SlideShare a Scribd company logo
1 of 37
Download to read offline
Peran Bioenergi dan Arah-arah
Utama LitBangRap-nya di
Indonesia
Tatang H. Soerawidjaja
Anggota Dewan Riset Nasional (DRN) – Komisi Teknis Energi, dan
Ketua Ikatan Ahli Bioenergi Indonesia (IKABI)
Lokakarya Gasifikasi Biomassa
LABTEK X, Kampus ITB, Bandung, 16-17 Desember 2010
Pengertian bioenergi
• Bioenergi adalah energi yang diperoleh/
dibangkitkan/berasal dari biomassa.
dibangkitkan/berasal dari biomassa.
• Biomassa adalah bahan2 organik berumur relatif
muda dan berasal dari tumbuhan/hewan; produk
& limbah industri budidaya (pertanian,
perkebunan, kehutanan, peternakan, perikanan)].
• Bentuk-bentuk final terpenting bioenergi :
2
• Bentuk-bentuk final terpenting bioenergi :
 bahan bakar nabati (biofuels);
 listrik biomassa (biomass-based electricity).
Mengapa bioenergi penting ?.
• Sistem energi dunia harus (dan sedang diupayakan)
beralih dari sebuah sistem energi berbasis sumber daya
fosil ke sistem energi berbasis sumber daya terbarukan.
fosil ke sistem energi berbasis sumber daya terbarukan.
• Sistem energi dunia yang ada sekarang telah dibangun,
selama hampir satu abad, dengan berdasar (atau
merujuk) pada aneka keunggulan sumber daya fosil.
 Sumber daya fosil adalah sumber daya bahan bakar !.
 Karena itu, semua teknologi dan ‘mesin’ pengkonversi
bahan bakar menjadi listrik, kalor, dsb, kini sudah
banyak tersedia.
3
• Biomassa adalah satu-satunya sumber energi terbarukan
yang merupakan sumber daya bahan bakar (alias mampu
menggantikan bahan bakar fosil dalam semua pasar
energi)!. Yang lainnya (sinar surya, tenaga air, tenaga angin,
panas bumi, arus laut, tenaga ombak, energi termal samudra, dan
panas bumi, arus laut, tenaga ombak, energi termal samudra, dan
tenaga nuklir) hanya mudah dikonversi menjadi listrik.
• Pemanfaatan bioenergi dapat menggunakan teknologi dan
‘mesin’ yang selama ini sudah matang dikembangkan
untuk mendayagunakan sumber daya fosil.
4
 Bioenergi merupakan jembatan transisi vital
peralihan sistem energi berbasis sumber daya fosil ke
sistem energi berbasis sumber daya terbarukan !.
 Bioenergi merupakan
komponen kunci dan
jalur strategis dalam
perjuangan mencapai
Millenium Development
Goals (MDGs).
• Karena itu, bioenergi merupakan sektor perekonomian
energi dunia yang paling dinamik dan berubah cepat.
• Pertumbuhan pesat industri bahan bakar nabati (BBN,
liquid biofuels) pada dekade ini telah kita alami bersama.
5
liquid biofuels) pada dekade ini telah kita alami bersama.
• Pada tahun 2005, bioenergi memasok sekitar 10 % dari
kebutuhan energi dunia dan merupakan 78 % dari
seluruh pasokan energi terbarukan.
Konsumsi bioenergi akan terus membesar. Di tahun 2050,
kontribusinya hampir sama besar dengan jumlah total energi-
energi terbarukan lain.
1 EJ = 1018 J
6
Perkembangan konsumsi total energi primer di seluruh dunia menurut Skenario Visi
Pembangunan Berkelanjutan dari International Energy Agency (2003)
1 EJ = 1018 J
Di Asia, perkembangan kontribusinya bahkan lebih bermakna/sign
7
Perkembangan konsumsi total energi primer di Asia menurut Skenario Visi
Pembangunan Berkelanjutan dari International Energy Agency (2003)
Peran dan makna strategis bioenergi
bagi Indonesia
• Bentuk kepulauan Negara Kesatuan Republik Indonesia
(NKRI) mempersulit transmisi & distribusi listrik
maupun BBM.
maupun BBM.
• Interkoneksi jaringan listrik hanya mungkin (alias
ekonomis) utk pulau-pulau besar dan sejumlah pulau-
pulau relatif kecil di dekatnya.
 Sejumlah besar pulau (> 10.000) harus bisa
menghasilkan dan memenuhi kebutuhan bahan bakar dan
8
menghasilkan dan memenuhi kebutuhan bahan bakar dan
listriknya sendiri (self-sufficient).
• Banyak propinsi & pulau tak memiliki cadangan bahan
bakar fosil yang memadai (atau bahkan nihil).
• Biomassa (sumber daya hayati) tersedia di semua pulau!.
• Bangsa Indonesia dikaruniai biodiversitas dan lahan
potensial yang amat besar. Mesti kita dayagunakan secara
berkelanjutan untuk memperkuat keterjaminan pasokan
energi dan neraca pembayaran negara, membuka banyak
lapangan kerja, mengentaskan kemiskinan, melancarkan
lapangan kerja, mengentaskan kemiskinan, melancarkan
pertumbuhan ekonomi yang merata, dan turut meredam
emisi gas-gas rumah kaca.
• Produksi bioenergi (listrik dan/atau bahan bakar hayati)
dari sisa & limbah pemanenan + pengolahan pangan
memiliki makna penting dalam mengefisienkan
(memperkuat struktur & daya saing) industri pangan
9
(memperkuat struktur & daya saing) industri pangan
domestik ( sekam, jerami, bagas, tetes, tandan kosong
sawit, dll).
• Kesenjangan potensi dengan pemanfaatan : 
Di ASEAN kita adalah produsen biomassa
terbesar ......
Biomassa yang tersedia untuk pembangkitan energi di negara-
negara ASEAN
Sumber : Saku Rantanen (Pöyry), 2009
10
..... tetapi merupakan pemanfaat yang relatif
terkecil !.
Pemanfaatan biomassa untuk produksi energ di negara-
11
Pemanfaatan biomassa untuk produksi energ di negara-
negara ASEAN
Sumber : Saku Rantanen (Pöyry), 2009
Potensi amat besar itu masih terabaikan !.
Contoh-contoh pendayagunaan terpadu untuk penguatan struktur dan daya sain
Konfigurasi ideal pemanfaatan industrial tanaman tebu 12
Skema Industrialisasi Tandan Kosong Sawit (TKS) 13
Rute-rute pemanfaatan terpadu sagu utk pangan dan bioenergi
14
Peringatan :
• Kita, bangsa Indonesia, harus mampu mengkonversi
seluruh potensi bioenergi yang kita miliki menjadi bentuk-
bentuk final (BBN, listrik biomassa, biogas, dll). Produk-
bentuk final (BBN, listrik biomassa, biogas, dll). Produk-
produk final bioenergi inilah yang, jika surplus, bisa kita
ekspor.  Bangun industri bioenergi domestik!.
• Jika kita tak melakukannya, negara-negara maju sudah
siap mengimpor biomassa (alias bahan mentah bioenergi)
tersebut untuk mereka manfaatkan di negerinya.
• Karena biomassa mengandung ‘abu’ (mineral lahan
• Karena biomassa mengandung ‘abu’ (mineral lahan
pertanian/perkebunan), dan sektor energi bervolume niaga
masif, ekspor biomassa dalam jangka panjang akan
berujung malapetaka : lahan pertanian/perkebunan/
hutan kita menjadi kurus/tandus!.
15
• Kita juga harus mampu mengungkap dan merealisasikan
potensi tersidik dari tumbuhan-tumbuhan energi multiguna
kawasan tropik seperti :
 kranji/mabai (Pongamia pinnata),
 nyamplung/bintangur (Calophyllum inophyllum),
 nimba (Azadirachta indica),
 nimba (Azadirachta indica),
 gatep pait (Samadera indica),
 jarak pagar (Jatropha curcas),
 kelor (Moreinga oleifera),
 kacang hiris (Cajanus cajan),
 sukun (Artocarpus altilis)
 aneka alga mikro.
• Pemerintah membuka jalan via kebijakan yang jitu,
• Pemerintah membuka jalan via kebijakan yang jitu,
pengusaha mengimplementasikan dengan bisnis industrial
yang bervisi kebangsaan, akademisi/peneliti memfasilitasi
via pengembangan SDM, ilmu, dan teknologi bioenergi
yang ‘tepat-guna’.
16
Pengembangan listrik berbasis
biomassa
Sumber energi terbarukan Faktor ketersediaan (%)
Biomassa  85
Panas bumi  85
Panas bumi  85
Arus laut 70
Hidro 50
Gelombang 50
Surya 40
Surya 40
Angin  30
17
Biomassa adalah sumber listrik terbarukan yang
ketersediaan sepanjang tahunnya paling besar!.
Aneka rute alternatif pembangkitan listrik dari biomassa
18
Harga bahan bakar untuk pembangkitan 1 kWh
listrik dengan genset diesel :
Asumsi-asumsi :
• Nilai kalor netto (LHV) minyak diesel = 37,0 MJ/liter.
• Harga minyak mentah = US$80/bbl.
• Ongkos pengilangan minyak = US$10/bbl.
• Ongkos pengilangan minyak = US$10/bbl.
• 1 bbl = 159 liter; US$1 = Rp.9000,-
• Efisiensi konversi bahan bakar ke listrik dari genset diesel = 30 %.
Maka :
• Harga 1 liter minyak diesel = (80 + 10)9000/159 = Rp. 5094,4
• 1 kWh = 1 kW x 3600 s = 3600 kJ = 3,6 MJ
• Kebutuhan minyak diesel untuk membangkitkan 1 kWh listrik =
(100/30) x (3,6/37) = 0,324 liter.
(100/30) x (3,6/37) = 0,324 liter.
• Harga bahan bakar untuk pembangkitan 1 kWh listrik dengan
genset diesel = (0,324) x Rp. 5094,4 = Rp. 1652,- (=
143/MWH; 1 = Rp.11.500,-).
 Jika semua ongkos diperhitungkan (pengangkutan solar ke lokasi,
depresiasi, perawatan mesin, biaya pegawai)   Rp.2000/kWh!.
19
Ongkos produksi listrik berbagai teknologi
pembangkitan (dalam 2005/MWh)
Teknologi 2007 2020 2030
Biogas 55 – 215 50 – 200 50 – 190
Biomassa padat 80 – 195 85 – 200 85 – 205
Biomassa padat 80 – 195 85 – 200 85 – 205
Surya PV 520 – 880 270 – 460 170 – 300
Angin, di darat 75 – 110 55 – 90 50 – 85
Angin, lepas-pantai 85 – 140 65 – 115 50 – 95
Hidro, kecil 60 – 185 55 – 160 50 – 145
Hidro, besar 35 – 145 30 – 140 30 – 130
Hidro, besar 35 – 145 30 – 140 30 – 130
Nuklir 50 – 85 45 – 80 45 – 80
Gas (PLTGU) 50 – 60 65 – 75 70 – 80
Batubara (serbuk) 40 – 50 65 – 80 65 – 80
Sumber : Komisi Eropa (2008), dikutip oleh Canton dan Linden (2010).
• Teknologi pembangkitan listrik berbasis biomassa yang
berskala relatif besar ( 3 MWe), yaitu yang bertumpu
pada pembakaran ‘teknikal’ dan gasifikasi, sudah matang
(komersial); harga pokok pembangkitan  Rp.1000/kWh.
 Agar sumber daya biomassa yang kini sudah tersedia
tidak diekspor, pemerintah perlu segera mengeluarkan
kebijakan yang membuka peluang munculnya industri
pembangkitan listrik berbasis biomassa!. Berantas
persaingan tak-adil antara listrik diesel dan listrik
biomassa (dan juga listrik terbarukan lainnya).
biomassa (dan juga listrik terbarukan lainnya).
• Biomassa limbah industri besar yang berkondisi sangat
basah dan lumat (atau mudah dilumatkan) dapat juga
dimanfaatkan untuk pembangkitan listrik via rute biogas.
21
• Teknologi gasifikasi biomassa untuk pembangkitan listrik
yang dimiliki anak-anak bangsa harus bisa ditingkatkan
sampai terbukti pada skala 1 – 10 MWe.
• Biomassa dapat pula menjadi sumberdaya utama untuk
penyediaan listrik bagi daerah/pulau/ desa terpencil yang
penyediaan listrik bagi daerah/pulau/ desa terpencil yang
kemampuan teknologi penduduknya masih pada tingkat
pertanian subsisten. Skala pembangkitan bisa sampai 3
MWe, tetapi umumya  1 MWe.
Pemerataan akses kepada listrik alias peningkatan rasio
elektrifikasi nasional!.
elektrifikasi nasional!.
• Teknologi yang sesuai :
Genset biogas;
Genset diesel tipe Lister ( minyak nabati murni);
Genset Siklus Rankine Organik.
22
Listrik biogas
• Biogas dan pembangkitannya
(terutama dari kotoran sapi) sudah
mulai banyak dikenal.
• Di dalam negeri sudah ada beberapa
• Di dalam negeri sudah ada beberapa
vendor teknologi biogas dari
kotoran ternak dan berbagai jenis
limbah pertanian.
• Genset-genset biogas pun sudah
tersedia secara komersial (mulai
dari skala 700 watt).
23
dari skala 700 watt).
• Perlu dilakukan promosi lebih
sistematik dan demonstrasi
pembangkitan biogas dari bahan
tumbuhan.
Di masa depan, teknologi reduksi elektrokimia CO2
(menjadi CH4) memungkinkan gas biometan dipipakan
ke kota-kota.
24
Pembangkitan listrik dengan genset diesel tipe Lister
• Mesin diesel tipe Lister = mesin diesel
bersilinder tunggal dan berputaran
rendah (< 1000 rpm).
• Bisa menggunakan minyak nabati murni
• Bisa menggunakan minyak nabati murni
sebagai bahan bakar. Minyak nabati
murni (Pure Plant Oil, PPO, atau
Straight Vegetable Oil, SVO) = minyak-
lemak nabati yang (sudah) netral dan
bebas getah (gum) = degummed and
deacidified fatty-oil.
25
deacidified fatty-oil.
• Sedang diuji-coba kemanfaatannya dan
di-reverse engineering cara produksinya
oleh Dr. Iman K. Reksowardojo dkk
(ITB) dengan dana Insentif Ristek.
Siklus Rankine Organik (SRO)
• Sama dengan siklus Rankine konvensional, hanya saja
fluida kerjanya bukan kukus/air (H2O) melainkan fluida
organik.
• Berat molekul : Mr,fluida organik >> Mr,air.
 Turbin lebih sederhana (1 tahap) dan rotasi-(rpm)-nya
rendah, sehingga lebih awet dan mudah dirawat.
• Bisa dipilih fluida kerja organik bertitik didih < Td,n,air.
 Memungkinkan eksploitasi sumber kalor bertemperatur
 Memungkinkan eksploitasi sumber kalor bertemperatur
rendah untuk membangkitkan listrik secara relatif efisien.
• Sampai skala pembangkitan 400 – 500 kWe bisa dibuat
moduler (= perangkat-lengkap kompak dan siap sambung
ke sumber kalor dan pendingin dan jaringan listrik).
26
Rentang temperatur kerja berbagai sumber dan pembangkit listrik termal
27
Konsep dasar siklus Rankine organik
Untuk SRO berbasis
pembakaran biomassa :
• Temperatur medium
pemanas (mp), Tmp,
maks = 630 K (360 oC).
• Temperatur uap (u),
Tu,maks = 600 K (330
oC).
oC).
• Temperatur kondensor,
Tk = 40 – 100 oC.
28
• Fluida kerja untuk SRO biasanya
dipilih agar memiliki GWP (Global
Warming Potential) dan ODP (Ozone
Depleting Potential) yang rendah.
• Contoh-contoh :
• Contoh-contoh :
heksametildisiloksan, dikhlorometan
(R-30), 1,1,1,3,3-pentafluorobutan
(R365mfc), 1-methoxyheptafluoro-
propan (HFE-7000).
• Di Indonesia tampaknya belum ada
29
• Di Indonesia tampaknya belum ada
penerapan pembangkitan listrik
dengan SRO.
 Perlu proyek demonstrasi!.
Pengembangan bahan bakar nabati
(BBN)
• Bahan bakar cair merupakan bentuk energi final komersial
yang paling unggul (dan strategis) :
 Dapat disimpan secara mudah dan aman untuk jangka
 Dapat disimpan secara mudah dan aman untuk jangka
waktu lama ( jadi sediaan siaga utk keadaan darurat).
 Portabel, mudah diangkut dan dikirim jauh.
 Memiliki kerapatan energi besar.
 Relatif mudah dinyalakan, tapi tak mudah meledak.
 Dapat dengan mudah dikonversi menjadi listrik.
 Amat sangat penting (kritikal) bagi sektor transportasi.
 Amat sangat penting (kritikal) bagi sektor transportasi.
• Biomassa adalah satu-satunya sumber energi terbarukan
yang dapat menghasilkan, atau mudah dikonversi menjadi,
bahan bakar (cair).
30
Aneka rute produksi bahan bakar hayati dari
biomassa
[yang berwujud cair disebut Bahan Bakar Nabati (BBN)]
31
Catatan awal tentang rute-rute
teknologi BBN
• Indonesia sepantasnya tidak usah mengembangkan teknologi via
rute-rute pirolisis cepat dan likuefaksi termokimia; kebutuhan SDM
dan finansial tahap demonstrasi teknologinya tak sesuai dengan
kemampuan negara/bangsa kita (nanti, jika perlu, beli saja!).
kemampuan negara/bangsa kita (nanti, jika perlu, beli saja!).
• Tuntutan tingkat keselamatan yang tinggi pada angkutan udara
mengharuskan bioavtur berwujud kimia hidrokarbon (persis seperti
avtur fossil).
 Dibuat dari minyak-lemak via teknologi hidrogenasi.
• Karena komponen utama avtur adalah hidrokarbon parafin C10 –
C14, bahan mentah terbaik pembuatan bioavtur adalah minyak-
C14, bahan mentah terbaik pembuatan bioavtur adalah minyak-
minyak laurat (asam laurat = asam lemak C12) : minyak kelapa,
minyak inti-sawit, minyak biji Cinnamomum sp dan Litsea sp.
[Bioavtur tampaknya akan sudah dimanfaatkan secara komersial
mulai tahun 2012. Thailand berencana mulai menyediakan bioavtur
di tahun itu bagi pesawat-pesawat Eropa] 32
• Jika suatu kandidat teknologi
diputuskan untuk kelak dibeli
saja, tak berarti tak boleh ada
riset . Boleh, tetapi tujuannya
bukan pengembangan
teknologi, tetapi pembinaan
teknologi, tetapi pembinaan
SDM yang relevan!.
• Sayang sekali, Indonesia tak
33
• Sayang sekali, Indonesia tak
punya strategi induk (grand
strategy) pengindustrian
terpadu untuk memaksimum-
kan benefisiasi sumber daya
alam.
Saran pilihan teknologi yang dikembangkan
• Biodiesel :
 Generasi 1 = ester metil asam lemak hasil metanolisis
minyak-lemak nabati.
minyak-lemak nabati.
 Generasi 2 = biohidrokarbon dari bahan lignoselulosa
via gasifikasi + sintesis Fischer-Tropsch.
• Bioetanol :
 Generasi 1 : dari bahan bergula/berpati via (sakarifi-
kasi +) fermentasi dan pemurnian.
 Generasi 2 : dari bahan lignoselulosa via
 Generasi 2 : dari bahan lignoselulosa via
pretreatment, sakarifikasi, fermentasi dan pemurnian.
• Biogas untuk bahan bakar rumah tangga pedesaan.
• [Biohidrokarbon via hidrogenasi minyak-lemak nabati
sebaiknya diarahkan untuk produksi bioavtur]. 34
Isu pokok/utama
• Bahan mentah biodiesel generasi 1 masih amat tergantung
pada minyak sawit. Pengembangan tumbuhan sumber
minyak-lemak non pangan (Pongamia pinnata, Calophyllum
inophyllum , Cajanus cajan , Artocarpus altilis, Azadirachta
indica , Jatropha curcas, dll) masih kurang diperhatikan.
inophyllum , Cajanus cajan , Artocarpus altilis, Azadirachta
indica , Jatropha curcas, dll) masih kurang diperhatikan.
• Informasi terbukti (proven information) dari berbagai “pohon
energi multiguna” belum tersedia. Padahal ini akan sangat
bermanfaat untuk menentukan strategi feedstock di masa
depan.
• Standar mutu biodiesel maupun bioetanol masih harus
dimutakhirkan untuk menjawab keluhan-keluhan konsumen
dan/atau diselaraskan dengan tujuan pengembangan industri
dan/atau diselaraskan dengan tujuan pengembangan industri
BBN.
• Teknologi BBN generasi 1 kreasi bangsa harus dibuktikan
berfungsi baik pada skala industri menengah dan besar.
• Teknologi BBN generasi 2 perlu dikembangkan dan dikuasai
anak-anak bangsa.
35
LitBangRap yang diperlukan
• R & D perluasan basis/pangkalan sumber daya (resource
base) bioenergi (yaitu pengkajian dan pengembangan
tumbuhan-tumbuhan energi multiguna).
• Demonstrasi pembuktian teknologi proses produksi bio-
• Demonstrasi pembuktian teknologi proses produksi bio-
diesel dan bioetanol generasi satu domestik (karya anak-
anak bangsa) pada skala industri menengah dan besar.
• Pengembangan teknologi proses produksi biodiesel dan
bioetanol generasi dua.
• Pengembangan teknologi proses produksi biodiesel dan
• Pengembangan teknologi proses produksi biodiesel dan
bioetanol generasi satu yang efisien dan nir-limbah atau
berlimbah minimal.
• Pengembangan teknologi untuk menghasilkan pati atau
minyak-lemak murah dari alga mikro.
36
Sekian dan Terima Kasih
37
tatanghs@ che.itb.ac.id hstatang@yahoo.com

More Related Content

Similar to THS-PeranBioenergiDanArahUtamaLitbangrap.pdf

ryki periwaldi_makalah OSN-PTI 2010_
ryki periwaldi_makalah OSN-PTI 2010_ryki periwaldi_makalah OSN-PTI 2010_
ryki periwaldi_makalah OSN-PTI 2010_ryki periwaldi
 
Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...
Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...
Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...ryki periwaldi
 
Ryki periwaldi_osn pti 2010_
Ryki periwaldi_osn pti 2010_Ryki periwaldi_osn pti 2010_
Ryki periwaldi_osn pti 2010_ryki periwaldi
 
BPPT - Outlook Energi Indonesia 2021.pdf
BPPT - Outlook Energi Indonesia 2021.pdfBPPT - Outlook Energi Indonesia 2021.pdf
BPPT - Outlook Energi Indonesia 2021.pdftamihakim
 
BPPT - Outlook Energi Indonesia 2021.pdf
BPPT - Outlook Energi Indonesia 2021.pdfBPPT - Outlook Energi Indonesia 2021.pdf
BPPT - Outlook Energi Indonesia 2021.pdfGbpGugun
 
Pengembangan Bioekonomi di Indonesia
Pengembangan Bioekonomi di IndonesiaPengembangan Bioekonomi di Indonesia
Pengembangan Bioekonomi di IndonesiaTogar Simatupang
 
Energi Biogas Kelompok 10
Energi Biogas Kelompok 10Energi Biogas Kelompok 10
Energi Biogas Kelompok 10MuhyiddinSyarif
 
Desamandirienergi 090330041333-phpapp02
Desamandirienergi 090330041333-phpapp02Desamandirienergi 090330041333-phpapp02
Desamandirienergi 090330041333-phpapp02Dan Ada Dech
 
Bio energi berbasis jagung dan pemanfaatan limbahnya
Bio energi berbasis jagung dan pemanfaatan limbahnyaBio energi berbasis jagung dan pemanfaatan limbahnya
Bio energi berbasis jagung dan pemanfaatan limbahnyaBagas Prayitna
 
Manfaat Listrik Alam Bagi Lingkungan
Manfaat Listrik Alam Bagi LingkunganManfaat Listrik Alam Bagi Lingkungan
Manfaat Listrik Alam Bagi Lingkunganbleed4gain
 
Paper Pertumbuhan Penggunaan Energi, Konservasi Energi, dan Pencemaran Energi...
Paper Pertumbuhan Penggunaan Energi, Konservasi Energi, dan Pencemaran Energi...Paper Pertumbuhan Penggunaan Energi, Konservasi Energi, dan Pencemaran Energi...
Paper Pertumbuhan Penggunaan Energi, Konservasi Energi, dan Pencemaran Energi...N'fall Sevenfoldism
 
Peran Warga Negara Dalam Mendukung Upaya Pemenuhan Kebutuhan Listrik Bangsa I...
Peran Warga Negara Dalam Mendukung Upaya Pemenuhan Kebutuhan Listrik Bangsa I...Peran Warga Negara Dalam Mendukung Upaya Pemenuhan Kebutuhan Listrik Bangsa I...
Peran Warga Negara Dalam Mendukung Upaya Pemenuhan Kebutuhan Listrik Bangsa I...nurasifah
 

Similar to THS-PeranBioenergiDanArahUtamaLitbangrap.pdf (20)

Persepsi dan peran masyarakat palu 17112014
Persepsi dan peran masyarakat palu 17112014Persepsi dan peran masyarakat palu 17112014
Persepsi dan peran masyarakat palu 17112014
 
ryki periwaldi_makalah OSN-PTI 2010_
ryki periwaldi_makalah OSN-PTI 2010_ryki periwaldi_makalah OSN-PTI 2010_
ryki periwaldi_makalah OSN-PTI 2010_
 
Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...
Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...
Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...
 
Ryki periwaldi_osn pti 2010_
Ryki periwaldi_osn pti 2010_Ryki periwaldi_osn pti 2010_
Ryki periwaldi_osn pti 2010_
 
BAB I.docx
BAB I.docxBAB I.docx
BAB I.docx
 
Presentation
PresentationPresentation
Presentation
 
Presentation
PresentationPresentation
Presentation
 
Bahan Bakar Nabati Sebagai Solusi Alternatif Dalam Menghadapi Krisis Sumberda...
Bahan Bakar Nabati Sebagai Solusi Alternatif Dalam Menghadapi Krisis Sumberda...Bahan Bakar Nabati Sebagai Solusi Alternatif Dalam Menghadapi Krisis Sumberda...
Bahan Bakar Nabati Sebagai Solusi Alternatif Dalam Menghadapi Krisis Sumberda...
 
BPPT - Outlook Energi Indonesia 2021.pdf
BPPT - Outlook Energi Indonesia 2021.pdfBPPT - Outlook Energi Indonesia 2021.pdf
BPPT - Outlook Energi Indonesia 2021.pdf
 
BPPT - Outlook Energi Indonesia 2021.pdf
BPPT - Outlook Energi Indonesia 2021.pdfBPPT - Outlook Energi Indonesia 2021.pdf
BPPT - Outlook Energi Indonesia 2021.pdf
 
Pengembangan Bioekonomi di Indonesia
Pengembangan Bioekonomi di IndonesiaPengembangan Bioekonomi di Indonesia
Pengembangan Bioekonomi di Indonesia
 
Energi Biogas Kelompok 10
Energi Biogas Kelompok 10Energi Biogas Kelompok 10
Energi Biogas Kelompok 10
 
Desamandirienergi 090330041333-phpapp02
Desamandirienergi 090330041333-phpapp02Desamandirienergi 090330041333-phpapp02
Desamandirienergi 090330041333-phpapp02
 
Bio energi berbasis jagung dan pemanfaatan limbahnya
Bio energi berbasis jagung dan pemanfaatan limbahnyaBio energi berbasis jagung dan pemanfaatan limbahnya
Bio energi berbasis jagung dan pemanfaatan limbahnya
 
Manfaat Listrik Alam Bagi Lingkungan
Manfaat Listrik Alam Bagi LingkunganManfaat Listrik Alam Bagi Lingkungan
Manfaat Listrik Alam Bagi Lingkungan
 
Paper Pertumbuhan Penggunaan Energi, Konservasi Energi, dan Pencemaran Energi...
Paper Pertumbuhan Penggunaan Energi, Konservasi Energi, dan Pencemaran Energi...Paper Pertumbuhan Penggunaan Energi, Konservasi Energi, dan Pencemaran Energi...
Paper Pertumbuhan Penggunaan Energi, Konservasi Energi, dan Pencemaran Energi...
 
Pkn
PknPkn
Pkn
 
Contoh karya ilmiah
Contoh karya ilmiahContoh karya ilmiah
Contoh karya ilmiah
 
Pltsa
PltsaPltsa
Pltsa
 
Peran Warga Negara Dalam Mendukung Upaya Pemenuhan Kebutuhan Listrik Bangsa I...
Peran Warga Negara Dalam Mendukung Upaya Pemenuhan Kebutuhan Listrik Bangsa I...Peran Warga Negara Dalam Mendukung Upaya Pemenuhan Kebutuhan Listrik Bangsa I...
Peran Warga Negara Dalam Mendukung Upaya Pemenuhan Kebutuhan Listrik Bangsa I...
 

Recently uploaded

TEMA 9 SUBTEMA 1 PEMBELAJARAN 1 KELAS 6.pptx
TEMA 9 SUBTEMA 1 PEMBELAJARAN 1 KELAS 6.pptxTEMA 9 SUBTEMA 1 PEMBELAJARAN 1 KELAS 6.pptx
TEMA 9 SUBTEMA 1 PEMBELAJARAN 1 KELAS 6.pptxSyabilAfandi
 
PPT Kelompok 7 Pembelajaran IPA Modul 7.pptx
PPT Kelompok 7 Pembelajaran IPA Modul 7.pptxPPT Kelompok 7 Pembelajaran IPA Modul 7.pptx
PPT Kelompok 7 Pembelajaran IPA Modul 7.pptxSDN1Wayhalom
 
Materi Makna alinea pembukaaan UUD .pptx
Materi Makna alinea pembukaaan UUD .pptxMateri Makna alinea pembukaaan UUD .pptx
Materi Makna alinea pembukaaan UUD .pptxIKLASSENJAYA
 
Fisika Dasar Usaha dan Energi Fisika.pptx
Fisika Dasar Usaha dan Energi Fisika.pptxFisika Dasar Usaha dan Energi Fisika.pptx
Fisika Dasar Usaha dan Energi Fisika.pptxPutriAriatna
 
Dampak Bioteknologi di Bidang Pertanian.pdf
Dampak Bioteknologi di Bidang Pertanian.pdfDampak Bioteknologi di Bidang Pertanian.pdf
Dampak Bioteknologi di Bidang Pertanian.pdfssuser4743df
 
Konsep Agribisnis adalah suatu kesatuan kegiatan meliputi salah satu atau ...
Konsep	Agribisnis	adalah	suatu	kesatuan	kegiatan  meliputi		salah	satu	atau		...Konsep	Agribisnis	adalah	suatu	kesatuan	kegiatan  meliputi		salah	satu	atau		...
Konsep Agribisnis adalah suatu kesatuan kegiatan meliputi salah satu atau ...laila16682
 
CASE REPORT ACUTE DECOMPENSATED HEART FAILURE 31 Desember 23.pptx
CASE REPORT ACUTE DECOMPENSATED HEART FAILURE 31 Desember 23.pptxCASE REPORT ACUTE DECOMPENSATED HEART FAILURE 31 Desember 23.pptx
CASE REPORT ACUTE DECOMPENSATED HEART FAILURE 31 Desember 23.pptxresidentcardio13usk
 
kekeruhan tss, kecerahan warna sgh pada laboratprium
kekeruhan tss, kecerahan warna sgh pada laboratpriumkekeruhan tss, kecerahan warna sgh pada laboratprium
kekeruhan tss, kecerahan warna sgh pada laboratpriumfebrie2
 
materi+kuliah-ko2-senyawa+aldehid+dan+keton.pdf
materi+kuliah-ko2-senyawa+aldehid+dan+keton.pdfmateri+kuliah-ko2-senyawa+aldehid+dan+keton.pdf
materi+kuliah-ko2-senyawa+aldehid+dan+keton.pdfkaramitha
 
Sistem Bilangan Riil (Pertidaksamaan linier)
Sistem Bilangan Riil (Pertidaksamaan linier)Sistem Bilangan Riil (Pertidaksamaan linier)
Sistem Bilangan Riil (Pertidaksamaan linier)ratnawijayanti31
 
Modul ajar IPAS Kls 4 materi wujud benda dan perubahannya
Modul ajar IPAS Kls 4 materi wujud benda dan perubahannyaModul ajar IPAS Kls 4 materi wujud benda dan perubahannya
Modul ajar IPAS Kls 4 materi wujud benda dan perubahannyaAnggrianiTulle
 
Power Point materi Mekanisme Seleksi Alam.pptx
Power Point materi Mekanisme Seleksi Alam.pptxPower Point materi Mekanisme Seleksi Alam.pptx
Power Point materi Mekanisme Seleksi Alam.pptxSitiRukmanah5
 

Recently uploaded (12)

TEMA 9 SUBTEMA 1 PEMBELAJARAN 1 KELAS 6.pptx
TEMA 9 SUBTEMA 1 PEMBELAJARAN 1 KELAS 6.pptxTEMA 9 SUBTEMA 1 PEMBELAJARAN 1 KELAS 6.pptx
TEMA 9 SUBTEMA 1 PEMBELAJARAN 1 KELAS 6.pptx
 
PPT Kelompok 7 Pembelajaran IPA Modul 7.pptx
PPT Kelompok 7 Pembelajaran IPA Modul 7.pptxPPT Kelompok 7 Pembelajaran IPA Modul 7.pptx
PPT Kelompok 7 Pembelajaran IPA Modul 7.pptx
 
Materi Makna alinea pembukaaan UUD .pptx
Materi Makna alinea pembukaaan UUD .pptxMateri Makna alinea pembukaaan UUD .pptx
Materi Makna alinea pembukaaan UUD .pptx
 
Fisika Dasar Usaha dan Energi Fisika.pptx
Fisika Dasar Usaha dan Energi Fisika.pptxFisika Dasar Usaha dan Energi Fisika.pptx
Fisika Dasar Usaha dan Energi Fisika.pptx
 
Dampak Bioteknologi di Bidang Pertanian.pdf
Dampak Bioteknologi di Bidang Pertanian.pdfDampak Bioteknologi di Bidang Pertanian.pdf
Dampak Bioteknologi di Bidang Pertanian.pdf
 
Konsep Agribisnis adalah suatu kesatuan kegiatan meliputi salah satu atau ...
Konsep	Agribisnis	adalah	suatu	kesatuan	kegiatan  meliputi		salah	satu	atau		...Konsep	Agribisnis	adalah	suatu	kesatuan	kegiatan  meliputi		salah	satu	atau		...
Konsep Agribisnis adalah suatu kesatuan kegiatan meliputi salah satu atau ...
 
CASE REPORT ACUTE DECOMPENSATED HEART FAILURE 31 Desember 23.pptx
CASE REPORT ACUTE DECOMPENSATED HEART FAILURE 31 Desember 23.pptxCASE REPORT ACUTE DECOMPENSATED HEART FAILURE 31 Desember 23.pptx
CASE REPORT ACUTE DECOMPENSATED HEART FAILURE 31 Desember 23.pptx
 
kekeruhan tss, kecerahan warna sgh pada laboratprium
kekeruhan tss, kecerahan warna sgh pada laboratpriumkekeruhan tss, kecerahan warna sgh pada laboratprium
kekeruhan tss, kecerahan warna sgh pada laboratprium
 
materi+kuliah-ko2-senyawa+aldehid+dan+keton.pdf
materi+kuliah-ko2-senyawa+aldehid+dan+keton.pdfmateri+kuliah-ko2-senyawa+aldehid+dan+keton.pdf
materi+kuliah-ko2-senyawa+aldehid+dan+keton.pdf
 
Sistem Bilangan Riil (Pertidaksamaan linier)
Sistem Bilangan Riil (Pertidaksamaan linier)Sistem Bilangan Riil (Pertidaksamaan linier)
Sistem Bilangan Riil (Pertidaksamaan linier)
 
Modul ajar IPAS Kls 4 materi wujud benda dan perubahannya
Modul ajar IPAS Kls 4 materi wujud benda dan perubahannyaModul ajar IPAS Kls 4 materi wujud benda dan perubahannya
Modul ajar IPAS Kls 4 materi wujud benda dan perubahannya
 
Power Point materi Mekanisme Seleksi Alam.pptx
Power Point materi Mekanisme Seleksi Alam.pptxPower Point materi Mekanisme Seleksi Alam.pptx
Power Point materi Mekanisme Seleksi Alam.pptx
 

THS-PeranBioenergiDanArahUtamaLitbangrap.pdf

  • 1. Peran Bioenergi dan Arah-arah Utama LitBangRap-nya di Indonesia Tatang H. Soerawidjaja Anggota Dewan Riset Nasional (DRN) – Komisi Teknis Energi, dan Ketua Ikatan Ahli Bioenergi Indonesia (IKABI) Lokakarya Gasifikasi Biomassa LABTEK X, Kampus ITB, Bandung, 16-17 Desember 2010
  • 2. Pengertian bioenergi • Bioenergi adalah energi yang diperoleh/ dibangkitkan/berasal dari biomassa. dibangkitkan/berasal dari biomassa. • Biomassa adalah bahan2 organik berumur relatif muda dan berasal dari tumbuhan/hewan; produk & limbah industri budidaya (pertanian, perkebunan, kehutanan, peternakan, perikanan)]. • Bentuk-bentuk final terpenting bioenergi : 2 • Bentuk-bentuk final terpenting bioenergi :  bahan bakar nabati (biofuels);  listrik biomassa (biomass-based electricity).
  • 3. Mengapa bioenergi penting ?. • Sistem energi dunia harus (dan sedang diupayakan) beralih dari sebuah sistem energi berbasis sumber daya fosil ke sistem energi berbasis sumber daya terbarukan. fosil ke sistem energi berbasis sumber daya terbarukan. • Sistem energi dunia yang ada sekarang telah dibangun, selama hampir satu abad, dengan berdasar (atau merujuk) pada aneka keunggulan sumber daya fosil.  Sumber daya fosil adalah sumber daya bahan bakar !.  Karena itu, semua teknologi dan ‘mesin’ pengkonversi bahan bakar menjadi listrik, kalor, dsb, kini sudah banyak tersedia. 3
  • 4. • Biomassa adalah satu-satunya sumber energi terbarukan yang merupakan sumber daya bahan bakar (alias mampu menggantikan bahan bakar fosil dalam semua pasar energi)!. Yang lainnya (sinar surya, tenaga air, tenaga angin, panas bumi, arus laut, tenaga ombak, energi termal samudra, dan panas bumi, arus laut, tenaga ombak, energi termal samudra, dan tenaga nuklir) hanya mudah dikonversi menjadi listrik. • Pemanfaatan bioenergi dapat menggunakan teknologi dan ‘mesin’ yang selama ini sudah matang dikembangkan untuk mendayagunakan sumber daya fosil. 4  Bioenergi merupakan jembatan transisi vital peralihan sistem energi berbasis sumber daya fosil ke sistem energi berbasis sumber daya terbarukan !.
  • 5.  Bioenergi merupakan komponen kunci dan jalur strategis dalam perjuangan mencapai Millenium Development Goals (MDGs). • Karena itu, bioenergi merupakan sektor perekonomian energi dunia yang paling dinamik dan berubah cepat. • Pertumbuhan pesat industri bahan bakar nabati (BBN, liquid biofuels) pada dekade ini telah kita alami bersama. 5 liquid biofuels) pada dekade ini telah kita alami bersama. • Pada tahun 2005, bioenergi memasok sekitar 10 % dari kebutuhan energi dunia dan merupakan 78 % dari seluruh pasokan energi terbarukan.
  • 6. Konsumsi bioenergi akan terus membesar. Di tahun 2050, kontribusinya hampir sama besar dengan jumlah total energi- energi terbarukan lain. 1 EJ = 1018 J 6 Perkembangan konsumsi total energi primer di seluruh dunia menurut Skenario Visi Pembangunan Berkelanjutan dari International Energy Agency (2003)
  • 7. 1 EJ = 1018 J Di Asia, perkembangan kontribusinya bahkan lebih bermakna/sign 7 Perkembangan konsumsi total energi primer di Asia menurut Skenario Visi Pembangunan Berkelanjutan dari International Energy Agency (2003)
  • 8. Peran dan makna strategis bioenergi bagi Indonesia • Bentuk kepulauan Negara Kesatuan Republik Indonesia (NKRI) mempersulit transmisi & distribusi listrik maupun BBM. maupun BBM. • Interkoneksi jaringan listrik hanya mungkin (alias ekonomis) utk pulau-pulau besar dan sejumlah pulau- pulau relatif kecil di dekatnya.  Sejumlah besar pulau (> 10.000) harus bisa menghasilkan dan memenuhi kebutuhan bahan bakar dan 8 menghasilkan dan memenuhi kebutuhan bahan bakar dan listriknya sendiri (self-sufficient). • Banyak propinsi & pulau tak memiliki cadangan bahan bakar fosil yang memadai (atau bahkan nihil). • Biomassa (sumber daya hayati) tersedia di semua pulau!.
  • 9. • Bangsa Indonesia dikaruniai biodiversitas dan lahan potensial yang amat besar. Mesti kita dayagunakan secara berkelanjutan untuk memperkuat keterjaminan pasokan energi dan neraca pembayaran negara, membuka banyak lapangan kerja, mengentaskan kemiskinan, melancarkan lapangan kerja, mengentaskan kemiskinan, melancarkan pertumbuhan ekonomi yang merata, dan turut meredam emisi gas-gas rumah kaca. • Produksi bioenergi (listrik dan/atau bahan bakar hayati) dari sisa & limbah pemanenan + pengolahan pangan memiliki makna penting dalam mengefisienkan (memperkuat struktur & daya saing) industri pangan 9 (memperkuat struktur & daya saing) industri pangan domestik ( sekam, jerami, bagas, tetes, tandan kosong sawit, dll). • Kesenjangan potensi dengan pemanfaatan : 
  • 10. Di ASEAN kita adalah produsen biomassa terbesar ...... Biomassa yang tersedia untuk pembangkitan energi di negara- negara ASEAN Sumber : Saku Rantanen (Pöyry), 2009 10
  • 11. ..... tetapi merupakan pemanfaat yang relatif terkecil !. Pemanfaatan biomassa untuk produksi energ di negara- 11 Pemanfaatan biomassa untuk produksi energ di negara- negara ASEAN Sumber : Saku Rantanen (Pöyry), 2009 Potensi amat besar itu masih terabaikan !. Contoh-contoh pendayagunaan terpadu untuk penguatan struktur dan daya sain
  • 12. Konfigurasi ideal pemanfaatan industrial tanaman tebu 12
  • 13. Skema Industrialisasi Tandan Kosong Sawit (TKS) 13
  • 14. Rute-rute pemanfaatan terpadu sagu utk pangan dan bioenergi 14
  • 15. Peringatan : • Kita, bangsa Indonesia, harus mampu mengkonversi seluruh potensi bioenergi yang kita miliki menjadi bentuk- bentuk final (BBN, listrik biomassa, biogas, dll). Produk- bentuk final (BBN, listrik biomassa, biogas, dll). Produk- produk final bioenergi inilah yang, jika surplus, bisa kita ekspor.  Bangun industri bioenergi domestik!. • Jika kita tak melakukannya, negara-negara maju sudah siap mengimpor biomassa (alias bahan mentah bioenergi) tersebut untuk mereka manfaatkan di negerinya. • Karena biomassa mengandung ‘abu’ (mineral lahan • Karena biomassa mengandung ‘abu’ (mineral lahan pertanian/perkebunan), dan sektor energi bervolume niaga masif, ekspor biomassa dalam jangka panjang akan berujung malapetaka : lahan pertanian/perkebunan/ hutan kita menjadi kurus/tandus!. 15
  • 16. • Kita juga harus mampu mengungkap dan merealisasikan potensi tersidik dari tumbuhan-tumbuhan energi multiguna kawasan tropik seperti :  kranji/mabai (Pongamia pinnata),  nyamplung/bintangur (Calophyllum inophyllum),  nimba (Azadirachta indica),  nimba (Azadirachta indica),  gatep pait (Samadera indica),  jarak pagar (Jatropha curcas),  kelor (Moreinga oleifera),  kacang hiris (Cajanus cajan),  sukun (Artocarpus altilis)  aneka alga mikro. • Pemerintah membuka jalan via kebijakan yang jitu, • Pemerintah membuka jalan via kebijakan yang jitu, pengusaha mengimplementasikan dengan bisnis industrial yang bervisi kebangsaan, akademisi/peneliti memfasilitasi via pengembangan SDM, ilmu, dan teknologi bioenergi yang ‘tepat-guna’. 16
  • 17. Pengembangan listrik berbasis biomassa Sumber energi terbarukan Faktor ketersediaan (%) Biomassa  85 Panas bumi  85 Panas bumi  85 Arus laut 70 Hidro 50 Gelombang 50 Surya 40 Surya 40 Angin  30 17 Biomassa adalah sumber listrik terbarukan yang ketersediaan sepanjang tahunnya paling besar!.
  • 18. Aneka rute alternatif pembangkitan listrik dari biomassa 18
  • 19. Harga bahan bakar untuk pembangkitan 1 kWh listrik dengan genset diesel : Asumsi-asumsi : • Nilai kalor netto (LHV) minyak diesel = 37,0 MJ/liter. • Harga minyak mentah = US$80/bbl. • Ongkos pengilangan minyak = US$10/bbl. • Ongkos pengilangan minyak = US$10/bbl. • 1 bbl = 159 liter; US$1 = Rp.9000,- • Efisiensi konversi bahan bakar ke listrik dari genset diesel = 30 %. Maka : • Harga 1 liter minyak diesel = (80 + 10)9000/159 = Rp. 5094,4 • 1 kWh = 1 kW x 3600 s = 3600 kJ = 3,6 MJ • Kebutuhan minyak diesel untuk membangkitkan 1 kWh listrik = (100/30) x (3,6/37) = 0,324 liter. (100/30) x (3,6/37) = 0,324 liter. • Harga bahan bakar untuk pembangkitan 1 kWh listrik dengan genset diesel = (0,324) x Rp. 5094,4 = Rp. 1652,- (= 143/MWH; 1 = Rp.11.500,-).  Jika semua ongkos diperhitungkan (pengangkutan solar ke lokasi, depresiasi, perawatan mesin, biaya pegawai)   Rp.2000/kWh!. 19
  • 20. Ongkos produksi listrik berbagai teknologi pembangkitan (dalam 2005/MWh) Teknologi 2007 2020 2030 Biogas 55 – 215 50 – 200 50 – 190 Biomassa padat 80 – 195 85 – 200 85 – 205 Biomassa padat 80 – 195 85 – 200 85 – 205 Surya PV 520 – 880 270 – 460 170 – 300 Angin, di darat 75 – 110 55 – 90 50 – 85 Angin, lepas-pantai 85 – 140 65 – 115 50 – 95 Hidro, kecil 60 – 185 55 – 160 50 – 145 Hidro, besar 35 – 145 30 – 140 30 – 130 Hidro, besar 35 – 145 30 – 140 30 – 130 Nuklir 50 – 85 45 – 80 45 – 80 Gas (PLTGU) 50 – 60 65 – 75 70 – 80 Batubara (serbuk) 40 – 50 65 – 80 65 – 80 Sumber : Komisi Eropa (2008), dikutip oleh Canton dan Linden (2010).
  • 21. • Teknologi pembangkitan listrik berbasis biomassa yang berskala relatif besar ( 3 MWe), yaitu yang bertumpu pada pembakaran ‘teknikal’ dan gasifikasi, sudah matang (komersial); harga pokok pembangkitan  Rp.1000/kWh.  Agar sumber daya biomassa yang kini sudah tersedia tidak diekspor, pemerintah perlu segera mengeluarkan kebijakan yang membuka peluang munculnya industri pembangkitan listrik berbasis biomassa!. Berantas persaingan tak-adil antara listrik diesel dan listrik biomassa (dan juga listrik terbarukan lainnya). biomassa (dan juga listrik terbarukan lainnya). • Biomassa limbah industri besar yang berkondisi sangat basah dan lumat (atau mudah dilumatkan) dapat juga dimanfaatkan untuk pembangkitan listrik via rute biogas. 21
  • 22. • Teknologi gasifikasi biomassa untuk pembangkitan listrik yang dimiliki anak-anak bangsa harus bisa ditingkatkan sampai terbukti pada skala 1 – 10 MWe. • Biomassa dapat pula menjadi sumberdaya utama untuk penyediaan listrik bagi daerah/pulau/ desa terpencil yang penyediaan listrik bagi daerah/pulau/ desa terpencil yang kemampuan teknologi penduduknya masih pada tingkat pertanian subsisten. Skala pembangkitan bisa sampai 3 MWe, tetapi umumya  1 MWe. Pemerataan akses kepada listrik alias peningkatan rasio elektrifikasi nasional!. elektrifikasi nasional!. • Teknologi yang sesuai : Genset biogas; Genset diesel tipe Lister ( minyak nabati murni); Genset Siklus Rankine Organik. 22
  • 23. Listrik biogas • Biogas dan pembangkitannya (terutama dari kotoran sapi) sudah mulai banyak dikenal. • Di dalam negeri sudah ada beberapa • Di dalam negeri sudah ada beberapa vendor teknologi biogas dari kotoran ternak dan berbagai jenis limbah pertanian. • Genset-genset biogas pun sudah tersedia secara komersial (mulai dari skala 700 watt). 23 dari skala 700 watt). • Perlu dilakukan promosi lebih sistematik dan demonstrasi pembangkitan biogas dari bahan tumbuhan.
  • 24. Di masa depan, teknologi reduksi elektrokimia CO2 (menjadi CH4) memungkinkan gas biometan dipipakan ke kota-kota. 24
  • 25. Pembangkitan listrik dengan genset diesel tipe Lister • Mesin diesel tipe Lister = mesin diesel bersilinder tunggal dan berputaran rendah (< 1000 rpm). • Bisa menggunakan minyak nabati murni • Bisa menggunakan minyak nabati murni sebagai bahan bakar. Minyak nabati murni (Pure Plant Oil, PPO, atau Straight Vegetable Oil, SVO) = minyak- lemak nabati yang (sudah) netral dan bebas getah (gum) = degummed and deacidified fatty-oil. 25 deacidified fatty-oil. • Sedang diuji-coba kemanfaatannya dan di-reverse engineering cara produksinya oleh Dr. Iman K. Reksowardojo dkk (ITB) dengan dana Insentif Ristek.
  • 26. Siklus Rankine Organik (SRO) • Sama dengan siklus Rankine konvensional, hanya saja fluida kerjanya bukan kukus/air (H2O) melainkan fluida organik. • Berat molekul : Mr,fluida organik >> Mr,air.  Turbin lebih sederhana (1 tahap) dan rotasi-(rpm)-nya rendah, sehingga lebih awet dan mudah dirawat. • Bisa dipilih fluida kerja organik bertitik didih < Td,n,air.  Memungkinkan eksploitasi sumber kalor bertemperatur  Memungkinkan eksploitasi sumber kalor bertemperatur rendah untuk membangkitkan listrik secara relatif efisien. • Sampai skala pembangkitan 400 – 500 kWe bisa dibuat moduler (= perangkat-lengkap kompak dan siap sambung ke sumber kalor dan pendingin dan jaringan listrik). 26
  • 27. Rentang temperatur kerja berbagai sumber dan pembangkit listrik termal 27
  • 28. Konsep dasar siklus Rankine organik Untuk SRO berbasis pembakaran biomassa : • Temperatur medium pemanas (mp), Tmp, maks = 630 K (360 oC). • Temperatur uap (u), Tu,maks = 600 K (330 oC). oC). • Temperatur kondensor, Tk = 40 – 100 oC. 28
  • 29. • Fluida kerja untuk SRO biasanya dipilih agar memiliki GWP (Global Warming Potential) dan ODP (Ozone Depleting Potential) yang rendah. • Contoh-contoh : • Contoh-contoh : heksametildisiloksan, dikhlorometan (R-30), 1,1,1,3,3-pentafluorobutan (R365mfc), 1-methoxyheptafluoro- propan (HFE-7000). • Di Indonesia tampaknya belum ada 29 • Di Indonesia tampaknya belum ada penerapan pembangkitan listrik dengan SRO.  Perlu proyek demonstrasi!.
  • 30. Pengembangan bahan bakar nabati (BBN) • Bahan bakar cair merupakan bentuk energi final komersial yang paling unggul (dan strategis) :  Dapat disimpan secara mudah dan aman untuk jangka  Dapat disimpan secara mudah dan aman untuk jangka waktu lama ( jadi sediaan siaga utk keadaan darurat).  Portabel, mudah diangkut dan dikirim jauh.  Memiliki kerapatan energi besar.  Relatif mudah dinyalakan, tapi tak mudah meledak.  Dapat dengan mudah dikonversi menjadi listrik.  Amat sangat penting (kritikal) bagi sektor transportasi.  Amat sangat penting (kritikal) bagi sektor transportasi. • Biomassa adalah satu-satunya sumber energi terbarukan yang dapat menghasilkan, atau mudah dikonversi menjadi, bahan bakar (cair). 30
  • 31. Aneka rute produksi bahan bakar hayati dari biomassa [yang berwujud cair disebut Bahan Bakar Nabati (BBN)] 31
  • 32. Catatan awal tentang rute-rute teknologi BBN • Indonesia sepantasnya tidak usah mengembangkan teknologi via rute-rute pirolisis cepat dan likuefaksi termokimia; kebutuhan SDM dan finansial tahap demonstrasi teknologinya tak sesuai dengan kemampuan negara/bangsa kita (nanti, jika perlu, beli saja!). kemampuan negara/bangsa kita (nanti, jika perlu, beli saja!). • Tuntutan tingkat keselamatan yang tinggi pada angkutan udara mengharuskan bioavtur berwujud kimia hidrokarbon (persis seperti avtur fossil).  Dibuat dari minyak-lemak via teknologi hidrogenasi. • Karena komponen utama avtur adalah hidrokarbon parafin C10 – C14, bahan mentah terbaik pembuatan bioavtur adalah minyak- C14, bahan mentah terbaik pembuatan bioavtur adalah minyak- minyak laurat (asam laurat = asam lemak C12) : minyak kelapa, minyak inti-sawit, minyak biji Cinnamomum sp dan Litsea sp. [Bioavtur tampaknya akan sudah dimanfaatkan secara komersial mulai tahun 2012. Thailand berencana mulai menyediakan bioavtur di tahun itu bagi pesawat-pesawat Eropa] 32
  • 33. • Jika suatu kandidat teknologi diputuskan untuk kelak dibeli saja, tak berarti tak boleh ada riset . Boleh, tetapi tujuannya bukan pengembangan teknologi, tetapi pembinaan teknologi, tetapi pembinaan SDM yang relevan!. • Sayang sekali, Indonesia tak 33 • Sayang sekali, Indonesia tak punya strategi induk (grand strategy) pengindustrian terpadu untuk memaksimum- kan benefisiasi sumber daya alam.
  • 34. Saran pilihan teknologi yang dikembangkan • Biodiesel :  Generasi 1 = ester metil asam lemak hasil metanolisis minyak-lemak nabati. minyak-lemak nabati.  Generasi 2 = biohidrokarbon dari bahan lignoselulosa via gasifikasi + sintesis Fischer-Tropsch. • Bioetanol :  Generasi 1 : dari bahan bergula/berpati via (sakarifi- kasi +) fermentasi dan pemurnian.  Generasi 2 : dari bahan lignoselulosa via  Generasi 2 : dari bahan lignoselulosa via pretreatment, sakarifikasi, fermentasi dan pemurnian. • Biogas untuk bahan bakar rumah tangga pedesaan. • [Biohidrokarbon via hidrogenasi minyak-lemak nabati sebaiknya diarahkan untuk produksi bioavtur]. 34
  • 35. Isu pokok/utama • Bahan mentah biodiesel generasi 1 masih amat tergantung pada minyak sawit. Pengembangan tumbuhan sumber minyak-lemak non pangan (Pongamia pinnata, Calophyllum inophyllum , Cajanus cajan , Artocarpus altilis, Azadirachta indica , Jatropha curcas, dll) masih kurang diperhatikan. inophyllum , Cajanus cajan , Artocarpus altilis, Azadirachta indica , Jatropha curcas, dll) masih kurang diperhatikan. • Informasi terbukti (proven information) dari berbagai “pohon energi multiguna” belum tersedia. Padahal ini akan sangat bermanfaat untuk menentukan strategi feedstock di masa depan. • Standar mutu biodiesel maupun bioetanol masih harus dimutakhirkan untuk menjawab keluhan-keluhan konsumen dan/atau diselaraskan dengan tujuan pengembangan industri dan/atau diselaraskan dengan tujuan pengembangan industri BBN. • Teknologi BBN generasi 1 kreasi bangsa harus dibuktikan berfungsi baik pada skala industri menengah dan besar. • Teknologi BBN generasi 2 perlu dikembangkan dan dikuasai anak-anak bangsa. 35
  • 36. LitBangRap yang diperlukan • R & D perluasan basis/pangkalan sumber daya (resource base) bioenergi (yaitu pengkajian dan pengembangan tumbuhan-tumbuhan energi multiguna). • Demonstrasi pembuktian teknologi proses produksi bio- • Demonstrasi pembuktian teknologi proses produksi bio- diesel dan bioetanol generasi satu domestik (karya anak- anak bangsa) pada skala industri menengah dan besar. • Pengembangan teknologi proses produksi biodiesel dan bioetanol generasi dua. • Pengembangan teknologi proses produksi biodiesel dan • Pengembangan teknologi proses produksi biodiesel dan bioetanol generasi satu yang efisien dan nir-limbah atau berlimbah minimal. • Pengembangan teknologi untuk menghasilkan pati atau minyak-lemak murah dari alga mikro. 36
  • 37. Sekian dan Terima Kasih 37 tatanghs@ che.itb.ac.id hstatang@yahoo.com