1
Time-Oriented Data
Visualization
Jianping Fan
UNC-Charlotte
2
Time Series Data
 Fundamental chronological component to the
data set
 Random sample of 4000 graphics from 15 of
world’s newspapers and magazines from ’74-
’80 found that 75% of graphics published
were time series
− Tufte
From John Stasko’s class slides
3
Datasets
 Each data case is likely an event of some
kind
 One of the variables can be the date and time
of the event
 Examples: sunspot activity, baseball games,
medicines taken, cities visited, stock prices,
newswires, network resource measures
Partially From John Stasko’s class slides
4
Time Series Visualization Approaches
 Small Multiples
 Time-Series Plot
 Stacked Graphs
 Static State Replacement (Animation)
 Brushing and linking
5
Small Multiples
 Small multiples - sets of thumbnail sized
graphics on a single page
 Usage
 Enhance dimensionality
 Depict motion
 Enable comparison
 Show alternatives or range of options
 Rule
 Use the same measures and scale.
Graphics and Web Design Based on Edward Tufte's Principles,
Larry Gales, Univ. of Washington
6
edwardtufte.com
7
Three air pollutants in six counties in southern California
Los Angeles Times, 1979
8
Mark Bulling published on Tableau Public (used without the permission of the author)
9
Time Series Visualization Approaches
 Small Multiples
 Time-Series Plot
 Stacked Graphs
 Static State Replacement (Animation)
 Brushing and linking
10
A Time Series Plot from Tenth Century
Inclinations of the planetary orbits as a function of time
Part of a textbook of monastery schools, tenth century
11
Time Table for Trains (1885)
12
13
Chart of Imports and Exports (1784)
14
Yahoo Finance Charts
AuctionExplorer
15http://www.cs.umd.edu/hcil/timesearcher/
Horizon Graph
16
Heer, Jeffrey, Nicholas Kong, and Maneesh Agrawala. "Sizing the horizon: the
effects of chart size and layering on the graphical perception of time series
visualizations." Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2009.
Interactive Horizon Graph
 Video
17
Perin, Charles, Frédéric Vernier, and Jean-Daniel Fekete. "Interactive horizon
graphs: improving the compact visualization of multiple time
series."Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2013.
Two tone coloring
 Saito, Takafumi, et al. "Two-tone pseudo
coloring: Compact visualization for one-
dimensional data." Information Visualization,
2005. INFOVIS 2005. IEEE Symposium on.
IEEE, 2005.
18
19
20
21
22
Pixel-Oriented Techniques
 Recursive pattern arrangements
The figure is taken from Dr. D. Keim’s tutorial notes in Infovis 00
23
Pixel Oriented Techniques
 Recursive pattern arrangements
The figure is taken from Dr. D. Keim’s tutorial notes in Infovis 00
LastHistory
 Aplication: everyday life
 Data: listening history stored with services such as
last.fm
 Task: allow users to analyze their music listening
histories
 Metaphor: condensed line graphs
24
Baur, Dominikus, et al. "The streams of our lives: Visualizing
listening histories in context." Visualization and Computer
Graphics, IEEE Transactions on 16.6 (2010): 1119-1128.
LastHistory [Dominikus et al.
InfoVis 2010]
25
LastHistory
 Video
26
LastHistory - Interactive Visualization of Last.fm Listening Histories
and Personal Streams (vimeo)
27
Spiral Graphs
History of Italian post office A. Gabaglio, 1888
28
Paper: Visualizing Time-Series on
Spirals [weber et al. Infovis 01]
Cycle Plots
29
Robbins, Naomi B. "Introduction to Cycle
Plots." (2008).
Cycle Plots
30
Robbins, Naomi B. "Introduction to Cycle
Plots." (2008).
Cycle Plots
31
Robbins, Naomi B. "Introduction to Cycle
Plots." (2008).
32
Time Series Visualization Approaches
 Small Multiples
 Time-Series Plot
 Stacked Graphs
 Static State Replacement (Animation)
 Brushing and linking
33
ThemeRiver – Stacked line graphs
 Application: document analysis
 Data: temporally involving document
collections, such as news collections
 Task: reveal a macro-view of thematic
changes
 Approach: stack line graphs to form a river
Havre, Susan, et al. "Themeriver: Visualizing thematic changes in large
document collections." Visualization and Computer Graphics, IEEE
Transactions on 8.1 (2002): 9-20.
34
Baby Name Voyager
 Application: everyday life
 Data: popularity of names
 Approach: Themeriver metaphor
35
http://www.babynamewizard.com/voyager
Stacked
Graphs
36
Byron, Lee, and Martin Wattenberg. "Stacked graphs–geometry &
aesthetics."Visualization and Computer Graphics, IEEE Transactions on 14.6
(2008): 1245-1252.
EMDialog
 http://www.utahinrichs.de/emdialog/
37
38
Time Series Visualization Approaches
 Small Multiples
 Time-Series Plot
 Stacked Graphs
 Static State Replacement (Animation)
 Brushing and linking
39
Static State Replacement
 Treat time as a dimension hidden from the
display
 Divide time into period (time frame, or time
point)
 Generate a visualization for each time frame
 Replace a display of one time frame using
that of another time frame
 Animations, trails
Infocanvas
http://www.cc.gatech.edu/gvu/ii/infoart/
40
Gapminder Trendalyzer
 Animated bubble chart to show trends over
time in three dimensions
Hans Rosling:
No more boring data. TED (Technology,
Entertainment, Design) 2006
 Video
Gapminder World
 Demo
41
Visual Sedimentation
 Video
42
Huron, Samuel, Romain Vuillemot, and Jean-Daniel Fekete. "Visual
sedimentation." Visualization and Computer Graphics, IEEE Transactions
on19.12 (2013): 2446-2455.
http://www.visualsedimentation.org/
Whisper - Twitter visualization
 Application: social study
 Data: Twitter
 Task: answering when, where, and how an
idea is dispersed,
 Metaphor: Sunflower
43
Cao, Nan, et al. "Whisper: Tracing the spatiotemporal process of information
diffusion in real time." Visualization and Computer Graphics, IEEE Transactions
on 18.12 (2012): 2649-2658.
The Sunflower Metaphor
44
Video
45
Cao, Nan, et al. "Whisper: Tracing the spatiotemporal process of information
diffusion in real time." Visualization and Computer Graphics, IEEE Transactions
on 18.12 (2012): 2649-2658.
46
Time Series Visualization Approaches
 Small Multiples
 Time-Series Plot
 Stacked Graphs
 Static State Replacement (Animation)
 Brushing and linking
Brushing and Linking - imMens
 Video
 3 million Brightkite user checkins
47
Liu, Zhicheng, Biye Jiang, and Jeffrey Heer. "imMens: Real‐time Visual
Querying of Big Data." Computer Graphics Forum. Vol. 32. No. 3pt4.
Blackwell Publishing Ltd, 2013.
Brushing and Linking - BirdVis
 Application: Ecology
 Data: Bird observation records
 Task: Understanding the determinants of bird
species distributions and their dynamics
 Video
48
Ferreira, Nivan, et al. "Birdvis: Visualizing and understanding bird
populations."Visualization and Computer Graphics, IEEE Transactions
on 17.12 (2011): 2374-2383.
TEMPORAL, SPATIAL DATA
49
50
Napoleon’s army in Russia
Napoleon’s army in Russia, author: Charles Minard (1781-1870)
51
Life Circle of Japanese Beetles
Life circle of Japanese Beetles L. Newman, Man and Insects, 1965
52
GeoTime
 A combined temporal-spatial space (X, Y, T
coordinate space)
 Represent place by 2D plane (or maybe 3D
topography)
 Use 3rd dimension to encode time
http://www.geotime.com/Home.aspx
Kapler, Thomas, and William Wright. "GeoTime information
visualization."Information Visualization 4.2 (2005): 136-146.
53
GeoTime
54
Timelines
 3-D Z axis timelines  3-D viewer facing
timelines
55
Example
Using GeoTime to Visualize
Temporal Trajectory Data
 Video
GeoTime v4.0 - 2005 Hurricane Data (youtube)
WHEN THE DURATION
MATTERS
57
Lifeline
 video
58
http://www.cs.umd.edu/hcil/temporalviz/
The TimeViz Browser
 http://survey.timeviz.net/
59
60
References
 Aigner, W., Miksch, S., Schumann, H., &
Tominski, C. (2011). Visualization of time-
oriented data. Springer Science & Business
Media.
 E. Tufte. The Visual Display of Quantitative
Information, 1983

Temporal

  • 1.
  • 2.
    2 Time Series Data Fundamental chronological component to the data set  Random sample of 4000 graphics from 15 of world’s newspapers and magazines from ’74- ’80 found that 75% of graphics published were time series − Tufte From John Stasko’s class slides
  • 3.
    3 Datasets  Each datacase is likely an event of some kind  One of the variables can be the date and time of the event  Examples: sunspot activity, baseball games, medicines taken, cities visited, stock prices, newswires, network resource measures Partially From John Stasko’s class slides
  • 4.
    4 Time Series VisualizationApproaches  Small Multiples  Time-Series Plot  Stacked Graphs  Static State Replacement (Animation)  Brushing and linking
  • 5.
    5 Small Multiples  Smallmultiples - sets of thumbnail sized graphics on a single page  Usage  Enhance dimensionality  Depict motion  Enable comparison  Show alternatives or range of options  Rule  Use the same measures and scale. Graphics and Web Design Based on Edward Tufte's Principles, Larry Gales, Univ. of Washington
  • 6.
  • 7.
    7 Three air pollutantsin six counties in southern California Los Angeles Times, 1979
  • 8.
    8 Mark Bulling publishedon Tableau Public (used without the permission of the author)
  • 9.
    9 Time Series VisualizationApproaches  Small Multiples  Time-Series Plot  Stacked Graphs  Static State Replacement (Animation)  Brushing and linking
  • 10.
    10 A Time SeriesPlot from Tenth Century Inclinations of the planetary orbits as a function of time Part of a textbook of monastery schools, tenth century
  • 11.
    11 Time Table forTrains (1885)
  • 12.
  • 13.
    13 Chart of Importsand Exports (1784)
  • 14.
  • 15.
  • 16.
    Horizon Graph 16 Heer, Jeffrey,Nicholas Kong, and Maneesh Agrawala. "Sizing the horizon: the effects of chart size and layering on the graphical perception of time series visualizations." Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2009.
  • 17.
    Interactive Horizon Graph Video 17 Perin, Charles, Frédéric Vernier, and Jean-Daniel Fekete. "Interactive horizon graphs: improving the compact visualization of multiple time series."Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2013.
  • 18.
    Two tone coloring Saito, Takafumi, et al. "Two-tone pseudo coloring: Compact visualization for one- dimensional data." Information Visualization, 2005. INFOVIS 2005. IEEE Symposium on. IEEE, 2005. 18
  • 19.
  • 20.
  • 21.
  • 22.
    22 Pixel-Oriented Techniques  Recursivepattern arrangements The figure is taken from Dr. D. Keim’s tutorial notes in Infovis 00
  • 23.
    23 Pixel Oriented Techniques Recursive pattern arrangements The figure is taken from Dr. D. Keim’s tutorial notes in Infovis 00
  • 24.
    LastHistory  Aplication: everydaylife  Data: listening history stored with services such as last.fm  Task: allow users to analyze their music listening histories  Metaphor: condensed line graphs 24 Baur, Dominikus, et al. "The streams of our lives: Visualizing listening histories in context." Visualization and Computer Graphics, IEEE Transactions on 16.6 (2010): 1119-1128.
  • 25.
    LastHistory [Dominikus etal. InfoVis 2010] 25
  • 26.
    LastHistory  Video 26 LastHistory -Interactive Visualization of Last.fm Listening Histories and Personal Streams (vimeo)
  • 27.
    27 Spiral Graphs History ofItalian post office A. Gabaglio, 1888
  • 28.
    28 Paper: Visualizing Time-Serieson Spirals [weber et al. Infovis 01]
  • 29.
    Cycle Plots 29 Robbins, NaomiB. "Introduction to Cycle Plots." (2008).
  • 30.
    Cycle Plots 30 Robbins, NaomiB. "Introduction to Cycle Plots." (2008).
  • 31.
    Cycle Plots 31 Robbins, NaomiB. "Introduction to Cycle Plots." (2008).
  • 32.
    32 Time Series VisualizationApproaches  Small Multiples  Time-Series Plot  Stacked Graphs  Static State Replacement (Animation)  Brushing and linking
  • 33.
    33 ThemeRiver – Stackedline graphs  Application: document analysis  Data: temporally involving document collections, such as news collections  Task: reveal a macro-view of thematic changes  Approach: stack line graphs to form a river Havre, Susan, et al. "Themeriver: Visualizing thematic changes in large document collections." Visualization and Computer Graphics, IEEE Transactions on 8.1 (2002): 9-20.
  • 34.
  • 35.
    Baby Name Voyager Application: everyday life  Data: popularity of names  Approach: Themeriver metaphor 35 http://www.babynamewizard.com/voyager
  • 36.
    Stacked Graphs 36 Byron, Lee, andMartin Wattenberg. "Stacked graphs–geometry & aesthetics."Visualization and Computer Graphics, IEEE Transactions on 14.6 (2008): 1245-1252.
  • 37.
  • 38.
    38 Time Series VisualizationApproaches  Small Multiples  Time-Series Plot  Stacked Graphs  Static State Replacement (Animation)  Brushing and linking
  • 39.
    39 Static State Replacement Treat time as a dimension hidden from the display  Divide time into period (time frame, or time point)  Generate a visualization for each time frame  Replace a display of one time frame using that of another time frame  Animations, trails
  • 40.
  • 41.
    Gapminder Trendalyzer  Animatedbubble chart to show trends over time in three dimensions Hans Rosling: No more boring data. TED (Technology, Entertainment, Design) 2006  Video Gapminder World  Demo 41
  • 42.
    Visual Sedimentation  Video 42 Huron,Samuel, Romain Vuillemot, and Jean-Daniel Fekete. "Visual sedimentation." Visualization and Computer Graphics, IEEE Transactions on19.12 (2013): 2446-2455. http://www.visualsedimentation.org/
  • 43.
    Whisper - Twittervisualization  Application: social study  Data: Twitter  Task: answering when, where, and how an idea is dispersed,  Metaphor: Sunflower 43 Cao, Nan, et al. "Whisper: Tracing the spatiotemporal process of information diffusion in real time." Visualization and Computer Graphics, IEEE Transactions on 18.12 (2012): 2649-2658.
  • 44.
  • 45.
    Video 45 Cao, Nan, etal. "Whisper: Tracing the spatiotemporal process of information diffusion in real time." Visualization and Computer Graphics, IEEE Transactions on 18.12 (2012): 2649-2658.
  • 46.
    46 Time Series VisualizationApproaches  Small Multiples  Time-Series Plot  Stacked Graphs  Static State Replacement (Animation)  Brushing and linking
  • 47.
    Brushing and Linking- imMens  Video  3 million Brightkite user checkins 47 Liu, Zhicheng, Biye Jiang, and Jeffrey Heer. "imMens: Real‐time Visual Querying of Big Data." Computer Graphics Forum. Vol. 32. No. 3pt4. Blackwell Publishing Ltd, 2013.
  • 48.
    Brushing and Linking- BirdVis  Application: Ecology  Data: Bird observation records  Task: Understanding the determinants of bird species distributions and their dynamics  Video 48 Ferreira, Nivan, et al. "Birdvis: Visualizing and understanding bird populations."Visualization and Computer Graphics, IEEE Transactions on 17.12 (2011): 2374-2383.
  • 49.
  • 50.
    50 Napoleon’s army inRussia Napoleon’s army in Russia, author: Charles Minard (1781-1870)
  • 51.
    51 Life Circle ofJapanese Beetles Life circle of Japanese Beetles L. Newman, Man and Insects, 1965
  • 52.
    52 GeoTime  A combinedtemporal-spatial space (X, Y, T coordinate space)  Represent place by 2D plane (or maybe 3D topography)  Use 3rd dimension to encode time http://www.geotime.com/Home.aspx Kapler, Thomas, and William Wright. "GeoTime information visualization."Information Visualization 4.2 (2005): 136-146.
  • 53.
  • 54.
    54 Timelines  3-D Zaxis timelines  3-D viewer facing timelines
  • 55.
  • 56.
    Using GeoTime toVisualize Temporal Trajectory Data  Video GeoTime v4.0 - 2005 Hurricane Data (youtube)
  • 57.
  • 58.
  • 59.
    The TimeViz Browser http://survey.timeviz.net/ 59
  • 60.
    60 References  Aigner, W.,Miksch, S., Schumann, H., & Tominski, C. (2011). Visualization of time- oriented data. Springer Science & Business Media.  E. Tufte. The Visual Display of Quantitative Information, 1983