TUGAS MATEMATIKA
KELOMPOK 3
DISUSUN OLEH :
1. TIA LESTARI DEWI YANTI
2. MIZA PISARI
3. NIKMAH UTAMI
4. RIA AYU WAN
KELAS :
1 ELEKTRONIKA A
POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
TAHUN AJARAN 2014/2015
Industri air kantung Sungailiat, 33211
Bangka induk propinsi kepulauan Bangka Belitung
Telpon : (0717) 431335 ext. 2281, 2126
FAX : (0717) 93585 email “polman-babel@yahoo.co.id
http//www.polman-babel.ac.id
SOAL MATEMATIKA DIFERENSIAL
Soal 4.I
1. f(x) = 4 6. f(x) = 5x2+x-3
2. f(x) = 7x+2 7. f(x) = x3+13x
3. f(x) = -3x-9 8. f(x) = 2x3+15
4. f(x) = 10-3x 9. f(x) = -1/x
5. f(x) = -3/4x 10. f(x) =1/√𝑥
Soal 4.2
1.f(x) = 7 6. g(x)= 25
2. y = 5 7. s(t) = 100
3. f(x) = 0 8. z(x) = 23
4. f(t) = -3 9. y = - 1/2
5. f(x) = 𝜋 10. f(x) = √41
Soal 4.3
1. f(x) = 9x 6.f(x) = 𝜋𝑥 − 25
2. g(x) =-75x 7. f(x) = -3/4x
3. f(x) = x+1 8. s(t) = 100t-45
4. y = 50x+30 9. z(x) = 0.08x+400
5. f(t) = 2t+5 10. f(x) = √41𝑥+1
Soal 4.4
1.f(x) = x3 6. F(x) = 5𝑥 𝜋
2. f(x) = x100 7.f(x) = 1/x5
3.f(x) = x1/4 8.s(t) = 𝑡0,6
4. y = √ 𝑥 9.h (s) = 𝑠
4
5
5.f(t) = t’ 10.f(x) = 1/∛𝑥2
Soal 4.5
1. if f(x) = x3 find f’ (5) 6. if F(x)=xπ find f’ (10)
2. if g(x) = -100 find g’ (25) 7. if f(x)=
1
𝑥5 find f’ (2)
3. if f(x) = x1/4 find f’ (81) 8. if s(t) = 𝑡0.6
find s’ (32)
4. if y = √𝑥 find dy/dx 9. if h(s) = 𝑠
4
5 fin d h’ (32)
5. if f(t)=t, find f’(19) 10.if y =
1
√𝑥23 find
𝑑𝑦
𝑑𝑥
(64)
PEMBAHASAN
Pembahasan 4.1
1.f(x) = 4 =
𝑑𝑢
𝑑𝑥
= 0
2. f(x) = 7x +2 =
𝑑𝑢
𝑑𝑥
= 7
3. f(x) = -3x-9 =
𝑑𝑢
𝑑𝑥
= -3
4. f(x) = 10 – 3x =
𝑑𝑢
𝑑𝑥
= -3
5. f(x) =
−3
4
x =
𝑑𝑢
𝑑𝑥
=
−3
4
6. f(x) = 5𝑥2
+ x-3 =
𝑑𝑢
𝑑𝑥
= 10x + 1
7. f (x) = 𝑥3
+ 13x =
𝑑𝑢
𝑑𝑥
= 3𝑥2
+ 13
8. f (x) = 2𝑥3
+ 13x =
𝑑𝑢
𝑑𝑥
= 6𝑥2
9. f(x) =
−1
𝑥
=
𝑑𝑢
𝑑𝑥
= −𝑥−1
= x-2
10. f (x) =
1
√ 𝑥
=
𝑑𝑢
𝑑𝑥
=𝑥
−1
2 = -
1
2
𝑥
−3
2
Pembahasan 4.2
1. f(x) = 7 =
𝒅𝒖
𝒅𝒙
= 0
2. y = 𝟓 =
𝒅𝒖
𝒅𝒚
= 0
3. f (x) = 0 =
𝒅𝒖
𝒅𝒙
= 0
4. f (t) = –3 =
𝒅𝒖
𝒅𝒕
= 0
5. f (x) = π =
𝒅𝒖
𝒅𝒙
= 0
6. g (x) = 25 =
𝒅𝒖
𝒅𝒙
= 0
7. s (t) = 100 =
𝒅𝒖
𝒅𝒙
= 0
8. z (x) = 𝟐 𝟑
=
𝒅𝒖
𝒅𝒙
= 0
9. y = -
𝟏
𝟐
=
𝒅𝒖
𝒅𝒚
= 0
10. f (x) = √ 𝟒𝟏 =
𝒅𝒖
𝒅𝒙
= 0
Pembahasan 4.3
1. f (x) = 9x =
𝑑𝑢
𝑑𝑥
= 9
2. g (x) = -75x =
𝑑𝑢
𝑑𝑥
= -75
3. f (x) = x + 1 =
𝑑𝑢
𝑑𝑥
= 1
4. y = 50x + 30 =
𝑑𝑢
𝑑𝑥
= 50
5. f (t) = 2t + 5 =
𝑑𝑢
𝑑𝑡
= 2
6. f (x) = πx – 25 =
𝑑𝑢
𝑑𝑥
= π
7. f (x) =
−3
4
x =
𝑑𝑢
𝑑𝑥
= -
3
4
8. s (t) = 100𝑡 - 45 =
𝑑𝑢
𝑑𝑡
= 100
9. z (x) = 0,08x + 400 =
𝑑𝑢
𝑑𝑥
= 0,08
10. f(x) = √41𝑥 + 1 =
𝑑𝑢
𝑑𝑥
= 41𝑥
1
2 =
41
2
𝑥
−1
2
Pembahasan 4.4
1.f(x) = 𝑥3
=
𝑑𝑢
𝑑𝑥
= 3𝑥2
2.g(x) =𝑥100
=
𝑑𝑢
𝑑𝑥
=100𝑥99
3.f(x) = 𝑥1/4
=
𝑑𝑢
𝑑𝑥
=
𝑖
4
𝑥
−
3
4
4.y =f(x) = √ 𝑥 = 𝑥
1
2 =
𝑑𝑢
𝑑𝑥
=
1
2
𝑥
−
1
2
5.f(t) = 𝑡1
=
𝑑𝑢
𝑑𝑡
=1
6.f(x) = 𝑥 𝜋
=
𝑑𝑢
𝑑𝑥
= π𝑥 𝜋−1
7.f(x) =
1
𝑥5 = 𝑥−5
=
𝑑𝑢
𝑑𝑥
= −5𝑥−6
8.s(t) = 𝑡0,6
= 𝑡
3
5 =
𝑑𝑢
𝑑𝑥
=
3
5
𝑡
−2
5
9.h(s) = 𝑠
4
5 =
𝑑𝑢
𝑑𝑠
=
4
5
𝑠
−1
5
10.f(x) =
1
√𝑥23 =
𝑑𝑢
𝑑𝑥
=
−2
3
𝑥
−5
3
Pembahasan 4.5
1. if f(x) = 𝑥3
f’(5)
F’(x) = 3𝑥2
F’(5) = 3 (5)2
F’(5) = 75
2. if g (x) = -100 find g’ (25)
= 0
3.if f (x) = 𝑥
1
4 find f’ (81)
f(x) = 𝑥
1
4
F’ (x) =
1
4
𝑥
−3
4
F’ (81) =
1
4
𝑥
−3
4
=
1
4
√𝑥34
=
1
4
√(81)34
=
1
4
√531441
4
=
1
4
27
= 1
4
×
1
27
=
1
108
= 0,009
4.if y=√𝑥 find
𝑑𝑦
𝑑𝑥
Y = 𝑥
1
2
Y’ =
1
2
𝑥
−1
2
5. if f(t)=t, find f’(19)
=0
6. if F(x)=xπ find f’ (10)
f’ = 𝜋𝑥 𝜋−1
𝜋 =
22
7
f’ =
22
7
𝑥
22
7
−1
f’ =
22
7
𝑥
15
7
f’ =
22
7
√𝑥157
f’ =
22
7
√(10)157
f’ =
22
7
× 13894954,9
f’ = 43669858,3
7. if f(x)=
1
𝑥5 find f’ (2)
F(x) = 1.x-5
F’(x) = -5x-6
F’(2) =
−5
𝑥6
=
−5
26
=
−5
64
8. if s(t) = 𝑡0.6
find s’ (32)
t’ = 𝑡0,6
t’ =
3
5
𝑡
−2
5
t’ (32) =
3
5
(32)
−2
5
=
3
5
1
√3225
=
3
5
1
√1024
5
=
3
5
.
1
4
=
3
20
= 0,5
9. if h(s) = 𝑠
4
5 find h’ (32)
h’ =
4
5
𝑥
−1
5
h’(32) =
4
5
32
−1
5
=
4
5
.
1
√325
=
4
5
.
1
2
=
4
10
10.if y =
1
√𝑥23 find
𝑑𝑦
𝑑𝑥
(64)
Y = 𝑥
−2
3
y’ =
−2
3
𝑥
−5
3
y’ =
−2
3
𝑥
−5
3
y’ =
−2
3
.
1
√(64)35
y’ =
−2
3
.
1
√2621445
y’ =
−2
3
.
1
12,13
y’ =
−2
36,39
y’ = 0,055

Tugas matematika - Kelompok 3

  • 1.
    TUGAS MATEMATIKA KELOMPOK 3 DISUSUNOLEH : 1. TIA LESTARI DEWI YANTI 2. MIZA PISARI 3. NIKMAH UTAMI 4. RIA AYU WAN KELAS : 1 ELEKTRONIKA A POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG TAHUN AJARAN 2014/2015 Industri air kantung Sungailiat, 33211 Bangka induk propinsi kepulauan Bangka Belitung Telpon : (0717) 431335 ext. 2281, 2126 FAX : (0717) 93585 email “polman-babel@yahoo.co.id http//www.polman-babel.ac.id
  • 2.
    SOAL MATEMATIKA DIFERENSIAL Soal4.I 1. f(x) = 4 6. f(x) = 5x2+x-3 2. f(x) = 7x+2 7. f(x) = x3+13x 3. f(x) = -3x-9 8. f(x) = 2x3+15 4. f(x) = 10-3x 9. f(x) = -1/x 5. f(x) = -3/4x 10. f(x) =1/√𝑥 Soal 4.2 1.f(x) = 7 6. g(x)= 25 2. y = 5 7. s(t) = 100 3. f(x) = 0 8. z(x) = 23 4. f(t) = -3 9. y = - 1/2 5. f(x) = 𝜋 10. f(x) = √41 Soal 4.3 1. f(x) = 9x 6.f(x) = 𝜋𝑥 − 25 2. g(x) =-75x 7. f(x) = -3/4x 3. f(x) = x+1 8. s(t) = 100t-45 4. y = 50x+30 9. z(x) = 0.08x+400 5. f(t) = 2t+5 10. f(x) = √41𝑥+1 Soal 4.4 1.f(x) = x3 6. F(x) = 5𝑥 𝜋 2. f(x) = x100 7.f(x) = 1/x5 3.f(x) = x1/4 8.s(t) = 𝑡0,6 4. y = √ 𝑥 9.h (s) = 𝑠 4 5 5.f(t) = t’ 10.f(x) = 1/∛𝑥2 Soal 4.5 1. if f(x) = x3 find f’ (5) 6. if F(x)=xπ find f’ (10) 2. if g(x) = -100 find g’ (25) 7. if f(x)= 1 𝑥5 find f’ (2) 3. if f(x) = x1/4 find f’ (81) 8. if s(t) = 𝑡0.6 find s’ (32) 4. if y = √𝑥 find dy/dx 9. if h(s) = 𝑠 4 5 fin d h’ (32) 5. if f(t)=t, find f’(19) 10.if y = 1 √𝑥23 find 𝑑𝑦 𝑑𝑥 (64)
  • 3.
    PEMBAHASAN Pembahasan 4.1 1.f(x) =4 = 𝑑𝑢 𝑑𝑥 = 0 2. f(x) = 7x +2 = 𝑑𝑢 𝑑𝑥 = 7 3. f(x) = -3x-9 = 𝑑𝑢 𝑑𝑥 = -3 4. f(x) = 10 – 3x = 𝑑𝑢 𝑑𝑥 = -3 5. f(x) = −3 4 x = 𝑑𝑢 𝑑𝑥 = −3 4 6. f(x) = 5𝑥2 + x-3 = 𝑑𝑢 𝑑𝑥 = 10x + 1 7. f (x) = 𝑥3 + 13x = 𝑑𝑢 𝑑𝑥 = 3𝑥2 + 13 8. f (x) = 2𝑥3 + 13x = 𝑑𝑢 𝑑𝑥 = 6𝑥2 9. f(x) = −1 𝑥 = 𝑑𝑢 𝑑𝑥 = −𝑥−1 = x-2 10. f (x) = 1 √ 𝑥 = 𝑑𝑢 𝑑𝑥 =𝑥 −1 2 = - 1 2 𝑥 −3 2 Pembahasan 4.2 1. f(x) = 7 = 𝒅𝒖 𝒅𝒙 = 0 2. y = 𝟓 = 𝒅𝒖 𝒅𝒚 = 0 3. f (x) = 0 = 𝒅𝒖 𝒅𝒙 = 0 4. f (t) = –3 = 𝒅𝒖 𝒅𝒕 = 0 5. f (x) = π = 𝒅𝒖 𝒅𝒙 = 0 6. g (x) = 25 = 𝒅𝒖 𝒅𝒙 = 0 7. s (t) = 100 = 𝒅𝒖 𝒅𝒙 = 0 8. z (x) = 𝟐 𝟑 = 𝒅𝒖 𝒅𝒙 = 0 9. y = - 𝟏 𝟐 = 𝒅𝒖 𝒅𝒚 = 0 10. f (x) = √ 𝟒𝟏 = 𝒅𝒖 𝒅𝒙 = 0 Pembahasan 4.3 1. f (x) = 9x = 𝑑𝑢 𝑑𝑥 = 9 2. g (x) = -75x = 𝑑𝑢 𝑑𝑥 = -75 3. f (x) = x + 1 = 𝑑𝑢 𝑑𝑥 = 1 4. y = 50x + 30 = 𝑑𝑢 𝑑𝑥 = 50 5. f (t) = 2t + 5 = 𝑑𝑢 𝑑𝑡 = 2 6. f (x) = πx – 25 = 𝑑𝑢 𝑑𝑥 = π 7. f (x) = −3 4 x = 𝑑𝑢 𝑑𝑥 = - 3 4
  • 4.
    8. s (t)= 100𝑡 - 45 = 𝑑𝑢 𝑑𝑡 = 100 9. z (x) = 0,08x + 400 = 𝑑𝑢 𝑑𝑥 = 0,08 10. f(x) = √41𝑥 + 1 = 𝑑𝑢 𝑑𝑥 = 41𝑥 1 2 = 41 2 𝑥 −1 2 Pembahasan 4.4 1.f(x) = 𝑥3 = 𝑑𝑢 𝑑𝑥 = 3𝑥2 2.g(x) =𝑥100 = 𝑑𝑢 𝑑𝑥 =100𝑥99 3.f(x) = 𝑥1/4 = 𝑑𝑢 𝑑𝑥 = 𝑖 4 𝑥 − 3 4 4.y =f(x) = √ 𝑥 = 𝑥 1 2 = 𝑑𝑢 𝑑𝑥 = 1 2 𝑥 − 1 2 5.f(t) = 𝑡1 = 𝑑𝑢 𝑑𝑡 =1 6.f(x) = 𝑥 𝜋 = 𝑑𝑢 𝑑𝑥 = π𝑥 𝜋−1 7.f(x) = 1 𝑥5 = 𝑥−5 = 𝑑𝑢 𝑑𝑥 = −5𝑥−6 8.s(t) = 𝑡0,6 = 𝑡 3 5 = 𝑑𝑢 𝑑𝑥 = 3 5 𝑡 −2 5 9.h(s) = 𝑠 4 5 = 𝑑𝑢 𝑑𝑠 = 4 5 𝑠 −1 5 10.f(x) = 1 √𝑥23 = 𝑑𝑢 𝑑𝑥 = −2 3 𝑥 −5 3 Pembahasan 4.5 1. if f(x) = 𝑥3 f’(5) F’(x) = 3𝑥2 F’(5) = 3 (5)2 F’(5) = 75 2. if g (x) = -100 find g’ (25) = 0 3.if f (x) = 𝑥 1 4 find f’ (81) f(x) = 𝑥 1 4 F’ (x) = 1 4 𝑥 −3 4 F’ (81) = 1 4 𝑥 −3 4 = 1 4 √𝑥34 = 1 4 √(81)34 = 1 4 √531441 4 = 1 4 27
  • 5.
    = 1 4 × 1 27 = 1 108 = 0,009 4.ify=√𝑥 find 𝑑𝑦 𝑑𝑥 Y = 𝑥 1 2 Y’ = 1 2 𝑥 −1 2 5. if f(t)=t, find f’(19) =0 6. if F(x)=xπ find f’ (10) f’ = 𝜋𝑥 𝜋−1 𝜋 = 22 7 f’ = 22 7 𝑥 22 7 −1 f’ = 22 7 𝑥 15 7 f’ = 22 7 √𝑥157 f’ = 22 7 √(10)157 f’ = 22 7 × 13894954,9 f’ = 43669858,3 7. if f(x)= 1 𝑥5 find f’ (2) F(x) = 1.x-5 F’(x) = -5x-6 F’(2) = −5 𝑥6 = −5 26 = −5 64 8. if s(t) = 𝑡0.6 find s’ (32) t’ = 𝑡0,6 t’ = 3 5 𝑡 −2 5 t’ (32) = 3 5 (32) −2 5 = 3 5 1 √3225 = 3 5 1 √1024 5 = 3 5 . 1 4 = 3 20 = 0,5
  • 6.
    9. if h(s)= 𝑠 4 5 find h’ (32) h’ = 4 5 𝑥 −1 5 h’(32) = 4 5 32 −1 5 = 4 5 . 1 √325 = 4 5 . 1 2 = 4 10 10.if y = 1 √𝑥23 find 𝑑𝑦 𝑑𝑥 (64) Y = 𝑥 −2 3 y’ = −2 3 𝑥 −5 3 y’ = −2 3 𝑥 −5 3 y’ = −2 3 . 1 √(64)35 y’ = −2 3 . 1 √2621445 y’ = −2 3 . 1 12,13 y’ = −2 36,39 y’ = 0,055