> me
$name
[1] "Takashi Kitano"
$twitter
[1] "@kashitan"
$work_in
[1] " "
突然ですが質問です
幸せですか?




p.76
“ハピネスと⾝体活動の総量との関係が

強い相関を⽰している”
p.145
“運が良い⼈は到達度が⾼い”
約1年運⽤した結果
(node, vertex)
(edge, link)
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 1
0 0 0 0 0 0
A B
B C
C E
D B
E D
E F
#
whiskies <- data.table::fread("http://
outreach.mathstat.strath.ac.uk/outreach/nessie/datasets/
whiskies.txt", header = TRUE)
#
cor.mat <- whiskies %>%
select(Body, Sweetness, Smoky, Medicinal, Tobacco, Honey,
Spicy, Winey, Nutty, Malty, Fruity, Floral) %>%
t() %>%
cor()
#
colnames(cor.mat) <- whiskies$Distillery
rownames(cor.mat) <- whiskies$Distillery
#
cor.mat[upper.tri(cor.mat, diag = TRUE)] <- NA
cor.mat[1:5, 1:5]
Aberfeldy Aberlour AnCnoc Ardbeg Ardmore
Aberfeldy NA NA NA NA NA
Aberlour 0.7086322 NA NA NA NA
AnCnoc 0.6973541 0.5030737 NA NA NA
Ardbeg -0.1473114 -0.2285909 -0.1404355 NA NA
Ardmore 0.7319024 0.5118338 0.5570195 0.2316174 NA
# Long-Format 0.8
d <- cor.mat %>%
as.data.frame() %>%
mutate(distillerry1 = whiskies$Distillery) %>%
gather(key = distillerry2, value = cor, -distillerry1) %>%
select(distillerry1, distillerry2, cor) %>%
filter(!is.na(cor) & cor >= 0.80)
head(d)
distillerry1 distillerry2 cor
1 Auchroisk Aberfeldy 0.8238415
2 Benrinnes Aberfeldy 0.8419479
3 Benromach Aberfeldy 0.8554217
# tbl_graph
g <- as_tbl_graph(d, directed = FALSE)
g
# A tbl_graph: 67 nodes and 135 edges
#
# An undirected simple graph with 1 component
#
# Node Data: 67 x 1 (active)
name
<chr>
1 Auchroisk
2 Benrinnes
# tbl_graph
g <- as_tbl_graph(d, directed = FALSE)
g
# A tbl_graph: 67 nodes and 135 edges
#
# An undirected simple graph with 1 component
#
# Node Data: 67 x 1 (active)
name
<chr>
1 Auchroisk
2 Benrinnes
3 Benromach
4 BlairAthol
5 RoyalLochnagar
6 Speyside
# ... with 61 more rows
#
# Edge Data: 135 x 3
from to cor
<int> <int> <dbl>
1 1 54 0.824
2 2 54 0.842
3 3 54 0.855
# ... with 132 more rows
3 Benromach
4 BlairAthol
5 RoyalLochnagar
6 Speyside
# ... with 61 more rows
#
# Edge Data: 135 x 3
from to cor
<int> <int> <dbl>
1 1 54 0.824
2 2 54 0.842
3 3 54 0.855
# ... with 132 more rows
#
g %>% igraph::graph.density()
[1] 0.06105834
#
g %>% igraph::transitivity()
[1] 0.2797927
# ( 1)
g %>% igraph::reciprocity()
[1] 1
#
g <- g %>%
mutate(centrality = centrality_betweenness())
g
# A tbl_graph: 67 nodes and 135 edges
#
# An undirected simple graph with 1 component
#
# Node Data: 67 x 2 (active)
name centrality
<chr> <dbl>
1 Auchroisk 174.
2 Benrinnes 122.
3 Benromach 411.
#
g <- g %E>%
mutate(centrality = centrality_edge_betweenness())
g
# A tbl_graph: 67 nodes and 135 edges
#
# An undirected simple graph with 1 component
#
# Edge Data: 135 x 4 (active)
from to cor centrality
<int> <int> <dbl> <dbl>
1 1 54 0.824 79.3
2 2 54 0.842 42.9
3 3 54 0.855 54.2
#
g <- g %E>%
mutate(centrality = centrality_edge_betweenness())
g
# A tbl_graph: 67 nodes and 135 edges
#
# An undirected simple graph with 1 component
#
# Edge Data: 135 x 4 (active)
from to cor centrality
<int> <int> <dbl> <dbl>
1 1 54 0.824 79.3
2 2 54 0.842 42.9
3 3 54 0.855 54.2
#
g <- g %>%
mutate(community = as.factor(group_fast_greedy(weights = cor)))
g
# A tbl_graph: 67 nodes and 135 edges
#
# An undirected simple graph with 1 component
#
# Node Data: 67 x 2 (active)
name community
<chr> <fct>
1 Auchroisk 2
2 Benrinnes 3
3 Benromach 2
g %>%
ggraph(layout = "kk")
g %>%
ggraph(layout = "kk") +
geom_edge_link(aes(width = cor),
alpha = 0.8,
colour = "lightgray")
g %>%
ggraph(layout = "kk") +
geom_edge_link(aes(width = cor),
alpha = 0.8,
colour = "lightgray") +
scale_edge_width(range = c(0.1, 1))
g %>%
ggraph(layout = "kk") +
geom_edge_link(aes(width = cor),
alpha = 0.8,
colour = "lightgray") +
scale_edge_width(range = c(0.1, 1)) +
geom_node_point(aes(colour = community, size = degree))
g %>%
ggraph(layout = "kk") +
geom_edge_link(aes(width = cor),
alpha = 0.8,
colour = "lightgray") +
scale_edge_width(range = c(0.1, 1)) +
geom_node_point(aes(colour = community, size = degree)) +
geom_node_text(aes(label = name), repel = TRUE)
g %>%
ggraph(layout = "kk") +
geom_edge_link(aes(width = cor),
alpha = 0.8,
colour = "lightgray") +
scale_edge_width(range = c(0.1, 1)) +
geom_node_point(aes(colour = community, size = degree)) +
geom_node_text(aes(label = name), repel = TRUE) +
theme_graph()
g %>%
ggraph(layout = "kk") +
geom_edge_arc(aes(width = cor),
alpha = 0.8,
colour = "lightgray") +
scale_edge_width(range = c(0.1, 1)) +
geom_node_point(aes(colour = community, size = degree)) +
theme_graph(background = "grey20", text_colour = "white")
g %>%
mutate(degree = centrality_degree(),
community = as.factor(group_fast_greedy(weights = cor))) %>%
filter(degree >= 6) %E>%
filter(cor > 0.85) %>%
ggraph(layout = "lgl") +
geom_edge_link(aes(width = cor),
alpha = 0.8,
colour = "lightgray") +
scale_edge_width(range = c(0.1, 1)) +
geom_node_point(aes(colour = community, size = degree)) +
geom_node_text(aes(label = name), repel = TRUE) +
theme_graph()
g %>% ggraph(layout = "kk") +
geom_edge_fan(aes(width = cor),
alpha = 0.8,
colour = "lightgray") +
scale_edge_width(range = c(0.1, 1)) +
geom_node_point(aes(colour = community, size = degree)) +
geom_node_text(aes(label = name), repel = TRUE) +
theme_graph()
g %>% ggraph(layout = "linear") +
geom_edge_arc(aes(width = cor),
alpha = 0.8,
colour = "lightgray") +
scale_edge_width(range = c(0.1, 1)) +
geom_node_point(aes(colour = community, size = degree)) +
geom_node_text(aes(label = name), repel = TRUE) +
theme_graph()
g %>% ggraph(layout = "linear", circular = TRUE) +
geom_edge_arc(aes(width = cor),
alpha = 0.8,
colour = "lightgray") +
scale_edge_width(range = c(0.1, 1)) +
geom_node_point(aes(colour = community, size = degree)) +
geom_node_text(aes(label = name), repel = TRUE) +
theme_graph()
#
d <- whiskies %>%
select(Body, Sweetness, Smoky, Medicinal, Tobacco, Honey,
Spicy, Winey, Nutty, Malty, Fruity, Floral) %>%
dist()
#
hc <- hclust(d, method="ward.D2")
# tbl_graph
g <- as_tbl_graph(hc)
g %>%
ggraph(layout = "kk") +
geom_edge_link(aes(width = cor),
alpha = 0.8,
colour = "lightgray") +
scale_edge_width(range = c(0.1, 1)) +
geom_node_point(aes(colour = community, size = degree)) +
geom_node_text(aes(label = name), repel = TRUE) +
theme_graph()
新⼈襲来
⼤量異動
Di,j i,j
r Di,j
{tidygraph}と{ggraph}による モダンなネットワーク分析(未公開ver)
{tidygraph}と{ggraph}による モダンなネットワーク分析(未公開ver)
{tidygraph}と{ggraph}による モダンなネットワーク分析(未公開ver)

{tidygraph}と{ggraph}による モダンなネットワーク分析(未公開ver)

  • 2.
    > me $name [1] "TakashiKitano" $twitter [1] "@kashitan" $work_in [1] " "
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 10.
  • 20.
  • 23.
    0 1 00 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 A B B C C E D B E D E F
  • 30.
    # whiskies <- data.table::fread("http:// outreach.mathstat.strath.ac.uk/outreach/nessie/datasets/ whiskies.txt",header = TRUE) # cor.mat <- whiskies %>% select(Body, Sweetness, Smoky, Medicinal, Tobacco, Honey, Spicy, Winey, Nutty, Malty, Fruity, Floral) %>% t() %>% cor()
  • 31.
    # colnames(cor.mat) <- whiskies$Distillery rownames(cor.mat)<- whiskies$Distillery # cor.mat[upper.tri(cor.mat, diag = TRUE)] <- NA cor.mat[1:5, 1:5] Aberfeldy Aberlour AnCnoc Ardbeg Ardmore Aberfeldy NA NA NA NA NA Aberlour 0.7086322 NA NA NA NA AnCnoc 0.6973541 0.5030737 NA NA NA Ardbeg -0.1473114 -0.2285909 -0.1404355 NA NA Ardmore 0.7319024 0.5118338 0.5570195 0.2316174 NA
  • 32.
    # Long-Format 0.8 d<- cor.mat %>% as.data.frame() %>% mutate(distillerry1 = whiskies$Distillery) %>% gather(key = distillerry2, value = cor, -distillerry1) %>% select(distillerry1, distillerry2, cor) %>% filter(!is.na(cor) & cor >= 0.80) head(d) distillerry1 distillerry2 cor 1 Auchroisk Aberfeldy 0.8238415 2 Benrinnes Aberfeldy 0.8419479 3 Benromach Aberfeldy 0.8554217
  • 34.
    # tbl_graph g <-as_tbl_graph(d, directed = FALSE) g # A tbl_graph: 67 nodes and 135 edges # # An undirected simple graph with 1 component # # Node Data: 67 x 1 (active) name <chr> 1 Auchroisk 2 Benrinnes
  • 35.
    # tbl_graph g <-as_tbl_graph(d, directed = FALSE) g # A tbl_graph: 67 nodes and 135 edges # # An undirected simple graph with 1 component # # Node Data: 67 x 1 (active) name <chr> 1 Auchroisk 2 Benrinnes
  • 36.
    3 Benromach 4 BlairAthol 5RoyalLochnagar 6 Speyside # ... with 61 more rows # # Edge Data: 135 x 3 from to cor <int> <int> <dbl> 1 1 54 0.824 2 2 54 0.842 3 3 54 0.855 # ... with 132 more rows
  • 37.
    3 Benromach 4 BlairAthol 5RoyalLochnagar 6 Speyside # ... with 61 more rows # # Edge Data: 135 x 3 from to cor <int> <int> <dbl> 1 1 54 0.824 2 2 54 0.842 3 3 54 0.855 # ... with 132 more rows
  • 38.
    # g %>% igraph::graph.density() [1]0.06105834 # g %>% igraph::transitivity() [1] 0.2797927 # ( 1) g %>% igraph::reciprocity() [1] 1
  • 39.
    # g <- g%>% mutate(centrality = centrality_betweenness()) g # A tbl_graph: 67 nodes and 135 edges # # An undirected simple graph with 1 component # # Node Data: 67 x 2 (active) name centrality <chr> <dbl> 1 Auchroisk 174. 2 Benrinnes 122. 3 Benromach 411.
  • 40.
    # g <- g%E>% mutate(centrality = centrality_edge_betweenness()) g # A tbl_graph: 67 nodes and 135 edges # # An undirected simple graph with 1 component # # Edge Data: 135 x 4 (active) from to cor centrality <int> <int> <dbl> <dbl> 1 1 54 0.824 79.3 2 2 54 0.842 42.9 3 3 54 0.855 54.2
  • 41.
    # g <- g%E>% mutate(centrality = centrality_edge_betweenness()) g # A tbl_graph: 67 nodes and 135 edges # # An undirected simple graph with 1 component # # Edge Data: 135 x 4 (active) from to cor centrality <int> <int> <dbl> <dbl> 1 1 54 0.824 79.3 2 2 54 0.842 42.9 3 3 54 0.855 54.2
  • 42.
    # g <- g%>% mutate(community = as.factor(group_fast_greedy(weights = cor))) g # A tbl_graph: 67 nodes and 135 edges # # An undirected simple graph with 1 component # # Node Data: 67 x 2 (active) name community <chr> <fct> 1 Auchroisk 2 2 Benrinnes 3 3 Benromach 2
  • 44.
  • 46.
    g %>% ggraph(layout ="kk") + geom_edge_link(aes(width = cor), alpha = 0.8, colour = "lightgray")
  • 48.
    g %>% ggraph(layout ="kk") + geom_edge_link(aes(width = cor), alpha = 0.8, colour = "lightgray") + scale_edge_width(range = c(0.1, 1))
  • 50.
    g %>% ggraph(layout ="kk") + geom_edge_link(aes(width = cor), alpha = 0.8, colour = "lightgray") + scale_edge_width(range = c(0.1, 1)) + geom_node_point(aes(colour = community, size = degree))
  • 52.
    g %>% ggraph(layout ="kk") + geom_edge_link(aes(width = cor), alpha = 0.8, colour = "lightgray") + scale_edge_width(range = c(0.1, 1)) + geom_node_point(aes(colour = community, size = degree)) + geom_node_text(aes(label = name), repel = TRUE)
  • 54.
    g %>% ggraph(layout ="kk") + geom_edge_link(aes(width = cor), alpha = 0.8, colour = "lightgray") + scale_edge_width(range = c(0.1, 1)) + geom_node_point(aes(colour = community, size = degree)) + geom_node_text(aes(label = name), repel = TRUE) + theme_graph()
  • 56.
    g %>% ggraph(layout ="kk") + geom_edge_arc(aes(width = cor), alpha = 0.8, colour = "lightgray") + scale_edge_width(range = c(0.1, 1)) + geom_node_point(aes(colour = community, size = degree)) + theme_graph(background = "grey20", text_colour = "white")
  • 59.
    g %>% mutate(degree =centrality_degree(), community = as.factor(group_fast_greedy(weights = cor))) %>% filter(degree >= 6) %E>% filter(cor > 0.85) %>% ggraph(layout = "lgl") + geom_edge_link(aes(width = cor), alpha = 0.8, colour = "lightgray") + scale_edge_width(range = c(0.1, 1)) + geom_node_point(aes(colour = community, size = degree)) + geom_node_text(aes(label = name), repel = TRUE) + theme_graph()
  • 60.
    g %>% ggraph(layout= "kk") + geom_edge_fan(aes(width = cor), alpha = 0.8, colour = "lightgray") + scale_edge_width(range = c(0.1, 1)) + geom_node_point(aes(colour = community, size = degree)) + geom_node_text(aes(label = name), repel = TRUE) + theme_graph()
  • 61.
    g %>% ggraph(layout= "linear") + geom_edge_arc(aes(width = cor), alpha = 0.8, colour = "lightgray") + scale_edge_width(range = c(0.1, 1)) + geom_node_point(aes(colour = community, size = degree)) + geom_node_text(aes(label = name), repel = TRUE) + theme_graph()
  • 63.
    g %>% ggraph(layout= "linear", circular = TRUE) + geom_edge_arc(aes(width = cor), alpha = 0.8, colour = "lightgray") + scale_edge_width(range = c(0.1, 1)) + geom_node_point(aes(colour = community, size = degree)) + geom_node_text(aes(label = name), repel = TRUE) + theme_graph()
  • 65.
    # d <- whiskies%>% select(Body, Sweetness, Smoky, Medicinal, Tobacco, Honey, Spicy, Winey, Nutty, Malty, Fruity, Floral) %>% dist() # hc <- hclust(d, method="ward.D2") # tbl_graph g <- as_tbl_graph(hc)
  • 66.
    g %>% ggraph(layout ="kk") + geom_edge_link(aes(width = cor), alpha = 0.8, colour = "lightgray") + scale_edge_width(range = c(0.1, 1)) + geom_node_point(aes(colour = community, size = degree)) + geom_node_text(aes(label = name), repel = TRUE) + theme_graph()
  • 72.
  • 73.
  • 78.