estimate
@datemeT #BrightonSEO
A Tiptoe into
Intent Analysis
using Causal
Inference.
@datemeT #BrightonSEO
More Intent
Analysis are
required in our
Industry.
@datemeT #BrightonSEO
Beyond > Transactional, Navigational
and Informational
@datemeT #BrightonSEO
Resources
● https://medium.com/analytics-vidhya/causal-inference-an-introduction-
f424df7c76ef
● https://medium.com/data-science-at-microsoft/causal-inference-part-1-of-3-
understanding-the-fundamentals-816f4723e54a
● https://www.kdnuggets.com/2020/08/microsoft-dowhy-framework-causal-
inference.html
● https://github.com/microsoft/EconML/blob/master/notebooks/CustomerSc
enarios/Case%20Study%20-
%20Customer%20Segmentation%20at%20An%20Online%20Media%20Com
pany%20-%20EconML%20%2B%20DoWhy.ipynb
● https://www.microsoft.com/en-us/research/blog/dowhy-a-library-for-
causal-inference/
● https://www.slideshare.net/treygrainger/balancing-the-dimensions-of-user-
intent
@datemeT #BrightonSEO

Using causal Inference to better understand the search intent

Editor's Notes

  • #10 caesars palace top floor suite
  • #11 caesars palace top floor suite
  • #12 caesars palace top floor suite
  • #13 caesars palace top floor suite