SlideShare a Scribd company logo
1 of 6
Download to read offline
The International Journal Of Engineering And Science (IJES)
||Volume||2 ||Issue|| 7 ||Pages|| 19-24||2013||
ISSN(e): 2319 – 1813 ISSN(p): 2319 – 1805
www.theijes.com The IJES Page 19
Inherent Energy In Demolition Debris: Re-Use Or Recyle?
(A Case Study Of Roads Construction Led Demolition In Gombe
Metropolis)
1,
BASHIR, U. M., 2,
Iro, A. I and 3,
Babanyara, Y. Y.
1,2
,Architecture Programme, Quantity Surveying programme, Urban and Regional Planning Progamme
3,
Abubakar Tafawa Balewa University, Bauchi. Nigeria.
----------------------------------------------------ABSTRACT-----------------------------------------------------
The pressure from over exploitation of the natural resources by human on the environment is always in the
increase and becoming more apparent every now and then, especially in the construction sector. There is the
need for information on which to base sound solutions to the problems protecting the environment and the future
planet as a whole. This paper is aimed at discussing that energy that is inherent in the demolition debris
(inherent energy) littering around the environment whenever a demolition is carried out, and in many cases
inappropriately disposed off. The study reviewed literatures, reports and texts, and drew advantages from within.
This study outlined benefits associated with re-use and recycles and offered its recommendations on the
premise of benefits found to have been more environmentally profitable.
KEY WORDS: Inherent energy, demolition debris, re-use and recycling
-----------------------------------------------------------------------------------------------------------------------------------------
Date of Submission:18 July 2013 Date of Publication:7 ,Aug ,2013
-----------------------------------------------------------------------------------------------------------------------------------------
I. STUDY BACKGROUND
Sustainable construction refers construction as a broad process/mechanism for the realization of human
settlement and the creation of infrastructure that support development. This includes the extraction and
beneficiation of raw materials, the manufacturing of construction materials and components, the construction
project cycle from feasibility and design to demolition, and the management and operation of the built
environment (Plessis, 2002). Thus, construction industry and its activities are responsible for a substantial
amount of global resource use and waste emissions (Plessis, 2001). Consequently, it was realized that every
activity involved in extraction, processing and delivery of construction materials result in energy consumption,
pollution and waste; making the industry often referred to as 40% industry due to its responsibility for roughly
consuming of 40% of all global resources and 40% of all waste production including greenhouse gas emission
(Plessis, 2002).
In a global scene, researchers have established that the resources are being used up at an alarming rate
through human over exploitation which led to the assumption of when these resources could be exhausted.
Ogunsote, et al. (2011) opined that, the world is being threatened with diminishing energy resources and if
consumption of energy continuous at the current rate, the life will be threatened in the future. In this regard, the
world is therefore faced with looking for alternatives, which are important to businesses, government and other
energy consumers, beside the search by scientist and engineers for replacement of fossil fuels with other
alternatives that are clean, abundant, safe and in-expensive. Other alternatives require finding ways to reduce
energy use, using energy more wisely and efficiently and increasing the public concern over ecological
sustainability.
II. METHODOLOGY
For the purpose of fulfilling the requirement, the study adopted to reviewing literatures as well as using
real life data obtained from the project file 2012 0f payment of compensation‘s report for the construction of
roads in Gombe metropolis. However, it choose to work on the limited number of roads with the view just to
creating awareness of the volume of resources involved, its contribution and usage as component in the project.
The study delimited itself to the basic materials for walling such as sandcrete/concrete material, mud and bricks.
Inherent Energy In Demolition…
www.theijes.com The IJES Page 20
III. LITRETURE REVIEW
Inherent energy refers to energy embedded in material i.e. the energy content of the raw material.
Against this back drop, demolition materials contained shared/built-in energy from its initial production.
Henceforth in this study referred to as raw material whose energy is embodied, whose recycling and source
reduction is directly related to the energy that could be saved through reuse or recycling. In fact the link between
the use of energy in buildings, construction and the energy used is well established in Europe and America
(UNCHS, 1991). However, the link between energy production, use; and local and global environment is causing
increasing concern worldwide. Thus, there are good reasons seeking to reduce the energy in buildings and
constructions. In the developed countries, there is growing demand for environmental impact assessment for all
construction and building projects which include consideration of embodied energy (Becket, 1986).Many
buildings and construction materials are manufactured involving high-temperature Kiln technologies, and
crushing and grinding operations which are inherently energy-intensive. According to Ebohon (1992), the
intensity of consumption of global resources particularly at the processing stage can be seen from the following:
Zinc, Tin, Aluminum, Cement, Tiles, Bricks, Glass and Paint. It was established that (Economy Watch, 2000)
construction industry is the largest sector in the consumption of energy and resource utilization in the industry
amounts to half of the total resource consumed all over the world. Corroborating this assertion, Edward (2002)
deduced that the construction industry is responsible for 50% of all energy consumed in the world making it one
of the least sustainable global industries.
3.1.INERPRETATION OF EMBODIED ENERGY OF MATERIALS
Buildings are constructed with a variety of materials that consume energy throughout their stages of
manufacture, use and demolition. These stages consist of raw materials extraction, transport, manufacture,
assembly, as well as disassembly and demolition. Crowther (1999), defines embodied energy as ―the total energy
required in the creation of building, including the direct energy used in the construction and assembly process,
and the indirect energy that is required to manufacture the materials component of the building‖. According to
Treolar, et al. (2001) embodied energy (EE), ―is that energy required providing a product (both directly and
indirectly) through all processes, upstream (i.e. traceable backwards from the finished product to consideration of
raw materials)‖. Likewise, a more comprehensive definition provided by (Baird (1994), Edward and Stewart
(1994), Lawson (1996), Cole and Keman (1996), as (cited in Ding, 2004) proposed that ―embodied energy
comprises the energy consumed during the extraction and processing of raw materials and components, and the
energy used in various processes during the construction and demolition of the building‖.
However, according to Dixit, et al. (2009), ―embodied energy, is the direct energy consumed in various
onsite and offsite operations, like construction, prefabrication, transportation and administration; this include,
energy in construction and assembly on site, prefabrication of building components offsite and transportation,
including various onsite and offsite processes.‖ While the direct energy is the energy used in manufacturing the
building materials, in renovation, refurbishment, and demolition processes of buildings. It includes initial
embodied, recurrent embodied energy and demolition energy.‖ Initial embodied is consumed during production
of materials and component and include raw materials procurement, building initial manufacturing facilities and
finished product delivery to the construction site. Embodied energy is just one of the environmental impacts
associated with a building product‘s life cycle; the embodied energy of a typical building product is derived
from the energy associated with other steps in its lifecycle from extraction of materials through processing and
manufacture, to transportation and construction, and in some cases its eventual disposal and reuse/recycle.
The center of building performance research (CBPR) in New Zealand established that for a kilogram of
aggregate to be produced a corresponding 0.10MJ of energy is required; so for 1 kg of aluminum to be produced
the corresponding energy required is 191MJ (Alcon,1996). According to Gordon (2004), in order to produce one
ton of steel, bricks, or of cement; it is necessary to invest 60, 6, and 4GJ of energy respectively. Through which a
considerable amount of pollutants (co2, SO2, No2, etc) are discharged. Shafii, et al. (2006) opined that, the biggest
sector influencing climate change is cement and steel. Cement production is the biggest contributor of
greenhouse gas emissions. Although cement makes up 12-14% 0f the final concrete mix further embodied energy
comes from transportation and production of aggregate and in the case of reinforced concrete the manufacturing
of steel. To this end it has been realized that, where a building is demolished, all the non-renewable energy used
to create the building were lost and many more is needed to rebuild.
Inherent Energy In Demolition…
www.theijes.com The IJES Page 21
Table, 1. Embodied Energy Coefficients
Material MJ/Kg MJ/Kg3 MJ/Kg2
Aggregate general 0.10 150
Virgin rock o.o4 63
Concrete block 0.94 2780
Concrete brick 0.97
Precast 2.0 2780
Earth raw
Adobe block, straw
stabilized
0.47 750
Adobe bitumen
stabilized
0.29 490
Adobe, cement
stabilized
0.42 710
Pressed block 0.42
Source: Center for Building Performance Research (2007)
A recovery of old materials saves the energy to extract, transport and create new materials and keeps
more green space from development. It is imperative to note that, since the energy used in creating the original
structure has already created pollution, especially with materials such as concrete, which is responsible for large
amount of CO2 during production, tearing the old building/structure means that all the pollution and energy used
in creating the structure will be followed by more in the creation of the new building (Kibert, 1994).
3.2.CONCEPT OF DEMOLITION DEBRIS
The term ―Debris‖ is of French origin (wikinary) that refers to: rubble, wreckage, scattered remain of
something destroyed; litter and scattered refuse; ruins of broken-down structure etc. in line with this reference,
the dictionary.com defines debris ―as remain of anything broken-down or destroyed. Demolition debris can
therefore mean, ―An act or process of wrecking or tearing down of buildings and other structures through which
rubbles or ruins of broken-down structure is generated‖.
Building related construction and demolition debris are commonly grouped as a single type of material,
though these two material streams come from different sources (ASTSWMO, 2007). Construction materials
originate from construction, repair, or remolding activities; this material stream typically consists of a variety of
building products (such as concrete, roofing, gypsum wallboard, wood products, plastics, insulation, tiles and
metals) as well as packaging materials, that building materials arrived in (such as cupboard and plastics).
Construction materials are usually generated as a result of cutting a material down to size for installation or
purchasing material in excess of what is needed. While demolition materials are generated from razing or
wrecking of building to reduce it to rubble, typical of this components include concrete rubble, blocks rubble,
stone, wood, scrap metals, insulations, Brocken glass and other building materials.
IV. THE ISSUES
Demolition of building produces significant amount of materials that are for most part land filled
(Wokekoro, 2007). Heavy consumption of resources for inputs to production of virgin components, most of
which (cement, glass, clay bricks, steel, etc) involved high level of embodied energy through their production
and distribution; absence of re-use and recycling of these materials mean that such most precious resources end-
up in dumps and landfills after demolition of buildings, in spite of the declining life span of properties (Irurah
and Holm, 1999; cited in Irura, 2001). These resources could be reused or recycled because of the energy
embedded in them from its initial production through demolition.Currently, this development has become a very
critical issue, as it poses enormous risk not only to the environment but to health and economy (Wahab and
Lawal, 2011). It has been revealed that the effects of this situation in Nigeria are low level of technological,
economic and social development (Bashir, 2012). According to Shuaibu (2011), huge amount of this waste is
always generated, but its disposal has become a severe social and environmental problem.
Inherent Energy In Demolition…
www.theijes.com The IJES Page 22
Table 2: Area of Walls Demolished and Demolition Waste Generated by Construction Material
S/N sandcrete
block
buildings
(m
2
)
Ave.
Vol.
Generated
(m
3
)
%
of
Total
Waste
mud
buildings
(m
2
)
Ave.
Vol.
Generated
(m
3
)
%
of
Total
Waste
combined
mud/sandcrete
(m
2
)
Ave.
Vol.
Generated
(m
3
)
%
of
Total
Waste
1 320.00 60.00 33.47 261.00 78.30 27.30 375.00 126.56 39.23
2 727.00 136.31 38.53 641.00 192.30 33.97 519.00 175.16 27.50
3 1532.00 287.25 57.68 820.00 246.00 30.87 302.00 101.93 11.37
4 587.00 110.06 59.59 23.00 6.90 2.34 375.00 126.56 38.07
5 356.00 66.75 33.63 479.00 143.70 46.60 164.00 55.35 15.95
6 147.00 27.56 25.00 287.00 86.10 48.80 154.00 51.98 26.19
TOTAL 687.93 753.3 727.63
Source: Project Files (2012)
The geographer Zimmermann stated in 1933 that, ‗Resources are not anything static, but something as
dynamic as civilization itself‘. This assertion gives no reason for optimism. With the accelerating rate of
exploitation we are on the Verge of bankruptcy in raw materials. The volume of debris generated (table, 1) from
the above study shows the level of ignorance of the economic, social and environmental impact of these
resources if such not properly integrated in to the project stream. The total volumes produced from the
activity…… 2168.86 m3
of sandcrete, mud and combined sandcrete and mud multiplied by its corresponding
energy requirement in joules……….. Considerable area will be covered; substantial amount will be saved both
from transportation to land fill and transporting virgin material to construction site, reducing greenhouse
emissions, pollution from noise, and conserving natural resources for the future (table,3).
Table 3: Volume of Waste Generated, Cost of Compensation and Cost of Disposal
Road
Length
(km)
Ave.
Vol.
Generated
from
Sandcrete
Buildings(m
3
)
Ave.
Vol.
Generated
from
Mud
Buildings(m
3
)
Ave.
Vol.
Generated
from
Buildings
with
Combination
of
Sandcrete
and
Mud
Works(m3)
Total
Vol
of
Waste
Generated/Road
(m
3
)
Cost
of
Disposal
at
₦2500/m
3
Compensations
Cost
(₦)
Non-Contructional
Costs=(cost
of
Disposal+Compensati
on
cost)
1 2.3 60 78.30 126.56 264.86 662,156.30 14,828,023.00 15,490,179.00
2 1.2 136.31 192.30 175.16 503.77 1,259,438.00 200,000.00 1,459,438.00
3 1 287.25 246.00 101.92 635.17 1,587,938.00 73,411,933.00 7,4999,871.00
4 0.926 110.06 6.90 126.56 243.52 608,812.50 17,846,595.00 18,455,408.00
5 0.408 66.75 143.70 55.35 265.8 664,500.00 36,195,160.00 36,859,660.00
6 1.4 27.56 86.10 51.97 165.63 414,093.80 79,583,346.00 79,997,440.00
Total 6,467,250.00 261,299,317.00
Source: Project Files (2012)
4.2.MATERIAL RESOURCES AND CONCEPTS OF REUSE AND RECYCLING
The building industry is the largest consumer of raw materials in the world today after food production.
A major guiding principle for the future should be a drastic reduction in the use of raw materials. This is best
applied to the less common non-renewable resources. The re-use of materials following demolition should also
be taken into account. Recycling processes should be developed so that materials can be taken care of at their
original level of quality, rather than down cycled. Demolition of building structures produce significant amount
of materials that can be reused or recycled, principally wood, concrete and other types of masonry and dry wall
(CalDRRR, 2013). Reuse and recycle of construction and demolition materials is one of the larger holistic
practice called sustainable or green construction, whose fundamental tenet is the efficient use of resources.
Inherent Energy In Demolition…
www.theijes.com The IJES Page 23
In these two phases there are the following possibilities for reducing the use of primary resources:
• To build with an economic use of materials
• To minimize loss and wastage of materials on site
• To use the materials in such a way as to ensure their durability
• To maximize re-use and recycling of materials from demolition.
Definition: reuse and recycle
According to patric, et al. (1999), reclamation of material from waste stream is not considered as recycling in and
of itself. Recycling is a reprocessing of reclaimed material and converting it to a new material or use. While re
use means the use in similar form or as it was produced. The concept behind reuse is that one should use the item
as much as possible before completely replacing them.
V. BENEFITS OF REUSE AND RECYCLING
Reuse and recycling is hardly a new concept for construction industry. Concrete and paving materials
have been reused as fill materials or road based for many years; the forms of concrete used by the Romans
included recycled aggregate from older stone structures.Waste management: an aspect of waste management
includes reducing the amount of waste on job site, reusing as many materials and recycling those items that
cannot be reused in their present forms. For Best Practicable Options to be developed guidance is necessary for a
given set of objectives. Reuse of construction and demolition debris has occurred for centuries in most cases, this
has been in the form of salvaging the materials from one building to use in the other construction project. For
road demolition waste can often be reused onsite or for other roadwork, this is because the use of virgin materials
instead of materials from demolition or deconstructed material in many instance do not maintain the quality of
materials, natural resources and energy (Roth and Eklund, 2001). Hence, improved practices that reused
materials in place of virgin material significantly improve environmental performance of the construction sector.
Other benefits of reuse include:
 Recovers the highest percentage of embodied energy resources in the materials or subsystems;
 It reduces cost of disposal;
 Cost saving of the material;
 Provide efficient and sustainable way of mitigating climate change;
 Provide employment opportunities etc.
Recycling; the method of recycling of demolition material is very crucial to the economic and practical
feasibility of recovering the materials. However there are many benefits to the increased recycling of demolition
and construction debris:
 Conserve resources by diverting them from land fill;
 Increase operating life for local landfills that result in associated environmental impacts such as ground
contamination;
 With the development of market for debris ‗waste generators‘ may potentially have new source of income
etc.
VI. CONCLUSSION/RECOMMENDATIONS
In the existence of any material energy must be involved; in many cases the raw material itself comes
from fuel and other energy related sources example plastic, aluminum and polycarbonates etc. While huge
amount of fossil fuels is invested in the extraction and manufacturing of other materials; such as cements, are
manufactured in high temperature kiln and its production is associated with hazardous gasses that are responsible
for the formation of acid rain and other health and environmental impacts. Fuels and energy are limited and
expensive resources, and it is increasingly important to examine the effects of our activities most especially
waste management practices on energy and energy-influenced/derived resources.Waste reduction efforts, such as
source reduction; reuse and recycling, can result in significant energy savings. Source reduction techniques, in
most cases significantly lower energy consumption associated with raw material extraction, transportation and
manufacturing processes. The energy effects of materials occur in each life-cycle stage—source reduction,
recycling and reuse, —and knowledge of those effects can reduce the demand for raw materials and energy. The
re-use of materials following demolition should be taken into account. Recycling processes should also be
developed so that materials can be taken care of at their original level of quality, rather than down cycled; and
finally priority should be given to the production methods that use less energy and more sustainable materials
with reduced transport distance.
Inherent Energy In Demolition…
www.theijes.com The IJES Page 24
REFERENCES
[1] Alcon, D.A. (1996), Embodied Energy Coefficient of Building Material; Center for Building Performance Research, Victoria
University of Wellington
[2] Association of State Territorial Solid waste Officials (2007), 2006 Beneficial Use Study Report
[3] Bashir, U. M., (2012). An Assessment of Utilization of Demolition Debris in Gombe State, Nigeria; PhD Research Proposal
Submitted to PG School, A. T. B. University Baauchi
[4] Beckrtt, S. (1986). Building and Climate: Status, Opportunities and Challeneges
[5] retrieved: www.unep.fr/shared/publications/........
[6] Bennet, F. L. (2003). The Management of Construction: A Project Life Cycle Approach. Oxford; Butterworth-Heinemann
[7] Center for Building Performance Research (CBPR), (2007) Embodied Energy Coefficients, Alphabetical. Victoria University
Wellington, New Zealand; Ctoriwau.nz/cbprdocumentv/
[8] Crowther, P.(1999). Design for Disassembly and Recover Embodied Energy; 16th
Annual Conference on Passive and Low Energy
Architecture, Sept., 1999. Melbourne-Brisbane
[9] Dixit, M. K., Ferrendez-solis, L., Lavy, S., and Gulp, C. H. (2011): Protocol for Embodied Energy Measurement Parameters.
[10] Ebohon, O. I.(1992). Empirical Analysis of Energy Construction Behavior: An Input to an Effective Energy Plan in Nigeria,
Energy Policy
[11] Economic Indicators for year 2000- Economywatch
[12] Economywatch 2000 retrieved; www.economywatch.com>.............>economicstatusbyyear
[13] Edward, I. E.(2002). Ruogh Guide and Sustainability; London, RIBA
[14] Erkelens, P. A. (2002). Extending Service Life of Buildings and Building Components through Re-Use, In: (no eds) Proceedings
9DBMC Conference, Brisbane, Australia
[15] Godon, I. E. (2004). Esustrions o par quie las no se coen; Calamac Ediciones Medwel
[16] Hendriks, C. and Dorsthorst, B. (2001). Reuse of Construction at Different Levels: Construction Elements or Materials. CIB
World Building Congress, Wellington
[17] Irurah, D, K. (2001). Agenda for Sustainable Construction in Africa; Agenda for Sustainable Construction in Developing
Countries, Africa Position Paper
[18] Kibert, (1994). Green Building and Sustainable Design; International Conference on Sustainable Construction; Tampa, Florida
[19] Mazria, E. (2003). It‘s Architechture Stupid!
[20] Milford, R. (2002). Proactive Approach Theme 1: Sustainable Construction. CIB Information 2/02 pp33
[21] Ogunsote, p. et al. (2011). Progress and Prospects of Promoting Sustainable Architecture………. retrieved;
www.sdecng.net/B2%20progrss
[22] Patric, Y. D., Rihard, G. L., and Jacquilin, F. (1999). Concept for Reuse and Recycling of Construction and Demolition Waste;
Cost USACERL Technical Report 97/58, June
[23] Plessis, C. (2001). Agenda 21for Sustainable Construction in Developing Countries: 1st
Discussion Document, Pretoria, South
Africa
[24] Plessis, C. (2002), Sustainable Construction in Developing Countries, a Discussion Document, CSIR, Building and Construction
Technology, Pretoria
[25] .Roth, l. and Eklund, M. (2001). Environmental Analysis of Reuse of Cast-in-situ Concrete in the Building Sector. In: Shanableh
A and Chang WP (eds.). Towards Sustainability in the Built Environment. Brisbane
[26] Shafii,F., Ali, Y. A. and Othman, M. Z. (2006). Achieving Sustainable Construction in the Developing Countries of South East
Asia; ASPEC, Kuala Lampur Malaysia
[27] Shuaibu, K. (2011). Recycle of Concrete in Concrete Production; @Cenresin publication. Vol. 3, December
[28] Treolar, G. J., Lone, P. E. D., and Holt, G. D. (2001). Using National Input / Out Data for Embodied Energy Analysis for
Individual Residential Building; Construction Management and Economics, 19(1), pp 49-61
[29] United Nations Center for Human Settlement (1991). UNCHS/HABIT @ collection.infocollections.org/ukedu/en/cl3.108
[30] Wahab, A. B. and Lawal, A. F., (2011. An Evaluation of Waste Control Measures in Construction Industry in Nigeria; African
Journal of Environmental Science and Technology Vol. 5(3) pp241-246, March, 2011. Available on line at
http.//www.academicjournals.org/AJEST
[31] Wokekoro, E. (2007). Solid Waste Management in Construction Industry: (A Case Study of Port Harcourt Metropolis).
International Conference on ―Waste Management, Environmental Geo-technology and Global Sustainable Development
(WMEGGSD 07-GZO‘07); Ljubljana, Slovenia

More Related Content

What's hot

Optimization of energy in public buildings
Optimization of energy in public buildingsOptimization of energy in public buildings
Optimization of energy in public buildingseSAT Publishing House
 
Thesis on building energy by abdelwehab yehya Bsc. in architecture
Thesis on building energy by abdelwehab yehya Bsc. in architectureThesis on building energy by abdelwehab yehya Bsc. in architecture
Thesis on building energy by abdelwehab yehya Bsc. in architectureabdelwehab yehya
 
BUILDING MATERIALS ASSESSMENT FOR SUSTAINABLE CONSTRUCTION BASED ON FIGURE OF...
BUILDING MATERIALS ASSESSMENT FOR SUSTAINABLE CONSTRUCTION BASED ON FIGURE OF...BUILDING MATERIALS ASSESSMENT FOR SUSTAINABLE CONSTRUCTION BASED ON FIGURE OF...
BUILDING MATERIALS ASSESSMENT FOR SUSTAINABLE CONSTRUCTION BASED ON FIGURE OF...IAEME Publication
 
Jochem 2002 Steps towards a 2000 Watt-Society Ex Summ
Jochem 2002 Steps towards a 2000 Watt-Society Ex SummJochem 2002 Steps towards a 2000 Watt-Society Ex Summ
Jochem 2002 Steps towards a 2000 Watt-Society Ex Summmorosini1952
 
Low carbon pathways for development a case of the construction sector
Low carbon pathways for development   a case of the construction sectorLow carbon pathways for development   a case of the construction sector
Low carbon pathways for development a case of the construction sectorClimate Action Network South Asia
 
Energy Efficient Air Conditioning System
Energy Efficient Air Conditioning SystemEnergy Efficient Air Conditioning System
Energy Efficient Air Conditioning SystemTantish QS, UTM
 
Resedential building
Resedential buildingResedential building
Resedential buildingakt81198
 
Sustainability Concepts in the Design of High-Rise buildings: the case of Dia...
Sustainability Concepts in the Design of High-Rise buildings: the case of Dia...Sustainability Concepts in the Design of High-Rise buildings: the case of Dia...
Sustainability Concepts in the Design of High-Rise buildings: the case of Dia...StroNGER2012
 
Building and energy in the sustainable city
Building and energy in the sustainable cityBuilding and energy in the sustainable city
Building and energy in the sustainable cityFahmy At
 
IJSRED-V2I3P76
IJSRED-V2I3P76IJSRED-V2I3P76
IJSRED-V2I3P76IJSRED
 
Pinkse Dommisse (2008) BSE definitief
Pinkse  Dommisse (2008) BSE definitiefPinkse  Dommisse (2008) BSE definitief
Pinkse Dommisse (2008) BSE definitiefMarcel Dommisse
 
1-s2.0-S0378778820333983-main.pdf
1-s2.0-S0378778820333983-main.pdf1-s2.0-S0378778820333983-main.pdf
1-s2.0-S0378778820333983-main.pdfrishan16
 
Industry: Mitigation Options
Industry: Mitigation OptionsIndustry: Mitigation Options
Industry: Mitigation Optionsipcc-media
 

What's hot (17)

Optimization of energy in public buildings
Optimization of energy in public buildingsOptimization of energy in public buildings
Optimization of energy in public buildings
 
C1303041215
C1303041215C1303041215
C1303041215
 
A012220109
A012220109A012220109
A012220109
 
Thesis on building energy by abdelwehab yehya Bsc. in architecture
Thesis on building energy by abdelwehab yehya Bsc. in architectureThesis on building energy by abdelwehab yehya Bsc. in architecture
Thesis on building energy by abdelwehab yehya Bsc. in architecture
 
Energy efficiency improvement in academic buildings
Energy efficiency improvement in academic buildingsEnergy efficiency improvement in academic buildings
Energy efficiency improvement in academic buildings
 
BUILDING MATERIALS ASSESSMENT FOR SUSTAINABLE CONSTRUCTION BASED ON FIGURE OF...
BUILDING MATERIALS ASSESSMENT FOR SUSTAINABLE CONSTRUCTION BASED ON FIGURE OF...BUILDING MATERIALS ASSESSMENT FOR SUSTAINABLE CONSTRUCTION BASED ON FIGURE OF...
BUILDING MATERIALS ASSESSMENT FOR SUSTAINABLE CONSTRUCTION BASED ON FIGURE OF...
 
Jochem 2002 Steps towards a 2000 Watt-Society Ex Summ
Jochem 2002 Steps towards a 2000 Watt-Society Ex SummJochem 2002 Steps towards a 2000 Watt-Society Ex Summ
Jochem 2002 Steps towards a 2000 Watt-Society Ex Summ
 
Low carbon pathways for development a case of the construction sector
Low carbon pathways for development   a case of the construction sectorLow carbon pathways for development   a case of the construction sector
Low carbon pathways for development a case of the construction sector
 
Energy Efficient Air Conditioning System
Energy Efficient Air Conditioning SystemEnergy Efficient Air Conditioning System
Energy Efficient Air Conditioning System
 
Resedential building
Resedential buildingResedential building
Resedential building
 
Ijmet 10 01_193
Ijmet 10 01_193Ijmet 10 01_193
Ijmet 10 01_193
 
Sustainability Concepts in the Design of High-Rise buildings: the case of Dia...
Sustainability Concepts in the Design of High-Rise buildings: the case of Dia...Sustainability Concepts in the Design of High-Rise buildings: the case of Dia...
Sustainability Concepts in the Design of High-Rise buildings: the case of Dia...
 
Building and energy in the sustainable city
Building and energy in the sustainable cityBuilding and energy in the sustainable city
Building and energy in the sustainable city
 
IJSRED-V2I3P76
IJSRED-V2I3P76IJSRED-V2I3P76
IJSRED-V2I3P76
 
Pinkse Dommisse (2008) BSE definitief
Pinkse  Dommisse (2008) BSE definitiefPinkse  Dommisse (2008) BSE definitief
Pinkse Dommisse (2008) BSE definitief
 
1-s2.0-S0378778820333983-main.pdf
1-s2.0-S0378778820333983-main.pdf1-s2.0-S0378778820333983-main.pdf
1-s2.0-S0378778820333983-main.pdf
 
Industry: Mitigation Options
Industry: Mitigation OptionsIndustry: Mitigation Options
Industry: Mitigation Options
 

Viewers also liked

The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
Ak02102320239
Ak02102320239Ak02102320239
Ak02102320239theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 

Viewers also liked (19)

The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Ak02102320239
Ak02102320239Ak02102320239
Ak02102320239
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 

Similar to The International Journal of Engineering and Science (The IJES)

Reliability Study of Punching Shear Design of Column-Slab Connection accordin...
Reliability Study of Punching Shear Design of Column-Slab Connection accordin...Reliability Study of Punching Shear Design of Column-Slab Connection accordin...
Reliability Study of Punching Shear Design of Column-Slab Connection accordin...IRJET Journal
 
A STUDY OF LIFE CYCLE ENERGY ASSEMENT OF A MULTI-STORIED RESIDENTIAL BUILDING...
A STUDY OF LIFE CYCLE ENERGY ASSEMENT OF A MULTI-STORIED RESIDENTIAL BUILDING...A STUDY OF LIFE CYCLE ENERGY ASSEMENT OF A MULTI-STORIED RESIDENTIAL BUILDING...
A STUDY OF LIFE CYCLE ENERGY ASSEMENT OF A MULTI-STORIED RESIDENTIAL BUILDING...IRJET Journal
 
Challenges facing componentsreuse in industrialized housing: A literature review
Challenges facing componentsreuse in industrialized housing: A literature reviewChallenges facing componentsreuse in industrialized housing: A literature review
Challenges facing componentsreuse in industrialized housing: A literature reviewIEREK Press
 
Optimization of energy in public buildings
Optimization of energy in public buildingsOptimization of energy in public buildings
Optimization of energy in public buildingseSAT Journals
 
Toward green concrete for better sustainable environment
Toward green concrete for better sustainable environmentToward green concrete for better sustainable environment
Toward green concrete for better sustainable environmenthsaam hsaam
 
A comparative study on sustainable building construction with conventional re...
A comparative study on sustainable building construction with conventional re...A comparative study on sustainable building construction with conventional re...
A comparative study on sustainable building construction with conventional re...VISHNU VIJAYAN
 
Partially Replacement of Clay by S.T.P. Sludge in Brick Manufacturing
Partially Replacement of Clay by S.T.P. Sludge in Brick ManufacturingPartially Replacement of Clay by S.T.P. Sludge in Brick Manufacturing
Partially Replacement of Clay by S.T.P. Sludge in Brick ManufacturingAM Publications
 
Sustainable building materials in Green building construction.
Sustainable building materials in Green building construction.Sustainable building materials in Green building construction.
Sustainable building materials in Green building construction.Tendai Mabvudza
 
Usage of Waste Materials in Concrete
Usage of Waste Materials in ConcreteUsage of Waste Materials in Concrete
Usage of Waste Materials in ConcreteIRJET Journal
 
Pgb unit iii a kameswara rao marthi
Pgb unit iii a   kameswara rao marthiPgb unit iii a   kameswara rao marthi
Pgb unit iii a kameswara rao marthiMallikarjunaRao52
 
Green Buildings Overview and Analysis of Energy Efficient Building
Green Buildings Overview and Analysis of Energy Efficient BuildingGreen Buildings Overview and Analysis of Energy Efficient Building
Green Buildings Overview and Analysis of Energy Efficient Buildingpaperpublications3
 
IRJET- Construction of E3 Shelter by Civil Waste Material: A Review
IRJET-  	  Construction of E3 Shelter by Civil Waste Material: A ReviewIRJET-  	  Construction of E3 Shelter by Civil Waste Material: A Review
IRJET- Construction of E3 Shelter by Civil Waste Material: A ReviewIRJET Journal
 
Mechanical Properties of Recycled Aggregate
Mechanical Properties of Recycled AggregateMechanical Properties of Recycled Aggregate
Mechanical Properties of Recycled Aggregateijtsrd
 
BUILDING MATERIALS AND THERE ENVIRONMENT RESPONSIVENSS.
BUILDING MATERIALS AND THERE ENVIRONMENT RESPONSIVENSS.BUILDING MATERIALS AND THERE ENVIRONMENT RESPONSIVENSS.
BUILDING MATERIALS AND THERE ENVIRONMENT RESPONSIVENSS.DevagyaGandhi
 
Carbon Capture Technologies (CCTs) in Built Environment
Carbon Capture Technologies (CCTs) in Built EnvironmentCarbon Capture Technologies (CCTs) in Built Environment
Carbon Capture Technologies (CCTs) in Built Environmentzongwang5
 

Similar to The International Journal of Engineering and Science (The IJES) (20)

Reliability Study of Punching Shear Design of Column-Slab Connection accordin...
Reliability Study of Punching Shear Design of Column-Slab Connection accordin...Reliability Study of Punching Shear Design of Column-Slab Connection accordin...
Reliability Study of Punching Shear Design of Column-Slab Connection accordin...
 
A STUDY OF LIFE CYCLE ENERGY ASSEMENT OF A MULTI-STORIED RESIDENTIAL BUILDING...
A STUDY OF LIFE CYCLE ENERGY ASSEMENT OF A MULTI-STORIED RESIDENTIAL BUILDING...A STUDY OF LIFE CYCLE ENERGY ASSEMENT OF A MULTI-STORIED RESIDENTIAL BUILDING...
A STUDY OF LIFE CYCLE ENERGY ASSEMENT OF A MULTI-STORIED RESIDENTIAL BUILDING...
 
Challenges facing componentsreuse in industrialized housing: A literature review
Challenges facing componentsreuse in industrialized housing: A literature reviewChallenges facing componentsreuse in industrialized housing: A literature review
Challenges facing componentsreuse in industrialized housing: A literature review
 
Optimization of energy in public buildings
Optimization of energy in public buildingsOptimization of energy in public buildings
Optimization of energy in public buildings
 
Toward green concrete for better sustainable environment
Toward green concrete for better sustainable environmentToward green concrete for better sustainable environment
Toward green concrete for better sustainable environment
 
C45020914
C45020914C45020914
C45020914
 
sidh project NEW.pdf
sidh project NEW.pdfsidh project NEW.pdf
sidh project NEW.pdf
 
Ameh
AmehAmeh
Ameh
 
A comparative study on sustainable building construction with conventional re...
A comparative study on sustainable building construction with conventional re...A comparative study on sustainable building construction with conventional re...
A comparative study on sustainable building construction with conventional re...
 
Partially Replacement of Clay by S.T.P. Sludge in Brick Manufacturing
Partially Replacement of Clay by S.T.P. Sludge in Brick ManufacturingPartially Replacement of Clay by S.T.P. Sludge in Brick Manufacturing
Partially Replacement of Clay by S.T.P. Sludge in Brick Manufacturing
 
Sustainable building materials in Green building construction.
Sustainable building materials in Green building construction.Sustainable building materials in Green building construction.
Sustainable building materials in Green building construction.
 
Usage of Waste Materials in Concrete
Usage of Waste Materials in ConcreteUsage of Waste Materials in Concrete
Usage of Waste Materials in Concrete
 
Pgb unit iii a kameswara rao marthi
Pgb unit iii a   kameswara rao marthiPgb unit iii a   kameswara rao marthi
Pgb unit iii a kameswara rao marthi
 
Carbon footprint in buildings
Carbon footprint in buildingsCarbon footprint in buildings
Carbon footprint in buildings
 
Bb36324329
Bb36324329Bb36324329
Bb36324329
 
Green Buildings Overview and Analysis of Energy Efficient Building
Green Buildings Overview and Analysis of Energy Efficient BuildingGreen Buildings Overview and Analysis of Energy Efficient Building
Green Buildings Overview and Analysis of Energy Efficient Building
 
IRJET- Construction of E3 Shelter by Civil Waste Material: A Review
IRJET-  	  Construction of E3 Shelter by Civil Waste Material: A ReviewIRJET-  	  Construction of E3 Shelter by Civil Waste Material: A Review
IRJET- Construction of E3 Shelter by Civil Waste Material: A Review
 
Mechanical Properties of Recycled Aggregate
Mechanical Properties of Recycled AggregateMechanical Properties of Recycled Aggregate
Mechanical Properties of Recycled Aggregate
 
BUILDING MATERIALS AND THERE ENVIRONMENT RESPONSIVENSS.
BUILDING MATERIALS AND THERE ENVIRONMENT RESPONSIVENSS.BUILDING MATERIALS AND THERE ENVIRONMENT RESPONSIVENSS.
BUILDING MATERIALS AND THERE ENVIRONMENT RESPONSIVENSS.
 
Carbon Capture Technologies (CCTs) in Built Environment
Carbon Capture Technologies (CCTs) in Built EnvironmentCarbon Capture Technologies (CCTs) in Built Environment
Carbon Capture Technologies (CCTs) in Built Environment
 

Recently uploaded

The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Google AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAGGoogle AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAGSujit Pal
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 

Recently uploaded (20)

The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Google AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAGGoogle AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAG
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 

The International Journal of Engineering and Science (The IJES)

  • 1. The International Journal Of Engineering And Science (IJES) ||Volume||2 ||Issue|| 7 ||Pages|| 19-24||2013|| ISSN(e): 2319 – 1813 ISSN(p): 2319 – 1805 www.theijes.com The IJES Page 19 Inherent Energy In Demolition Debris: Re-Use Or Recyle? (A Case Study Of Roads Construction Led Demolition In Gombe Metropolis) 1, BASHIR, U. M., 2, Iro, A. I and 3, Babanyara, Y. Y. 1,2 ,Architecture Programme, Quantity Surveying programme, Urban and Regional Planning Progamme 3, Abubakar Tafawa Balewa University, Bauchi. Nigeria. ----------------------------------------------------ABSTRACT----------------------------------------------------- The pressure from over exploitation of the natural resources by human on the environment is always in the increase and becoming more apparent every now and then, especially in the construction sector. There is the need for information on which to base sound solutions to the problems protecting the environment and the future planet as a whole. This paper is aimed at discussing that energy that is inherent in the demolition debris (inherent energy) littering around the environment whenever a demolition is carried out, and in many cases inappropriately disposed off. The study reviewed literatures, reports and texts, and drew advantages from within. This study outlined benefits associated with re-use and recycles and offered its recommendations on the premise of benefits found to have been more environmentally profitable. KEY WORDS: Inherent energy, demolition debris, re-use and recycling ----------------------------------------------------------------------------------------------------------------------------------------- Date of Submission:18 July 2013 Date of Publication:7 ,Aug ,2013 ----------------------------------------------------------------------------------------------------------------------------------------- I. STUDY BACKGROUND Sustainable construction refers construction as a broad process/mechanism for the realization of human settlement and the creation of infrastructure that support development. This includes the extraction and beneficiation of raw materials, the manufacturing of construction materials and components, the construction project cycle from feasibility and design to demolition, and the management and operation of the built environment (Plessis, 2002). Thus, construction industry and its activities are responsible for a substantial amount of global resource use and waste emissions (Plessis, 2001). Consequently, it was realized that every activity involved in extraction, processing and delivery of construction materials result in energy consumption, pollution and waste; making the industry often referred to as 40% industry due to its responsibility for roughly consuming of 40% of all global resources and 40% of all waste production including greenhouse gas emission (Plessis, 2002). In a global scene, researchers have established that the resources are being used up at an alarming rate through human over exploitation which led to the assumption of when these resources could be exhausted. Ogunsote, et al. (2011) opined that, the world is being threatened with diminishing energy resources and if consumption of energy continuous at the current rate, the life will be threatened in the future. In this regard, the world is therefore faced with looking for alternatives, which are important to businesses, government and other energy consumers, beside the search by scientist and engineers for replacement of fossil fuels with other alternatives that are clean, abundant, safe and in-expensive. Other alternatives require finding ways to reduce energy use, using energy more wisely and efficiently and increasing the public concern over ecological sustainability. II. METHODOLOGY For the purpose of fulfilling the requirement, the study adopted to reviewing literatures as well as using real life data obtained from the project file 2012 0f payment of compensation‘s report for the construction of roads in Gombe metropolis. However, it choose to work on the limited number of roads with the view just to creating awareness of the volume of resources involved, its contribution and usage as component in the project. The study delimited itself to the basic materials for walling such as sandcrete/concrete material, mud and bricks.
  • 2. Inherent Energy In Demolition… www.theijes.com The IJES Page 20 III. LITRETURE REVIEW Inherent energy refers to energy embedded in material i.e. the energy content of the raw material. Against this back drop, demolition materials contained shared/built-in energy from its initial production. Henceforth in this study referred to as raw material whose energy is embodied, whose recycling and source reduction is directly related to the energy that could be saved through reuse or recycling. In fact the link between the use of energy in buildings, construction and the energy used is well established in Europe and America (UNCHS, 1991). However, the link between energy production, use; and local and global environment is causing increasing concern worldwide. Thus, there are good reasons seeking to reduce the energy in buildings and constructions. In the developed countries, there is growing demand for environmental impact assessment for all construction and building projects which include consideration of embodied energy (Becket, 1986).Many buildings and construction materials are manufactured involving high-temperature Kiln technologies, and crushing and grinding operations which are inherently energy-intensive. According to Ebohon (1992), the intensity of consumption of global resources particularly at the processing stage can be seen from the following: Zinc, Tin, Aluminum, Cement, Tiles, Bricks, Glass and Paint. It was established that (Economy Watch, 2000) construction industry is the largest sector in the consumption of energy and resource utilization in the industry amounts to half of the total resource consumed all over the world. Corroborating this assertion, Edward (2002) deduced that the construction industry is responsible for 50% of all energy consumed in the world making it one of the least sustainable global industries. 3.1.INERPRETATION OF EMBODIED ENERGY OF MATERIALS Buildings are constructed with a variety of materials that consume energy throughout their stages of manufacture, use and demolition. These stages consist of raw materials extraction, transport, manufacture, assembly, as well as disassembly and demolition. Crowther (1999), defines embodied energy as ―the total energy required in the creation of building, including the direct energy used in the construction and assembly process, and the indirect energy that is required to manufacture the materials component of the building‖. According to Treolar, et al. (2001) embodied energy (EE), ―is that energy required providing a product (both directly and indirectly) through all processes, upstream (i.e. traceable backwards from the finished product to consideration of raw materials)‖. Likewise, a more comprehensive definition provided by (Baird (1994), Edward and Stewart (1994), Lawson (1996), Cole and Keman (1996), as (cited in Ding, 2004) proposed that ―embodied energy comprises the energy consumed during the extraction and processing of raw materials and components, and the energy used in various processes during the construction and demolition of the building‖. However, according to Dixit, et al. (2009), ―embodied energy, is the direct energy consumed in various onsite and offsite operations, like construction, prefabrication, transportation and administration; this include, energy in construction and assembly on site, prefabrication of building components offsite and transportation, including various onsite and offsite processes.‖ While the direct energy is the energy used in manufacturing the building materials, in renovation, refurbishment, and demolition processes of buildings. It includes initial embodied, recurrent embodied energy and demolition energy.‖ Initial embodied is consumed during production of materials and component and include raw materials procurement, building initial manufacturing facilities and finished product delivery to the construction site. Embodied energy is just one of the environmental impacts associated with a building product‘s life cycle; the embodied energy of a typical building product is derived from the energy associated with other steps in its lifecycle from extraction of materials through processing and manufacture, to transportation and construction, and in some cases its eventual disposal and reuse/recycle. The center of building performance research (CBPR) in New Zealand established that for a kilogram of aggregate to be produced a corresponding 0.10MJ of energy is required; so for 1 kg of aluminum to be produced the corresponding energy required is 191MJ (Alcon,1996). According to Gordon (2004), in order to produce one ton of steel, bricks, or of cement; it is necessary to invest 60, 6, and 4GJ of energy respectively. Through which a considerable amount of pollutants (co2, SO2, No2, etc) are discharged. Shafii, et al. (2006) opined that, the biggest sector influencing climate change is cement and steel. Cement production is the biggest contributor of greenhouse gas emissions. Although cement makes up 12-14% 0f the final concrete mix further embodied energy comes from transportation and production of aggregate and in the case of reinforced concrete the manufacturing of steel. To this end it has been realized that, where a building is demolished, all the non-renewable energy used to create the building were lost and many more is needed to rebuild.
  • 3. Inherent Energy In Demolition… www.theijes.com The IJES Page 21 Table, 1. Embodied Energy Coefficients Material MJ/Kg MJ/Kg3 MJ/Kg2 Aggregate general 0.10 150 Virgin rock o.o4 63 Concrete block 0.94 2780 Concrete brick 0.97 Precast 2.0 2780 Earth raw Adobe block, straw stabilized 0.47 750 Adobe bitumen stabilized 0.29 490 Adobe, cement stabilized 0.42 710 Pressed block 0.42 Source: Center for Building Performance Research (2007) A recovery of old materials saves the energy to extract, transport and create new materials and keeps more green space from development. It is imperative to note that, since the energy used in creating the original structure has already created pollution, especially with materials such as concrete, which is responsible for large amount of CO2 during production, tearing the old building/structure means that all the pollution and energy used in creating the structure will be followed by more in the creation of the new building (Kibert, 1994). 3.2.CONCEPT OF DEMOLITION DEBRIS The term ―Debris‖ is of French origin (wikinary) that refers to: rubble, wreckage, scattered remain of something destroyed; litter and scattered refuse; ruins of broken-down structure etc. in line with this reference, the dictionary.com defines debris ―as remain of anything broken-down or destroyed. Demolition debris can therefore mean, ―An act or process of wrecking or tearing down of buildings and other structures through which rubbles or ruins of broken-down structure is generated‖. Building related construction and demolition debris are commonly grouped as a single type of material, though these two material streams come from different sources (ASTSWMO, 2007). Construction materials originate from construction, repair, or remolding activities; this material stream typically consists of a variety of building products (such as concrete, roofing, gypsum wallboard, wood products, plastics, insulation, tiles and metals) as well as packaging materials, that building materials arrived in (such as cupboard and plastics). Construction materials are usually generated as a result of cutting a material down to size for installation or purchasing material in excess of what is needed. While demolition materials are generated from razing or wrecking of building to reduce it to rubble, typical of this components include concrete rubble, blocks rubble, stone, wood, scrap metals, insulations, Brocken glass and other building materials. IV. THE ISSUES Demolition of building produces significant amount of materials that are for most part land filled (Wokekoro, 2007). Heavy consumption of resources for inputs to production of virgin components, most of which (cement, glass, clay bricks, steel, etc) involved high level of embodied energy through their production and distribution; absence of re-use and recycling of these materials mean that such most precious resources end- up in dumps and landfills after demolition of buildings, in spite of the declining life span of properties (Irurah and Holm, 1999; cited in Irura, 2001). These resources could be reused or recycled because of the energy embedded in them from its initial production through demolition.Currently, this development has become a very critical issue, as it poses enormous risk not only to the environment but to health and economy (Wahab and Lawal, 2011). It has been revealed that the effects of this situation in Nigeria are low level of technological, economic and social development (Bashir, 2012). According to Shuaibu (2011), huge amount of this waste is always generated, but its disposal has become a severe social and environmental problem.
  • 4. Inherent Energy In Demolition… www.theijes.com The IJES Page 22 Table 2: Area of Walls Demolished and Demolition Waste Generated by Construction Material S/N sandcrete block buildings (m 2 ) Ave. Vol. Generated (m 3 ) % of Total Waste mud buildings (m 2 ) Ave. Vol. Generated (m 3 ) % of Total Waste combined mud/sandcrete (m 2 ) Ave. Vol. Generated (m 3 ) % of Total Waste 1 320.00 60.00 33.47 261.00 78.30 27.30 375.00 126.56 39.23 2 727.00 136.31 38.53 641.00 192.30 33.97 519.00 175.16 27.50 3 1532.00 287.25 57.68 820.00 246.00 30.87 302.00 101.93 11.37 4 587.00 110.06 59.59 23.00 6.90 2.34 375.00 126.56 38.07 5 356.00 66.75 33.63 479.00 143.70 46.60 164.00 55.35 15.95 6 147.00 27.56 25.00 287.00 86.10 48.80 154.00 51.98 26.19 TOTAL 687.93 753.3 727.63 Source: Project Files (2012) The geographer Zimmermann stated in 1933 that, ‗Resources are not anything static, but something as dynamic as civilization itself‘. This assertion gives no reason for optimism. With the accelerating rate of exploitation we are on the Verge of bankruptcy in raw materials. The volume of debris generated (table, 1) from the above study shows the level of ignorance of the economic, social and environmental impact of these resources if such not properly integrated in to the project stream. The total volumes produced from the activity…… 2168.86 m3 of sandcrete, mud and combined sandcrete and mud multiplied by its corresponding energy requirement in joules……….. Considerable area will be covered; substantial amount will be saved both from transportation to land fill and transporting virgin material to construction site, reducing greenhouse emissions, pollution from noise, and conserving natural resources for the future (table,3). Table 3: Volume of Waste Generated, Cost of Compensation and Cost of Disposal Road Length (km) Ave. Vol. Generated from Sandcrete Buildings(m 3 ) Ave. Vol. Generated from Mud Buildings(m 3 ) Ave. Vol. Generated from Buildings with Combination of Sandcrete and Mud Works(m3) Total Vol of Waste Generated/Road (m 3 ) Cost of Disposal at ₦2500/m 3 Compensations Cost (₦) Non-Contructional Costs=(cost of Disposal+Compensati on cost) 1 2.3 60 78.30 126.56 264.86 662,156.30 14,828,023.00 15,490,179.00 2 1.2 136.31 192.30 175.16 503.77 1,259,438.00 200,000.00 1,459,438.00 3 1 287.25 246.00 101.92 635.17 1,587,938.00 73,411,933.00 7,4999,871.00 4 0.926 110.06 6.90 126.56 243.52 608,812.50 17,846,595.00 18,455,408.00 5 0.408 66.75 143.70 55.35 265.8 664,500.00 36,195,160.00 36,859,660.00 6 1.4 27.56 86.10 51.97 165.63 414,093.80 79,583,346.00 79,997,440.00 Total 6,467,250.00 261,299,317.00 Source: Project Files (2012) 4.2.MATERIAL RESOURCES AND CONCEPTS OF REUSE AND RECYCLING The building industry is the largest consumer of raw materials in the world today after food production. A major guiding principle for the future should be a drastic reduction in the use of raw materials. This is best applied to the less common non-renewable resources. The re-use of materials following demolition should also be taken into account. Recycling processes should be developed so that materials can be taken care of at their original level of quality, rather than down cycled. Demolition of building structures produce significant amount of materials that can be reused or recycled, principally wood, concrete and other types of masonry and dry wall (CalDRRR, 2013). Reuse and recycle of construction and demolition materials is one of the larger holistic practice called sustainable or green construction, whose fundamental tenet is the efficient use of resources.
  • 5. Inherent Energy In Demolition… www.theijes.com The IJES Page 23 In these two phases there are the following possibilities for reducing the use of primary resources: • To build with an economic use of materials • To minimize loss and wastage of materials on site • To use the materials in such a way as to ensure their durability • To maximize re-use and recycling of materials from demolition. Definition: reuse and recycle According to patric, et al. (1999), reclamation of material from waste stream is not considered as recycling in and of itself. Recycling is a reprocessing of reclaimed material and converting it to a new material or use. While re use means the use in similar form or as it was produced. The concept behind reuse is that one should use the item as much as possible before completely replacing them. V. BENEFITS OF REUSE AND RECYCLING Reuse and recycling is hardly a new concept for construction industry. Concrete and paving materials have been reused as fill materials or road based for many years; the forms of concrete used by the Romans included recycled aggregate from older stone structures.Waste management: an aspect of waste management includes reducing the amount of waste on job site, reusing as many materials and recycling those items that cannot be reused in their present forms. For Best Practicable Options to be developed guidance is necessary for a given set of objectives. Reuse of construction and demolition debris has occurred for centuries in most cases, this has been in the form of salvaging the materials from one building to use in the other construction project. For road demolition waste can often be reused onsite or for other roadwork, this is because the use of virgin materials instead of materials from demolition or deconstructed material in many instance do not maintain the quality of materials, natural resources and energy (Roth and Eklund, 2001). Hence, improved practices that reused materials in place of virgin material significantly improve environmental performance of the construction sector. Other benefits of reuse include:  Recovers the highest percentage of embodied energy resources in the materials or subsystems;  It reduces cost of disposal;  Cost saving of the material;  Provide efficient and sustainable way of mitigating climate change;  Provide employment opportunities etc. Recycling; the method of recycling of demolition material is very crucial to the economic and practical feasibility of recovering the materials. However there are many benefits to the increased recycling of demolition and construction debris:  Conserve resources by diverting them from land fill;  Increase operating life for local landfills that result in associated environmental impacts such as ground contamination;  With the development of market for debris ‗waste generators‘ may potentially have new source of income etc. VI. CONCLUSSION/RECOMMENDATIONS In the existence of any material energy must be involved; in many cases the raw material itself comes from fuel and other energy related sources example plastic, aluminum and polycarbonates etc. While huge amount of fossil fuels is invested in the extraction and manufacturing of other materials; such as cements, are manufactured in high temperature kiln and its production is associated with hazardous gasses that are responsible for the formation of acid rain and other health and environmental impacts. Fuels and energy are limited and expensive resources, and it is increasingly important to examine the effects of our activities most especially waste management practices on energy and energy-influenced/derived resources.Waste reduction efforts, such as source reduction; reuse and recycling, can result in significant energy savings. Source reduction techniques, in most cases significantly lower energy consumption associated with raw material extraction, transportation and manufacturing processes. The energy effects of materials occur in each life-cycle stage—source reduction, recycling and reuse, —and knowledge of those effects can reduce the demand for raw materials and energy. The re-use of materials following demolition should be taken into account. Recycling processes should also be developed so that materials can be taken care of at their original level of quality, rather than down cycled; and finally priority should be given to the production methods that use less energy and more sustainable materials with reduced transport distance.
  • 6. Inherent Energy In Demolition… www.theijes.com The IJES Page 24 REFERENCES [1] Alcon, D.A. (1996), Embodied Energy Coefficient of Building Material; Center for Building Performance Research, Victoria University of Wellington [2] Association of State Territorial Solid waste Officials (2007), 2006 Beneficial Use Study Report [3] Bashir, U. M., (2012). An Assessment of Utilization of Demolition Debris in Gombe State, Nigeria; PhD Research Proposal Submitted to PG School, A. T. B. University Baauchi [4] Beckrtt, S. (1986). Building and Climate: Status, Opportunities and Challeneges [5] retrieved: www.unep.fr/shared/publications/........ [6] Bennet, F. L. (2003). The Management of Construction: A Project Life Cycle Approach. Oxford; Butterworth-Heinemann [7] Center for Building Performance Research (CBPR), (2007) Embodied Energy Coefficients, Alphabetical. Victoria University Wellington, New Zealand; Ctoriwau.nz/cbprdocumentv/ [8] Crowther, P.(1999). Design for Disassembly and Recover Embodied Energy; 16th Annual Conference on Passive and Low Energy Architecture, Sept., 1999. Melbourne-Brisbane [9] Dixit, M. K., Ferrendez-solis, L., Lavy, S., and Gulp, C. H. (2011): Protocol for Embodied Energy Measurement Parameters. [10] Ebohon, O. I.(1992). Empirical Analysis of Energy Construction Behavior: An Input to an Effective Energy Plan in Nigeria, Energy Policy [11] Economic Indicators for year 2000- Economywatch [12] Economywatch 2000 retrieved; www.economywatch.com>.............>economicstatusbyyear [13] Edward, I. E.(2002). Ruogh Guide and Sustainability; London, RIBA [14] Erkelens, P. A. (2002). Extending Service Life of Buildings and Building Components through Re-Use, In: (no eds) Proceedings 9DBMC Conference, Brisbane, Australia [15] Godon, I. E. (2004). Esustrions o par quie las no se coen; Calamac Ediciones Medwel [16] Hendriks, C. and Dorsthorst, B. (2001). Reuse of Construction at Different Levels: Construction Elements or Materials. CIB World Building Congress, Wellington [17] Irurah, D, K. (2001). Agenda for Sustainable Construction in Africa; Agenda for Sustainable Construction in Developing Countries, Africa Position Paper [18] Kibert, (1994). Green Building and Sustainable Design; International Conference on Sustainable Construction; Tampa, Florida [19] Mazria, E. (2003). It‘s Architechture Stupid! [20] Milford, R. (2002). Proactive Approach Theme 1: Sustainable Construction. CIB Information 2/02 pp33 [21] Ogunsote, p. et al. (2011). Progress and Prospects of Promoting Sustainable Architecture………. retrieved; www.sdecng.net/B2%20progrss [22] Patric, Y. D., Rihard, G. L., and Jacquilin, F. (1999). Concept for Reuse and Recycling of Construction and Demolition Waste; Cost USACERL Technical Report 97/58, June [23] Plessis, C. (2001). Agenda 21for Sustainable Construction in Developing Countries: 1st Discussion Document, Pretoria, South Africa [24] Plessis, C. (2002), Sustainable Construction in Developing Countries, a Discussion Document, CSIR, Building and Construction Technology, Pretoria [25] .Roth, l. and Eklund, M. (2001). Environmental Analysis of Reuse of Cast-in-situ Concrete in the Building Sector. In: Shanableh A and Chang WP (eds.). Towards Sustainability in the Built Environment. Brisbane [26] Shafii,F., Ali, Y. A. and Othman, M. Z. (2006). Achieving Sustainable Construction in the Developing Countries of South East Asia; ASPEC, Kuala Lampur Malaysia [27] Shuaibu, K. (2011). Recycle of Concrete in Concrete Production; @Cenresin publication. Vol. 3, December [28] Treolar, G. J., Lone, P. E. D., and Holt, G. D. (2001). Using National Input / Out Data for Embodied Energy Analysis for Individual Residential Building; Construction Management and Economics, 19(1), pp 49-61 [29] United Nations Center for Human Settlement (1991). UNCHS/HABIT @ collection.infocollections.org/ukedu/en/cl3.108 [30] Wahab, A. B. and Lawal, A. F., (2011. An Evaluation of Waste Control Measures in Construction Industry in Nigeria; African Journal of Environmental Science and Technology Vol. 5(3) pp241-246, March, 2011. Available on line at http.//www.academicjournals.org/AJEST [31] Wokekoro, E. (2007). Solid Waste Management in Construction Industry: (A Case Study of Port Harcourt Metropolis). International Conference on ―Waste Management, Environmental Geo-technology and Global Sustainable Development (WMEGGSD 07-GZO‘07); Ljubljana, Slovenia