Home
Explore
Submit Search
Upload
Login
Signup
Advertisement
好みの日本酒を呑みたい! 〜さけのわデータで探す自分好みの酒〜
Report
Takashi Kitano
Follow
Sep. 19, 2020
•
0 likes
2 likes
×
Be the first to like this
Show More
•
5,105 views
views
×
Total views
0
On Slideshare
0
From embeds
0
Number of embeds
0
Check these out next
Rでのtry関数によるエラー処理
wada, kazumi
統計学基礎
Yuka Ezura
Rで学ぶロバスト推定
Shintaro Fukushima
確率的主成分分析
Mika Yoshimura
PRML上巻勉強会 at 東京大学 資料 第4章4.3.1 〜 4.5.2
Hiroyuki Kato
SMO徹底入門 - SVMをちゃんと実装する
sleepy_yoshi
DeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワーク
hirono kawashima
Rで学ぶ逆変換(逆関数)法
Nagi Teramo
1
of
51
Top clipped slide
好みの日本酒を呑みたい! 〜さけのわデータで探す自分好みの酒〜
Sep. 19, 2020
•
0 likes
2 likes
×
Be the first to like this
Show More
•
5,105 views
views
×
Total views
0
On Slideshare
0
From embeds
0
Number of embeds
0
Download Now
Download to read offline
Report
Data & Analytics
第88回R勉強会@東京 LT
Takashi Kitano
Follow
Advertisement
Advertisement
Advertisement
Recommended
{tidygraph}と{ggraph}による モダンなネットワーク分析(未公開ver)
Takashi Kitano
1.4K views
•
81 slides
{tidygraph}と{ggraph}によるモダンなネットワーク分析
Takashi Kitano
5.1K views
•
55 slides
コホート研究 isseing333
Issei Kurahashi
2.2K views
•
29 slides
代数的実数とCADの実装紹介
Masahiro Sakai
3.8K views
•
71 slides
R seminar on igraph
Kazuhiro Takemoto
62.6K views
•
66 slides
Rで計量時系列分析~CRANパッケージ総ざらい~
Takashi J OZAKI
58.3K views
•
67 slides
More Related Content
Slideshows for you
(20)
Rでのtry関数によるエラー処理
wada, kazumi
•
7.3K views
統計学基礎
Yuka Ezura
•
2.1K views
Rで学ぶロバスト推定
Shintaro Fukushima
•
24.4K views
確率的主成分分析
Mika Yoshimura
•
6K views
PRML上巻勉強会 at 東京大学 資料 第4章4.3.1 〜 4.5.2
Hiroyuki Kato
•
3.3K views
SMO徹底入門 - SVMをちゃんと実装する
sleepy_yoshi
•
31K views
DeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワーク
hirono kawashima
•
2.2K views
Rで学ぶ逆変換(逆関数)法
Nagi Teramo
•
39.8K views
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
Ken'ichi Matsui
•
9.4K views
劣微分
ShintaUrakami
•
325 views
StanとRでベイズ統計モデリング 11章 離散値をとるパラメータ
Miki Katsuragi
•
1.2K views
Stanとdlmによる状態空間モデル
Hiroki Itô
•
2.2K views
[Tokyor08] Rによるデータサイエンス第2部 第3章 対応分析
Yohei Sato
•
3.6K views
xtsパッケージで時系列解析
Nagi Teramo
•
21.7K views
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
Ken'ichi Matsui
•
79.5K views
Survival analysis0702
Nobuaki Oshiro
•
7.6K views
2 3.GLMの基礎
logics-of-blue
•
87.7K views
15分でわかる(範囲の)ベイズ統計学
Ken'ichi Matsui
•
54.5K views
画像処理の高性能計算
Norishige Fukushima
•
2.1K views
Rでソーシャルネットワーク分析
Hiroko Onari
•
12.7K views
Similar to 好みの日本酒を呑みたい! 〜さけのわデータで探す自分好みの酒〜
(20)
令和から本気出す
Takashi Kitano
•
1K views
Your Custom WordPress Admin Pages Suck
Anthony Montalbano
•
10.4K views
RubyBarCamp “Полезные gems и plugins”
apostlion
•
691 views
Getting started with Rails (4), Season 2
RORLAB
•
1.2K views
Юрий Буянов «Squeryl — ORM с человеческим лицом»
e-Legion
•
896 views
Sass Essentials
romiguelangel
•
3.1K views
Action View Form Helpers - 1, Season 2
RORLAB
•
847 views
Dart : one language to rule them all - MixIT 2013
Sébastien Deleuze
•
5.1K views
AngularJS vs. Ember.js vs. Backbone.js
Mark
•
2.9K views
JQuery In Rails
Louie Zhao
•
3.1K views
Intro to Rails ActiveRecord
Mark Menard
•
2.7K views
Produce nice outputs for graphical, tabular and textual reporting in R-Report...
Dr. Volkan OBAN
•
182 views
Engines: Team Development on Rails (2005)
lazyatom
•
58 views
2019 WIA - Data-Driven Product Improvements
Women in Analytics Conference
•
100 views
Improving state of M2 front-end - Magento 2 Community Project
Bartek Igielski
•
1.1K views
Lectuer html2
Nawal Alragawi
•
322 views
Twitter bootstrap on rails
Masakuni Kato
•
9K views
Jquery presentation
guest5d87aa6
•
1.2K views
Making Templatetags Suck Less
Alex Gaynor
•
935 views
Tags
Zecran Francis
•
705 views
Advertisement
More from Takashi Kitano
(12)
{shiny}と{leaflet}による地図アプリ開発Tips
Takashi Kitano
•
1.8K views
{tidytext}と{RMeCab}によるモダンな日本語テキスト分析
Takashi Kitano
•
2.7K views
20170923 excelユーザーのためのr入門
Takashi Kitano
•
3.7K views
mxnetで頑張る深層学習
Takashi Kitano
•
6.3K views
可視化周辺の進化がヤヴァイ 〜2016〜
Takashi Kitano
•
7.4K views
Rによるウイスキー分析
Takashi Kitano
•
3.8K views
20160311 基礎からのベイズ統計学輪読会第6章 公開ver
Takashi Kitano
•
4.6K views
20140625 rでのデータ分析(仮) for_tokyor
Takashi Kitano
•
2.7K views
lubridateパッケージ入門
Takashi Kitano
•
4.6K views
20150329 tokyo r47
Takashi Kitano
•
6.3K views
20140920 tokyo r43
Takashi Kitano
•
4.5K views
Google's r style guideのすゝめ
Takashi Kitano
•
3.4K views
Recently uploaded
(20)
【부천건마】달포차〔DALP0CHA12.컴〕ꗄ부천오피 부천휴게텔?
puvmkhuyt
•
0 views
Spectroscopy الشيث الرابع.pptx
MajdolenAhrki
•
2 views
Data analysis using Statistical Packages (STAT-522) by SOUMIQUE AHAMED
SOUMIQUE AHAMED
•
0 views
*추천인: AAKK* TOP7588닷COM텍사스홀덤
yqwggcy3463
•
0 views
Data presentation 2.pptx
ShayanHaider14
•
0 views
【경산안마】〔dalPochA12.컴〕달포차 경산건마ꔇ경산오피?
puvmkhuyt
•
17 views
Overview of ODK.pptx
AlebachewMengistie1
•
0 views
성북마사지〔dalpocha8。net〕성북건마╼성북오피【달림포차】?
puvmkhuyt
•
9 views
Top7588`c0m *추천인: AAKK* 홀덤라이브
yqwggcy3463
•
0 views
6.Computer Networks (1).pptx
Kamran Waghani
•
2 views
【영등포건마】달포차〔dalPochA12.컴〕ꔏ영등포오피 영등포휴게텔?
baadaa2023
•
0 views
For sharing Robotics and Industrial Automation Lab.pdf
MigoEsteban
•
0 views
Míssil: conteúdo guiado por métricas
Pense Play
•
6 views
강남마사지〔DALP0CHA12.컴〕강남건마ꖶ강남오피【달포차】?
puvmkhuyt
•
0 views
【달림포차〔dalpocha8。net〕】수원오피 수원타이마사지ꘐ수원건마?
puvmkhuyt
•
20 views
Foreign languages proposal.pptx
ApurvaShyam
•
2 views
Chapter 4- The Multicultural Society-1.pptx
SoulOfListenerByJenc
•
3 views
004 migration-guide.pdf
RomanPeirce1
•
3 views
【군자건마】달림포차〔dalpocha8。net〕ꔗ군자오피 군자휴게텔?
puvmkhuyt
•
0 views
【천호안마】〔dalpocha8。Net〕달림포차 천호건마ꔠ천호오피?
baadaa2023
•
0 views
Advertisement
好みの日本酒を呑みたい! 〜さけのわデータで探す自分好みの酒〜
🍶
> me $name [1] "Takashi
Kitano" $twitter [1] "@kashitan" $work_in [1] " "
🎉 🆓
## charts <- jsonlite::read_json("https://muro.sakenowa.com/sakenowa-data/api/flavor-charts", simplifyVector =
TRUE) %>% purrr::pluck("flavorCharts") ↑ ↑ ↑ ↑ ↑ ↑
## brands <- jsonlite::read_json("https://muro.sakenowa.com/sakenowa-data/api/brands", simplifyVector =
TRUE) %>% purrr::pluck("brands")
## brands.dist.mat <- charts %>% # tibble::remove_rownames()
%>% # ID tibble::column_to_rownames(var = "brandId") %>% # proxy::dist(method = "cosine")
brands.dist.mat %>% as.matrix() %>% .[1:8,
1:8]
## data.frame brands.dist.df <- brands.dist.mat
%>% as.matrix() %>% # tibble tibble::as_tibble(rownames = NA) %>% # tibble::rownames_to_column(var = "brandId1") %>% # tidyr::pivot_longer( cols = -brandId1, names_to = "brandId2", values_to = "dist") %>% # dplyr::filter(brandId1 != brandId2) %>% # ID dplyr::mutate_if(is.character, as.integer)
brands.dist.df %>% # dplyr::inner_join(brands, by =
c("brandId1" = "id")) %>% dplyr::inner_join(brands, by = c("brandId2" = "id")) %>% # dplyr::filter(name.x == " ") %>% # dplyr::arrange(dist) %>% dplyr::select(name.y, dist)
brands.dist.df %>% # dplyr::inner_join(brands, by =
c("brandId1" = "id")) %>% dplyr::inner_join(brands, by = c("brandId2" = "id")) %>% # dplyr::filter(name.x == " ") %>% # dplyr::arrange(desc(dist)) %>% dplyr::select(name.y, dist)
n <- 6
# ( 6 ) brands.cluster <- brands.dist.mat %>% # hclust(method="ward.D2") %>% # cutree(n) %>% # tibble tibble::tibble( brandId = as.integer(names(.)), cluster = . )
radars <- brands.cluster %>% # dplyr::inner_join(charts,
by = c("brandId" = "brandId")) %>% # dplyr::group_by(cluster) %>% dplyr::summarise_at(dplyr::vars(dplyr::starts_with("f")), mean) 1
radars <- radars %>% # dplyr::group_by(cluster)
%>% tidyr::nest() %>% dplyr::mutate(fig = purrr::map2(data, cluster, function(x, y) { plotly::plot_ly( type = "scatterpolar", mode = "markers", r = c(x$f1, x$f2, x$f3, x$f4, x$f5, x$f6, x$f1), theta = c(" ", " ", " ", " ", " ", " ", " "), fill = 'toself', fillcolor = RColorBrewer::brewer.pal(n = n, name = "Accent")[y], opacity = 0.5 ) %>% plotly::layout(polar = list(angularaxis = list( rotation = 90, direction = 'counterclockwise'))) }))
radars$fig[[1]]
radars$fig[[4]]
radars$fig[[2]]
radars$fig[[6]]
radars$fig[[3]]
radars$fig[[5]]
brands.mds <- brands.dist.mat %>% #
(MDS) cmdscale() %>% `colnames<-`(c("x", "y")) %>% tibble::as_tibble(rownames = NA) %>% tibble::rownames_to_column(var = "brandId") %>% dplyr::mutate(brandId = as.integer(brandId)) %>% # dplyr::inner_join( brands.cluster, by = c("brandId" = "brandId") ) %>% # dplyr::inner_join( brands[, -3], by = c("brandId" = "id") ) %>% dplyr::mutate(cluster = forcats::as_factor(cluster)) 1
## rankings <- jsonlite::read_json("https://muro.sakenowa.com/sakenowa-data/api/rankings", simplifyVector =
TRUE)
brands.mds %>% # dplyr::filter(brandId %in%
rankings$overall$brandId) %>% # plotly::plot_ly(x = ~x, y = ~y) %>% plotly::add_markers( color = ~cluster, text = ~name, colors = RColorBrewer::brewer.pal(n = n, name = "Accent")) %>% plotly::add_text( text = ~name, textposition = "top center" ) %>% plotly::layout(showlegend = FALSE)
## tags <- jsonlite::read_json("https://muro.sakenowa.com/sakenowa-data/api/flavor-tags", simplifyVector =
TRUE) %>% purrr::pluck("tags")
## brand_tags <- jsonlite::read_json( "https://muro.sakenowa.com/sakenowa-data/api/brand-flavor-tags", simplifyVector =
TRUE ) %>% purrr::pluck("flavorTags")
# contingency.table <- brand_tags %>% tidyr::unnest(cols
= tagIds) %>% # dplyr::inner_join( brands.cluster, by = c("brandId" = "brandId") ) %>% # dplyr::inner_join( tags, by = c("tagIds" = "id") ) %>% dplyr::group_by(tagIds, tag, cluster) %>% dplyr::count() 1
contingency.table <- contingency.table %>% # tidyr::pivot_wider( id_cols
= tag, names_from = cluster, values_from = n, values_fill = 0) %>% # tibble::column_to_rownames(var = "tag")
# res.ca <- FactoMineR::CA(contingency.table, graph
= FALSE) # tibble tags.biplot <- tibble::tibble( type = "tag", x = res.ca$row$coord[, 1], y = res.ca$row$coord[, 2], label = rownames(contingency.table)) %>% dplyr::bind_rows( tibble::tibble( type = "cluster", x = res.ca$col$coord[, 1], y = res.ca$col$coord[, 2], label = colnames(contingency.table)) )
tags.biplot %>% plotly::plot_ly(x =~x,
y =~y) %>% plotly::add_markers(color = ~type, colors = RColorBrewer::brewer.pal(3, "Set1")[1:2]) %>% plotly::add_text(text = ~label, textposition = "top center") %>% plotly::layout(showlegend = FALSE) factoextra::fviz_ca_biplot( res.ca, font.family = "HiraKakuProN-W3" )
wordclouds <- brand_tags %>% tidyr::unnest(cols
= tagIds) %>% dplyr::inner_join( brands.cluster, by = c("brandId" = "brandId") ) %>% dplyr::inner_join(tags, by = c("tagIds" = "id")) %>% # dplyr::group_by(cluster, tag) %>% dplyr::count() %>% # dplyr::group_by(cluster) %>% dplyr::arrange(cluster, desc(n)) %>% tidyr::nest() %>% dplyr::mutate(fig = purrr::map( data, wordcloud2::wordcloud2, size = 0.8, minSize = 10 ))
radars$fig[[1]] wordclouds$fig[[1]]
radars$fig[[4]] wordclouds$fig[[4]]
radars$fig[[2]] wordclouds$fig[[2]]
radars$fig[[6]] wordclouds$fig[[6]]
radars$fig[[3]] wordclouds$fig[[3]]
radars$fig[[5]] wordclouds$fig[[5]]
Advertisement