Baruch College/Mount Sinai
                 School of Medicine
             Program in Health Care
          Administration and Policy




Health Data Analysis and
                       ®
   Statistics Using SAS

                  Course Notes
                      STA9000
                      Fall 2009
Health Care Data Analysis and Statistics Using SAS®                                                       2


Health Data Analysis and Statistics Using SAS® Course Notes was developed by Raymond R. Arons.
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.
Health Data Analysis and Statistics Using SAS® Course Notes

Copyright © 2009 Raymond R. Arons. All rights reserved. Printed in the United States of America. No
part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of
the publisher, Raymond R. Arons, Teaneck, New Jersey.

Acknowledgement: I wish to acknowledge the contribution of Victoria L Franke to this manuscript. She
is a published poet, a retired high school English teacher, and a close personal friend. Her generosity of
talent and spirit helped me edit this text and provided me with a sounding board for many of the concepts
presented. Her dedication, combined with an intense interest in the subject matter, resulted in what I hope
to be the quality and accuracy of this manuscript.




Prepared date: 21August09.



Course Description
The course focuses on the applied analysis of public access health care data. The first data set studied is
from the National Center for Health Statistics, The National Hospital Discharge Survey from 2006. With
the permission of the Department of Health and Human Services, Organ Procurement and Transplantation
Network (OPTN), students will have the opportunity to study the nation’s liver transplantation data from
1984 through 2007. From the Office of Statewide Health Planning and Development (OSPHD), students
will have the opportunity to study the 2007 California Hospital Emergency Department data. The course
will apply SAS best practices in the analysis of these data aimed at producing descriptive statistics,
exploratory data analysis (EDA), linear model building, linear model assessment, linear model
interpretation, logistic model building, logistic model assessment, and logistic model interpretation.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Health Care Data Analysis and Statistics Using SAS®                                         3


                                    Table of Contents



Chapter 1 –Navigating SAS Screens,Functions,Icons and Libraries

Chapter 2-Health Data and SAS Functions

Chapter 3-National Hospital Discharge Survey (NHDS

Chapter 4-Organ Procurement Transplantation Network OPTN- Liver Transplants

Chapter 5- Office of Statewide Health Planning & Development (OSHPD) California Emergency
Department Data




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Baruch College/Mount Sinai
                 School of Medicine
             Program in Health Care
          Administration and Policy




Health Data Analysis and
                       ®
   Statistics Using SAS
                  Course Notes
                      STA9000

          Chapter 1 –Navigating
                           SAS
        Screens,Functions,Icons
                   and Libraries
Navigating SAS Screens, Functions, Icons, and Libraries - Lecture 1                                    2


Health Data Analysis and Statistics Using SAS® Course Notes was developed by Raymond R. Arons.
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.
Health Data Analysis and Statistics Using SAS® Course Note

Copyright © 2009 Raymond R. Arons. All rights reserved. Printed in the United States of America. No
part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of
the publisher, Raymond R. Arons, Teaneck, New Jersey.

Prepared date: 24June09.



Course Description
The course focuses on the applied analysis of public access health care data. The first data set studied is
from the National Center for Health Statistics, The National Hospital Discharge Survey from 2006. With
the permission of the Department of Health and Human Services, Organ Procurement and Transplantation
Network (OPTN), students will have the opportunity to study the nation’s liver transplantation data from
1984 through 2007. From the Office of Statewide Health Planning and Development (OSPHD), students
will have the opportunity to study the 2007 California Hospital Emergency Department data. The course
will apply SAS best practices in the analysis of these data aimed at producing descriptive statistics,
exploratory data analysis (EDA), linear model building, linear model assessment, linear model
interpretation, logistic model building, logistic model assessment, and logistic model interpretation.




Prerequisites
Before attending this course, your skills should include:

    •   An understanding of statistical methods obtained in your first semester course STA9307,
        Introduction to Statistics.

    •   Knowledge of clinical coding methods such as the ICD-9-CM diagnosis and procedures along
        with the Medicare and all payer diagnosis-related grouping system (DRGs).

    •   It would be helpful, but not necessary, if you had previous experience using a statistical program
        such as SPSS and/or the Excel Statistical Application.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 1 - Navigating SAS Screens, Functions, and Libraries   3




                              Navigating SAS Screens,
                              Functions, Icons and
                              Libraries
                              Lecture 1




      Objectives

         Learn the housekeeping functions of SAS.
         How to move around screens, there functions and
         importance.
          – editor
          – log
          – output
         Identify the drop down icons and what are there
         functions.
         Create SAS libraries




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 1-Navigating SAS Screens, Functions, Icons and Libraries                                      4




                                        Double Click on SAS 9.2




                                                                  SAS Loading




This is the first event that indicates your SAS 9.2 is booting up. It can vary in real time from 6 seconds to
3 minutes depending upon your computer speed and RAM.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 1 - Navigating SAS Screens, Functions, and Libraries                                               5




      SAS Loaded



                                             SAS Log Screen




                                            SAS Editor Screen




This is the first set of screens when you open SAS. The upper screen is the log screen which tells you
how your program ran and if there are any errors. It will indicate the data read, and the SAS functions
performed along with the duration for each. It is one of the most important screens since it identifies your
errors and provides you with suggested tools to fix your code. Always check your log after you run any
program. The initial log screen, which is presented above, indicates the time needed to boot-up SAS,
information such as site license (City University of New York – T/R, Site 0070007378), and what PC
platform you are operating on. You are asked your site name and site license from SAS Tech-Support to
confirm you as a CUNY user. They will help on line or over the phone to solve coding or any SAS
question. The number of SAS tech support in North America is 919-677-8008.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 1-Navigating SAS Screens, Functions, Icons and Libraries                                  6




                                                 Log Screen




                                                  Editor Screen




The Editor Screen is where you write your SAS code. Make sure you are using the Enhanced Editor,
which will provide you with prompts if your code is in error by turning red. The colors of black, blue,
green and violet tend to be good signs that your coding is OK. .




                                                 Output Screen




                                                  Log Screen




                                                  Editor Screen




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 1 - Navigating SAS Screens, Functions, and Libraries                                               7

You can view all three screens-Output, Log and Editor- in a horizontal or vertical window. The above is
horizontal. This gives you the ability to watch your program execute in the log, and view the output. To
select horizontal versus vertical, you select the Window drop-down menu.




The above is the vertical screen configuration. Notice the three tabs at the bottom of the SAS screen
which reflect the three windows that are open. The highlighted blue above the window indicates you are
ready to write some code.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 1-Navigating SAS Screens, Functions, Icons and Libraries                                   8




                            File Drop Down Menu




The above is the file drop-down menu that has a number of functions. They will be discussed and used
throughout the course.




                 There are eight (8) drop
                 down, File, Edit, Tools,
                 Run, Solutions, Window
                 and Help.
                                             There are 15 icons in the following order:
                                             Erase Page, Select Folder for Saving, Save,
                                             Print, Print Preview, Cut, Copy, Paste, Undo,
                                             Create Library, SAS Explorer, Run, Clear All
                                             Screens, Break, and Help




                                                                                             ...




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 1 - Navigating SAS Screens, Functions, and Libraries                                     9

It should be noted that your professor has not used many of these functions. However, this has
been a useful exercise to review what I know and what I do not know.


           1. Similar to the Word, the File drop down menu includes New Program, Open
              Program, Close a Screen, Append, Open Object, Save, Save As, Save As Object,
              Import Data Export Data, Page Setup, Print, Print Setup, Print Preview, Print,
              Send Mail and a list of the last four (4) SAS programs you used.
           2. The Edit drop down menu has Undo Cut, Copy, Paste, Delete, Rename, Select
              All, Deselect All, Copy Item, and Move Item.
           3. The View menu has Large Icons, Small Icons, List Details, Show Tree, Up One
              Level, Refresh, Reorder Columns, Enhanced Editor, Program Editor, Log, Output,
              Graph, Results, Explorer, and Contents Only.
           4. The Tools menu has Query, Table Editor, Graphics Editor, Image Editor, Text
              Editor, New Library, New File Shortcut, Customize and Options. Options offer
              Log, System Keys Color, Fonts, Titles, Footnotes, Preferences, and Change
              Current Folder. I have used the options – Fonts to make my editor fonts larger for
              the class to read.
           5. Solutions have many functions also that I have yet to learn and they include
              Analysis, Development and Programming, Reporting, Accessories, ASSIST,
              Desktop, and EIS/OLAP Application Builder.
           6. Windows contains Minimize All Windows, Cascade, Tile Vertically, Tile
              Horizontally, Resize, Size Docking, Docked, Log, and Editor, which includes
              Untitled, Explorer, Output, and Result.
           7. Lastly, the Help drop down menu offers off-line help. Using this Window, there is
              a range of SAS help and documentation functions. This includes, Getting Started
              with SAS, Learning SAS Programming, SAS on the Web and About SAS 9.2
              (This allows you to access your site license computer specifications etc.)




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 1-Navigating SAS Screens, Functions, Icons and Libraries                  10




             Creating a SAS Library
                 A SAS Library is similar to a folder in a Windows PC.
                 It allows SAS data sets to be stored and accessed.
                 Two of our data sets are SAS data sets.
                  – OPTN Liver Transplants
                  – California ED Visits
                 The following series of slides will demonstrate how to
                 create libraries for these data sets.




     Creating a SAS Library –optn.liver




                                                                   continued...


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 1 - Navigating SAS Screens, Functions, and Libraries                      11




      Creating a SAS Library - optn.liver




                                                This is the ICON SAS
                                                Explorer which will show
                                                you the newly created
                                                data set optn.liver. Left
                                                click it.



                                                                   continued...




      Creating a SAS Library –optn.liver




                                                                   continued...




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 1-Navigating SAS Screens, Functions, Icons and Libraries                       12




      Creating a SAS Library –optn.liver




                                                        This is the file
                                                        called optn.liver




                                                                        continued...

If you left click on the file, you will be able to see your SAS data set optn.liver.



      Creating a SAS Library –optn.liver




                                            Variable name, values
                                            and observation



Above are the first 17 variables and 28 observations of the SAS data set optn.liver




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 1 - Navigating SAS Screens, Functions, and Libraries                                              13




      Creating a SAS Library –osphd.cal2007




The New Library Wizard again has three necessary entries. They are:
   1. Name – This in our case is OSPHD for the 2007 California ED visit data.
   2. Check the box enable at start up so it always is available fir each SAS session.
   3. Identify the location of the file trough the brows option. In our case, the data is on the C drive in
      folder DATA9000.
   4. When all of the above is completed, left click OK.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 1-Navigating SAS Screens, Functions, Icons and Libraries   14




     Creating a SAS Library –osphd.cal2007




                                    This is the file called
                                    osphd.cal2007




     Creating a SAS Library –osphd.cal2007




                                           Variable name, values
                                           and observation




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Baruch College/Mount Sinai
                 School of Medicine
             Program in Health Care
          Administration and Policy




Health Data Analysis and
                       ®
   Statistics Using SAS

              Course Notes
                  STA9000
      Chapter 2-Health Data
        and SAS Functions
2


Health Data Analysis and Statistics Using SAS® Course Notes was developed by Raymond R. Arons.SAS
and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.
Health Data Analysis and Statistics Using SAS® Course Note

Copyright © 2009 Raymond R. Arons. All rights reserved. Printed in the United States of America. No
part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of
the publisher, Raymond R. Arons, Teaneck, New Jersey.

Prepared date 15August09
Chapter 2-Health Data and SAS Functions                                3




                                Health Data and SAS
                                Functions
                               Lecture 2




       The Forms of Raw Data
           Magnetic Tape
           Cartridge
           CD and DVD ROM
           File Transport (FTP) over the Internet


                                    40-160 MB



                                                      10-60 GB




                                                                 ...




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2 - Health Data and SAS Functions                             4




       Data and Definitions
           An observation (OBS) in a string of letters and/or
           numbers with what is known as a logical record
           length (LRECL).
           A variable is located in positions along the continuum
           of these strings as either individual or a group of
           numbers and/or characters.
           Variables with values that are pre-identified by their
           names are found in SAS data sets.
           Observations (OBS) reflect the number of strings of
           data, also known as cases, patients, subjects, and
           visits.




      What are Character, Numeric, Continuous
      and Qualitative Variables?
          Examples of Character Values are: 01, 022, 001,
          0003, E234, V30.1, 00222, 499_broadway, 07666
          and t2000.
          Numeric Values: 1, 230, 12.1, 0, 3245, 6890,
          1000000, 200, 20, 2 and 0.
          Continuous Variables: age 0-100 years, length of stay
          1-1000 days, height 50-80 inches, weight 100-350 lbs,
          temperature 0-110 ºF.
          Qualitative Variables : race (01, 02, 03, 04, 05, sex
          (M,F), ethnicity (1, 2), payer (01,02,04,06,07), hospital
          disposition (01, 02, 03, 04, 05, 20).




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2-Health Data and SAS Functions                                                            5




       What Does Some Data Look Like?
        Flat Fixed Length ASCII File
       OSRA    D        D        D        D   D P A P      P
       BEAG    X        X        X        R   I A D R      R
       SXCE    1        2        3        G   S Y M 1      2
       1234567890123456789012345678901234567
       1112447234234338888812703020321303456
       2112447234234338888812703020321303456
       3223455558312121222222201020145674567
       4131122221212123334543003080477745123
       5143374551434341212301405090473847778
         ------Logical Record Length----(LRECL=37 OBS




      ASCII Data Set                               OBS




   LRECL




Most data sets such as NHDS06 can be opened in Notepad or Word and you can see the observations,
string of numbers, and logical record length.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2 - Health Data and SAS Functions                                                               6




        SAS Data Set                               Variables




  obs




SAS has become the standard of data sets such as the OPTN Liver transplant data in which are seen the
variable names and their values. They only can be opened in SAS.




        Binary Data                                              OBS

        10000010000111010100000100010010010
        20000010000111010100000100010010010
        30000010000111010100000100010010010
        40000010000111010100000100010010010
        50000010000111010100000100010010010
        60000010000111010100000100010010010
        70010101010101010101000000101010101
        LRECL




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2-Health Data and SAS Functions                                                                     7




       SAS Statements to be Covered
           Data
           Infile
           Input
           Keep
           Indicator Variables
           Truth Logic
           Class
           Where
           Procs




      The Data Step
      data    nhds06;
      data    caid2008;
      data    care2004;
      data    sta9000;
      data    caled2007;


      Limit data name to 32 characteristics
      Do not forget semicolon;;;;;;;;;;;;;;;;;;;;;




The data step is the beginning of your program. It is like the first bookend on a bookshelf and all that
follows are the books that contain the functions, modifications and preparations that you desire prior to
beginning your data analysis. The second bookend is the SAS procedures or PROCS which range from
basic data housekeeping to complex statistical analysis.


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2 - Health Data and SAS Functions                                                                 8




      Example INFILE Statements

       Infile      'C:data9000nhds06.pu.txt‘ lrecl=88;
       Infile      'C:data90test.txt‘lrecl=250 obs=10;
       Infile      'C:data9000cal2007 lrecl=999;
       Infile      'C:data2000osphd.dat‘ lrecl=200;
       Infile      'C:data3000nhds06.pu.txt‘ lrecl=88;




The Infile points to where your raw data set is located. It is like your compass (GPS) to identify the
location of your data, name, observation length (LRECL) and the opportunity to select the number of
observations you choose to study. Note: quotations are placed from the beginning of the location to the
end of the name of the data set. Most errors begin with not correctly identifying the location of your data
set.



      The IF Statement
      Located within the data statement and in some instances
      after the input statement. The if statement selects specific
      observations in your data that meet the selected criteria
      and ignores all other obs.
      IF drg=127;
      IF drg=95 or drg=96;
      IF drg=121 and age GT 80;
      IF dx1=‘4101’;
      IF dx1=‘042’ and age GT 70;
      IF sex=‘F’ and drg=483;




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2-Health Data and SAS Functions                                         9




      SAS Program Outline
      Data Statement – Name data set                   data=nhds;


          Infile Statement – Where is            C:STA9000NHDS06.PU.TXT;
          the data located?
                                                    input @   @1 SVYEAR   $2.
                                                              @3 EWBORN    1.
                                                              @4 AGEUNITS 1.
                                                              @5AGE        2.


                Input Statements

                                                   white = (race=‘w’);
           Change variables in data set –i.e.,
                                                   black = (race=‘b’);
           indicator variables, etc.               asian = (race=‘a’);


                                                  proc means data=nhds;
           PROC Means - Example                   var white black asian;
           SAS analysis of data                   title ‘mean analysis’;
                                                  run;




      The Indicator Variable
          The indicator variable takes a qualitative
          measurement such as male (M), female (F), white
          (W), black (B), death (20), discharges home (1),
          physician referral (2) , admitted from a clinic (3),
          transferred from a nursing home (4), etc., and converts
          it to a quantitative (numeric) value equal to 1 if it is true
          and 0 if it did not occur.
          This then allows the SAS PROCS to perform statistical
          analysis of the data.
          For example, you cannot get a mean value from five
          Ms and seven Fs. You can get means from five ones
          (1) and seven zeros (0).




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2 - Health Data and SAS Functions
10



       Indicator Variables
       /****ethnic indicator variables ***/
       hispanic         = (eth='E1');
       non_hispanic = (eth='E2');
       hispanic_unk = (eth='99');
       hispanic_blnk = (eth='*')

       /****gender indicator variables ***/
       male            = (sex='M');
       female          = (sex='F');
       othgen          = (sex='U');
       unkgen          = (sex='*');


                                                      continued...




      Indicator Variables
      /****race indicator variables ***/

      native_american          = (race='R1');
      asian                    = (race='R2');
      black                    = (race='R3');
      hawaiian                 = (race='R4');
      white                    = (race='R5');
      othrace                  = (race='R9');
      unkrace                  = (race='99');
      race_blk                 = (race='*');




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2-Health Data and SAS Functions                     11




      Creating New Variables from Old
      If age=1 then age_group=‘agelt25’;
      If age=2 then age_group=‘age25_44’;
      If age=3 then age_group=‘age45_64’;
      If age=4 then age_group=‘age65_69’;
      If age=5 then age_group=‘age70_74’;
      If age=6 then age_group=‘age75_79’;
      If age=7 then age_group=‘age80_84’;
      If age=8 then age_group=‘age85_90’;
      If age=9 then age_group=‘agegt_90’;




      SAS Print Procedure
      proc print data=nhds06;
      title ‘print out all variables and observations’;
      run;
      will print all variables and all observations
      proc print data=nhds06 (obs=1000);
      title ‘print out all variables and just 1000
      observations’;
      run;
      will print all variables and only 1000 observations
      proc print data=nhds06 data=nhds06;;
      var age sex;
      will print only age and sex and all observations




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2 - Health Data and SAS Functions
12



      PROC Freq
     proc freq data=nhds06;
     title ‘Frequency Distribution of All data in nhds06’;
     run;
     Will perform a frequency on all data in
     input statement.
     proc freq data=nhds06;
     tables age sex race;
     title ‘Frequency Distribution of age sex and race in nhds06’;
     run;
     Will do frequency distribution on only age,sex & race.
     proc freq data=nhds06;
     tables age*sex*race;
     title ‘Frequency Distribution of age by sex by race in nhds06’;
     run;
     Will perform combined table of age,sex and race




Example of a PROC Freq for a range of demographic variables.
                                                             Cumulative    Cumulative
                agecat5             Frequency     Percent     Frequency      Percent
                ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                masked age group      207909        4.76        207909         4.76
                0                        198        0.00        208107         4.77
                Under 1 year          161311        3.70        369418         8.46
                1-17 years            908157       20.81       1277575        29.27
                18-34 years          1111672       25.47       2389247        54.74
                35-64 years          1465023       33.57       3854270        88.31
                65 years & over       510278       11.69       4364548       100.00



                                                   Sex

                                                           Cumulative    Cumulative
                   sex            Frequency     Percent     Frequency      Percent
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                   masked sex       442466       10.14        442466        10.14
                   female          2130477       48.81       2572943        58.95
                   male            1791507       41.05       4364450       100.00
                   unknown sex          98        0.00       4364548       100.00



                                                Ethnicity


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2-Health Data and SAS Functions                                                13


                                                           Cumulative    Cumulative
                 eth              Frequency     Percent     Frequency      Percent
                 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                 masked ethnic      846250       19.39        846250        19.39
                 ukn_ethnic         168051        3.85       1014301        23.24
                 Hispanic          1190871       27.29       2205172        50.52
                 non_Hispanic      2159376       49.48       4364548       100.00



                                               Race

                                                            Cumulative    Cumulative
                race               Frequency     Percent     Frequency      Percent
                ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                masked race          710284       16.27        710284        16.27
                unknown race         126835        2.91        837119        19.18
                native american       11001        0.25        848120        19.43
                asian                115621        2.65        963741        22.08
                black                379891        8.70       1343632        30.79
                hawaiian              14802        0.34       1358434        31.12
                white               2311007       52.95       3669441        84.07
                other race           695107       15.93       4364548       100.00




      PROC Tabulate SAS code
      The below example of a proc tabulate allows for
      tabulating data and simultaneously doing mean values of
      los within the analysis age_group, and sex.

      proc tabulate data=nhds06;
      class age_group male;
      var los;
      tables age_group all,
      (age_group, all*(los*(n*f=5. mean*f=4.1))
      /RTS=10;




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2 - Health Data and SAS Functions
14
This is a partial example of as Proc Tabulate of rank order by county deaths.
                  Example of Proc Tabulate          Rank order of the County ED Deaths

                    „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ†
                    ‚                            ‚        died         ‚          ‚
                    ‚                            ‡ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ‰          ‚
                    ‚                            ‚    0     ‚    1     ‚   All    ‚
                    ‚                            ‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰
                    ‚                            ‚ age_yrs ‚ age_yrs ‚ age_yrs ‚
                    ‚                            ‡ƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒ‰
                    ‚                            ‚      ‚Me-‚      ‚Me-‚      ‚Me-‚
                    ‚                            ‚ N    ‚an ‚ N    ‚an ‚ N    ‚an ‚
                    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                    ‚patco                       ‚      ‚   ‚      ‚   ‚      ‚   ‚
                    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰      ‚   ‚      ‚   ‚      ‚   ‚
                    ‚Los Angeles                 ‚632660‚ 31‚   904‚ 62‚633564‚ 31‚
                    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                    ‚San Diego                   ‚199414‚ 36‚   246‚ 64‚199660‚ 36‚
                    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                    ‚Orange                      ‚174899‚ 34‚   252‚ 66‚175151‚ 34‚
                    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                    ‚San Bernardino              ‚186261‚ 29‚   261‚ 59‚186522‚ 29‚
                    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                    ‚Riverside                   ‚177735‚ 32‚   252‚ 62‚177987‚ 32‚
                    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                    ‚Alameda                     ‚121411‚ 35‚   184‚ 62‚121595‚ 35‚
                    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                    ‚Sacramento                  ‚ 98329‚ 37‚   242‚ 60‚ 98571‚ 37‚
                    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                    ‚Santa Clara                 ‚ 91068‚ 34‚   126‚ 66‚ 91194‚ 34‚




      PROC Means with Indicator Variables
      proc means data=nhds06;
      var
      hispanic non_hispanic hispanic_unk hispanic_blnk
      male female othgen unkgen native_american asian
      black hawaiian white othrace unkrace race_blk
      ;
      title ‘Analysis of NHDS data’;
      run;




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2-Health Data and SAS Functions                                                           15

This is an example of a PROC Means of the homeless in California ED visits.
                            Means of homeless Variable in the Last Half 2007 California EDs
               1       46368    age_yrs                   23643      39.0247431       922662.00
                                agelt1                    46368       0.0124871     579.0000000
                                age1to17                  46368       0.0972222         4508.00
                                age18to34                 46368       0.2917745        13529.00
                                age35to64                 46368       0.5240252        24298.00
                                agege65                   46368       0.0540675         2507.00
                                aknagecat                 46368       0.0176415     818.0000000
                                male                      46368       0.5776398        26784.00
                                female                    46368       0.2785542        12916.00
                                unkgen                    46368       0.1431159         6636.00
                                hispanic                  46368       0.1674646         7765.00
                                non_hispanic              46368       0.4510870        20916.00
                                hispanic_unk              46368       0.0838941         3890.00
                                hispanic_blnk             46368       0.2975543        13797.00
                                white                     46368       0.4684265        21720.00
                                black                     46368       0.1289683         5980.00
                                native_american           46368       0.0037957     176.0000000
                                asian                     46368       0.0097481     452.0000000
                                hawaiian                  46368     0.000905797      42.0000000
                                othrace                   46368       0.0896955         4159.00
                                unkrace                   46368       0.0464329         2153.00
                                race_blk                  46368       0.2520273        11686.00
                                selfpay                   46368       0.4831134        22401.00
                                othnonfed                 46368       0.0948283         4397.00
                                ppo                       46368       0.0333420         1546.00
                                pos                       46368       0.0016606      77.0000000
                                epo                       46368     0.000560732      26.0000000
                                carehmo                   46368       0.0087560     406.0000000




                             PROC Reg SAS Code
                             The below is an example of a multivariate regression
                             analysis. This analysis measures the influence of the
                             effect variables (independent) of age, race, sex and
                             outcome upon a response (dependent) variable length of
                             hospital stay (los).
                             proc reg data=nhds06;
                             model los=age male black death;
                             title ‘Regression analysis of response
                             variable los and demographic effects’;
                             run;
                             quit;




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2 - Health Data and SAS Functions
16
                             Linear regression for age of ED patients in California in 2007

                                            The REG Procedure
                                              Model: MODEL1
                                      Dependent Variable: age_yrs

                       Number of Observations Read                          4364548
                       Number of Observations Used                          2887049
                       Number of Observations with Missing Values           1477499



                                            Analysis of Variance

                                                  Sum of             Mean
          Source                      DF         Squares           Square    F Value      Pr > F

          Model                       6        182211742        30368624     61709.6      <.0001
          Error                  2.89E6       1420775878       492.12165
          Corrected Total        2.89E6       1602987621



                        Root MSE                22.18382     R-Square       0.1137
                        Dependent Mean          33.59664     Adj R-Sq       0.1137
                        Coeff Var               66.02987



                                            Parameter Estimates

                                        Parameter          Standard
               Variable        DF        Estimate             Error     t Value      Pr > |t|

               Intercept        1        36.80474          0.02970      1239.05       <.0001
               male             1        -3.76998          0.02631      -143.28       <.0001
               white            1         5.00609          0.02814       177.87       <.0001
               hispanic         1       -13.43844          0.02848      -471.90       <.0001
               selfpay          1        -1.99993          0.03499       -57.16       <.0001
               snf              1        37.18328          0.24254       153.31       <.0001
               LosAngeles       1         0.52051          0.03214        16.19       <.0001




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2-Health Data and SAS Functions                                                        17




      PROC LOGIST SAS Code
      Below is an example of a SAS PROC LOGIST measuring a
      qualitative response variable death and the influence of effects of
      age, race, and sex.

      PROC LOGIST data=nhds06 des;
      model death=age male black;
      Title ‘The demographic effects that influence death
      at discharge’;
      run;
      quit;




                        Logistic Regression for in Homeless Visits to California EDs in 2007

                                          The LOGISTIC Procedure

                                           Model Information

                           Data Set                          WORK.ED2007
                           Response Variable                 homeless
                           Number of Response Levels         2
                           Model                             binary logit
                           Optimization Technique            Fisher's scoring



                                Number of Observations Read     4364548
                                Number of Observations Used     4364548
                                      Type 3 Analysis of Effects

                                                         Wald
                             Effect         DF     Chi-Square      Pr > ChiSq

                             agecat5         6      101425783          <.0001
                             sex             3     63393608.4          <.0001
                             race            7     32233931.4          <.0001
                             eth             3     46386687.8          <.0001



                              Analysis of Maximum Likelihood Estimates

                                                    Standard           Wald
              Parameter         DF     Estimate        Error     Chi-Square     Pr > ChiSq


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2 - Health Data and SAS Functions
18

              Intercept           1     -5.2457     0.000097       2925199665       <.0001
              agecat5     *       1     -1.2673     0.000714       3149519.81       <.0001
              agecat5     0       1     59.1960     1.3203E9           0.0000       1.0000
              agecat5     2       1      0.0727     0.000291       62445.0935       <.0001
              agecat5     3       1      0.8342     0.000187       19798648.4       <.0001
              agecat5     4       1      1.1877     0.000134       78301886.1       <.0001
              agecat5     5       1      0.1294     0.000384       113313.412       <.0001
              sex         *       1      0.9567     0.000235       16634980.2       <.0001
              sex         M       1      0.8979     0.000131       46758637.3       <.0001
              sex         U       1     20.4739       6.8995           8.8059       0.0030
              race        *       1     -0.3412     0.000182       3504440.60       <.0001
              race        99      1     -1.0485     0.000437       5768647.87       <.0001
              race        R1      1     -0.0646      0.00155        1741.0541       <.0001
              race        R2      1     -1.0437     0.000844       1528065.56       <.0001
              race        R4      1     -1.0865      0.00253       184309.705       <.0001
              race        R5      1     -0.5595     0.000148       14306875.6       <.0001
              race        R9      1     -0.8255     0.000313       6939869.22       <.0001
              eth         *       1      0.7271     0.000170       18353359.9       <.0001
              eth         99      1      1.6103     0.000304       28029136.3       <.0001
              eth         E1      1      0.0155     0.000240        4199.1113       <.0001



                                            Odds Ratio Estimates

                                                  Point            95% Wald
                        Effect                 Estimate        Confidence Limits

                       agecat5 * vs 1         0.282       0.281       0.282
                       agecat5 0 vs 1      >999.999      <0.001    >999.999
               Logistic Regression for in Homeless Visits to California EDs in 2007

                                     The LOGISTIC Procedure
WARNING: The validity of the model fit is questionable.

                                            Odds Ratio Estimates

                                                  Point            95% Wald
                        Effect                 Estimate        Confidence Limits

                        agecat5   2 vs 1          1.075       1.075         1.076
                        agecat5   3 vs 1          2.303       2.302         2.304
                        agecat5   4 vs 1          3.280       3.279         3.280
                        agecat5   5 vs 1          1.138       1.137         1.139
                        sex       * vs F          2.603       2.602         2.604
                        sex       M vs F          2.455       2.454         2.455
                        sex       U vs F       >999.999    >999.999      >999.999
                        race      * vs R3         0.711       0.711         0.711
                        race      99 vs R3        0.350       0.350         0.351
                        race      R1 vs R3        0.937       0.935         0.940
                        race      R2 vs R3        0.352       0.352         0.353
                        race      R4 vs R3        0.337       0.336         0.339
                        race      R5 vs R3        0.571       0.571         0.572
                        race      R9 vs R3        0.438       0.438         0.438
                        eth       * vs E2         2.069       2.068         2.070
                        eth       99 vs E2        5.004       5.001         5.007
                        eth       E1 vs E2        1.016       1.015         1.016

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2-Health Data and SAS Functions                                            19



                   Association of Predicted Probabilities and Observed Responses

                      Percent Concordant           69.1   Somers' D    0.451
                      Percent Discordant           24.0   Gamma        0.484
                      Percent Tied                  6.9   Tau-a        0.009
                      Pairs                200225370240   c            0.725




      Some of my SAS Rules
          Save your work after each minute of coding.
          The number one error is a missing semicolon;;;;;
          The number two error is a missing semicolon;;;;;
          After you submit your work, make it a habit to look at
          your log for errors.
          SAS is not case sensitive, but using lower case is a
          good practice.
          A little OCD is very helpful to diagnosing your code for
          errors.
          Relax and enjoy learning. Your PC will never break.
          If it does not run, ask for help.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 2 - Health Data and SAS Functions
20




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Baruch College/Mount Sinai
                 School of Medicine
             Program in Health Care
          Administration and Policy




Health Data Analysis and
                       ®
   Statistics Using SAS

            Course Notes
                  STA9000
        Chapter 3-National
        Hospital Discharge
          Survey (NHDS)
2


Health Data Analysis and Statistics Using SAS® Course Notes was developed by Raymond R. Arons.
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.
Health Data Analysis and Statistics Using SAS® Course Note

Copyright © 2009 Raymond R. Arons. All rights reserved. Printed in the United States of America. No
part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of
the publisher, Raymond R. Arons, Teaneck, New Jersey.

Prepared date 29June09.




                                         TABLE OF CONTENTS
Lecture 3-NHDS                                                                               3

1. National Hospital Discharge Survey Description                                       4

2. Downloading the NHDS from the NCHS Web Site                                          10
3. NHDS Sample Data File Documentation                                                  13
4. NHDS Regulations                                                                     23
5. The NHDS SAS Input and Labels Statement                                              25

6. The NHDS Data, Infile, Input, Labels, PROC Contents, and PROC Freq Statements        27
7. SAS Format Statements for NHDS                                                       35
8. Proc Frequency with Formats Statements                                               43
9. Exercise 3.1                                                                         46
10. SAS Code for NHDS Indicator and Truth Logic Variables                               47
11. Exercise 3.2                                                                        52
12 Multivariate Linear Regression (Proc Reg) Model of Days of Care (DOC)                53
13. Exercise 3.3                                                                        55
14. Logistic Regression Model for the Uninsured (self pay)                              56
15. Exercise 3.4                                                                        61
16. Proc Tabulate to Identify the Dx Differences between the Uninsured and Insured 62
17. Exercise 3.5                                                                        64


APPENDEX 1 Exercise Answers                                                             65
   Exercise 3.1                                                                         65
   Exercise 3,2                                                                         74
   Exercise 3.3                                                                         82
   Exercise 3.4                                                                         86
   Exercise 3.5                                                                         93
APPENDIX 2 NHDS Published Paper with Multivariate Analysis                              99




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                 4




                            The National Hospital
                            Discharge Survey
                            (NHDS)
                           Lecture 3




     Objectives
         How to Download National Hospital Discharge Survey
         (NHDS) from the CDCs National Center for Health
         Statistics (NCHS).
         Create a file on your C drive to store all data and
         documentation identified as C:Data9000.
         Download via FTP 2006 NHDS Data and
         Documentation.
         Describe the NHDS public-use data files.
         Pose the range of potential study questions.
         Write all of the SAS code to analyze the NHDS data.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                       5




      History of NHDS
          In 1962 the National Center for Health Statistics
          began exploring the possibilities for surveying
          hospitals nationally to measure the morbidity and
          demographics of patients cared for in the nation’s
          hospitals.
          A national advisory committee was established and in
          1963 the School of Public Health of the University of
          Pittsburgh demonstrated the feasibility of such a
          program.
          In 1964, with the support of the American Hospital
          Association and the American Medical Association
          and elements of the US Public Health Service, the
          first NHDS was initiated.




      History of NHDS – Data Source
          The National Hospital Discharge Survey (NHDS)
          covers discharges from noninstitutional hospitals,
          excluding Federal, military, and Veterans
          Administration hospitals, located in the 50 States and
          the District of Columbia. Only short-stay hospitals with
          an average length of stay for all patients of less than
          30 days are included in the survey.
          In 2006, the sample consisted of 501 hospitals. Of
          these hospitals, 23 were found to be out-of-scope
          (ineligible) because they went out of business or
          otherwise failed to meet the criteria for the NHDS
          universe. Of the 478 in-scope (eligible) hospitals, 438
          hospitals (92%) responded to the survey.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                     6




      History of NHDS
          NCHS has conducted the NHDS continuously since
          1965. The original sample was selected in 1964 from
          a frame of short-stay hospitals listed in the National
          Master Facility Inventory (NMFI).
          In 1988, the NHDS was redesigned to provide
          geographic sampling comparable to other surveys
          conducted by the NCHS; to update the sample of
          hospitals selected into the survey; and to maximize
          the use of data collected through automated systems.




     Sample Design Benefits
         The unique stratified sample design allows
         researchers for 2006 to study 376,328 hospital
         discharges to measure the clinical and demographic
         characteristics of the estimated 6,000 short term
         hospitals and 34.8 million discharges.
         For example, in 2006 the estimated number of
         discharges from short-stay hospitals who were women
         was 20,864,000. This is 59.9 percent of the estimated
         34,854,000 total discharges for that year.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                         7




     Example Analysis Questions from NHDS
         What are the differences in diseases treated by acute-
         care hospitals for patients with and without insurance?
         How does breast surgery vary by region, age, race, and
         marital status?
         How does radical prostectomies differ by region, age,
         race, and payer over the past decade?
         Across the nation, and by hospital ownership, are there
         significant differences between Medicaid and non-
         Medicaid patients having interventional cardiac
         procedures and cardiac surgery?




                                                        continued...




     Example Analysis Questions from NHDS
         How does back surgery vary by region, age, race, and
         marital status?
         How has acute myocardial infarction differ by region,
         age, race, and payer over the past decade?
         Does low cesarean rates correlate with increase in
         birth trauma when region, race, age, and payer are
         considered?




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                           8




     NHDS Specifications
         Data Set Name: NHDS06.PU.TXT
         Record Length 88
         Number of Records 376,328
         ASCII Format




     NHDS Variables
          SVYEAR           = 'Last two digits of survey year'
          NEWBORN          = 'Newborn infant flag'
          AGEUNITS         = 'Units for age'
          AGE              = 'Age in years, months, or days'
          SEX              = 'Patient sex'
          RACE             = 'Patient race'
          MARSTAT          = 'Marital status of patient'
          DISC_MON         = 'Month of discharge'
          DISCSTAT         = 'Status at discharge‘                  N
          DOC              = 'Number of days of care'               u
                                                                    m
                                                                    b
                                                                    er
                                                          continued...
                                                                    of




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                           9




      NHDS Variables
          LOSFLAG         = 'Zero length of stay flag'
          REGION         = 'Geographic region of hospital'
          BEDSIZE         = 'Bedsize grouping for hospital'
          OWNER          = 'Ownership of hospital'
          WEIGHT         = 'Analysis weight'
          CENTURY        = 'First two digits of survey year'
          DX1            = 'ICD-9-CM diagnosis code - first'
          DX2            = 'ICD-9-CM diagnosis code – second'
          DX3            = 'ICD-9-CM diagnosis code - third'
          DX4            = 'ICD-9-CM diagnosis code - fourth‘
          DX5            = 'ICD-9-CM diagnosis code - fifth'


                                                                    continued...




           NHDS Variables
                 DX6    = 'ICD-9-CM diagnosis code - sixth'
                 DX7    = 'ICD-9-CM diagnosis code - seventh'
                 PD1    = 'ICD-9-CM procedure code - first'
                 PD2    = 'ICD-9-CM procedure code - second'
                 PD3    = 'ICD-9-CM procedure code - third'
                 PD4    = 'ICD-9-CM procedure code - fourth'
                 ESOP1 = 'Principal expected source of payment'
                 ESOP2 = 'Secondary expected source of payment'
                 DRG           = 'Diagnosis-related group'
                 ADM_TYPE      = 'Type of admission'
                 ASOURCE       = 'Source of admission'




Before you download files, create on your C drive a new file called Data9000. This is where to store all of
the data and documentation for the course. (C:DATA9000)




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                     10

2. Downloading The NHDS from the NCHS Web Site




Go to the Google site and enter NHDS. This will send you to the following URL
www.cdc.gov/nchs/about/major/hdashd/nhds.htm. The site contains data for the National Hospital
Discharge (NHDS) and Ambulatory Surgery Data (NHAS). We are interested in obtaining the NHDS data
and documentations identified as the survey description. The latest year available at printing was 2006.




                                             Data Files




                                              Documentaion Files




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                   11

Scroll down to the location above that is identified as Public Use Data File and left click on
NHDS. The following screen will appear.




                                                   Survey Documentation




                                                          Agreement File




                                                          SAS Input Code




This screen above contains the (3) PDF documentation files:
(NHDS_2006_Documentation.PDF); the confidentiality agreement file (NHDS06readme.txt);
and SAS Input Code. The documentation file will contain the survey description and methods. It
also identifies all of the variables, the number of observations in the data set and the location of
the variables in each observation. In addition, the length of each observation (LRECL) can be
determined in this documentation either in the narrative or from position of the end of the last
variable. As shown, the data for years 1996 through 2006 are available for analysis of disease,
insurance, and mortality trends. Upon downloading, transfer all three files to C:STA9000 files.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                               12




The name of the NHDS 2006 file when downloaded is NHDS06.PU.TXT.




Below are eleven (11) selected pages out of the 71 pages of NHDS_2006_Documentation.PDF containing
all of the documentation associated with the survey.



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                              13

3. NHDS SAMPLE DATA FILE DOCUMENTATION

 NHDS is systematic random sample of discharges selected from each sampled hospital.
 A report on the design and development of the original NHDS has been published (3).


 In 1988, the NHDS was redesigned to provide geographic sampling comparability with other
 surveys conducted by the NCHS; to update the sample of hospitals selected into the survey;
 and to maximize the use of data collected through automated systems. The 1988 hospital
 sample was drawn from a sampling frame that consisted of hospitals that were listed in the
 April 1987 SMG Hospital Market Database (2), met the above criteria, and began accepting
 patients by August 1987. This sampling frame was used until 2003. In 2003 and 2006, the
 sampling frame was constructed from the “Healthcare Market Index” and the “Hospital
 Market Profiling Solution”, both formerly known as the SMG Hospital Market Database, and
 both produced by Verispan, L.L.C. The hospital sample is updated every three years to allow
 for hospitals that opened later or changed their eligibility status since the previous sample
 update. Updates were performed in 1991, 1994, 1997, 2000, 2003 and 2006.
 When the survey was redesigned in 1988, a modified, three-stage design was implemented.
  Units selected at the first stage of sampling consisted of either hospitals or geographic
 areas, such as counties, groups of counties, or metropolitan statistical areas in the 50 states
 and the District of Columbia. Within sampled geographic areas, additional hospitals were
 selected. Finally at the last stage, discharges were selected within the sampled hospitals
 using systematic random sampling.

 These changes in the survey may affect trend data. That is, some of the differences
 between NHDS statistics based on the 1965-87 sample and statistics based on the sample
 drawn in 1988 may be due to sampling error rather than actual changes in hospital
 utilization.

 Two data collection procedures were used for the survey. The first was a manual system of
 sample selection and data abstraction, used for approximately 55 percent of the responding
 hospitals. The second was an automated method, used for approximately 45 percent of the
 responding hospitals. The automated method involved the purchase of computerized data
 files from abstracting service organizations, state data systems, or from the hospitals
 themselves.
 In the manual system, the sample selection and the transcription of information from the
 hospital records to abstract forms were performed at the hospitals. Of the hospitals using
 this system in 2006, about 25 percent had the work performed by their own medical records
 staff. In the remaining hospitals using the manual system, personnel of the U.S. Bureau of
 the Census did the work on behalf of NCHS. The completed forms, along with sample
 selection control sheets, were forwarded to NCHS for editing, and weighting.
 For the automated system, NCHS purchased files containing machine-readable medical
 record data from which records were systematically sampled by NCHS.




 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                14

3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued)

Admission and Source of Admission. The coding of all variables can be found in section III of
this document which describes the record layout.

Medical Coding and Edits. The medical information that was recorded manually on the
sample patient abstracts was coded centrally by NCHS staff. A maximum of seven
diagnostic codes was assigned for each sample abstract. In addition, if the medical
information included surgical or nonsurgical procedures, a maximum of four codes for these
procedures was assigned. The system currently used for coding the diagnoses and
procedures on the medical abstract forms as well as on the commercial abstracting services
data files is the International Classification of Diseases, 9th Revision, Clinical Modification, or
ICD-9-CM (4).
NHDS usually presents diagnoses and procedures in the order they are listed on the abstract
form or obtained from abstract services; however, there are exceptions. For women
discharged after a delivery, a code of V27 from the supplemental classification is entered as
the first-listed code, with a code designating either normal or abnormal delivery in the
second-listed position. In another exception, a decision was made to reorder some acute
myocardial infarction diagnoses. If an acute myocardial infarction is listed with other
circulatory diagnoses and is other than the first entry, it is reordered to the first position. If
a symptom appears as a first-listed code and a diagnosis appears as a secondary code, the
diagnosis replaces the symptom which is moved back.
Following conversion of the data on the medical abstract to a computer file and combining it
with the automated data files, a final medical edit was accomplished by computer inspection
and by a manual review of rejected records. Priority was given to medical information in the
editing decision.

The methodology for editing the NHDS was revised in the 1996 data year. As before, the
updated edit program was designed to make as few changes as possible in the data, while
following the same general specifications as the previous edit program,. However, there
may be some minor anomalies which would be apparent when examining data over time,
performing trend analyses, or examining combinations of variables. Particular features of
the updated edit program which may affect certain variables are:

When imputation for missing age and sex data is performed, the known distribution of
these variables is maintained, according to categories of the First-Listed Diagnosis.
Procedure codes are no longer reordered. However, if the length of stay is missing for
a discharge, it is imputed based on the first-listed procedure. Principal and additional
expected sources of payment are no longer re-ordered, with
one exception: Self-Pay is listed as the principal source only if there are no other




The Medical Abstract Form (Appendix E) and the automated data contain items relating to
the personal characteristics of the patient, including birth date or age, sex, race, and marital
status, but not name and address; administrative information, including admission and
discharge dates, and discharge status; and medical information, including diagnoses and
surgical and nonsurgical procedures. Since 1977, patient zip code, expected source of
payment, and dates of surgery have also been collected. (Patient date of birth and zip code
are confidential information and are not available to the public). Beginning in the 2001
survey year, two additional items were included in the medical abstract form: Type of

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                           15

3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued)



How to Use the Data File. The NHDS records are weighted to allow inflation to national or
regional estimates. The weight applied to each record is found in location 21-25. To produce
an estimate of the number of discharges, the weights for the desired records must be
summed. To produce an estimate for number of days of care, the weight must be multiplied
by the days of care (location 13-16) and these products are summed. Average length of
stay data can be obtained by dividing the days of care by the number of discharges as
calculated above.
Appendix D contains weighted and unweighted frequencies for selected variables. These
may be used as a cross-check when processing NHDS data. Please note that, beginning in
2003, Chapter 00 – Procedures and Interventions, Not Elsewhere Classified – was added to
the list of frequencies for all-listed procedures on page 58.

Diagnosis-Related Groups (DRGs). Many users of the NHDS data have expressed an
interest in converting the medical data to DRGs. This has been done using DRG Grouper
Programs obtained from the Centers for Medicare and Medicaid Services (formerly HCFA).
The DRGs and the DRG Grouper Programs were developed outside of the National Center for
Health Statistics; any questions about DRGs, other than specific questions about how they
relate to NHDS data, should be addressed elsewhere.


Questions. Questions concerning NHDS data should be directed to:
                      Centers for Disease Control and Prevention
                    National Center for Health Statistics Division of
                    Health Care Statistics Ambulatory and Hospital
                       Care Statistics Branch 3311 Toledo Road
                         Hyattsville, Maryland 20782 Phone:
                       301.458.4321 Fax: 301.458.4032 email:
                                    NHDS@cdc.gov



For more information about the NHDS, visit our website:
http://www.cdc.gov/nchs/about/major/hdasd/nhds.htm




3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued)
Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                         16

REFERENCES
1
 Dennison C, Pokras R. Plan and Operation of the National Hospital Discharge Survey. National Center
for Health Statistics. Vital Health Stat 1 (39). 2000.
http://www.cdc.gov/nchs/data/series/sr_01/sr01_039.pdf
2
SMG Marketing Group, Inc. Hospital Market Database. Chicago: Healthcare Information Specialists,
Chicago, IL. April 1987, April 1991, April 1994, April 1997, April 2000; Verispan, L.L.C. Healthcare
Market Index and Hospital Market Profiling Solution, 2003 and 2006.
3
Simmons WR, Schnack GA. Development of the Design of the NCHS Hospital Discharge Survey.
National Center for Health Statistics. Vital Health Stat 2(39). 1977.
4
 International Classification of Diseases, 9th Revision, Clinical Modification, 6th edition. U.S. Department
of Health and Humans Services, National Center for Health Statistics, Health Care Financing
Administration. 2004.
5
 Office of the Secretary, Department of Health and Human Services: Health Information Policy Council:
1984 Revision of the Uniform Hospital Discharge Data Set. Federal Register, Volume 50, No. 147. July
31, 1985.
6
 Bieler GS, Williams RL. Analyzing Survey Data Using SUDAAN Release 7.5. Research Triangle
Institute: Research Triangle Park, N.C. 1997.




3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued)


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                               17




                           II. TECHNICAL DESCRIPTION OF DATA FILE

       Data Set Name NHDS06.PU.TXT
       Record Length 88
       Number of Records 376,328




                 III. RECORD LAYOUT: Location and Coding of Data Elements


 This section provides detailed information for each sampled record on the file, with a
 description of each item included on the record. Data elements are arranged
 sequentially according to their physical location on the file. Unless otherwise stated in
 the Item Description, the data are derived from the abstract form or from automated
 sources. The SMG Hospital Market Database file, Verispan’s data products, and the
 hospital interview are alternate sources of data; some other items are computer
 generated.




3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued)


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                 18


 Item                  Number of
           Location                Item description   Code description
Number                 Positions

   1             1-2      2        Survey Year        06
   2             3         1       Newborn status
                                                      1=Newborn 2=Not newborn

   3             4         1       Units for age
                                                      1=Years 2=Months 3=Days

   4             5-6      2        Age in years,      If units=years: 00-99* If units=months: 01-
                                   months, or days    11 If units=days: 00-28 *Ages 100 and
                                                      over were recoded to 99


   5             7        1        Sex
                                                      1=Male 2=Female

   6             8         1       Race               1=White 2=Black/African American
                                                      3=American Indian/Alaskan Native
                                                      4=Asian 5=Native Hawaiian or other
                                                      Pacific Isldr 6=Other 8=Multiple race
                                                      indicated 9=Not stated




   7             9         1       Marital status     1=Married 2=Single 3=Widowed
                                                      4=Divorced 5=Separated 9=Not stated




   8        10-11         2        Discharge month    01-12=January to December
   9             12        1       Discharge Status

                                                      1=Routine/discharged home 2=Left
                                                      against medical advice
                                                      3=Discharged/transferred to short-term
                                                      facility 4=Discharged/transferred to long-
                                                      term care institution 5=Alive, disposition
                                                      not stated 6=Dead 9=Not stated or not
                                                      reported
   10       13-16         4        Days of care       Use to calculate number of days of care.
                                                      Values of zero generated by the computer
                                                      from admission and discharge dates were
                                                      changed to one. (Discharges for which
                                                      dates of admission and discharge are the



3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued)

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                    19



 Item                 Number of
           Location               Item description      Code description
Number                Positions
                                                        same are identified in Item Number 11)
   11            17      1        Length of stay flag
                                                        0=Less than 1 day 1=One day or more

   12            18       1       Geographic region     1=Northeast 2=Midwest 3=South 4=West




   13            19      1        Number of beds,       1=6-99 2=100-199 3=200-299 4=300-499
                                  recode                5=500 and over




   14            20       1       Hospital ownership
                                                        1=Proprietary 2=Government 3=Nonprofit,
                                                        including church

   15       21-25        5        Analysis weight       Use to obtain weighted estimates
   16       26-27        2        First two digits of   20
                                  survey year

   17       28-32        5        Diagnosis code #1     *

   18       33-37        5        Diagnosis code #2     *

   19       38-42        5        Diagnosis code #3     *

   20       43-47        5        Diagnosis code #4     *

   21       48-52        5        Diagnosis code #5     *

   22       53-57        5        Diagnosis code #6     *

   23       58-62        5        Diagnosis code #7     *

   24       63-66         4       Procedure code#1      *

   25       67-70         4       Procedure code#2      *

   26       71-74         4       Procedure code#3      *

   27       75-78         4       Procedure code#4      *
   28       79-80        2        Principal expected
                                  source of payment

                                                        01=Worker’s compensation 02=Medicare
                                                        03=Medicaid 04=Other government
                                                        05=Blue Cross/Blue Shield 06=HMO/PPO


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                         20

3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued)

 Item                   Number of
            Location                  Item description       Code description
Number                  Positions
                                                             07=Other private insurance 08=Self-pay
                                                             09=No charge 10=Other 99=Not stated



   29        81-82           2        Secondary              Same coding as item 28 above, except
                                      expected source of     Not Stated left blank (not coded to 99)
                                      payment
   30        83-85           3        Diagnosis-Related      Grouper version 23.0
                                      Groups (DRG)
   31            86          1        Type of Admission      1 = Emergency 2 = Urgent 3 = Elective 4
                                                             = Newborn 9 = Not available




   32        87-88           2        Source of              01 = Physician referral 02 = Clinical
                                      Admission              referral 03 = HMO referral 04 = Transfer
                                                             from a hospital 05 = Transfer from skilled
                                                             nursing facility 06 = Transfer from other
                                                             health facility 07 = Emergency room 08 =
                                                             Court/law enforcement 09 = Other 99 =
                                                             Not available




*Diagnosis and procedure codes are in compliance with the International Classification of Diseases, 9th
Revision, Clinical Modification, (ICD-9-CM). For diagnosis codes, there is an implied decimal between
positions 3 and 4. For E-codes, the implied decimal is between the 4th and 5th position. For inapplicable
4th or 5th digits, a dash is inserted. For procedure codes, there is an implied decimal between positions 2
and 3. For inapplicable 3rd or 4th digits, a dash is inserted




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                               21

3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued)


                                           APPENDIX A

DEFINITION OF TERMS

Terms relating to hospitals and hospitalization

Hospitals: Short stay hospitals or hospitals whose specialty is general (medical or surgical),
or children's general. Hospitals must have 6 beds or more staffed for patients use. Federal
hospitals and hospital units of institutions are not included.

Type of ownership of hospital: The type of organization that controls and operates the
hospital. Hospitals are grouped as follows:

    Not for Profit: Hospitals operated by a church or another not for profit organization.

    Government: Hospitals operated by State and local government.

    Proprietary: Hospitals operated by individuals, partnerships, or corporations for profit.

Patient: A person who is formally admitted to the inpatient service of a short-stay hospital
for observation, care, diagnosis, or treatment, or by birth.

Discharge: The formal release of a patient by a hospital; that is, the termination of a period
of hospitalization by death or by disposition to place of residence, nursing home, or another
hospital. The terms "discharges" and "patients discharged" are used synonymously.

Discharge rate: The ratio of the number of hospital discharges during the year to the
number of persons in the civilian population on July 1 of that year.

Days of care: The total number of patient days accumulated at time of discharge by
patients discharged from short stay hospitals during a year. A stay of less than 1 day
(patient admission and discharge on the same day) is counted as 1 day in the summation
of total days of care. For patients admitted and discharged on different days, the number of
days of care is computed by counting all days from (and including) the date of admission to
(but not including) the date of discharge.

Rate of days of care: The ratio of the number of patient days accumulated at time of
discharge to the number of persons in the civilian population on July 1 of that year.

Average length of stay: The total number of days of care accumulated at time of
discharge by patients discharged during the year, divided by the number of patients
discharged.

Discharge diagnoses: One or more diseases or injuries (or some factor that influences
health status and contact with health services that is not itself a current illness or injury)
listed by the attending physician on the medical record of a patient. In the NHDS,
discharge (or final) diagnoses listed on the face sheet (summary sheet) of the medical
record are transcribed in the order listed. Each sample discharge is assigned a maximum of
seven five-digit codes according to ICD-9-CM (4).



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                              22

3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued)


Principal diagnosis: The condition established after study to be chiefly responsible for
occasioning the admission of the patient to the hospital for care.

First-listed diagnosis: The coded diagnosis identified as the principal diagnosis or listed
first on the face sheet of the medical record if the principal diagnosis cannot be identified.
The number of first-listed diagnoses is equivalent to the number of discharges.

Procedure: One or more surgical or nonsurgical operations, procedures, or special
treatments listed by the physician on the medical record. In the NHDS, all terms listed on
the face sheet (summary sheet) of the medical record under the caption "operation,"
"operative procedures," "operations and/or special treatment," and the like are transcribed
in the order listed. A maximum of four procedures are coded.

Rate of procedures: The ratio of the number of all-listed procedures during a year to the
number of persons in the civilian population on July 1 of that year determines the rate of
procedures.

Demographic terms

Age: Refers to the age of the patient on the birthday prior to admission to the hospital
inpatient service.

Population: Civilian population is the resident population excluding members of the Armed
Forces.

Geographic regions: Hospitals are classified by location in one of the four geographic
regions of the United States corresponding to those used by the U.S. Bureau of the
Census:


NORTHEAST         MIDWEST            SOUTH                  WEST
Maine             Michigan           Delaware               Montana
New Hampshire     Ohio               Maryland               Idaho
Vermont           Illinois           District of Columbia   Wyoming
Massachusetts     Indiana            Virginia               Colorado
Connecticut       Wisconsin          West Virginia          New Mexico
Rhode Island      Minnesota          North Carolina         Arizona
New York          Iowa               South Carolina         Utah
New Jersey        Missouri           Georgia                Nevada
Pennsylvania      North Dakota       Florida                Washington
                  South Dakota       Kentucky               Oregon
                  Nebraska           Tennessee              California
                  Kansas             Alabama                Hawaii
                                     Mississippi            Alaska
                                     Arkansas
                                     Louisiana
                                     Oklahoma


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                      23



4. NHDS REGULATIONS
Below is the NHDS06readme.txt containing the Public Health Laws that govern the use of this data.


                                 !WARNING -- DATA USE RESTRICTIONS!
READ CAREFULLY BEFORE USING

The Public Health Service Act (Section 308(d)) provides that the data
collected by the National Center for Health Statistics (NCHS), Centers
for Disease Control and Prevention (CDC), may be used only for the
purpose of health statistical reporting and analysis. Any effort to
determine the identity of any reported case is prohibited by this law.

NCHS does all it can to assure that the identity of data subjects
cannot be disclosed. All direct identifiers, as well as any
characteristics that might lead to identification, are omitted from the
dataset. Any intentional identification or disclosure of a person or
establishment violates the assurances of confidentiality given to the
providers of the information. Therefore, users will:

1. Use the data in this dataset for statistical reporting and analysis
only.
2. Make no use of the identity of any person or establishment
discovered inadvertently and advise the Director, NCHS, of any
such discovery.
3. Not link this dataset with individually identifiable data from other
NCHS or non-NCHS datasets.



BY USING THESE DATA, YOU SIGNIFY YOUR AGREEMENT TO COMPLY WITH
THE ABOVE-STATED STATUTORILY-BASED AGREEMENTS.

*************************************************************************

The following is a list of files needed to use the 2006 NHDS:

File Name                              File Description

NHDS06.PU.TXT                          NHDS 2006 ASCII dataset

nhds06.pdf                             NHDS 2006 documentation in
                                       Adobe Acrobat PDF format.
                                       This file also contains all
                                       necessary population spreadsheets
                                       (for rate calculations) and
                                       standard error tables.

*NOTE: You will need Adobe Acrobat Reader software to view the
documentation file. The Reader software can be downloaded for
free from: http://www.adobe.com/products/acrobat/readstep2.html

-----------------------------------------------------------------------




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                            24

CAUTION - Because the NHDS is a sample survey, the application
of weights to the sample data is needed in order to produce national
estimates of inpatient hospital utilization statistics.

-----------------------------------------------------------------------

For questions concerning NHDS data, please contact:

Ambulatory and Hospital Care Statistics Branch
Division of Health Care Statistics
National Center for Health Statistics
Centers for Disease Control and Prevention
3311 Toledo Road
Hyattsville, Maryland 20782
Phone: 301.458.4321
Fax: 301.458.4032
Email: NHDS@cdc.gov

For more information about the NHDS, visit our website:
http://www.cdc.gov/nchs/about/major/hdasd/nhds.htm

For email discussions and dissemination of NHDS data, join our
Hospital Discharge and Ambulatory Surgery Data listserv (HDAS-DATA).
In the body of an email message (leaving the subject line blank), type:
subscribe hdas-data Your Name

Send this message to:
listserv@cdc.gov




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                         25



5. SAS DATA INPUT FILE
DATA         ANYNAME ;
INFILE       'refer to location of NHDS datafile by drive and directory'
;
INPUT        @ 1         SVYEAR           $2.
             @ 3         NEWBORN           1.
             @ 4         AGEUNITS          1.
             @ 5         AGE               2.
             @ 7         SEX               1.
             @ 8         RACE              1.
             @ 9         MARSTAT            1.
             @ 10        DISC_MON          $2.
             @ 12        DISCSTAT          1.
             @ 13        DOC               4.
             @ 17        LOSFLAG           1.
             @ 18        REGION            1.
             @ 19        BEDSIZE           1.
             @ 20        OWNER             1.
             @ 21        WEIGHT            5.
             @ 26        CENTURY          $2.
             @ 28        DX1              $5.
             @ 33        DX2              $5.
             @ 38        DX3              $5.
             @ 43        DX4              $5.
             @ 48        DX5              $5.
             @ 53        DX6              $5.
             @ 58        DX7              $5.
             @ 63        PD1              $4.
             @ 67        PD2              $4.
             @ 71        PD3              $4.
             @ 75        PD4              $4.
             @ 79        ESOP1             2.
             @ 81        ESOP2             2.
             @ 83         DRG             $3.
             @ 86        ADM_TYPE          1.
             @ 87         ASOURCE          2.
             ;
LABEL              SVYEAR      = 'Last two digits of survey year'
                   NEWBORN     = 'Newborn infant flag'
                   AGEUNITS    = 'Units for age'
                   AGE         = 'Age in years, months, or days'
                   SEX         = 'Patient sex'
                   RACE        = 'Patient race'
                   MARSTAT     = 'Marital status of patient'
                   DISC_MON    = 'Month of discharge'
                   DISCSTAT    = 'Status at discharge'
                   DOC         = 'Number of days of care'
                   LOSFLAG     = 'Zero length of stay flag'
                   REGION      = 'Geographic region of hospital'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                26

                     BEDSIZE       = 'Bedsize grouping for hospital'
                     OWNER          = 'Ownership of hospital'
                     WEIGHT        = 'Analysis weight'
                     CENTURY       = 'First two digits of survey year'
                     DX1           = 'ICD-9-CM diagnosis code - first'
                     DX2           = 'ICD-9-CM diagnosis code - second'
                     DX3           = 'ICD-9-CM diagnosis code - third'
                     DX4           = 'ICD-9-CM diagnosis code - fourth'
                     DX5           = 'ICD-9-CM diagnosis code - fifth'
                     DX6           = 'ICD-9-CM diagnosis code - sixth'
                     DX7           = 'ICD-9-CM diagnosis code - seventh'
                     PD1           = 'ICD-9-CM procedure code - first'
                     PD2           = 'ICD-9-CM procedure code - second'
                     PD3           = 'ICD-9-CM procedure code - third'
                     PD4           = 'ICD-9-CM procedure code - fourth'
                     ESOP1         = 'Principal expected source of payment'
                     ESOP2         = 'Secondary expected source of payment'
                     DRG           = 'Diagnosis-related group'
                     ADM_TYPE      = 'Type of admission'
                     ASOURCE       = 'Source of admission'
;




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                   27




             6. The NHDS Data, Infile, Input, Labels, PROC Contents, and
             PROC Freq Statements.
        nhds02d.sas


The program below contains the basic structure for a SAS analysis of a data set. The data is
identified along with its location. The input statement presents the variable and its location
within each observation. Labels give names to each variable; PROC Contents yields the
specifications of your data set, and PROC Freq provides the frequency distributions of each of
the variables both unweighted and weighted.
/****nhds02d.sas**********/
data nhds2006 ;
Infile 'C:DATA9000NHDS06.PU.TXT' LRECL=88;
input
           @ 1        SVYEAR          $2.
           @ 3        NEWBORN          1.
           @ 4        AGEUNITS         1.
           @ 5        AGE              2.
           @ 7        SEX              1.
           @ 8        RACE             1.
           @ 9        MARSTAT          1.
           @ 10       DISC_MON         $2.
           @ 12       DISCSTAT         1.
           @ 13       DOC              4.
           @ 17       LOSFLAG          1.
           @ 18       REGION           1.
           @ 19       BEDSIZE          1.
           @ 20       OWNER            1.
           @ 21       WEIGHT           5.
           @ 26       CENTURY         $2.
           @ 28       DX1             $5.
           @ 33       DX2             $5.
           @ 38       DX3             $5.
           @ 43       DX4             $5.
           @ 48       DX5             $5.
           @ 53       DX6             $5.
           @ 58       DX7             $5.
           @ 63       PD1             $4.
           @ 67       PD2             $4.
           @ 71       PD3             $4.
           @ 75       PD4             $4.
           @ 79       ESOP1            2.
           @ 81       ESOP2            2.
           @ 83       DRG             $3.
           @ 86       ADM_TYPE         1.
           @ 87       ASOURCE          2.
           ;

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                28

  /*****Labels are used to identify input variable names****/

LABEL                SVYEAR        = 'Last two digits of survey year'
                     NEWBORN       = 'Newborn infant flag'
                     AGEUNITS      = 'Units for age'
                     AGE           = 'Age in years, months, or days'
                     SEX           = 'Patient sex'
                     RACE          = 'Patient race'
                     MARSTAT       = 'Marital status of patient'
                     DISC_MON      = 'Month of discharge'
                     DISCSTAT      = 'Status at discharge'
                     DOC           = 'Number of days of care'
                     LOSFLAG       = 'Zero length of stay flag'
                     REGION        = 'Geographic region of hospital'
                     BEDSIZE       = 'Bedsize grouping for hospital'
                     OWNER          = 'Ownership of hospital'
                     WEIGHT        = 'Analysis weight'
                     CENTURY       = 'First two digits of survey year'
                     DX1           = 'ICD-9-CM diagnosis code - first'
                     DX2           = 'ICD-9-CM diagnosis code - second'
                     DX3           = 'ICD-9-CM diagnosis code - third'
                     DX4           = 'ICD-9-CM diagnosis code - fourth'
                     DX5           = 'ICD-9-CM diagnosis code - fifth'
                     DX6           = 'ICD-9-CM diagnosis code - sixth'
                     DX7           = 'ICD-9-CM diagnosis code - seventh'
                     PD1           = 'ICD-9-CM procedure code - first'
                     PD2           = 'ICD-9-CM procedure code - second'
                     PD3           = 'ICD-9-CM procedure code - third'
                     PD4           = 'ICD-9-CM procedure code - fourth'
                     ESOP1         = 'Principal expected source of payment'
                     ESOP2         = 'Secondary expected source of payment'
                     DRG           = 'Diagnosis-related group'
                     ADM_TYPE      = 'Type of admission'
                     ASOURCE       = 'Source of admission'
     ;
/**********Identify the Variables in the Data Set*******/
proc contents data=nhds2006;
run;
/**********Frequency Distribution of Selected**********/

proc freq data=nhds2006;
tables sex race marstat disc_mon discstat
losflag region bedsize owner;
title 'frequency distribution of selected variable';
run;

/******Weighted Frequency Distribution of Selected*****/
proc freq data=nhds2006;
weight weight; /***For all other PROC’s the syntax is freq weight**/
tables sex race marstat disc_mon discstat
losflag region bedsize owner;

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                    29

title 'frequency distribution of selected variable';
run;


Below is the output of the Proc Contents for the 2006 NHDS data set.
                                               The SAS System

                                        The CONTENTS Procedure

     Data Set Name         WORK.NHDS2006                          Observations           376328
     Member Type           DATA                                   Variables              32
     Engine                V9                                     Indexes                0
     Created               Tuesday, June 30, 2009 12:23:42 PM     Observation Length     200
     Last Modified         Tuesday, June 30, 2009 12:23:42 PM     Deleted Observations   0
     Protection                                                   Compressed             NO
     Data Set Type                                                Sorted                 NO
     Label
     Data Representation   WINDOWS_32
     Encoding              wlatin1 Western (Windows)



                                 Engine/Host Dependent Information

Data Set Page Size           16384
Number of Data Set Pages     4647
First Data Page              1
Max Obs per Page             81
Obs in First Data Page       57
Number of Data Set Repairs   0
Filename                     C:DOCUME~1DR0E98~1.RAYLOCALS~1TempSAS
                             Temporary Files_TD5532nhds2006.sas7bdat
Release Created              9.0201M0
Host Created                 XP_PRO



                             Alphabetic List of Variables and Attributes

                 #    Variable   Type    Len      Label

                 31   ADM_TYPE   Num       8      Type of admission
                  4   AGE        Num       8      Age in years, months, or days
                  3   AGEUNITS   Num       8      Units for age
                 32   ASOURCE    Num       8      Source of admission
                 13   BEDSIZE    Num       8      Bedsize grouping for hospital
                 16   CENTURY    Char      2      First two digits of survey year
                  9   DISCSTAT   Num       8      Status at discharge
                  8   DISC_MON   Char      2      Month of discharge
                 10   DOC        Num       8      Number of days of care
                 30   DRG        Char      3      Diagnosis-related group
                 17   DX1        Char      5      ICD-9-CM diagnosis code - first
                 18   DX2        Char      5      ICD-9-CM diagnosis code - second
                 19   DX3        Char      5      ICD-9-CM diagnosis code - third
                 20   DX4        Char      5      ICD-9-CM diagnosis code - fourth
                 21   DX5        Char      5      ICD-9-CM diagnosis code - fifth
                 22   DX6        Char      5      ICD-9-CM diagnosis code - sixth
                 23   DX7        Char      5      ICD-9-CM diagnosis code - seventh

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                             30

                 28   ESOP1       Num        8     Principal expected source of payment
                 29   ESOP2       Num        8     Secondary expected source of payment
                 11   LOSFLAG     Num        8     Zero length of stay flag
                  7   MARSTAT     Num        8     Marital status of patient
                  2   NEWBORN     Num        8     Newborn infant flag
                 14   OWNER       Num        8     Ownership of hospital
                 24   PD1         Char       4     ICD-9-CM procedure code - first
                 25   PD2         Char       4     ICD-9-CM procedure code - second
                 26   PD3         Char       4     ICD-9-CM procedure code - third
                 27   PD4         Char       4     ICD-9-CM procedure code - fourth
                  6   RACE        Num        8     Patient race
                 12   REGION      Num        8     Geographic region of hospital
                  5   SEX         Num        8     Patient sex
                  1   SVYEAR      Char       2     Last two digits of survey year
                 15   WEIGHT      Num        8     Analysis weight




Below is the output of the Proc Freq unweighted for the selected variables of 2006 NHDS.
                                   Frequency Distribution of Selected Variable

                                           The FREQ Procedure

                                                 Patient sex

                                                       Cumulative    Cumulative
                       SEX    Frequency     Percent     Frequency      Percent
                       ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                         1      154677       41.10        154677        41.10
                         2      221651       58.90        376328       100.00

                                              Patient race

                                                       Cumulative    Cumulative
                      RACE    Frequency     Percent     Frequency      Percent
                      ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                         1      200368       53.24        200368        53.24
                         2       51195       13.60        251563        66.85
                         3        1025        0.27        252588        67.12
                         4        3018        0.80        255606        67.92
                         5         405        0.11        256011        68.03
                         6       15322        4.07        271333        72.10
                         8         108        0.03        271441        72.13
                         9      104887       27.87        376328       100.00

                                         Marital status of patient

                                                          Cumulative    Cumulative
                      MARSTAT    Frequency     Percent     Frequency      Percent
                      ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                            1       55046       14.63         55046        14.63
                            2       78704       20.91        133750        35.54
                            3       18224        4.84        151974        40.38
                            4        8622        2.29        160596        42.67
                            5        1565        0.42        162161        43.09
                            9      214167       56.91        376328       100.00


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                   31



                                     Month of discharge

                                                      Cumulative    Cumulative
                 DISC_MON    Frequency     Percent     Frequency      Percent
                 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                 01             31343        8.33         31343         8.33
                 02             30172        8.02         61515        16.35
                 03             33780        8.98         95295        25.32
                 04             30732        8.17        126027        33.49
                 05             31668        8.41        157695        41.90
                 06             31658        8.41        189353        50.32
                 07             31537        8.38        220890        58.70
                 08             32323        8.59        253213        67.29
                 09             31415        8.35        284628        75.63
                 10             30798        8.18        315426        83.82
                 11             29874        7.94        345300        91.76
                 12             31028        8.24        376328       100.00



                                     Status at discharge

                                                      Cumulative    Cumulative
                 DISCSTAT    Frequency     Percent     Frequency      Percent
                 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                        1      300393       79.82        300393        79.82
                        2        3545        0.94        303938        80.76
                        3        9534        2.53        313472        83.30
                        4       32007        8.51        345479        91.80
                        5       20944        5.57        366423        97.37
                        6        7336        1.95        373759        99.32
                        9        2569        0.68        376328       100.00



                                   Zero length of stay flag

                                                      Cumulative    Cumulative
                  LOSFLAG    Frequency     Percent     Frequency      Percent
                  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                        0        6360        1.69          6360         1.69
                        1      369968       98.31        376328       100.00




                                Geographic region of hospital

                                                     Cumulative    Cumulative
                  REGION    Frequency     Percent     Frequency      Percent
                  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                       1       90192       23.97         90192        23.97
                       2       97656       25.95        187848        49.92
                       3      141839       37.69        329687        87.61
                       4       46641       12.39        376328       100.00



                                 Bedsize grouping for hospital

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                           32


                                                      Cumulative    Cumulative
                  BEDSIZE    Frequency     Percent     Frequency      Percent
                  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                        1       41089       10.92         41089        10.92
                        2       85716       22.78        126805        33.70
                        3       82411       21.90        209216        55.59
                        4      119903       31.86        329119        87.46
                        5       47209       12.54        376328       100.00



                                      Ownership of hospital

                                                     Cumulative    Cumulative
                   OWNER    Frequency     Percent     Frequency      Percent
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                       1       38869       10.33         38869        10.33
                       2       32052        8.52         70921        18.85
                       3      305407       81.15        376328       100.00


Below is the output of the Proc Freq weighted for the selected variables of 2006 NHDS.
                         Weighted Frequency Distribution of Selected NHDS Variable

                                       The FREQ Procedure

                                           Patient sex

                                                    Cumulative    Cumulative
                    SEX    Frequency     Percent     Frequency      Percent
                    ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                      1    16030906       41.24      16030906        41.24
                      2    22842871       58.76      38873777       100.00



                                          Patient race

                                                    Cumulative    Cumulative
                   RACE    Frequency     Percent     Frequency      Percent
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                      1    23116012       59.46      23116012        59.46
                      2     4685938       12.05      27801950        71.52
                      3      118912        0.31      27920862        71.82
                      4      649604        1.67      28570466        73.50
                      5       95043        0.24      28665509        73.74
                      6      711022        1.83      29376531        75.57
                      8       33376        0.09      29409907        75.65
                      9     9463870       24.35      38873777       100.00



                                    Marital status of patient

                                                      Cumulative    Cumulative
                  MARSTAT    Frequency     Percent     Frequency      Percent
                  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                        1     9336056       24.02       9336056        24.02
                        2    10931362       28.12      20267418        52.14


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                   33

                       3     3083076         7.93      23350494       60.07
                       4     1471056         3.78      24821550       63.85
                       5      234303         0.60      25055853       64.45
                       9    13817924        35.55      38873777      100.00

                                       Month of discharge

                                                      Cumulative    Cumulative
                 DISC_MON    Frequency     Percent     Frequency      Percent
                 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                 01           3326380        8.56       3326380         8.56
                 02           3127993        8.05       6454373        16.60
                 03           3475747        8.94       9930120        25.54
                 04           3189227        8.20      13119347        33.75
                 05           3329115        8.56      16448462        42.31
                 06           3292765        8.47      19741227        50.78
                 07           3240989        8.34      22982216        59.12
                 08           3342033        8.60      26324249        67.72
                 09           3221755        8.29      29546004        76.00
                 10           3129742        8.05      32675746        84.06
                 11           3068077        7.89      35743823        91.95
                 12           3129954        8.05      38873777       100.00



                                       Status at discharge

                                                      Cumulative    Cumulative
                 DISCSTAT    Frequency     Percent     Frequency      Percent
                 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                        1    30736926       79.07      30736926        79.07
                        2      332166        0.85      31069092        79.92
                        3     1595663        4.10      32664755        84.03
                        4     3164590        8.14      35829345        92.17
                        5     1724117        4.44      37553462        96.60
                        6      743475        1.91      38296937        98.52
                        9      576840        1.48      38873777       100.00



                                   Zero length of stay flag

                                                      Cumulative    Cumulative
                  LOSFLAG    Frequency     Percent     Frequency      Percent
                  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                        0      755008        1.94        755008         1.94
                        1    38118769       98.06      38873777       100.00



                                Geographic region of hospital

                                                     Cumulative    Cumulative
                  REGION    Frequency     Percent     Frequency      Percent
                  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                       1     7998781       20.58       7998781        20.58
                       2     8784236       22.60      16783017        43.17
                       3    14603982       37.57      31386999        80.74
                       4     7486778       19.26      38873777       100.00



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                     34


                                     Bedsize grouping for hospital

                                                        Cumulative    Cumulative
                    BEDSIZE    Frequency     Percent     Frequency      Percent
                    ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                          1     8727912       22.45       8727912        22.45
                          2     8171471       21.02      16899383        43.47
                          3     7475041       19.23      24374424        62.70
                          4     9141896       23.52      33516320        86.22
                          5     5357457       13.78      38873777       100.00



                                         Ownership of hospital

                                                       Cumulative    Cumulative
                     OWNER    Frequency     Percent     Frequency      Percent
                     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                         1     4679522       12.04       4679522        12.04
                         2     4762338       12.25       9441860        24.29
                         3    29431917       75.71      38873777       100.00

The number of observations for the unweighted observations is 376,328 versus 38,873,777 when
weighted. Note that the name of the variable values is not shown. To obtain this we need to use the PROC
Format statements presented below.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                          35




             7. SAS FORMATS FOR NHDS
             nhds01d.sas


Below are the SAS codes that create the names associated with the values of each NHDS
variable. This code should be executed first in the series of NHDS programs.
/*nhds01d.sas*/

proc format;

    value newbornf
         1="Newborn"
         2="Not Newborn"

;
    value ageunitf
             1='Years'
             2='Months'
             3='Days'
;

    value sexf
             1='Male'
             2='Female'
;


    value racef

                 1='White'
                 2='Black'
                 3='Native American'
                 4='Asian'
                 5='Native Hawaiian or PI'
                 6='Other Race'
                 8='Multiple Race'
                 9='Race Not Stated'
;

       value maritialf

                 1='Married'
                 2='Single'
                 3='Widowed'
                 4='Divorced'
                 5='Separated'
                 9='MS Not Stated'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                        36

;

     value $dismonthf

           '01'   ='January'
           '02'   ='February'
           '03'   ='March'
           '04'   ='April'
           '05'   ='May'
           '06'   ='June'
           '07'   ='July'
           '07'   ='August'
           '09'   ='September'
           '10'   ='October'
           '11'   ='November'
           '12'   ='December'
;

     value $disstatf

                  1="Home"
                  2="Left Against Medical Advice"
                  3="Dischaged to Acute"
                  4="Discharged to LTC"
                  5="Alive Status not Stated"
                  6="Diseased"
                  9="Status not Reported"
;

     value losflagf

                   0="less than 1 day"
                  1="One day or More"
;
     value regionf

                  1="Northeast"
                  2="Midwest"
                  3="South"
                  4="West"
;

       value numbedsf

                 1="6-99"
                 2="100-199"
                 3="200-299"
                 4="300-499"
                 5="500 and Over"
;


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                        37

      value ownerf

                 1="Proprietary"
                 2="Governmental"
                 3="Non-Profit"
;
      value payer1f

                  1="Worker's Comp"
                  2="Medicare"
                  3="Medicaid"
                  4="Other Govnt"
                  5="Blue Cross"
                  6="HMO/PPO"
                  7="Other Private"
                  8="Self Pay"
                  9="No Charge"
                  10="Other Ins"
                  99="Payer Not Stated"
;

value payer2f

                  1="Worker's Comp"
                  2="Medicare"
                  3="Medicaid"
                  4="Other Govnt"
                  5="Blue Cross"
                  6="HMO/PPO"
                  7="Other Private"
                  8="Self Pay"
                  9="No Charge"
                  10="Other Ins"
                   .="Payer Not Stated"
;


    value admitypef

                 1="Emergency"
                 2="Urgent"
                 3="Elective"
                 4="New Born"
                 9="admit NA"
;




    value adsourcef


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                 38

                 1="Physican Referral"
                 2="Clinical Referral"
                  3="HMO Referral"
                 4="Acute Transfer"
                 5="SNF Transfer"
                 6="Other Tranfer"
                 7="Emergency Room"
                 8="Court/Law Enforcement"
                 9="Source_other"
                 99="Sourse N/A"
;


     value $diag3df       /***Partial List***/

        '001'='(001)     Cholera'
        '002'='(002)     Typhoid and paratyphoid fevers'
        '003'='(003)     Other salmonella infections'
        '004'='(004)     Shigellosis'
        '005'='(005)     Other food poisoning (bacterial)'
        '006'='(006)     Amebiasis'
        '007'='(007)     Other protozoal intestinal dise...'
        '008'='(008)     Intestinal infections due to ot...'
        '009'='(009)     Ill-defined intestinal infections'
        '010'='(010)     Primary tuberculous infection'
        '011'='(011)     Pulmonary tuberculosis'
        '012'='(012)     Other respiratory tuberculosis'
        '013'='(013)     Tuberculosis of meninges and ce...'
        '014'='(014)     Tuberculosis of intestine/perit...'
        '015'='(015)     Tuberculosis of bones and joints'
        '016'='(016)     Tuberculosis of genitourinary s...'
        '017'='(017)     Tuberculosis of other organs'
        '018'='(018)     Miliary tuberculosis'
        '020'='(020)     Plague'
        '021'='(021)     Tularemia'
        '022'='(022)     Anthrax'
        '023'='(023)     Brucellosis'
        '024'='(024)     Glanders'
        '025'='(025)     Melioidosis'
        '026'='(026)     Rat-bite fever'
        '027'='(027)     Other zoonotic bacterial diseases'
        '030'='(030)     Leprosy'
        '031'='(031)     Diseases due to other mycobacteria'
        '032'='(032)     Diphtheria'
        '033'='(033)     Whooping cough'
        '034'='(034)     Streptococcal sore throat and s...'
        '035'='(035)     Erysipelas'
        '036'='(036)     Meningococcal infection'
        '037'='(037)     Tetanus'
        '038'='(038)     Septicemia'
        '039'='(039)     Actinomycotic infections'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                 39

        '040'='(040)     Other bacterial diseases'
        '041'='(041)     Bacterial infec in conditns cla...'
        '042'='(042)     Human immunodeficiency virus in...'
        '043'='(043)     Human immunodeficiency virus in...'
        '044'='(044)     Other human immunodeficiency vi...'
        '045'='(045)     Acute poliomyelitis'
        '046'='(046)     Slow virus infection of central...'
        '047'='(047)     Meningitis due to enterovirus'
        '048'='(048)     Other enterovirus diseases of c...'
        '049'='(049)     Oth non-arthropod-borne viral d...'
        '050'='(050)     Smallpox'
        '051'='(051)     Cowpox and paravaccinia'
        '052'='(052)     Chickenpox'
        '053'='(053)     Herpes zoster'
        '054'='(054)     Herpes simplex'
        '055'='(055)     Measles'
        '056'='(056)     Rubella'
        '057'='(057)     Other viral exanthemata'
        '060'='(060)     Yellow fever'
        '061'='(061)     Dengue'
        '062'='(062)     Mosquito-borne viral encephalitis'
        '063'='(063)     Tick-borne viral encephalitis'
        '064'='(064)     Viral encephalitis transmitted ...'
        '065'='(065)     Arthropod-borne hemorrhagic fever'
        '066'='(066)     Other arthropod-borne viral dis...'
        '070'='(070)     Viral hepatitis'
        '071'='(071)     Rabies'
        '072'='(072)     Mumps'
        '073'='(073)     Ornithosis'
        '074'='(074)     Specific diseases due to Coxsac...'
        '075'='(075)     Infectious mononucleosis'
        '076'='(076)     Trachoma'
        '077'='(077)     Other diseases of conjunctiva d...'
        '078'='(078)     Other diseases due to viruses a...'
        '079'='(079)     Viral infection in conditns cla...'
        '080'='(080)     Louse-borne [epidemic] typhus'
        '081'='(081)     Other typhus'
        '082'='(082)     Tick-borne rickettsioses'
        '083'='(083)     Other rickettsioses'
        '084'='(084)     Malaria'
        '085'='(085)     Leishmaniasis'
        '086'='(086)     Trypanosomiasis'
        '087'='(087)     Relapsing fever'
        '088'='(088)     Other arthropod-borne diseases'
        '090'='(090)     Congenital syphilis'
        '091'='(091)     Early syphilis, symptomatic'
        '092'='(092)     Early syphilis, latent'
        '093'='(093)     Cardiovascular syphilis'
        '094'='(094)     Neurosyphilis'
        '095'='(095)     Other forms of late syphilis, w...'
        '096'='(096)     Late syphilis, latent'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                     40

        '097'='(097)     Other and unspecified syphilis'
        '098'='(098)     Gonococcal infections'
        '099'='(099)     Other venereal diseases'
        '100'='(100)     Leptospirosis'
        '101'='(101)     Vincent`s angina'
        '102'='(102)     Yaws'
        '103'='(103)     Pinta'
        '104'='(104)     Other spirochetal infection'
        '110'='(110)     Dermatophytosis'
        '111'='(111)     Dermatomycosis, other and unspe...'
        '112'='(112)     Candidiasis'
        '114'='(114)     Coccidioidomycosis'
        '115'='(115)     Histoplasmosis'
        '116'='(116)     Blastomycotic infection'
        '117'='(117)     Other mycoses'
        '118'='(118)     Opportunistic mycoses

/* The following format is provided in case you wish to use only the
     first two columns of the various fields which display Procedures
     Classification codes from Vol. 3 of the ICD-9-CM, for broader
groupings of this item. */

    VALUE $PROC2DF
       '00'='Blank/00:Procedures and interventns, NEC'
       '01'='01:Incision and excision of skull, br...'
       '02'='02:Other operations on skull, brain, ...'
       '03'='03:Operations on spinal cord and spin...'
       '04'='04:Operations on cranial and peripher...'
       '05'='05:Operations on sympathetic nerves o...'
       '06'='06:Operations on thyroid and parathyr...'
       '07'='07:Operations on other endocrine glands'
       '08'='08:Operations on eyelids'
       '09'='09:Operations on lacrimal system'
       '10'='10:Operations on conjunctiva'
       '11'='11:Operations on cornea'
       '12'='12:Operations on iris, ciliary body, ...'
       '13'='13:Operations on lens'
       '14'='14:Operations on retina, choroid, vit...'
       '15'='15:Operations on extraocular muscles'
       '16'='16:Operations on orbit and eyeball'
       '18'='18:Operations on external ear'
       '19'='19:Reconstructive operations on middl...'
       '20'='20:Other operations on middle and inn...'
       '21'='21:Operations on nose'
       '22'='22:Operations on nasal sinuses'
       '23'='23:Removal and restoration of teeth'
       '24'='24:Other operations on teeth, gums, a...'
       '25'='25:Operations on tongue'
       '26'='26:Operations on salivary glands and ...'
       '27'='27:Other operations on mouth and face'
       '28'='28:Operations on tonsils and adenoids'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                            41

        '29'='29:Operations on pharynx'
        '30'='30:Excision of larynx'
        '31'='31:Other operations on larynx and tra...'
        '32'='32:Excision of lung and bronchus'
        '33'='33:Other operations on lung and bronchus'
        '34'='34:Operations on chest wall, pleura, ...'
        '35'='35:Operations on valves and septa of ...'
        '36'='36:Operations on vessels of heart'
        '37'='37:Other operations on heart and peri...'
        '38'='38:Incision, excision, and occlusion ...'
        '39'='39:Other operations on vessels'
        '40'='40:Operations on lymphatic system'
        '41'='41:Operations on bone marrow and spleen'
        '42'='42:Operations on esophagus'
        '43'='43:Incision and excision of stomach'
        '44'='44:Other operations on stomach'
        '45'='45:Incision, excision, and anastomosi...'
        '46'='46:Other operations on intestine'
        '47'='47:Operations on appendix'
        '48'='48:Operations on rectum, rectosigmoid...'
        '49'='49:Operations on anus'
        '50'='50:Operations on liver'
        '51'='51:Operations on gallbladder and bili...'
        '52'='52:Operations on pancreas'
        '53'='53:Repair of hernia'
        '54'='54:Other operations on abdominal region'
        '55'='55:Operations on kidney'
        '56'='56:Operations on ureter'
        '57'='57:Operations on urinary bladder'
        '58'='58:Operations on urethra'
        '59'='59:Other operations on urinary tract'
        '60'='60:Operations on prostate and seminal...'
        '61'='61:Operations on scrotum and tunica v...'
        '62'='62:Operations on testes'
        '63'='63:Operations on spermatic cord, epid...'
        '64'='64:Operations on penis'
        '65'='65:Operations on ovary'
        '66'='66:Operations on fallopian tubes'
        '67'='67:Operations on cervix'
        '68'='68:Other incision and excision of uterus'
        '69'='69:Other operations on uterus and sup...'
        '70'='70:Operations on vagina and cul-de-sac'
        '71'='71:Operations on vulva and perineum'
        '72'='72:Forceps, vacuum, and breech delivery'
        '73'='73:Other procedures inducing or assis...'
        '74'='74:Cesarean section and removal of fetus'
        '75'='75:Other obstetric operations'
        '76'='76:Operations on facial bones and joints'
        '77'='77:Incision, excision, and division o...'
        '78'='78:Other operations on bones, except ...'
        '79'='79:Reduction of fracture and dislocation'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                            42

        '80'='80:Incision and excision of joint str...'
        '81'='81:Repair and plastic operations on j...'
        '82'='82:Operations on muscle, tendon, and ...'
        '83'='83:Operations on muscle, tendon, fasc...'
        '84'='84:Other procedures on musculoskeleta...'
        '85'='85:Operations on the breast'
        '86'='86:Operations on skin and subcutaneou...'
        '87'='87:Diagnostic radiology'
        '88'='88:Other diagnostic radiology and rel...'
        '89'='89:Interview, evaluation, consultatio...'
        '90'='90:Microscopic examination I'
        '91'='91:Microscopic examination II'
        '92'='92:Nuclear medicine'
        '93'='93:Physical therapy/respiratory thera...'
        '94'='94:Procedures related to the psyche'
        '95'='95:Ophthalmologic and otologic diagno...'
        '96'='96:Nonoperative intubation and irriga...'
        '97'='97:Replacement and removal of therape...'
        '98'='98:Nonoperative removal of foreign body'
        '99'='99:Other nonoperative procedures'
;




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                               43


             8. Proc Frequency with Format Statements


Below is the weighted Proc Frequency SAS code.
proc freq data=nhds2006;
weight weight;
tables sex race marstat disc_mon discstat
losflag region bedsize owner;

format sex sexf. race racef. marstat marstatf. disc_mon $dismonthf.
discstat discstatf. losflag losflagf. region regionf.
bedsize bedsizef. owner ownerf.;

title 'Weighted Frequency Distribution with
Formats for Selected Variable';
run;

Below is the weighted Proc Frequency SAS output.
                        Weighted Frequency Distribution with Formats for Selected Variable

                                        The FREQ Procedure

                                           Patient sex

                                                      Cumulative    Cumulative
                      SEX    Frequency     Percent     Frequency      Percent
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                   Male      16030906       41.24      16030906        41.24
                   Female    22842871       58.76      38873777       100.00



                                           Patient race

                                                              Cumulative    Cumulative
                             RACE    Frequency     Percent     Frequency      Percent
            ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
            White                    23116012       59.46      23116012        59.46
            Black                     4685938       12.05      27801950        71.52
            Native American            118912        0.31      27920862        71.82
            Asian                      649604        1.67      28570466        73.50
            Native Hawaiian or PI       95043        0.24      28665509        73.74
            Other Race                 711022        1.83      29376531        75.57
            Multiple Race               33376        0.09      29409907        75.65
            Race Not Stated           9463870       24.35      38873777       100.00



                                     Marital status of patient

                                                           Cumulative    Cumulative
                       MARSTAT    Frequency     Percent     Frequency      Percent
                 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                 Married           9336056       24.02       9336056        24.02
                 Single           10931362       28.12      20267418        52.14

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                              44

                 Widowed           3083076        7.93        23350494      60.07
                 Divorced          1471056        3.78        24821550      63.85
                 Separated          234303        0.60        25055853      64.45
                 MS Not Stated    13817924       35.55        38873777     100.00



                                         Month of discharge

                                                         Cumulative    Cumulative
                   DISC_MON     Frequency     Percent     Frequency      Percent
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                   January       3326380        8.56       3326380         8.56
                   February      3127993        8.05       6454373        16.60
                   March         3475747        8.94       9930120        25.54
                   April         3189227        8.20      13119347        33.75
                   May           3329115        8.56      16448462        42.31
                   June          3292765        8.47      19741227        50.78
                   July          3240989        8.34      22982216        59.12
                   August        3342033        8.60      26324249        67.72
                   September     3221755        8.29      29546004        76.00
                   October       3129742        8.05      32675746        84.06
                   November      3068077        7.89      35743823        91.95
                   December      3129954        8.05      38873777       100.00



                                         Status at discharge

                                                                 Cumulative    Cumulative
                            DISCSTAT    Frequency     Percent     Frequency      Percent
         ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
         Home                           30736926       79.07      30736926        79.07
         Left Against Medical Advice      332166        0.85      31069092        79.92
         Dischaged to Acute              1595663        4.10      32664755        84.03
         Discharged to LTC               3164590        8.14      35829345        92.17
         Alive Status not Stated         1724117        4.44      37553462        96.60
         Diseased                         743475        1.91      38296937        98.52
         Status not Reported              576840        1.48      38873777       100.00



                                      Zero length of stay flag

                                                             Cumulative    Cumulative
                         LOSFLAG    Frequency     Percent     Frequency      Percent
                 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                 less than 1 day      755008        1.94        755008         1.94
                 One day or More    38118769       98.06      38873777       100.00



                                    Geographic region of hospital

                                                         Cumulative    Cumulative
                      REGION    Frequency     Percent     Frequency      Percent
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                   Northeast     7998781       20.58       7998781        20.58
                   Midwest       8784236       22.60      16783017        43.17
                   South        14603982       37.57      31386999        80.74
                   West          7486778       19.26      38873777       100.00

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                       45


                                  Bedsize grouping for hospital

                                                          Cumulative    Cumulative
                      BEDSIZE    Frequency     Percent     Frequency      Percent
                 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                 6-99             8727912       22.45       8727912        22.45
                 100-199          8171471       21.02      16899383        43.47
                 200-299          7475041       19.23      24374424        62.70
                 300-499          9141896       23.52      33516320        86.22
                 500 and Over     5357457       13.78      38873777       100.00



                                      Ownership of hospital

                                                          Cumulative    Cumulative
                        OWNER    Frequency     Percent     Frequency      Percent
                 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                 Proprietary      4679522       12.04       4679522        12.04
                 Governmental     4762338       12.25       9441860        24.29
                 Non-Profit      29431917       75.71      38873777       100.00




Below is the log associated with the above output.
5344   proc freq data=nhds2006;
5345   weight weight;
5346   tables sex race marstat disc_mon discstat
5347   losflag region bedsize owner;
5348   format sex sexf. race racef. marstat marstatf. disc_mon $dismonthf.
5349   discstat discstatf. losflag losflagf. region regionf.
5350   bedsize bedsizef. owner ownerf.;
5351   title 'Weighted Frequency Distribution with
5352   Formats for Selected Variable';
5353   run;

NOTE: There were 376328 observations read from the data set WORK.NHDS2006.
NOTE: PROCEDURE FREQ used (Total process time):
      real time           0.40 seconds
      cpu time            0.40 second




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                 46




             9. Exercises 3.1


1. Prepare and run weighted and formatted PROC FREQ for variables ESOP1, ADM_TYPE,
   and ADM_SOURCE.
2. Add a variable in the input code for DX13 to read $3 (first 3 characters of the principal
   diagnosis) and produce the frequency distribution for PROC FREQ and a weighted and
   formatted output.
3. Add a variable in the input code for PD12 to read $2 (first 2 characters of the principal
   procedure) and produce the procedure distribution using PROC FREQ and a weighted and
   formatted output.
4. What are the top 5 most frequent procedures for NHDS 2006?
5. What are the top 5 most frequent diagnoses for NHDS 2006?
6. Write the format statements for the Medicare DRGs which are found in C:DATA9000DRG
   Medicare FY07.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                            47




             10. SAS Code for NHDS Indicator and Truth Logic Variables
             nhds03d1.sas

Below is the SAS code that creates indicator and truth logic variables.
/****nhds03d.sas**********/
data nhds06;
set work.nhds2006;
/*************************************************/
/*Indicator variables were previously identified */
/*as dummy variables equal to 1 or 0 when they   */
/*existed or did not exist in an observation.    */
/*They are used in statistical analysis of data. */
/*************************************************/

       /****Indicator Variable for Gender*****/

         male        = (sex=1);
         female      = (sex=2);

/******************************************************/
/*Truth Logic is used to create a continuous variable */
/*that corresponds to the values (1-3, 1-5, etc.)*/
/*assigned to a variable in an observation and        */
/*is used in regression and logistic analysis.        */
/******************************************************/

       /*****Truth Logic for Gender*************/

       gendercat= 1*(sex=1) + 2*(sex=2);

       /****Indicator Variable for Race*****/

       white                 =    (race=1);
       black                 =    (race=2);
       nativeam              =    (race=3);
       asian                 =    (race=4);
       hawaiianpi            =    (race=5);
       othrace               =    (race=6);
       multirace                 = (race=8);
       racenotstat               = (race=9);

;
                 /*****Truth Logic For Race*************/

    racecat = 1*(race=1) + 2*(race=2) + 3*(race=3)+
              4*(race=4) + 5*(race=5) + 6*(race=6)+
              7*(race=8) + 8*(race=9);

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                         48



       /****Indicator Variable for Marital Status*****/

       married              =   (marstat=1);
       single               =   (marstat=2);
       widowed              =   (marstat=3);
       divorced             =   (marstat=4);
       separated            =   (marstat=5);
       msnotstat            =   (marstat=9);

     /*****Truth Logic For Marital Status************/

    marstatcat=      1*(marstat=1) + 2*(marstat=2) + 3*(marstat=3)+
                     4*(marstat=4) + 5*(marstat=5) + 6*(marstat=9);


       /****Indicator Variable for Discharge Status*****/

        home                =   (discstat=1);
        dislma              =   (discstat=2);
        disacute            =   (discstat=3);
        disltc              =   (discstat=4);
        alivens             =   (discstat=5);
        disceased           =   (discstat=6);
        disstatna           =   (discstat=9);

     /*****Truth Logic For Marital Status************/

     discstatcat= 1*(discstat=1) + 2*(discstat=2) + 3*(discstat=3) +
                 4*(discstat=4) + 5*(discstat=5) + 6*(discstat=6) +
                  7*(discstat=9);

       /****Indicator Variable for Region*****/

       northeast     =   (region=1);
       midwest       =   (region=2);
       south         =   (region=3);
       west          =   (region=4);

       /*****Truth Logic For Region************/

     regioncat=      1*(region=1) + 2*(region=2) + 3*(region=3) +
                     4*(region=4);

     /****Indicator Variable for Ownership*****/

       private              = (owner=1);
       government           = (owner=2);
       nonprofit            = (owner=3);



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                     49

       /*****Truth Logic For Ownership************/

     ownercat=       1*(owner=1) + 2*(owner=2) + 3*(owner=3);


    /****Indicator Variable for Payer*****/

       workercomp           =   (esop1=1);
       medicare             =   (esop1=2);
       medicaid             =   (esop1=3);
       othergvmt            =   (esop1=4);
       bluecross            =   (esop1=5);
       hmoppo               =   (esop1=6);
       othprivate           =   (esop1=7);
       selfpay              =   (esop1=8);
       nocharge             =   (esop1=9);
       othinsure            =   (esop1=10);
       paynotstated         =   (esop1=99);


       /*****Truth Logic For Payer1*************/

    payercat = 1*(esop1=1) +        2*(esop1=2) + 3*(esop1=3)+
               4*(esop1=4) +        5*(esop1=5) + 6*(esop1=6)+
               7*(esop1=7) +        8*(esop1=8) + 9*(esop1=9)+
               10*(esop1=10)        +11*(esop1=99);


    /****Indicator     Variable for Admit Source*****/
     docreferal        = (asource=1);
     clinreferal       = (asource=2);
     hmoreferal        = (asource=3);
     hospreferal       = (asource=4);
     snftransfer       = (asource=5);
     othtransfer       = (asource=6);
     edsource          = (asource=7);
     legalsource       = (asource=8);
     othsource         = (asource=9);
     sourcena          = (asource=99);

     /*****Truth Logic for Admit Source*************/

    sourcecat = 1*(asource=1) + 2*(asource=2) + 3*(asource=3)+
                4*(asource=4) + 5*(asource=5) + 6*(asource=6)+
                7*(asource=7) + 8*(asource=8) + 9*(asource=9)+
               10*(asource=99);



Below is the PROC MEANS code for the unweighted NHDS06 indicator and truth logic
variables.
Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                 50

proc means n mean sum min max data=nhds06;
var male female gendercat white black nativeam
     asian hawaiianpi othrace multirace racenotstat
     racecat married single widowed divorced separated
     msnotstat home dislma disacute disltc alivens
     disceased disstatna discstatcat
     northeast midwest south west regioncat
     private government nonprofit ownercat
     workercomp medicare medicaid othergvmt
     bluecross hmoppo othprivate selfpay
     nocharge othinsure paynotstated    payercat
     docreferal clinreferal hmoreferal hospreferal
     snftransfer othtransfer edsource legalsource
     othsource sourcena sourcecat
;
title 'Means Procedure for NHDS2006 Variables Unweighted';
run;


Below is the output from the above PROC Means.
                                      The MEANS Procedure

      Variable             N            Mean             Sum         Minimum         Maximum
      ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
      male            376328       0.4110165       154677.00               0       1.0000000
      female          376328       0.5889835       221651.00               0       1.0000000
      gendercat       376328       1.5889835       597979.00       1.0000000       2.0000000
      white           376328       0.5324292       200368.00               0       1.0000000
      black           376328       0.1360382        51195.00               0       1.0000000
      nativeam        376328       0.0027237         1025.00               0       1.0000000
      asian           376328       0.0080196         3018.00               0       1.0000000
      hawaiianpi      376328       0.0010762     405.0000000               0       1.0000000
      othrace         376328       0.0407145        15322.00               0       1.0000000
      multirace       376328     0.000286984     108.0000000               0       1.0000000
      racenotstat     376328       0.2787117       104887.00               0       1.0000000
      racecat         376328       3.3261251      1251714.00       1.0000000       8.0000000
      married         376328       0.1462713        55046.00               0       1.0000000
      single          376328       0.2091367        78704.00               0       1.0000000
      widowed         376328       0.0484258        18224.00               0       1.0000000
      divorced        376328       0.0229109         8622.00               0       1.0000000
      separated       376328       0.0041586         1565.00               0       1.0000000
      msnotstat       376328       0.5690966       214167.00               0       1.0000000
      home            376328       0.7982212       300393.00               0       1.0000000
      dislma          376328       0.0094200         3545.00               0       1.0000000
      disacute        376328       0.0253343         9534.00               0       1.0000000
      disltc          376328       0.0850508        32007.00               0       1.0000000
      alivens         376328       0.0556536        20944.00               0       1.0000000
      disceased       376328       0.0194936         7336.00               0       1.0000000
      disstatna       376328       0.0068265         2569.00               0       1.0000000
      discstatcat     376328       1.6762824       630832.00       1.0000000       7.0000000
      northeast       376328       0.2396633        90192.00               0       1.0000000
      midwest         376328       0.2594970        97656.00               0       1.0000000
      south           376328       0.3769026       141839.00               0       1.0000000
      west            376328       0.1239371        46641.00               0       1.0000000

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                     51

      regioncat       376328       2.3851135       897585.00       1.0000000        4.0000000
      private         376328       0.1032849        38869.00               0        1.0000000
      government      376328       0.0851704        32052.00               0        1.0000000
      nonprofit       376328       0.8115447       305407.00               0        1.0000000
      ownercat        376328       2.7082598      1019194.00       1.0000000        3.0000000
      workercomp      376328       0.0039487         1486.00               0        1.0000000
      medicare        376328       0.3477950       130885.00               0        1.0000000
      medicaid        376328       0.1831408        68921.00               0        1.0000000
      othergvmt       376328       0.0116202         4373.00               0        1.0000000
      bluecross       376328       0.1028172        38693.00               0        1.0000000
      hmoppo          376328       0.1666950        62732.00               0        1.0000000
      othprivate      376328       0.0922759        34726.00               0        1.0000000
      selfpay         376328       0.0422716        15908.00               0        1.0000000
      nocharge        376328       0.0054607         2055.00               0        1.0000000
      othinsure       376328       0.0317569        11951.00               0        1.0000000
      paynotstated    376328       0.0122181         4598.00               0        1.0000000
      payercat        376328       4.2949156      1616297.00       1.0000000       11.0000000
      docreferal      376328       0.3001743       112964.00               0        1.0000000
      clinreferal     376328       0.0135547         5101.00               0        1.0000000
      hmoreferal      376328       0.0045997         1731.00               0        1.0000000
      hospreferal     376328       0.0285070        10728.00               0        1.0000000
      snftransfer     376328       0.0048335         1819.00               0        1.0000000
      othtransfer     376328       0.0065050         2448.00               0        1.0000000
      edsource        376328       0.4169288       156902.00               0        1.0000000
      legalsource     376328       0.0019850     747.0000000               0        1.0000000
      othsource       376328       0.1151256        43325.00               0        1.0000000
      sourcena        376328       0.1077863        40563.00               0        1.0000000
      sourcecat       376328       5.5666839      2094899.00       1.0000000       10.0000000



A method to validate your indicator variables consists of confirming that each has a minimum
value of 0 and a maximum value of 1. If this does not exist, check your code. For truth logic
variables, the minimum is usually 1 and the maximum equals the total number of values assigned
to the variable. Again, if this does not occur, check your logic code. For example, paynotstated
has a minimum of 1 and a maximum of 0 while payercat has a minimum of 1 and a maximum of
10 that corresponds to the number of payer categories.
The N=376,328 is the total observation in the data set and also reflects the completeness of the
data for each variable. In the above case, there are no missing values in any observation. The
mean value is the percentage of each variable within a category. For payer, the percentage of
Medicare patients in the sample is 34.8%. The sum column of 130,885 equals the number of
Medicare observation sampled in the NHDS survey in 2006.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                52




             11. Exercises 3.2


1. Using nhds03d, write the indicator and truth logic code for the variables admitype, bedsize,
dismonth, and los flag.
2. Submit a weighted version of the nhds03d Prod Means with these variables plus days of care
(DOC) and age.
3. Using the above output and weighted means. Present a narrative of the presentage distribution
of admitype, bedsize, dismonth, and losflag.
4. Using nhds03d insert the [class selfpay] into the proc mean. The output will yield the
differences between the selfpay (uninsured) and non-selfpay (insured). Prepare a narrative that
compares the demographic differences between the uninsured and insured populations.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                      53




             12. Multiple Linear Regression Model of Days of Care
             nhds04d.sas

Below is the linear regression model (Proc Reg) of days of care and the effects of gender, race,
marital status, payer, disposition and region. The NHDS was not designed for multivariate
analysis and is principally used for descriptive statistics. However, this demonstration yields
reasonable findings and creates templates for use with other data sets which are designed for
multivariate analysis with a multi-stage probability sample design. Nevertheless, it should be
noted that a substantial number of studies are published yearly using multivariate analysis of
NHDS of the unweighted annual sample. Appendix 2 presents a sample of these studies.


/***nhds04d.sas***/

Proc Reg data=nhds06;
model doc=male white married medicare disceased south;
run;
title 'Linear regression of days of care as the dependent variable and
the selected effects’
quit;

Below is the output of the linear regression.
                                          The REG Procedure
                                            Model: MODEL1
                            Dependent Variable: DOC Number of days of care

                              Number of Observations Read         376328
                              Number of Observations Used         376328



                                          Analysis of Variance

                                                 Sum of            Mean
          Source                    DF          Squares          Square     F Value     Pr > F

          Model                      6            390901           65150    1428.16     <.0001
          Error                 376321          17167112        45.61827
          Corrected Total       376327          17558013



                         Root MSE              6.75413     R-Square        0.0223
                         Dependent Mean        4.71399     Adj R-Sq        0.0222
                         Coeff Var           143.27828



                                          Parameter Estimates

                                                    Parameter         Standard
  Variable       Label                     DF        Estimate            Error      t Value   Pr > |t|


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                   54

  Intercept      Intercept                 1         3.82799         0.02146     178.41       <.0001
  male                                     1         0.53717         0.02239      23.99       <.0001
  white                                    1        -0.05574         0.02248      -2.48       0.0132
  married                                  1        -0.52875         0.03218     -16.43       <.0001
  medicare                                 1         1.55716         0.02325      66.98       <.0001
  disceased                                1         3.84237         0.07999      48.04       <.0001
  south                                    1         0.41328         0.02312      17.88       <.0001

As seen above in the PROC REG output of discharges in 2006 across the nation, the model of
days of care (DOC) , all of the effects are significant at p<.01. Controlling for sex, race, marital
status, payer, disposition and region, the findings are as follows:
1. Males will stay 0.5 days longer than females. p<.0001
2. Whites stay 0.05 days less than non-whites. p<.0001
3. Those married stay 0.5 fewer days than those not married. p<.0001
4. Medicare payers stay 1.6 days longer than non-Medicare discharges. p<.0001
5. Those who die compared to those discharged alive have 3.8 additional days of care before
   death. p<.0001
6. Those living in the South compared to other national regions have 0.41 additional days of
   care. p<.0001




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                      55




             13. Exercises 3.3


1. Run the model with the freq weight statement after PROC REG and determine if the findings
   are significantly different.
2. Add to the model the additional effects of hospital ownership and source of admission using
   the indicator variables of private and snftransfer and interpret these two effects.
3. Write the regression equation of this first model using the intercept and effect coefficients,
   and using the following format:
    DOC = β0 + β1male+ β2white + β3married + β4Medicare + β5diseased + β6south +ε




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                               56




             14. A Logistic Regression Model for the Uninsured (selfpay).
             nhds05d.sas

Below is the logistic regression model (proc logistic) of the uninsured and the effects of age
gender, race, admission type and region. As previously discussed, NHDS was not designed for
multivariate analysis and is principally used for descriptive statistics. However, this
demonstration yields reasonable findings and creates templates for use with other data sets which
are designed for multivariate analysis. Nevertheless, it should be noted that a substantial number
of studies are published yearly using multivariate analysis of NHDS of the unweighted annual
sample. Appendix 2 presents a sample of these studies.
/*nhds05d.sas*/
options nolabel nodate nonumber;
proc logistic data=nhds06 des;
    class gendercat (param=ref ref='2') /*female**/
          racecat    (param=ref ref='1') /*white**/
          admitcat   (param=ref ref='3') /*elective*/
          regioncat (param=ref ref='2'); /*midwest*/
    model selfpay=age gendercat racecat admitcat regioncat;

;


     units age=10;
      title 'Logistic Regression for NHDS Selfpay (uninsured)';
run;
quit;
options label;
title;


                           Logistic Regression for NHDS Selfpay (uninsured)

                                      The LOGISTIC Procedure

                                        Model Information

                           Data Set                     WORK.NHDS06
                           Response Variable            selfpay
                           Number of Response Levels    2
                           Model                        binary logit
                           Optimization Technique       Fisher's scoring



                             Number of Observations Read       376328
                             Number of Observations Used       376328



                                         Response Profile



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                              57

                                    Ordered                           Total
                                      Value       selfpay         Frequency

                                         1              1            15908
                                         2              0           360420

                                    Probability modeled is selfpay=1.



                                        Class Level Information

                 Class          Value                       Design Variables

                 gendercat      1             1
                                2             0

                 racecat        1             0     0         0      0        0     0   0
                                2             1     0         0      0        0     0   0
                                3             0     1         0      0        0     0   0
                                4             0     0         1      0        0     0   0
                                5             0     0         0      1        0     0   0
                                6             0     0         0      0        1     0   0
                                7             0     0         0      0        0     1   0
                                8             0     0         0      0        0     0   1

                 admitcat       1             1     0         0      0
                                2             0     1         0      0
                                3             0     0         0      0
                                4             0     0         1      0
                                5             0     0         0      1

                 regioncat       1          1      0          0
                                 2          0      0          0
                                 3          0      1          0
                                 4          0      0          1
                             Logistic Regression for NHDS     Selfpay (uninsured)

                                         The LOGISTIC Procedure

                                        Model Convergence Status

                             Convergence criterion (GCONV=1E-8) satisfied.



                                            Model Fit Statistics

                                                                   Intercept
                                                  Intercept              and
                                 Criterion             Only       Covariates

                                 AIC              131790.20        123843.34
                                 SC               131801.04        124027.59
                                 -2 Log L         131788.20        123809.34



                                Testing Global Null Hypothesis: BETA=0



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                      58

                       Test                       Chi-Square        DF     Pr > ChiSq

                       Likelihood Ratio            7978.8568        16            <.0001
                       Score                       8272.5095        16            <.0001
                       Wald                        7829.0388        16            <.0001



                                          Type 3 Analysis of Effects

                                                             Wald
                                 Effect          DF    Chi-Square      Pr > ChiSq

                                 AGE              1     4518.7861         <.0001
                                 gendercat        1      662.1638         <.0001
                                 racecat          7      378.8640         <.0001
                                 admitcat         4     3360.3676         <.0001
                                 regioncat        3      466.3526         <.0001



                                  Analysis of Maximum Likelihood Estimates

                                                       Standard           Wald
                 Parameter         DF     Estimate        Error     Chi-Square      Pr > ChiSq

                 Intercept         1     -3.0982      0.0353     7701.4191                 <.0001
                 AGE               1     -0.0240    0.000357     4518.7861                 <.0001
                 gendercat   1     1      0.4287      0.0167      662.1638                 <.0001
                 racecat     2     1      0.2042      0.0233       76.7092                 <.0001
                 racecat     3     1      0.7448      0.1139       42.7874                 <.0001
                 racecat     4     1      0.1118      0.0968        1.3341                 0.2481
                 racecat     5     1      0.0760      0.2444        0.0967                 0.7558
                 racecat     6     1      0.2805      0.0370       57.3473                 <.0001
                 racecat     7     1      1.2076      0.3236       13.9272                 0.0002
                              Logistic Regression for NHDS Selfpay (uninsured)

                                              The LOGISTIC Procedure

                                  Analysis of Maximum Likelihood Estimates

                                                       Standard           Wald
                 Parameter         DF     Estimate        Error     Chi-Square      Pr > ChiSq

                 racecat     8      1         0.3655     0.0208      308.1565              <.0001
                 admitcat    1      1         0.8955     0.0253     1248.2156              <.0001
                 admitcat    2      1         0.1894     0.0312       36.7482              <.0001
                 admitcat    4      1        -0.7057     0.0372      360.5407              <.0001
                 admitcat    5      1         0.4933     0.0416      140.3279              <.0001
                 regioncat   1      1         0.0155     0.0272        0.3221              0.5703
                 regioncat   3      1         0.3876     0.0230      282.7929              <.0001
                 regioncat   4      1         0.1302     0.0311       17.5216              <.0001




                                          Odds Ratio Estimates

                                                       Point           95% Wald

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                     59

                       Effect                   Estimate      Confidence Limits

                       AGE                         0.976          0.976       0.977
                       gendercat   1   vs   2      1.535          1.486       1.586
                       racecat     2   vs   1      1.227          1.172       1.284
                       racecat     3   vs   1      2.106          1.685       2.632
                       racecat     4   vs   1      1.118          0.925       1.352
                       racecat     5   vs   1      1.079          0.668       1.742
                       racecat     6   vs   1      1.324          1.231       1.423
                       racecat     7   vs   1      3.346          1.774       6.308
                       racecat     8   vs   1      1.441          1.384       1.501
                       admitcat    1   vs   3      2.449          2.330       2.573
                       admitcat    2   vs   3      1.209          1.137       1.285
                       admitcat    4   vs   3      0.494          0.459       0.531
                       admitcat    5   vs   3      1.638          1.509       1.777
                       regioncat   1   vs   2      1.016          0.963       1.071
                       regioncat   3   vs   2      1.473          1.408       1.542
                       regioncat   4   vs   2      1.139          1.072       1.211



                   Association of Predicted Probabilities and Observed Responses

                      Percent Concordant               70.6       Somers' D       0.432
                      Percent Discordant               27.4       Gamma           0.441
                      Percent Tied                      2.0       Tau-a           0.035
                      Pairs                      5733561360       c               0.716



                          Logistic Regression for NHDS Selfpay (uninsured)

                                            The LOGISTIC Procedure

                                                Odds Ratios

                             Effect                        Unit      Estimate

                             AGE                       10.0000            0.786



As seen above in the proc logistic output of discharges in 2006 across the nation, the model of
days of care uninsured (selfpay), all of the effects are significant at p<.0001. Controlling for age,
gender, race, admit type, payer, and region, the findings are as follows:
1. All else being equal, males are 1.535 times more likely to be uninsured than females,
   p<.0001[CI 1.486, 1.586].
2. All else being equal, blacks compared to whites are 1.227 times more likely to be
   uninsured, p<.0001[CI 1.172 , 1.284].
3. All else being equal, multiple races compared to whites are 3.346 times more likely to be
   uninsured, p<.0001[CI 1.774, 6.308].
4. All else being equal, Native Americans compared to whites were 2.106 times more likely to
   be uninsured, p<.0001[CI 1.685, 2.632].


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                               60

5. All else being equal, emergencies compared to electives were 2.449 times more likely to be
   uninsured, p<.0001[CI 2.330, 2.573].
6. All else being equal, newborn compared to electives were 50.6 percent less likely to be
   uninsured, p<.0001[CI 0.459 , 0.531].
7. All else being equal, those from the South compared to the Midwest were 1.473 times more
   likely to be uninsured, p<.0001[CI 1.408, 1.542].
8. All else being equal, those from the West compared to the Midwest were 1.139 times more
   likely to be uninsured, p<.0001[CI 1.072, 1.221].




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                  61




             15. Exercises 3.4


1. Add to the logistic model the effects of marital status (msnotstat), hospital ownership
(ownercat), admission source (asource), discharge disposition (discstatcat), and days of care
(DOC) to the first model.
2. In a narrative, describe the contribution of these additional effects upon the outcome variable.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                   62




             16. Proc Tabulate to Identify the Differences of the Principal
             Diagnosis of the Uninsured (self pay) and Insured.
        nhdso3d

The Proc Tabulate below, found in nhds03d, will produce a table comparing the uninsured (self
pay) and insured, the principal diagnoses, and days of care.
options nolabel nodate nonumber;
proc tabulate data=nhds06 order=freq; /* formchar='        '; */
freq weight;
class selfpay dx13;
var doc;
tables dx13 all,
(selfpay all)*(doc*(n*f=8.0 mean*f=3.2)) /rts=50;
format dx13 $diag3df.;
run;
title 'Distribution in Rank order of the Selfpay Diagnosis';

Partial output of Proc Tabulate
                           Distribution in Rank order of the Selfpay Diagnosis

    „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
    ‚                                                ‚         selfpay         ‚            ‚
    ‚                                                ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰            ‚
    ‚                                                ‚     0      ‚     1      ‚    All     ‚
    ‚                                                ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
    ‚                                                ‚    DOC     ‚    DOC     ‚    DOC     ‚
    ‚                                                ‡ƒƒƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒƒƒ…ƒƒƒ‰
    ‚                                                ‚        ‚Me-‚        ‚Me-‚        ‚Me-‚
    ‚                                                ‚   N    ‚an ‚   N    ‚an ‚   N    ‚an ‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚dx13                                            ‚        ‚   ‚        ‚   ‚        ‚   ‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰        ‚   ‚        ‚   ‚        ‚   ‚
    ‚(V27) Outcome of delivery                       ‚ 3971889‚2.6‚ 155602‚2.4‚ 4127491‚2.6‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(V30) Singleton                                 ‚ 3718260‚3.2‚ 184180‚2.6‚ 3902440‚3.2‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(428) Heart failure                             ‚ 1078964‚5.2‚   27442‚3.8‚ 1106406‚5.1‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(486) Pneumonia, organism unspecified           ‚ 1024185‚4.9‚   28995‚3.5‚ 1053180‚4.9‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(414) Other forms of chronic ischemic...        ‚ 942554‚3.2‚    36606‚3.2‚ 979160‚3.2‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(296) Affective psychoses                       ‚ 915191‚7.3‚    55940‚5.5‚ 971131‚7.2‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(427) Cardiac dysrhythmias                      ‚ 756333‚3.4‚    15192‚2.6‚ 771525‚3.4‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(715) Osteoarthrosis and allied disor...        ‚ 748890‚3.8‚     4426‚3.5‚ 753316‚3.8‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(276) Disorders of fluid, electrolyte...        ‚ 701855‚3.5‚    21792‚2.8‚ 723647‚3.5‚
    ‚(410) Acute myocardial infarction              ‚   618843‚5.5‚   27807‚3.9‚   646650‚5.4‚

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                  63

    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(250) Diabetes mellitus                         ‚ 533206‚4.8‚    50927‚3.8‚ 584133‚4.7‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(682) Other cellulitis and abscess              ‚ 501709‚4.5‚    52639‚3.8‚ 554348‚4.5‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(038) Septicemia                                ‚ 515467‚8.6‚    14967‚9.4‚ 530434‚8.7‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(996) Complications peculiar to certa...        ‚ 515933‚6.2‚     6609‚5.3‚ 522542‚6.2‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(599) Other disorders of urethra and ...        ‚ 515112‚4.6‚     6658‚3.5‚ 521770‚4.6‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(491) Chronic bronchitis                        ‚ 495774‚4.7‚    16889‚3.7‚ 512663‚4.7‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(V57) Care involving use of rehabilit...        ‚ 470596‚ 13‚     6475‚ 18‚ 477071‚ 13‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(493) Asthma                                    ‚ 414525‚3.2‚    29044‚2.8‚ 443569‚3.2‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(434) Occlusion of cerebral arteries            ‚ 368478‚5.4‚    20163‚4.3‚ 388641‚5.4‚
    Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰        ‚   ‚        ‚   ‚        ‚
    ‚(518) Other diseases of lung                    ‚ 354158‚8.7‚    11618‚7.4‚ 365776‚8.7‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(574) Cholelithiasis                            ‚ 308150‚3.9‚    27210‚3.2‚ 335360‚3.8‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(295) Schizophrenic psychoses                   ‚ 319453‚ 12‚    13647‚7.7‚ 333100‚ 12‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(820) Fracture of neck of femur                 ‚ 323278‚6.1‚     6551‚6.8‚ 329829‚6.2‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(722) Intervertebral disc disorders             ‚ 316081‚3.1‚     7727‚2.8‚ 323808‚3.1‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(560) Intestinal obstruction without ...        ‚ 313044‚6.2‚     9717‚4.4‚ 322761‚6.2‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(584) Acute renal failure                       ‚ 305059‚6.6‚    10275‚4.3‚ 315334‚6.6‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(562) Diverticula of intestine                  ‚ 302204‚4.8‚    12237‚4.4‚ 314441‚4.8‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(540) Acute appendicitis                        ‚ 270725‚3.2‚    28807‚3.2‚ 299532‚3.2‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(401) Essential hypertension                    ‚ 269301‚2.3‚    24027‚1.9‚ 293328‚2.2‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(577) Diseases of pancreas                      ‚ 240159‚5.7‚    32723‚4.4‚ 272882‚5.5‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(998) Other complications of procedur...        ‚ 236957‚6.1‚     9409‚5.8‚ 246366‚6.1‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(530) Diseases of esophagus                     ‚ 206088‚3.5‚    11484‚2.5‚ 217572‚3.4‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(558) Other noninfective gastroenteri...        ‚ 205865‚3.1‚    11678‚2.3‚ 217543‚3.1‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(466) Acute bronchitis and bronchiolitis        ‚ 208706‚3.2‚     8140‚2.4‚ 216846‚3.2‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(218) Uterine leiomyoma                         ‚ 201650‚2.4‚     8331‚3.0‚ 209981‚2.4‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚(435) Transient cerebral ischemia               ‚ 182669‚3.0‚     4635‚3.2‚ 187304‚3.0‚
     All                                            ‚37060872‚4.7‚ 1812905‚3.8‚38873777‚4.6‚




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                       64




              17. Exercises 3.5


Using the Proc Tabulate above, substitute the principal procedure (pr21) and var age to produce a table
comparing the uninsured (self pay) and insured, the principal procedure and corresponding mean age.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                           65




                           APPENDIX 1: Exercise Answers

Exercises 3.1
Question 3.1-1
1. Prepare and run weighted and formatted PROC FREQ for variables ESOP1, ADM_TYPE, and
   ADM_SOURCE.

Answer 3.1-1
The below Proc Freq is the code for question 1
proc freq data=nhds2006;
weight weight;
tables esop1 adm_type asource;
format esop1 payer1f. adm_type admitypef.
         asource adsourcef.

;
title1 'Weighted Frequency Distribution with';
title2 'Formats for Selected NHDS Variables';
run;

Exercises 3.1
Output for the above PROC Freq

                                 Weighted Frequency Distribution with
                                 Formats for Selected NHDS Variables

                                          The FREQ Procedure

                                 Principal expected source of payment

                                                              Cumulative    Cumulative
                            ESOP1    Frequency     Percent     Frequency      Percent
                 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                 Worker's Comp         157957        0.41        157957         0.41
                 Medicare            13523750       34.79      13681707        35.20
                 Medicaid             7526704       19.36      21208411        54.56
                 Other Govnt           616773        1.59      21825184        56.14
                 Blue Cross           3770005        9.70      25595189        65.84
                 HMO/PPO              5802453       14.93      31397642        80.77
                 Other Private        3733869        9.61      35131511        90.37
                 Self Pay             1812905        4.66      36944416        95.04
                 No Charge             179347        0.46      37123763        95.50
                 Other Ins            1125661        2.90      38249424        98.39
                 Payer Not Stated      624353        1.61      38873777       100.00



                                    Type of admission


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                        66


                                                         Cumulative    Cumulative
                    ADM_TYPE    Frequency     Percent     Frequency      Percent
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                   Emergency    14781383       38.02      14781383        38.02
                   Urgent        8499636       21.86      23281019        59.89
                   Elective      8382888       21.56      31663907        81.45
                   New Born      4019881       10.34      35683788        91.79
                   admit NA      3189989        8.21      38873777       100.00



                                            Source of admission

                                                               Cumulative    Cumulative
                           ASOURCE    Frequency     Percent     Frequency      Percent
             ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
             Physican Referral        12728421       32.74      12728421        32.74
             Clinical Referral          861246        2.22      13589667        34.96
             HMO Referral               169737        0.44      13759404        35.40
             Acute Transfer            1069107        2.75      14828511        38.15
             SNF Transfer               218427        0.56      15046938        38.71
             Other Tranfer              210381        0.54      15257319        39.25
             Emergency Room           14921494       38.38      30178813        77.63
             Court/Law Enforcement      102001        0.26      30280814        77.90
             Source_other              4531547       11.66      34812361        89.55
             Sourse N/A                4061416       10.45      38873777       100.00


Exercises 3.1 (continued)
Question 3.1-2
2. Add a variable in the input code for DX13 to read $3 (first 3 characters of the principal diagnosis) in
   nhds02d and produce the frequency distribution for PROC FREQ and a weighted and formatted
   output.
Answer 3.1-2
The updated nhds02d that contains the new variable dx13

data nhds2006 ;
Infile 'C:DATA9000NHDS06.PU.TXT' LRECL=88;
input
           @ 1        svyear          $2.
           @ 3        newborn          1.
           @ 4        ageunits         1.
           @ 5        age              2.
           @ 7        sex              1.
           @ 8        race             1.
           @ 9        marstat          1.
           @ 10       disc_mon         $2.
           @ 12       discstat         1.
           @ 13       doc              4.
           @ 17       losflag          1.
           @ 18       region           1.

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                67

                 @   19         bedsize                 1.
                 @   20         owner                   1.
                 @   21         weight                  5.
                 @   26         century                $2.
                 @   28         dx1                    $5.
                 @   28         dx13                   $3.
The proc freq code used in nhds02d used to obtain principal diagnoses distribution of NHDS.
proc freq data=nhds2006;
weight weight;
tables dx13;
format dx13 $diag3df.

;
title1 'Weighted Frequency Distribution with';
title2 'Formats for NHDS Principal Diagnosis';
run;
Partial output of above principal diagnoses distribution of NHDS
                                 Weighted Frequency Distribution with
                                 Formats for NHDS Principal Diagnosis

                                          The FREQ Procedure

                                                                       Cumulative    Cumulative
  dx13                                        Frequency     Percent     Frequency      Percent
  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
  (002) Typhoid and paratyphoid fevers             357        0.00           357         0.00
  (003) Other salmonella infections               6705        0.02          7062         0.02
  (004) Shigellosis                               1010        0.00          8072         0.02
  (005) Other food poisoning (bacterial)          3617        0.01         11689         0.03
  (006) Amebiasis                                  708        0.00         12397         0.03
  (007) Other protozoal intestinal dise...         818        0.00         13215         0.03
  (008) Intestinal infections due to ot...      186110        0.48        199325         0.51
  (009) Ill-defined intestinal infections        21050        0.05        220375         0.57
  (010) Primary tuberculous infection              119        0.00        220494         0.57
  (011) Pulmonary tuberculosis                    7703        0.02        228197         0.59
  (013) Tuberculosis of meninges and ce...          63        0.00        228260         0.59
  (015) Tuberculosis of bones and joints           827        0.00        229087         0.59
  (017) Tuberculosis of other organs               979        0.00        230066         0.59
  (018) Miliary tuberculosis                        41        0.00        230107         0.59
  (023) Brucellosis                                133        0.00        230240         0.59
  (027) Other zoonotic bacterial diseases           89        0.00        230329         0.59
  (031) Diseases due to other mycobacteria        1344        0.00        231673         0.60
  (033) Whooping cough                            3168        0.01        234841         0.60
  (034) Streptococcal sore throat and s...        9920        0.03        244761         0.63
  (035) Erysipelas                                2894        0.01        247655         0.64
  (036) Meningococcal infection                   1019        0.00        248674         0.64
  (037) Tetanus                                     14        0.00        248688         0.64
  (038) Septicemia                              530434        1.36        779122         2.00




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                        68


Exercises 3.1 (continued)
Question 3.1-3
3. Add a variable in the input code for PD12 to read $2 (first 2 characters of the principal procedure)
   and produce the procedure distribution using PROC FREQ and a weighted and formatted output.
Answer 3.1-3
The partial nhds02d that contains the new variable principal procedure code (pdx12) with two characters
/****nhds02d.sas**********/
data nhds2006 ;
Infile 'C:DATA9000NHDS06.PU.TXT' LRECL=88;
input
                @ 1             svyear                   $2.
                @ 3             newborn                    1.
                @ 4             ageunits                   1.
                @ 5             age                        2.
                @ 7             sex                        1.
                @ 8             race                       1.
                @ 9             marstat                   1.
                @ 10            disc_mon                  $2.
                @ 12            discstat                   1.
                @ 13            doc                       4.
                @ 17            losflag                   1.
                @ 18            region                    1.
                @ 19            bedsize                   1.
                @ 20            owner                     1.
                @ 21            weight                    5.
                @ 26            century                  $2.
                @ 28            dx1                      $5.
                @ 28             dx13                    $3.
                @ 33            DX2                      $5.
                @ 38            DX3                      $5.
                @ 43            DX4                      $5.
                @ 48            DX5                      $5.
                @ 53            DX6                      $5.
                @ 58            DX7                      $5.
                @ 63            PD1                      $4.
                @ 63             pdx2                    $2.

The proc freq code, used in nhds02d, used to obtain principal procedure distribution of NHDS.
proc freq data=nhds2006;
weight weight;
tables pd12;
format pd12 $proc2df.
;
title1 'Weighted Frequency Distribution with';
title2 'Formats for NHDS Principal Procedure';
run;


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                  69


Exercises 3.1 (continued)
Output of proc freq code, used in nhds02d, used to obtain principal procedure distribution of
NHDS
                               Weighted Frequency Distribution with
                               Formats for NHDS Principal Procedure
                                        The FREQ Procedure
                              ICD-9-CM procedure code - 2 position
                                                                       Cumulative    Cumulative
  pd12                                        Frequency     Percent     Frequency      Percent
  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
  Blank/00:Procedures and interventns, NEC      750131        3.13        750131         3.13
  01:Incision and excision of skull, br...      108128        0.45        858259         3.58
  02:Other operations on skull, brain, ...       63580        0.27        921839         3.84
  03:Operations on spinal cord and spin...      415543        1.73       1337382         5.58
  04:Operations on cranial and peripher...       15619        0.07       1353001         5.64
  05:Operations on sympathetic nerves o...         841        0.00       1353842         5.64
  06:Operations on thyroid and parathyr...       64094        0.27       1417936         5.91
  07:Operations on other endocrine glands        14458        0.06       1432394         5.97
  08:Operations on eyelids                       17617        0.07       1450011         6.05
  09:Operations on lacrimal system                1240        0.01       1451251         6.05
  10:Operations on conjunctiva                     256        0.00       1451507         6.05
  11:Operations on cornea                          852        0.00       1452359         6.06
  12:Operations on iris, ciliary body, ...        1162        0.00       1453521         6.06
  13:Operations on lens                           3525        0.01       1457046         6.08
  14:Operations on retina, choroid, vit...        8387        0.03       1465433         6.11
  15:Operations on extraocular muscles             901        0.00       1466334         6.11
  16:Operations on orbit and eyeball              4285        0.02       1470619         6.13
  18:Operations on external ear                  12618        0.05       1483237         6.18
  19:Reconstructive operations on middl...         354        0.00       1483591         6.19
  20:Other operations on middle and inn...       10286        0.04       1493877         6.23
  21:Operations on nose                          39267        0.16       1533144         6.39
  22:Operations on nasal sinuses                  8745        0.04       1541889         6.43
  23:Removal and restoration of teeth             5846        0.02       1547735         6.45
  24:Other operations on teeth, gums, a...        3566        0.01       1551301         6.47
  25:Operations on tongue                         9460        0.04       1560761         6.51
  26:Operations on salivary glands and ...        7813        0.03       1568574         6.54
  27:Other operations on mouth and face          41362        0.17       1609936         6.71
  28:Operations on tonsils and adenoids          32508        0.14       1642444         6.85
   29:Operations on pharynx                        6601        0.03       1649045         6.88
  30:Excision of larynx                           6894        0.03       1655939         6.90
  31:Other operations on larynx and tra...       92709        0.39       1748648         7.29
  32:Excision of lung and bronchus               70556        0.29       1819204         7.59
  33:Other operations on lung and bronchus      156952        0.65       1976156         8.24
  34:Operations on chest wall, pleura, ...      241419        1.01       2217575         9.25
  35:Operations on valves and septa of ...      119009        0.50       2336584         9.74
  36:Operations on vessels of heart             271042        1.13       2607626        10.87
  37:Other operations on heart and peri...      868062        3.62       3475688        14.49
  38:Incision, excision, and occlusion ...      818977        3.41       4294665        17.91
  39:Other operations on vessels                619691        2.58       4914356        20.49
  40:Operations on lymphatic system              41724        0.17       4956080        20.66
  41:Operations on bone marrow and spleen        67897        0.28       5023977        20.95
  42:Operations on esophagus                     50015        0.21       5073992        21.16
  43:Incision and excision of stomach           125793        0.52       5199785        21.68
  44:Other operations on stomach                206256        0.86       5406041        22.54
  45:Incision, excision, and anastomosi...     1278566        5.33       6684607        27.87

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                           70

  46:Other operations on intestine               84498        0.35    6769105    28.22
  47:Operations on appendix                     315299        1.31    7084404    29.54
  48:Operations on rectum, rectosigmoid...       82768        0.35    7167172    29.88
  49:Operations on anus                          29066        0.12    7196238    30.01
  50:Operations on liver                         55959        0.23    7252197    30.24
  51:Operations on gallbladder and bili...      445406        1.86    7697603    32.10
  52:Operations on pancreas                      24454        0.10    7722057    32.20
  53:Repair of hernia                           139507        0.58    7861564    32.78
  54:Other operations on abdominal region       302987        1.26    8164551    34.04
  55:Operations on kidney                       144371        0.60    8308922    34.64
  56:Operations on ureter                        57733        0.24    8366655    34.89
  57:Operations on urinary bladder              155450        0.65    8522105    35.53
  58:Operations on urethra                       11696        0.05    8533801    35.58
  59:Other operations on urinary tract           87477        0.36    8621278    35.95
  60:Operations on prostate and seminal...      165092        0.69    8786370    36.64
  61:Operations on scrotum and tunica v...        6498        0.03    8792868    36.66
  62:Operations on testes                         7291        0.03    8800159    36.69
  63:Operations on spermatic cord, epid...        1348        0.01    8801507    36.70
  64:Operations on penis                       1145843        4.78    9947350    41.48
  65:Operations on ovary                         97301        0.41   10044651    41.88
  66:Operations on fallopian tubes              114660        0.48   10159311    42.36
  67:Operations on cervix                        14019        0.06   10173330    42.42
  68:Other incision and excision of uterus      592406        2.47   10765736    44.89
  69:Other operations on uterus and sup...       43649        0.18   10809385    45.07
  70:Operations on vagina and cul-de-sac         75770        0.32   10885155    45.39
  71:Operations on vulva and perineum            20373        0.08   10905528    45.47
  72:Forceps, vacuum, and breech delivery       212179        0.88   11117707    46.36
  73:Other procedures inducing or assis...     1597333        6.66   12715040    53.02
  74:Cesarean section and removal of fetus     1292562        5.39   14007602    58.41
  75:Other obstetric operations                 938482        3.91   14946084    62.32
  76:Operations on facial bones and joints       38324        0.16   14984408    62.48
  77:Incision, excision, and division o...       77579        0.32   15061987    62.80
  78:Other operations on bones, except ...       93376        0.39   15155363    63.19
  79:Reduction of fracture and dislocation      559179        2.33   15714542    65.52
  80:Incision and excision of joint str...      167779        0.70   15882321    66.22
  81:Repair and plastic operations on j...     1350214        5.63   17232535    71.85
  82:Operations on muscle, tendon, and ...       12153        0.05   17244688    71.90
  83:Operations on muscle, tendon, fasc...      120425        0.50   17365113    72.40
  84:Other procedures on musculoskeleta...      111220        0.46   17476333    72.87
  85:Operations on the breast                    97026        0.40   17573359    73.27
  86:Operations on skin and subcutaneou...      761241        3.17   18334600    76.45
  87:Diagnostic radiology                       283951        1.18   18618551    77.63
  88:Other diagnostic radiology and rel...      736008        3.07   19354559    80.70
  89:Interview, evaluation, consultatio...      291331        1.21   19645890    81.91
  90:Microscopic examination I                    9886        0.04   19655776    81.96
  91:Microscopic examination II                   1993        0.01   19657769    81.96
  92:Nuclear medicine                            74211        0.31   19731980    82.27
  93:Physical therapy/respiratory thera...      705245        2.94   20437225    85.21
  94:Procedures related to the psyche           498209        2.08   20935434    87.29
  95:Ophthalmologic and otologic diagno...      157521        0.66   21092955    87.95
  96:Nonoperative intubation and irriga...      667657        2.78   21760612    90.73
  97:Replacement and removal of therape...       38220        0.16   21798832    90.89
  98:Nonoperative removal of foreign body        12924        0.05   21811756    90.95
  99:Other nonoperative procedures             2171673        9.05   23983429   100.00
                                   Frequency Missing = 14890348


Exercises 3.1 (continued)
Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                    71

Question 3.1-4
4. Name the top five 2006 NHDS procedure codes along with their volumes.
Answer 3.1-4
 First Two I9 codes and Procedure Name and                 Number of Discharges

45:Incision, excision, and anastomosi..                       1,278,566

73:Other procedures inducing or assis..                       1,597,333

74:Cesarean section and removal of fetus                      1.292,562
81: Repair and plastic operations on j...                     1,350.214

64:Operations on penis                                       1,145,843




Question 3.1-5
5. Name the top five 2006 NHDS I9 diagnoses codes along with their volumes.
Answer 3.1-5



   First Three I9 codes and Diagnosis Name                      Discharges

(296) Affective psychoses                      971, 131

428) Heart failure                             1,106,406

(486) Pneumonia, organism unspecified          1,053,180

(V27) Outcome of delivery                      4,127,491

(V30) Singleton (New Born)                     3,902,440




Exercises 3.1 (continued)
Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                     72

Question 3.1-6
6.Write the format statements for the first 100 Medicare DRGs which are found in
C:DATA9000DRG Medicare FY07.
Answer 3.1-6
Format statement for the first 100 Medicare DRG
value drgf
    1    = "(1) CRANIOTOMY AGE >17 W CC"
    2    = "(2) CRANIOTOMY AGE >17 W/O CC"
    3    = "(3) CRANIOTOMY AGE 0-17"
    4    = "(4) NO LONGER VALID"
    5    = "(5) NO LONGER VALID"
    6    = "(6) CARPAL TUNNEL RELEASE"
    7    = "(7) PERIPH & CRANIAL NERVE & OTHER NERV SYST PROC W CC"
    8    = "(8) PERIPH & CRANIAL NERVE & OTHER NERV SYST PROC W/O CC"
    9    = "(9) SPINAL DISORDERS & INJURIES"
   10    = "(10) NERVOUS SYSTEM NEOPLASMS W CC"
   11    = "(11) NERVOUS SYSTEM NEOPLASMS W/O CC"
   12    = "(12) DEGENERATIVE NERVOUS SYSTEM DISORDERS"
   13    = "(13) MULTIPLE SCLEROSIS & CEREBELLAR ATAXIA"
   14    = "(14) INTRACRANIAL HEMORRHAGE OR CEREBRAL INFARCTION"
   15    = "(15) NONSPECIFIC CVA & PRECEREBRAL OCCLUSION W/O INFARCT"
   16    = "(16) NONSPECIFIC CEREBROVASCULAR DISORDERS W CC"
   17    = "(17) NONSPECIFIC CEREBROVASCULAR DISORDERS W/O CC"
   18    = "(18) CRANIAL & PERIPHERAL NERVE DISORDERS W CC"
   19    = "(19) CRANIAL & PERIPHERAL NERVE DISORDERS W/O CC"
   20    = "(20) NERVOUS SYSTEM INFECTION EXCEPT VIRAL MENINGITIS"
   21    = "(21) VIRAL MENINGITIS"
   22    = "(22) HYPERTENSIVE ENCEPHALOPATHY"
   23    = "(23) NONTRAUMATIC STUPOR & COMA"
   24    = "(24) SEIZURE & HEADACHE AGE >17 W CC"
   25    = "(25) SEIZURE & HEADACHE AGE >17 W/O CC"
   26    = "(26) SEIZURE & HEADACHE AGE 0-17"
   27    = "(27) TRAUMATIC STUPOR & COMA, COMA >1 HR"
   28    = "(28) TRAUMATIC STUPOR & COMA, COMA <1 HR AGE >17 W CC"
   29    = "(29) TRAUMATIC STUPOR & COMA, COMA <1 HR AGE >17 W/O CC"
   30    = "(30) TRAUMATIC STUPOR & COMA, COMA <1 HR AGE 0-17"
   31    = "(31) CONCUSSION AGE >17 W CC"
   32    = "(32) CONCUSSION AGE >17 W/O CC"
   33    = "(33) CONCUSSION AGE 0-17"
   34    = "(34) OTHER DISORDERS OF NERVOUS SYSTEM W CC"
   35    = "(35) OTHER DISORDERS OF NERVOUS SYSTEM W/O CC"
   36    = "(36) RETINAL PROCEDURES"
   37    = "(37) ORBITAL PROCEDURES"
   38    = "(38) PRIMARY IRIS PROCEDURES"
   39    = "(39) LENS PROCEDURES WITH OR WITHOUT VITRECTOMY"
   40    = "(40) EXTRAOCULAR PROCEDURES EXCEPT ORBIT AGE >17"
   41    = "(41) EXTRAOCULAR PROCEDURES EXCEPT ORBIT AGE 0-17"
   42    = "(42) INTRAOCULAR PROCEDURES EXCEPT RETINA, IRIS & LENS"

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                73

    43         =    "(43) HYPHEMA"
    44         =    "(44) ACUTE MAJOR EYE INFECTIONS"
    45         =    "(45) NEUROLOGICAL EYE DISORDERS"
    46         =    "(46) OTHER DISORDERS OF THE EYE AGE >17 W CC"
    47         =    "(47) OTHER DISORDERS OF THE EYE AGE >17 W/O CC"
    48         =    "(48) OTHER DISORDERS OF THE EYE AGE 0-17"
    49         =    "(49) MAJOR HEAD & NECK PROCEDURES"
    50         =    "(50) SIALOADENECTOMY"
    51         =    "(51) SALIVARY GLAND PROCEDURES EXCEPT SIALOADENECTOMY"
    52         =    "(52) CLEFT LIP & PALATE REPAIR"
    53         =    "(53) SINUS & MASTOID PROCEDURES AGE >17"
    54         =    "(54) SINUS & MASTOID PROCEDURES AGE 0-17"
    55     =        "(55) MISCELLANEOUS EAR, NOSE, MOUTH & THROAT PROCEDURES"
    56     =        "(56) RHINOPLASTY"
    57     =        "(57) T&A PROC, EXCEPT TONSILLECTOMY &/OR ADEN AGE >17"
    58     =        "(58) T&A PROC, EXCEPT TONSILLECTOMY &/OR ADENO AGE 0-17"
    59     =        "(59) TONSILLECTOMY &/OR ADENOIDECTOMY ONLY, AGE >17"
    60     =        "(60) TONSILLECTOMY &/OR ADENOIDECTOMY ONLY, AGE 0-17"
    61     =        "(61) MYRINGOTOMY W TUBE INSERTION AGE >17"
    62     =        "(62) MYRINGOTOMY W TUBE INSERTION AGE 0-17"
    63     =        "(63) OTHER EAR, NOSE, MOUTH & THROAT O.R. PROCEDURES"
    64     =        "(64) EAR, NOSE, MOUTH & THROAT MALIGNANCY"
    65     =        "(65) DYSEQUILIBRIUM"
    66     =        "(66) EPISTAXIS"
    67     =        "(67) EPIGLOTTITIS"
    68     =       "(68) OTITIS MEDIA & URI AGE >17 W CC"
    69     =       "(69) OTITIS MEDIA & URI AGE >17 W/O CC"
    70     =       "(70) OTITIS MEDIA & URI AGE 0-17"
    71     =       "(71) LARYNGOTRACHEITIS"
    72     =       "(72) NASAL TRAUMA & DEFORMITY"
    73     =       "(73) OTHER EAR, NOSE, MOUTH & THROAT DIAGNOSES AGE >17"
    74     =       "(74) OTHER EAR, NOSE, MOUTH & THROAT DIAGNOSES AGE 0-17"
    75     =       " 75) MAJOR CHEST PROCEDURES"
    76     =       "(76) OTHER RESP SYSTEM O.R. PROCEDURES W CC"
    77     =       "(77) OTHER RESP SYSTEM O.R. PROCEDURES W/O CC"
    78     =       "(78) PULMONARY EMBOLISM"
    79     =       "(79) RESPIRATORY INFECTIONS & INFLAMMATIONS AGE >17 W CC"
    80     =       "(80) RESPIRATORY INFECTIONS & INFLAMMATIONS AGE >17 W/O CC"
    81     =       "(81) RESPIRATORY INFECTIONS & INFLAMMATIONS AGE 0-17"
    82     =       "(82) RESPIRATORY NEOPLASMS"
    83     =       "(83) MAJOR CHEST TRAUMA W CC "
    84     =       "(84) MAJOR CHEST TRAUMA W/O CC"
    85     =       "(85) PLEURAL EFFUSION W CC"
    86     =       "(86) PLEURAL EFFUSION W/O CC"



Exercises 3.1 (continued)
    87     = "(87) PULMONARY EDEMA & RESPIRATORY FAILURE"
    88     = "(88) CHRONIC OBSTRUCTIVE PULMONARY DISEASE"
    89     = "(89) SIMPLE PNEUMONIA & PLEURISY AGE >17 W CC"
Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                   74

   90      =     "(90) SIMPLE PNEUMONIA & PLEURISY AGE >17 W/O CC"
   91      =     "(91) SIMPLE PNEUMONIA & PLEURISY AGE 0-17"
   92      =     "(92) INTERSTITIAL LUNG DISEASE W CC"
   93      =     "(93) INTERSTITIAL LUNG DISEASE W/O CC"
   94      =     "(94) PNEUMOTHORAX W CC"
   95      =     "(95) PNEUMOTHORAX W/O CC"
   96      =     "(96) BRONCHITIS & ASTHMA AGE >17 W CC"
   97      =     "(97) BRONCHITIS & ASTHMA AGE >17 W/O CC"
   98      =     "(98) BRONCHITIS & ASTHMA AGE 0-17"
   99      =     "(99) RESPIRATORY SIGNS & SYMPTOMS W CC"
  100      =     "(100) RESPIRATORY SIGNS & SYMPTOMS W/O CC"

Exercises 3.2
Question 3.2-1
1. Write the indicator and truth logic code for the variables: admitype, bedsize, dismonth and
losflag and include the data and set statement from nhds03d.
Answer 3.2-1
The code below is the answer to question 1.
data nhds06;
set work.nhds2006;
/****************Answers to questions 3.2**************/

 /***********Indicator           Variables for Admit Type******/

 emergency        =   (adm_type=1);
 urgent           =   (adm_type=2);
 elective         =   (adm_type=3);
 new_born         =   (adm_type=4);
 admit_na         =   (adm_type=9);

/***********Truth Logic for for Admit Type******/

 admitcat= 1*(adm_type=1) +              2*(adm_type=2) + 3*(adm_type=3)+
           4*(adm_type=4) +              5*(adm_type=9);


    /***********Indicator             Variables for Bedsize******/


    beds6_99             = (bedsize=1);



 Exercises 3.2 continued)
    beds100_199 = (bedsize=2);
    beds200_299 = (bedsize=3);
    beds300_499 = (bedsize=4);

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                          75

    beds500plus          = (bedsize=5);


 /***********Truth Logic for Bedsize******/

  bedcat         = 1*(bedsize=1) + 2*(bedsize=2) + 3*(bedsize=3) +
                   4*(bedsize=4) + 5*(bedsize=5);

 /***********Indicator           Variables for Discharge Month******/

     January         =    (disc_mon='01');
     February        =    (disc_mon='02');
     March           =    (disc_mon='03');
     April           =    (disc_mon='04');
     May             =    (disc_mon='05');
     June            =    (disc_mon='06');
     July            =    (disc_mon='07');
     August          =    (disc_mon='08');

     September       =    (disc_mon='09');
     October         =    (disc_mon='10');
     November        =    (disc_mon='11');
     December        =    (disc_mon='12');

/***********Truth Logic for Discharge Month******/

monthcat = 1*(disc_mon='01')+ 2*(disc_mon='02') +3*(disc_mon='03') +
          4*(disc_mon='04')+ 5*(disc_mon='05') +6*(disc_mon='06') +
           7*(disc_mon='07')+ 8*(disc_mon='08') +9*(disc_mon='09') +
          10*(disc_mon='10')+ 11*(disc_mon='11') +12*(disc_mon='12');


/***********Indicator           Variables for Los Flag******/

  ltoneday               =    (losflag =0);
  geoneday               =    (losflag =1);

/***********Truth Logic for LOS Flag******/

 losflagcat=1*(losflag =0)+ 2*(losflag=1);

proc means n mean sum min max data=nhds06;
weight weight;
var

Exercises 3.2 (continued)
emergency urgent elective new_born admit_na
admitcat beds6_99 beds100_199 beds200_299
beds300_499 beds500plus bedcat
january february march april may june

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                 76

july august september october november
december monthcat ltoneday geoneday doc age;
;
run;
title 'Proc Means of Additional NHDS Variables';

Question 3.2-2
2. Using the above code, submit a weighted version of the above Proc Means with these
additional variables plus days of care (DOC) and age.
Answer 3.2-2
Below is the PROC Means Output that answers question 2.
                             Proc Means of Additional NHDS Variables
                                       The MEANS Procedure
   Variable                  N            Mean             Sum         Minimum         Maximum
   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
   emergency          38873777       0.3802405     14781383.00               0       1.0000000
   urgent             38873777       0.2186470      8499636.00               0       1.0000000
   elective           38873777       0.2156438      8382888.00               0       1.0000000
   new_born           38873777       0.1034086      4019881.00               0       1.0000000
   admit_na           38873777       0.0820602      3189989.00               0       1.0000000
   admitcat           38873777       2.2884009     88958788.00       1.0000000       5.0000000
   beds6_99           38873777       0.2245193      8727912.00               0       1.0000000
   beds100_199        38873777       0.2102052      8171471.00               0       1.0000000
   beds200_299        38873777       0.1922901      7475041.00               0       1.0000000
   beds300_499        38873777       0.2351687      9141896.00               0       1.0000000
   beds500plus        38873777       0.1378167      5357457.00               0       1.0000000
   bedcat             38873777       2.8515584       110850846       1.0000000       5.0000000
   January            38873777       0.0855687      3326380.00               0       1.0000000
   February           38873777       0.0804654      3127993.00               0       1.0000000
   March              38873777       0.0894111      3475747.00               0       1.0000000
   April              38873777       0.0820406      3189227.00               0       1.0000000
   May                38873777       0.0856391      3329115.00               0       1.0000000
   June               38873777       0.0847040      3292765.00               0       1.0000000
   July               38873777       0.0833721      3240989.00               0       1.0000000
   August             38873777       0.0859714      3342033.00               0       1.0000000
   September          38873777       0.0828773      3221755.00               0       1.0000000
   October            38873777       0.0805104      3129742.00               0       1.0000000
   November           38873777       0.0789241      3068077.00               0       1.0000000
   December           38873777       0.0805158      3129954.00               0       1.0000000
   monthcat           38873777       6.4360450       250193377       1.0000000      12.0000000
   ltoneday           38873777       0.0194220       755008.00               0       1.0000000
   geoneday           38873777       0.9805780     38118769.00               0       1.0000000
   DOC                38873777       4.6309689       180023252       1.0000000     381.0000000
   AGE                38873777      47.2108638      1835264591               0      99.0000000
   losflagcat         38873777       1.9805780     76992546.00       1.0000000       2.0000000


Exercises 3.2 (continued)
Question 3.2-3
3. Using the above, present a narrative of the descriptive statistics associated of this proc mean
output.
Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                  77

Answer 3.2-3
When weighted, there were 38.9 million discharges in the 2006 NHDS. The mean days of care
were 4.63 days with a range of 1 to 381 days. The mean age was 47.2 with a range of 0 to 99
years. Admitting type indicated 38.0% were from the emergency department, 21.9% were urgent,
21.5% were elective, 10.3% were newborns and 8.2% were not reported.
The distribution of hospital bed size across the nation were: 22.4 percent for 6 to 99 beds, 21.0%
for 100 to 199 beds, 19.2% for 200 to 299 beds, 23.5% for 300 to 499 beds and lastly 13.8
percent for 500 or more beds.
The 2006 monthly discharge distribution from January through October ranged from a low of
8.0% in October to a high of 8.9% in March 2006. The lowest month was November 2006 with
7.8%. The length of stay flag indicated that 1.9% of the 2006 discharges were less than 1 day
and 98.0% were one day or more.
Question 3.2-4
4. Using nhds03d, insert the [class selfpay] into the proc mean. The output will yield the
differences between the selfpay (uninsured) and non-selfpay (insured). Prepare a narrative that
compares the demographic differences between the uninsured and insured populations.
Answer 3.2-4

Below is the PROC Means code added to nhds03d that answers question 3.2- 4.
proc means n mean sum min max data=nhds06;
freq weight;
class selfpay;
var doc age male female gendercat white black nativeam
      asian hawaiianpi othrace multirace racenotstat
     racecat married single widowed divorced separated
     msnotstat home dislma disacute disltc alivens
     disceased disstatna discstatcat northeast midwest
     south west regioncat private government nonprofit
     ownercat workercomp medicare medicaid othergvmt
     bluecross hmoppo othprivate selfpay
      nocharge othinsure paynotstated payercat
     docreferal clinreferal hmoreferal hospreferal
     snftransfer othtransfer edsource legalsource
     othsource sourcena sourcecat emergency urgent
     elective new_born admit_na admitcat
;
run;

Exercises 3.2 (continued)
Below is the PROC Means output that assists in completing question 3.2- 4.
                             Proc Means Comparing Insured to Uninsured Variables

                                       The MEANS Procedure


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                               78


        selfpay           N Obs    Variable                   N            Mean             Sum
   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
              0        37060872    AGE                 37060872      47.7673372      1770299170
                                   DOC                 37060872       4.6694280       173053072
                                   male                37060872       0.4078268     15114418.00
                                   female              37060872       0.5921732     21946454.00
                                   gendercat           37060872       1.5921732     59007326.00
                                   white               37060872       0.5993990     22214248.00
                                   black               37060872       0.1178947      4369280.00
                                   nativeam            37060872       0.0029098       107840.00
                                   asian               37060872       0.0167593       621114.00
                                   hawaiianpi          37060872       0.0024822        91993.00
                                   othrace             37060872       0.0178340       660943.00
                                   multirace           37060872     0.000812879        30126.00
                                   racenotstat         37060872       0.2419082      8965328.00
                                   racecat             37060872       2.9713255       110119913
                                   married             37060872       0.2421331      8973663.00
                                   single              37060872       0.2760046     10228970.00
                                   widowed             37060872       0.0821900      3046033.00
                                   divorced            37060872       0.0369322      1368741.00
                                   separated           37060872       0.0058082       215258.00
                                   msnotstat           37060872       0.3569319     13228207.00
                                   home                37060872       0.7856002     29115030.00
                                   dislma              37060872       0.0077943       288862.00
                                   disacute            37060872       0.0416858      1544911.00
                                   disltc              37060872       0.0846993      3139029.00
                                   alivens             37060872       0.0455597      1688483.00
                                   disceased           37060872       0.0193410       716793.00
                                   disstatna           37060872       0.0153198       567764.00
                                   discstatcat         37060872       1.7161259     63601124.00
                                   northeast           37060872       0.2077585      7699713.00
                                   midwest             37060872       0.2275832      8434432.00
                                   south               37060872       0.3705125     13731515.00
                                   west                37060872       0.1941458      7195212.00
                                   regioncat           37060872       2.5510455     94543970.00
                                   private             37060872       0.1223865      4535750.00
                                   government          37060872       0.1166868      4324516.00
                                   nonprofit           37060872       0.7609267     28200606.00
                                   ownercat            37060872       2.6385402     97786600.00
                                   workercomp          37060872       0.0042621       157957.00
                                   medicare            37060872       0.3649064     13523750.00
                                   medicaid            37060872       0.2030903      7526704.00
                                   othergvmt           37060872       0.0166422       616773.00
                                   bluecross           37060872       0.1017247      3770005.00
                                   hmoppo              37060872       0.1565655      5802453.00
                                   othprivate          37060872       0.1007496      3733869.00
                                   selfpay             37060872               0               0
                                   nocharge            37060872       0.0048393       179347.00
                                   othinsure           37060872       0.0303733      1125661.00
                                   paynotstated        37060872       0.0168467       624353.00
              0        37060872    payercat            37060872       4.0957780       151793103
                                   docreferal          37060872       0.3337514     12369117.00
                                   clinreferal         37060872       0.0220258       816297.00
                                   hmoreferal          37060872       0.0042765       158491.00
                                   hospreferal         37060872       0.0278450      1031960.00
                                   snftransfer         37060872       0.0057882       214516.00

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                          79

                                 othtransfer          37060872   0.0055308      204977.00
                                 edsource             37060872   0.3770255    13972892.00
                                 legalsource          37060872   0.0026930       99806.00
                                 othsource            37060872   0.1167582     4327160.00
                                 sourcena             37060872   0.1043056     3865656.00
                                 sourcecat            37060872   5.3187404      197117158
                                 emergency            37060872   0.3738683    13855887.00
                                 urgent               37060872   0.2210097     8190813.00
                                 elective             37060872   0.2198195     8146704.00
                                 new_born             37060872   0.1034431     3833692.00
                                 admit_na             37060872   0.0818593     3033776.00
                                 admitcat             37060872   2.2984152    85181273.00

                 1     1812905   AGE                  1812905    35.8349836   64965421.00
                                 DOC                  1812905     3.8447574    6970180.00
                                 male                 1812905     0.5055356     916488.00
                                 female               1812905     0.4944644     896417.00
                                 gendercat            1812905     1.4944644    2709322.00
                                 white                1812905     0.4974138     901764.00
                                 black                1812905     0.1746688     316658.00
                                 nativeam             1812905     0.0061073      11072.00
                                 asian                1812905     0.0157151      28490.00
                                 hawaiianpi           1812905     0.0016824       3050.00
                                 othrace              1812905     0.0276236      50079.00
                                 multirace            1812905     0.0017927       3250.00
                                 racenotstat          1812905     0.2749962     498542.00
                                 racecat              1812905     3.3146061    6009066.00
                                 married              1812905     0.1998963     362393.00
                                 single               1812905     0.3874400     702392.00
                                 widowed              1812905     0.0204330      37043.00
                                 divorced             1812905     0.0564370     102315.00
                                 separated            1812905     0.0105052      19045.00
                                 msnotstat            1812905     0.3252884     589717.00
                                 home                 1812905     0.8946393    1621896.00
                                 dislma               1812905     0.0238865      43304.00
                                 disacute             1812905     0.0279948      50752.00
                                 disltc               1812905     0.0140995      25561.00
                                 alivens              1812905     0.0196557      35634.00
                                 disceased            1812905     0.0147178      26682.00
                                 disstatna            1812905     0.0050063       9076.00
                                 discstatcat          1812905     1.3044247    2364798.00
                                 northeast            1812905     0.1649662     299068.00
                                 midwest              1812905     0.1929522     349804.00
                                 south                1812905     0.4812536     872467.00
                                 west                 1812905     0.1608281     291566.00
                                 regioncat            1812905     2.6379435    4782341.00
                                 private              1812905     0.0793048     143772.00
                                 government           1812905     0.2415030     437822.00
                                 nonprofit            1812905     0.6791922    1231311.00
                                 ownercat             1812905     2.5998875    4713349.00
                                 workercomp           1812905             0             0
                                 medicare             1812905             0             0
                                 medicaid             1812905             0             0
                                 othergvmt            1812905             0             0
                                 bluecross            1812905             0             0
                                 hmoppo               1812905             0             0
                                 othprivate           1812905             0             0

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                             80

                                  selfpay              1812905       1.0000000     1812905.00
                                  nocharge             1812905               0              0
                                  othinsure            1812905               0              0
                                  paynotstated         1812905               0              0
                                  payercat             1812905       8.0000000    14503240.00
                                  docreferal           1812905       0.1981924      359304.00
                                  clinreferal          1812905       0.0247939       44949.00
                                  hmoreferal           1812905       0.0062033       11246.00
                                  hospreferal          1812905       0.0204903       37147.00
                                  snftransfer          1812905       0.0021573        3911.00
                                  othtransfer          1812905       0.0029809        5404.00
                                  edsource             1812905       0.5232497      948602.00
                                  legalsource          1812905       0.0012108        2195.00
                                  othsource            1812905       0.1127400      204387.00
                                  sourcena             1812905       0.1079814      195760.00
                                  sourcecat            1812905       6.1439314    11138364.00
                                  emergency            1812905       0.5105044      925496.00
                                  urgent               1812905       0.1703470      308823.00
                                  elective             1812905       0.1302793      236184.00
                                  new_born             1812905       0.1027020      186189.00
                                  admit_na             1812905       0.0861672      156213.00
                                  admitcat             1812905       2.0836806     3777515.00

From the above, prepare a descriptive statistic narrative that compares the demographic
differences between the uninsured and insured populations.
In the nation in 2006, the NHDS indicated there were 1.8 million uninsured (selfpay) discharges
compared to 37.1 million discharges with insurance (non-selfpay). The uninsured were younger,
with a mean age of 35.8, compared to 47.7 years for the insured. The uninsured included more
males than females (50.5% versus 49.4%) which was the reverse for those insured (40.7%
versus 59.2%). They also had fewer days of care, (3.8 versus 4.7 days ).
Regarding the uninsured, fewer were whites (49.7% versus 59.9%), and more blacks (17.5%
versus 11.8% ). Less were married (19.9% versus 24.2%) and more single (38.7% versus
27.6%). More were discharges home (89.4% versus 78.6%) and less were discharges to a
skilled nursing facility (1.4% versus 8.5%) or dead on discharge (1.5% versus 1.9%). Less were
from the Northeast (16.5% versus 20.8%), Midwest (19.3% versus 22.7%) , and West (16.0%
versus 19.4%) while more were from the South (48.1% versus 37.0%). More were treated in
government hospitals (24% versus 11.6%) and less were treated in nonprofit (67.9%
versus76.1%) and private hospitals (7.9% versus 12.2%). Less were referred by physicians
(19.8% versus 33.4%) and more than half came through the emergency department (52.3%
versus 37.7%). More were emergent (51.0% versus 37.3%), less were urgent (17.0% versus

Exercises 3.2 (continued)
22.1%) less were elective (13.0% versus 21.9%) and lastly newborns were equal (10.2% versus
10.3%).



Hospital Discharge Survey: 2006 (Press Release)

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                  81

In 2006, there were an estimated 34.9 million hospital discharges. This number does not include
newborn infants. Fifty-eight percent of all discharges were hospitalized 3 days or less. The rate
of coronary hospitalizations for coronary atherosclerosis for all age groups, especially those aged
65 years and over, has declined since 2002.

http://nchspressroom.wordpress.com/2008/08/01/hospital-discharge-survey-2006/




Exercise 3.3
Question 3.3-1
1. Run the model with the freq weight statement after PROC REG and determine if the findings
are significantly different.
Answer 3.3-1
The code below produces the answer to question 1
/***nhds04d***/

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                       82



Proc Reg data=nhds06;
freq weight;
model doc=male white married medicare disceased south;
run;
title 'Linear regression of days of care as the dependent
      variable and the effects of sex, race, martial status
      diseased and region'
quit;

PROC REG Output
                                           The REG Procedure (UNWEIGHTED)
                                             Model: MODEL1
                             Dependent Variable: DOC Number of days of care

                               Number of Observations Read        376328
                               Number of Observations Used        376328



                                          Analysis of Variance

                                                 Sum of            Mean
          Source                     DF         Squares          Square      F Value     Pr > F

          Model                       6           390901           65150     1428.16     <.0001
          Error                  376321         17167112        45.61827
          Corrected Total        376327         17558013



                         Root MSE              6.75413     R-Square         0.0223
                         Dependent Mean        4.71399     Adj R-Sq         0.0222
                         Coeff Var           143.27828

                                          Parameter Estimates

                                                    Parameter         Standard
  Variable       Label                     DF        Estimate            Error       t Value   Pr > |t|

  Intercept      Intercept                  1         3.82799         0.02146        178.41       <.0001
  male                                      1         0.53717         0.02239         23.99       <.0001
  white                                     1        -0.05574         0.02248         -2.48       0.0132



Exercise 3.3 (continued)
  married                                    1       -0.52875        0.03218         -16.43       <.0001
  medicare                                   1        1.55716        0.02325          66.98       <.0001
  disceased                                  1        3.84237        0.07999          48.04       <.0001
  south                                      1        0.41328        0.02312          17.88       <.0001
                                           The REG Procedure (WEIGHTED)
                                             Model: MODEL1
                             Dependent Variable: DOC Number of days of care

                               Number of Observations Read         376328
                               Number of Observations Used         376328
                               Sum of Frequencies Read           38873777

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                        83

                              Sum of Frequencies Used            38873777



                                 Frequency: WEIGHT Analysis weight

                                          Analysis of Variance

                                                 Sum of            Mean
          Source                    DF          Squares          Square      F Value     Pr > F

          Model                      6        33795032           5632505      124977     <.0001
          Error                 3.89E7      1751981138          45.06846
          Corrected Total       3.89E7      1785776170



                         Root MSE              6.71331    R-Square          0.0189
                         Dependent Mean        4.63097    Adj R-Sq          0.0189
                         Coeff Var           144.96545



                                          Parameter Estimates

                                                   Parameter         Standard
  Variable       Label                     DF       Estimate            Error        t Value   Pr > |t|

  Intercept      Intercept                  1        3.88208          0.00218        1781.93      <.0001
  male                                      1        0.55769          0.00219         254.71      <.0001
  white                                     1       -0.13288          0.00224         -59.24      <.0001
  married                                   1       -0.44510          0.00259        -171.68      <.0001
  medicare                                  1        1.46303          0.00228         642.47      <.0001
  disceased                                 1        3.24600          0.00789         411.18      <.0001
  south                                     1        0.35608          0.00225         158.19      <.0001




Answer 3.3 - 1
1. When comparing both unweighted and weighted DOC models, the intercept is slightly higher,
and four out of six coefficients are slightly lower. Overall, these differences were not substantial
and in all cases, the effects remained significant. The coefficient of determination R2 was less in
the weighted model.



Exercise 3.3 (continued)
Question 3.3 - 2
2. Add to the model the additional effects of hospital ownership and source of admission using
the indicator variables of private and snftransfer, and interpret these two effects.
Answer 3.3-Number 2
The model below includes the two effects of ownership and source of admission.
Proc Reg data=nhds06;
Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                         84

freq weight;
model doc=male white married medicare disceased south
             private snftransfer
;
run;
title 'Linear regression of doc as the dependent and with Added
Effects';

quit;
Proc REG Output with additional effects.
                                           The REG Procedure
                                              Model: MODEL1
                              Dependent Variable: DOC Number of days of care

                                Number   of Observations Read        376328
                                Number   of Observations Used        376328
                                Sum of   Frequencies Read          38873777
                                Sum of   Frequencies Used          38873777

                                   Frequency: WEIGHT Analysis weight
                                          Analysis of Variance

                                                    Sum of           Mean
            Source                    DF           Squares         Square      F Value    Pr > F

            Model                      8        34833079          4354135      96668.8    <.0001
            Error                 3.89E7      1750943091         45.04176
            Corrected Total       3.89E7      1785776170



                         Root MSE                6.71132     R-Square         0.0195
                         Dependent Mean          4.63097     Adj R-Sq         0.0195
                         Coeff Var             144.92251




Exercise 3.3 (continued)
                                           Parameter Estimates

                                                       Parameter        Standard
 Variable        Label                        DF        Estimate           Error       t Value     Pr > |t|

 Intercept       Intercept                     1         3.86940         0.00218       1775.28      <.0001
 male                                          1         0.56261         0.00219        256.98      <.0001
 white                                         1        -0.15352         0.00225        -68.11      <.0001
 married                                       1        -0.44955         0.00259       -173.37      <.0001
 medicare                                      1         1.45204         0.00228        636.29      <.0001
 disceased                                     1         3.20176         0.00790        405.34      <.0001
 south                                         1         0.30039         0.00234        128.57      <.0001

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                     85

 private                                    1        0.33262        0.00347       95.85      <.0001
 snftransfer                                1        1.69864        0.01445      117.56      <.0001

Answer 3.3 -2
From the above PROC REG output, controlling for sex, race, marital status, payer, disposition
and region, the findings are as follows;
1. Private ownership compared to non-private results in 0.33 days of additional care. P<.0001
2. Patients transferred from skilled nursing facilities compared to all other admission sources
   have 1.7 additional days of care. P<.0001
Question 3.3-3
3. Write the regression equation of this first model using the intercept and effect coefficients
   and using the following format:
   DOC = β0 + β1male+ β2white + β3married + β4Medicare + β5diseased + β6south +ε



Answer 3.3 Number 3

DOC = 3.82799 + 0.53717*male -0.05574*white -0.52875*married + 1.55716*
Medicare + 3.84237*disceased + 0.41328*south +Question 3.4-1




Exercise 3.4
Exercise 3.4-1
1. Add to the logistic model the effects of marital status (msnotstat), hospital ownership
(ownercat), admission source (asource) discharge disposition (discstatcat), and days of care
(DOC) to the first model.
Answer 3.4-1
The model below adds the effects of maritial status, disposition, ownership and source of
admission.
Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                86

options nolabel nodate nonumber;
proc logistic data=nhds06 des;
  class gendercat   (param=ref ref='2') /*female**/
        racecat     (param=ref ref='1') /*white**/
        admitcat    (param=ref ref='3') /*elctive*/
        regioncat   (param=ref ref='2') /*midwest*/
        discstatcat (param=ref ref='5') /*disposition-SNF*/
        ownercat    (param=ref ref='1') /*hospital ownership-private*/
        marstatcat (param=ref ref='4') /*maritial status -divorced*/
        sourcecat   (param=ref ref='2') /*admission source-clinic*/
;
     model selfpay=age doc gendercat racecat marstatcat admitcat
             regioncat sourcecat discstatcat ownercat

;

      units age=10 doc=1;
      title 'Added Effects to Logistic Regression for NHDS Selfpay
(uninsured)';
run;
quit;
options label;
title;


Proc Logistic Output with additional four effects.
                          Added Effects to Logistic Regression for NHDS Selfpay (uninsured)

                                     The LOGISTIC Procedure

                                         Model Information

                         Data Set                        WORK.NHDS06
                         Response Variable               selfpay
                         Number of Response Levels       2
                         Model                           binary logit
                         Optimization Technique          Fisher's scoring



                            Number of Observations Read       376328
                            Number of Observations Used       376328



                                         Response Profile

                               Ordered                        Total
                                 Value       selfpay      Frequency

                                     1               1        15908
                                     2               0       360420

                               Probability modeled is selfpay=1.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                87

                                       Class Level Information

       Class            Value                          Design Variables

       gendercat        1          1
                        2          0

       racecat          1          0      0      0      0        0    0      0
                        2          1      0      0      0        0    0      0
                        3          0      1      0      0        0    0      0
                        4          0      0      1      0        0    0      0
                        5          0      0      0      1        0    0      0
                        6          0      0      0      0        1    0      0
                        7          0      0      0      0        0    1      0
                        8          0      0      0      0        0    0      1

       admitcat         1          1      0      0      0
                        2          0      1      0      0
                        3          0      0      0      0
                        4          0      0      1      0
                        5          0      0      0      1

       regioncat         1          1      0      0
                         2          0      0      0
                         3          0      1      0
                         4          0      0      1
                  Added Effects to Logistic Regression for NHDS Selfpay (uninsured)

                                       The LOGISTIC Procedure

                                       Class Level Information

       Class            Value                          Design Variables

       discstatcat      1          1      0      0      0        0    0
                        2          0      1      0      0        0    0
                        3          0      0      1      0        0    0
                        4          0      0      0      1        0    0
                        5          0      0      0      0        0    0
                        6          0      0      0      0        1    0
                        7          0      0      0      0        0    1

       ownercat         1          0      0
                        2          1      0
                        3          0      1

       marstatcat       1          1      0      0      0        0
                        2          0      1      0      0        0
                        3          0      0      1      0        0
                        4          0      0      0      0        0
                        5          0      0      0      1        0
                        6          0      0      0      0        1

       sourcecat        1          1      0      0      0        0    0      0        0   0
                        2          0      0      0      0        0    0      0        0   0
                        3          0      1      0      0        0    0      0        0   0
                        4          0      0      1      0        0    0      0        0   0

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                        88

                         5             0      0       0       1         0      0     0      0     0
                         6             0      0       0       0         1      0     0      0     0
                         7             0      0       0       0         0      1     0      0     0
                         8             0      0       0       0         0      0     1      0     0
                         9             0      0       0       0         0      0     0      1     0
                         10            0      0       0       0         0      0     0      0     1



                                           Model Convergence Status

                              Convergence criterion (GCONV=1E-8) satisfied.



                                            Model Fit Statistics

                                                                   Intercept
                                                  Intercept              and
                                 Criterion             Only       Covariates

                               AIC           131790.20      120070.38
                               SC            131801.04      120503.91
                               -2 Log L      131788.20      119990.38
                 Added Effects to Logistic Regression for NHDS Selfpay (uninsured)

                                           The LOGISTIC Procedure

                                Testing Global Null Hypothesis: BETA=0

                     Test                      Chi-Square          DF       Pr > ChiSq

                     Likelihood Ratio          11797.8231          39          <.0001
                     Score                     12161.9462          39          <.0001
                     Wald                      10542.9534          39          <.0001



                                       Type 3 Analysis of Effects

                                                            Wald
                          Effect               DF     Chi-Square        Pr > ChiSq

                          AGE                     1   2171.0882             <.0001
                          DOC                     1     71.8449             <.0001
                          gendercat               1    504.9573             <.0001
                          racecat                 7    518.2272             <.0001
                          marstatcat              5    568.4548             <.0001
                          admitcat                4    246.7438             <.0001
                          regioncat               3    454.6374             <.0001
                          sourcecat               9    571.4626             <.0001
                          discstatcat             6    910.6489             <.0001
                          ownercat                2   1382.8221             <.0001



                                Analysis of Maximum Likelihood Estimates

                                                      Standard            Wald
             Parameter            DF       Estimate      Error      Chi-Square       Pr > ChiSq



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                              89

             Intercept          1        -3.1460      0.1066       870.7149        <.0001
             AGE                1        -0.0195    0.000419      2171.0882        <.0001
             DOC                1        -0.0145     0.00171        71.8449        <.0001
             gendercat     1    1         0.3809      0.0169       504.9573        <.0001
             racecat       2    1         0.1034      0.0238        18.9090        <.0001
             racecat       3    1         0.6091      0.1154        27.8421        <.0001
             racecat       4    1         0.1332      0.0977         1.8604        0.1726
             racecat       5    1         0.0454      0.2468         0.0339        0.8539
             racecat       6    1         0.3374      0.0378        79.5576        <.0001
             racecat       7    1         1.2308      0.3271        14.1601        0.0002
             racecat       8    1         0.4595      0.0214       460.0285        <.0001
             marstatcat    1    1        -0.6913      0.0510       183.4291        <.0001
             marstatcat    2    1        -0.3266      0.0501        42.4854        <.0001
             marstatcat    3    1        -1.2620      0.0865       212.6395        <.0001
             marstatcat    5    1         0.1756      0.1012         3.0151        0.0825
             marstatcat    6    1        -0.7135      0.0477       223.3982        <.0001
             admitcat      1    1         0.4003      0.0341       138.0887        <.0001
             admitcat      2    1         0.0346      0.0324         1.1434        0.2849
             admitcat      4    1        -0.5028      0.1181        18.1113        <.0001
             admitcat      5    1         0.0567      0.0471         1.4501        0.2285
             regioncat     1    1         0.0249      0.0279         0.7956        0.3724
             regioncat     3    1         0.4124      0.0247       279.8162        <.0001
             regioncat     4    1         0.0850      0.0321         7.0097        0.0081
             sourcecat     1    1        -0.3904      0.0700        31.1472        <.0001
             sourcecat     3    1         0.4527      0.1120        16.3323        <.0001
             sourcecat     4    1        -0.0541      0.0856         0.3995        0.5273
             sourcecat     5    1        -0.4951      0.3007         2.7109        0.0997
             sourcecat     6    1        -0.0318      0.1394         0.0519        0.8197
             sourcecat     7    1         0.3107      0.0702        19.5796        <.0001
             sourcecat     8    1        -1.3142      0.3000        19.1864        <.0001
             sourcecat     9    1        -0.6493      0.1297        25.0451        <.0001
             sourcecat     10   1         0.0950      0.0723         1.7267        0.1888
             discstatcat   1    1         0.5885      0.0519       128.3456        <.0001
             discstatcat   2    1         1.5070      0.0709       452.0134        <.0001
             discstatcat   3    1         0.3682      0.0765        23.1889        <.0001
             discstatcat   4    1        -0.8618      0.0868        98.4910        <.0001
             discstatcat   6    1         0.4747      0.0855        30.8496        <.0001
             discstatcat   7    1        -0.0345      0.1272         0.0735        0.7863
             ownercat      2    1         1.0423      0.0364       821.5382        <.0001
             ownercat      3    1         0.2144      0.0313        46.9432        <.0001



                                         Odds Ratio Estimates

                                                 Point             95% Wald
                    Effect                    Estimate         Confidence Limits

                    AGE                            0.981        0.980      0.981
                    DOC                            0.986        0.982      0.989
                    gendercat   1   vs   2         1.464        1.416      1.513
                    racecat     2   vs   1         1.109        1.058      1.162
                    racecat     3   vs   1         1.839        1.466      2.306
                    racecat     4   vs   1         1.143        0.943      1.384
                    racecat     5   vs   1         1.046        0.645      1.698
                    racecat     6   vs   1         1.401        1.301      1.509
                    racecat     7   vs   1         3.424        1.804      6.501
                    racecat     8   vs   1         1.583        1.518      1.651

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                  90

                     marstatcat     1 vs 4       0.501          0.453       0.554
                     marstatcat     2 vs 4       0.721          0.654       0.796
                     marstatcat     3 vs 4       0.283          0.239       0.335
                     marstatcat     5 vs 4       1.192          0.978       1.453
                     marstatcat     6 vs 4       0.490          0.446       0.538
                     admitcat       1 vs 3       1.492          1.396       1.595
                     admitcat       2 vs 3       1.035          0.972       1.103
                     admitcat       4 vs 3       0.605          0.480       0.762
                     admitcat       5 vs 3       1.058          0.965       1.161
                     regioncat      1 vs 2       1.025          0.971       1.083
                     regioncat      3 vs 2       1.510          1.439       1.585
                     regioncat      4 vs 2       1.089          1.022       1.159
                     sourcecat      1 vs 2       0.677          0.590       0.776
                     sourcecat      3 vs 2       1.572          1.263       1.959
                     sourcecat      4 vs 2       0.947          0.801       1.120
                     sourcecat      5 vs 2       0.610          0.338       1.099
                     sourcecat      6 vs 2       0.969          0.737       1.273
                     sourcecat      7 vs 2       1.364          1.189       1.566
                     sourcecat      8 vs 2       0.269          0.149       0.484
                     sourcecat      9 vs 2       0.522          0.405       0.674
                     sourcecat      10 vs 2      1.100          0.954       1.267
                     discstatcat    1 vs 5       1.801          1.627       1.994
                     discstatcat    2 vs 5       4.513          3.928       5.186
                     discstatcat    3 vs 5       1.445          1.244       1.679
                     discstatcat    4 vs 5       0.422          0.356       0.501
                     discstatcat    6 vs 5       1.608          1.360       1.901
                     discstatcat    7 vs 5       0.966          0.753       1.240
                     ownercat       2 vs 1       2.836          2.641       3.045
                     ownercat       3 vs 1       1.239          1.165       1.318

                   Association of Predicted Probabilities and Observed Responses

                      Percent Concordant            73.6    Somers' D       0.487
                      Percent Discordant            24.9    Gamma           0.495
                      Percent Tied                   1.5    Tau-a           0.039
                      Pairs                   5733561360    c               0.744

                                              Odds Ratios

                           Effect                        Unit      Estimate

                           AGE                       10.0000            0.823
                           DOC                        1.0000            0.986




Exercise 3.4 (continued)
2. In a narrative, describe the contribution of these additional effects upon the outcome variable.
As seen above in the proc logistic model output with the five additional effects, all of the effects
were significant with the following findings:




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                    91

1. All else being equal, males are 1.464 times more likely to be uninsured than females,
   p<.0001[CI 1.416, 1.5131]. These odds are slightly lower in the expanded model (1.464
   versus 1.535).
2. All else being equal, blacks compared to whites are 1.109 times more likely to be uninsured,
   p<.0001[CI 1.058, 1.162]. These odds are slightly lower in the expanded model (1.227
   versus 1.109).
3. All else being equal, multiple races compared to whites are 3.424 times more likely to be
   uninsured, p<.0001[CI 1.804, 6.501]. These odds are slightly higher in the expanded model
   (3.424 versus 3.346).
4. All else being equal, Native Americans compared to whites were 1.839 times more likely to
   be uninsured, p<.0001[CI 1.466, 2.306]. These odds are slightly lower in the expanded
   model (1.839 versus 2.106).
5. All else being equal, emergencies compared to electives were 1.492 times more likely to be
   uninsured, p<.0001[CI 1.396, 1.595]. These odds are significantly lower in the expanded
   model (1.492 versus 2.449).
6. All else being equal, newborns compared to electives were 39.5 percent less likely to be
   uninsured, p<.0001[CI 0.480 , 0.762]. These odds are slightly lower in the expanded model
   (0.605 versus 0.506).
7. All else being equal, those from the South compared to the Midwest were 1.510 times more
   likely to be uninsured, p<.0001[CI 1.439, 1.585]. These odds are slightly higher in the
   expanded model (1.510 versus 1.473).
8. All else being equal, those from the West compared to the Midwest were 1.089 times more
   likely to be uninsured, p<.0001[CI 1.022, 1.159]. These odds are slightly lower in the
   expanded model (1.089 versus 1.139).
9. All else being equal, those who are married compared to those divorced were 49.9 percent
   less likely to be uninsured, p<.0001[CI 0.501, 0.554].
10. All else being equal, those who are widowed compared to those divorced were 27.9 percent
    less likely to be uninsured, p<.0001[CI 0.239, 0.335].
11. All else being equal, those who are single compared to those divorced were 49.9 percent less
    likely to be uninsured, p<.0001[CI 0.453, 0.554].
12. All else being equal, those who enter the hospital through the emergency department
    compared to a clinic referral are 1.36 times more likely to be uninsured, p<.0001[CI 1.189,
    1.566].
13. All else being equal, those who enter the hospital by physician compared to a clinic referral
    are 32.3 percent less likely to be uninsured, p<.0001[CI 0.590, 0.776].
14. All else being equal, those who enter the hospital through the legal system compared to a
    clinic referral are 73.1 percent less likely to be uninsured, p<.0001[CI 0.590, 0.776].

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                       92

15. All else being equal, those who left the hospital against medical advice compared to those
    alive without discharge status were 4.5 times more likely to be uninsured, p<.0001[CI 3.982,
    5.186].
16. All else being equal, those who are discharged dead compared to those alive without
    discharge status were 1.6 times more likely to be uninsured, p<.0001[CI 1.360, 1.901].
17. All else being equal, those who are discharged to a long term care facility compared to those
    alive without discharge status were 67.8 percent less likely to be uninsured, p<.0001[CI
    0.356, 0.501].
18. All else being equal, those who are discharged home compared to those alive without
    discharge status were 1.8 times more likely to be uninsured, p<.0001[CI 1.627, 1.994].
19. All else being equal, those who are discharged from a governmental hospital compared to
    for- profit hospital were 2.8 times more likely to be uninsured, p<.0001[CI 2.641, 3.045].
20. All else being equal, those who are discharged from a not-for-profit hospital compared to a
    for-profit hospital were 1.24 times more likely to be uninsured, p<.0001[CI 1.165, 1.318].
21. For every decade of age, a patient is 17.7 percent less likely to be uninsured, p<.0001.
22. For ever additional day of care, a patient is 1.4 percent less likely to be uninsured, p<.0001.




Exercise 3.5
Using the Proc Tabulate above substitute the principal procedure (pr21) and var age to produce a table
comparing the uninsured (self pay) and insured, the principal procedure, and corresponding mean age.
The code below will produce the rank order distribution of procedures associated with the selfpay (1) and
non-selfpay (0) population.
options nolabel nodate nonumber;
proc tabulate data=nhds06 order=freq; /* formchar='                                     '; */
freq weight;
class selfpay pd12;
var age;
tables pd12 all,
(selfpay all)*(age*(n*f=8.0 mean*f=3.2)) /rts=50;
format pd12 $proc2df.;
run;

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                         93

title 'Distribution in Rank order of the Selfpay Procedure';


Output of Proc Tabulate showing the rank order distribution of procedures associated with the selfpay (1)
and non-selfpay (0) population.

                         Distribution in Rank order of the Selfpay Procedure

    „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ†
    ‚                                                ‚         selfpay         ‚            ‚
    ‚                                                ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰            ‚
    ‚                                                ‚     0      ‚     1      ‚    All     ‚
    ‚                                                ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
    ‚                                                ‚    AGE     ‚    AGE     ‚    AGE     ‚
    ‚                                                ‡ƒƒƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒƒƒ…ƒƒƒ‰
    ‚                                                ‚        ‚Me-‚        ‚Me-‚        ‚Me-‚
    ‚                                                ‚   N    ‚an ‚   N    ‚an ‚   N    ‚an ‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚pd12                                            ‚        ‚   ‚        ‚   ‚        ‚   ‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰        ‚   ‚        ‚   ‚        ‚   ‚
    ‚99:Other nonoperative procedures                ‚ 2070497‚ 36‚ 101176‚ 22‚ 2171673‚ 36‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚73:Other procedures inducing or assis...        ‚ 1530492‚ 27‚   66841‚ 27‚ 1597333‚ 27‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚81:Repair and plastic operations on j...        ‚ 1336131‚ 64‚   14083‚ 49‚ 1350214‚ 64‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚74:Cesarean section and removal of fetus        ‚ 1252479‚ 29‚   40083‚ 28‚ 1292562‚ 29‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚45:Incision, excision, and anastomosi...        ‚ 1230025‚ 65‚   48541‚ 45‚ 1278566‚ 64‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚64:Operations on penis                          ‚ 1103692‚.64‚   42151‚.67‚ 1145843‚.64‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚75:Other obstetric operations                   ‚ 903994‚ 27‚    34488‚ 26‚ 938482‚ 27‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚37:Other operations on heart and peri...        ‚ 834035‚ 65‚    34027‚ 50‚ 868062‚ 64‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚38:Incision, excision, and occlusion ...        ‚ 790064‚ 60‚    28913‚ 42‚ 818977‚ 59‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚86:Operations on skin and subcutaneou...        ‚ 704522‚ 47‚    56719‚ 38‚ 761241‚ 47‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚Blank/00:Procedures and interventns, NEC        ‚ 721001‚ 66‚    29130‚ 53‚ 750131‚ 65‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚88:Other diagnostic radiology and rel...        ‚ 687087‚ 59‚    48921‚ 45‚ 736008‚ 58‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚93:Physical therapy/respiratory thera...        ‚ 685791‚ 58‚    19454‚ 37‚ 705245‚ 57‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚96:Nonoperative intubation and irriga...        ‚ 630843‚ 51‚    36814‚ 38‚ 667657‚ 50‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚39:Other operations on vessels                  ‚ 608045‚ 63‚    11646‚ 42‚ 619691‚ 62‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚68:Other incision and excision of uterus        ‚ 575106‚ 46‚    17300‚ 44‚ 592406‚ 46‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚79:Reduction of fracture and dislocation        ‚ 522517‚ 58‚    36662‚ 39‚ 559179‚ 57‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚94:Procedures related to the psyche             ‚ 443144‚ 40‚    55065‚ 38‚ 498209‚ 40‚


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                  94

    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚51:Operations on gallbladder and bili...        ‚ 411028‚ 54‚    34378‚ 42‚ 445406‚ 53‚
    Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ
    ‚03:Operations on spinal cord and spin...        ‚ 399301‚ 42‚    16242‚ 37‚ 415543‚ 42‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚47:Operations on appendix                       ‚ 286785‚ 31‚    28514‚ 30‚ 315299‚ 31‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚54:Other operations on abdominal region         ‚ 283608‚ 52‚    19379‚ 41‚ 302987‚ 52‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚89:Interview, evaluation, consultatio...        ‚ 272446‚ 54‚    18885‚ 49‚ 291331‚ 53‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚87:Diagnostic radiology                         ‚ 257469‚ 58‚    26482‚ 45‚ 283951‚ 57‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚36:Operations on vessels of heart               ‚ 264174‚ 65‚     6868‚ 54‚ 271042‚ 65‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚34:Operations on chest wall, pleura, ...        ‚ 224149‚ 62‚    17270‚ 41‚ 241419‚ 61‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚72:Forceps, vacuum, and breech delivery         ‚ 200739‚ 26‚    11440‚ 28‚ 212179‚ 27‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚44:Other operations on stomach                  ‚ 194872‚ 51‚    11384‚ 52‚ 206256‚ 51‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚80:Incision and excision of joint str...        ‚ 162147‚ 53‚     5632‚ 40‚ 167779‚ 52‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚60:Operations on prostate and seminal...        ‚ 162856‚ 69‚     2236‚ 58‚ 165092‚ 68‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚95:Ophthalmologic and otologic diagno...        ‚ 149094‚.35‚     8427‚.29‚ 157521‚.35‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚33:Other operations on lung and bronchus        ‚ 150780‚ 60‚     6172‚ 41‚ 156952‚ 60‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚57:Operations on urinary bladder                ‚ 150825‚ 71‚     4625‚ 52‚ 155450‚ 71‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚55:Operations on kidney                         ‚ 137542‚ 53‚     6829‚ 41‚ 144371‚ 52‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚53:Repair of hernia                             ‚ 135019‚ 56‚     4488‚ 50‚ 139507‚ 55‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚43:Incision and excision of stomach             ‚ 124603‚ 59‚     1190‚ 50‚ 125793‚ 59‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚83:Operations on muscle, tendon, fasc...        ‚ 112733‚ 51‚     7692‚ 36‚ 120425‚ 50‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚35:Operations on valves and septa of ...        ‚ 116690‚ 55‚     2319‚ 51‚ 119009‚ 55‚
    Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒŒ
    ‚66:Operations on fallopian tubes                ‚ 106087‚ 29‚     8573‚ 34‚ 114660‚ 29‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚84:Other procedures on musculoskeleta...        ‚ 106932‚ 63‚     4288‚ 50‚ 111220‚ 63‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚01:Incision and excision of skull, br...        ‚ 103852‚ 52‚     4276‚ 37‚ 108128‚ 52‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚65:Operations on ovary                          ‚   88645‚ 43‚    8656‚ 35‚   97301‚ 42‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚85:Operations on the breast                     ‚   95105‚ 55‚    1921‚ 41‚   97026‚ 55‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚78:Other operations on bones, except ...        ‚   88667‚ 51‚    4709‚ 51‚   93376‚ 51‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚31:Other operations on larynx and tra...        ‚   87235‚ 54‚    5474‚ 49‚   92709‚ 54‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚59:Other operations on urinary tract            ‚   82846‚ 56‚    4631‚ 44‚   87477‚ 56‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                  95

    ‚46:Other operations on intestine                ‚   80751‚ 55‚    3747‚ 34‚   84498‚ 54‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚48:Operations on rectum, rectosigmoid...        ‚   76688‚ 60‚    6080‚ 44‚   82768‚ 59‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚77:Incision, excision, and division o...        ‚   75099‚ 54‚    2480‚ 36‚   77579‚ 53‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚70:Operations on vagina and cul-de-sac          ‚   74468‚ 61‚    1302‚ 46‚   75770‚ 61‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚92:Nuclear medicine                             ‚   72788‚ 61‚    1423‚ 50‚   74211‚ 61‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚32:Excision of lung and bronchus                ‚   68886‚ 62‚    1670‚ 45‚   70556‚ 62‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚41:Operations on bone marrow and spleen         ‚   64837‚ 52‚    3060‚ 41‚   67897‚ 51‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚06:Operations on thyroid and parathyr...        ‚   61306‚ 52‚    2788‚ 44‚   64094‚ 52‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚02:Other operations on skull, brain, ...        ‚   60960‚ 41‚    2620‚ 50‚   63580‚ 41‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚56:Operations on ureter                         ‚   54484‚ 49‚    3249‚ 37‚   57733‚ 48‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚50:Operations on liver                          ‚   51995‚ 55‚    3964‚ 41‚   55959‚ 54‚
    Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒŒ
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰        ‚   ‚        ‚   ‚        ‚   ‚
    ‚42:Operations on esophagus                      ‚   47398‚ 60‚    2617‚ 44‚   50015‚ 59‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚69:Other operations on uterus and sup...        ‚   39942‚ 34‚    3707‚ 28‚   43649‚ 33‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚40:Operations on lymphatic system               ‚   38119‚ 53‚    3605‚ 51‚   41724‚ 53‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚27:Other operations on mouth and face           ‚   37741‚ 29‚    3621‚ 31‚   41362‚ 29‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚21:Operations on nose                           ‚   38265‚ 55‚    1002‚ 46‚   39267‚ 54‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚76:Operations on facial bones and joints        ‚   32867‚ 33‚    5457‚ 33‚   38324‚ 33‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚97:Replacement and removal of therape...        ‚   37135‚ 56‚    1085‚ 36‚   38220‚ 55‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚28:Operations on tonsils and adenoids           ‚   30024‚ 21‚    2484‚ 21‚   32508‚ 21‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚49:Operations on anus                           ‚   26654‚ 47‚    2412‚ 33‚   29066‚ 46‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚52:Operations on pancreas                       ‚   22760‚ 58‚    1694‚ 44‚   24454‚ 57‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚71:Operations on vulva and perineum             ‚   18759‚ 43‚    1614‚ 27‚   20373‚ 42‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚08:Operations on eyelids                        ‚   16025‚ 46‚    1592‚ 24‚   17617‚ 44‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚04:Operations on cranial and peripher...        ‚   14983‚ 54‚     636‚ 38‚   15619‚ 54‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚07:Operations on other endocrine glands         ‚   13308‚ 47‚    1150‚ 42‚   14458‚ 46‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚67:Operations on cervix                         ‚   12830‚ 38‚    1189‚ 43‚   14019‚ 39‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚98:Nonoperative removal of foreign body         ‚   12206‚ 46‚     718‚ 26‚   12924‚ 45‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚18:Operations on external ear                   ‚   12096‚ 28‚     522‚ 39‚   12618‚ 28‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                  96

    ‚82:Operations on muscle, tendon, and ...        ‚   11268‚ 42‚     885‚ 32‚   12153‚ 41‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚58:Operations on urethra                        ‚   11127‚ 61‚     569‚ 54‚   11696‚ 61‚
    Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒŒ
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰        ‚   ‚        ‚   ‚        ‚   ‚
    ‚20:Other operations on middle and inn...        ‚   10105‚ 28‚     181‚1.5‚   10286‚ 28‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚90:Microscopic examination I                    ‚    9886‚ 25‚       .‚ .‚     9886‚ 25‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚25:Operations on tongue                         ‚    9460‚ 37‚       .‚ .‚     9460‚ 37‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚22:Operations on nasal sinuses                  ‚    8637‚ 43‚     108‚ 23‚    8745‚ 42‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚14:Operations on retina, choroid, vit...        ‚    8369‚ 55‚      18‚ 66‚    8387‚ 55‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚26:Operations on salivary glands and ...        ‚    7576‚ 55‚     237‚ 60‚    7813‚ 55‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚62:Operations on testes                         ‚    6313‚ 36‚     978‚ 39‚    7291‚ 37‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚30:Excision of larynx                           ‚    6839‚ 47‚      55‚ 49‚    6894‚ 47‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚29:Operations on pharynx                        ‚    6559‚ 47‚      42‚2.0‚    6601‚ 47‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚61:Operations on scrotum and tunica v...        ‚    6240‚ 47‚     258‚ 40‚    6498‚ 47‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚23:Removal and restoration of teeth             ‚    5562‚ 28‚     284‚ 36‚    5846‚ 29‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚16:Operations on orbit and eyeball              ‚    4154‚ 41‚     131‚ 20‚    4285‚ 40‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚24:Other operations on teeth, gums, a...        ‚    3566‚ 48‚       .‚ .‚     3566‚ 48‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚13:Operations on lens                           ‚    3525‚ 62‚       .‚ .‚     3525‚ 62‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚91:Microscopic examination II                   ‚    1760‚ 27‚     233‚ 41‚    1993‚ 28‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚63:Operations on spermatic cord, epid...        ‚    1348‚ 39‚       .‚ .‚     1348‚ 39‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚09:Operations on lacrimal system                ‚     730‚ 26‚     510‚ 40‚    1240‚ 32‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚12:Operations on iris, ciliary body, ...        ‚    1162‚ 55‚       .‚ .‚     1162‚ 55‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚15:Operations on extraocular muscles            ‚     901‚ 52‚       .‚ .‚      901‚ 52‚
    ‚11:Operations on cornea                         ‚     779‚ 34‚      73‚ 48‚     852‚ 35‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚05:Operations on sympathetic nerves o...        ‚     841‚ 49‚       .‚ .‚      841‚ 49‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚19:Reconstructive operations on middl...        ‚     354‚ 50‚       .‚ .‚      354‚ 50‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚10:Operations on conjunctiva                    ‚     228‚ 66‚      28‚ 54‚     256‚ 65‚
    ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰
    ‚All                                             ‚22906357‚ 47‚ 1077072‚ 36‚23983429‚ 46‚
    Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒŒ

The table above shows there were 22.9 million procedures performed on the nation’s 37.0
million patients discharged from hospitals in 2006. This equals 648 procedures per 1000
discharges. For the uninsured, there were 1.07 million procedures performed which equals 590

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                             97

per 1000, which is not significantly different. However, reviewing the ranking of the top 10
procedures below, there are differences. Seven out of the ten procedures exist for both groupings.
However, 81: Repair & plastic Joint Operations, 37: Other operations on heart, and 38: Incision,
excision vessels are not found in the top ten uninsured. The uninsured have in the top 10, 96:
Non-operative intubations, 94: Procedures related to psych, and 88: Other diagnostic radiology,
which ranks for the insured 14th, 18th and 12th, respectively.
Rank                 Insured                  Discharges              Uninsured                  Discharges

1      99: Nonoperative Procedures            2,070,497    99: Nonoperative Procedures           101,176

2      73: Assisting or Inducing delivery     1,530,492    73: Assisting or Inducing delivery     66,841

3      81:Repair & plastic Joint Operations   1,336,131    86:Skin and subcutaneous tissue        56,719

4      74:Cesarean section fetus remove       1,252,479    94:Procedures related to psych         55,065

5      45:Incision, excision of intestines    1,230,025    88:Other diagnostic radiology          48,921

6      64:Operations on penis                 1,103,692    45:Incision, excision of intestines    48,541

7      75:Other obstetric operations           903,994     64:Operations on penis                 42,151

8      37: Other operations on heart           834,035     74:Cesarean section & fetus rem        40,083


9      38:Incision,excision vessels            790,064     96: Nonoperative intubation’s         36,814

10     86:Skin and subcutaneous tissue         704,522     75:Other obstetric operations         34.448




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 3-NHDS                                                                                98




       APPENDIX 2: NHDS Published Papers Applying
       Multivariate Analysis

1. S. Tahir, L. Price, P. Shah, F. Welt, Eighteen Year (1985–2002) Analysis of Incidence,
Mortality, and Cardiac Procedure Outcomes of Acute Myocardial Infarction in Patients ≥ 65
Years of AgeThe American Journal of Cardiology, Volume 101, Issue 7, Pages 930-936


The National Hospital Discharge Survey (NHDS), a nationally representative sample of acute
care hospitals in the United States, was used for analysis. …..A multivariate logistic regression
model was developed to identify predictors of mortality in these patients. The logit of propensity
score was used as an adjuster for reducing the bias of nonrandom assignment of cardiovascular
procedures…… Multivariate analysis suggests that a lack of the use of procedures in these
patients may at least partially explain their higher mortality.
2. Edward H. Livingston, MD; Joshua Langert, BA, The Impact of Age and Medicare Status on
Bariatric Surgical Outcomes, Arch Surg. 2006;141:1115-1120
We assessed 25 428 bariatric procedures with logistic regression, finding that age (odds ratio,
1.04; 95% confidence interval, 1.02-1.07), male sex (odds ratio, 2.45; 95% confidence interval,
1.48-4.03), electrolyte disorders (odds ratio, 13.91; 95% confidence interval, 8.29-23.33), and
congestive heart failure (odds ratio, 4.96; 95% confidence interval, 2.52-9.77) were independent
risk factors for bariatric surgery mortality. Adverse outcomes increased as a function of age in a
nearly linear fashion, with a steep increase after the age of 65 years. Most Medicare patients
undergoing these operations were younger than 65 years and had a much greater disease burden
than non-Medicare patients.
3. Jutta M. Joesch, Ginger L. Gossman, Koray Tanfer Primary Cesarean Deliveries Prior to
Labor in the United States, 1979-2004: Discussion, Maternal and Child Health
Journal. 2008;12(3):323-331.
Analyses were conducted with 1979-2004 National Hospital Discharge Survey (NHDS) public
use files. The NHDS public use data do not include direct identifiers. The study protocol was
therefore exempt from institutional review board approval……. We used logistic regression with
pooled 1979-2004 data to describe how the odds of delivering by primary cesarean prior to labor
changed between 1979 and 2004. We estimated 5 different logistic regression models…….. We
used Wald tests to determine which of the five models provides the best fit for describing the
odds of delivering by primary cesarean prior to labor over time. Based on these tests, the model
with a cubic time trend was the preferred model. We refer to this model as the "unadjusted"
model in the remainder of the text…….




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Baruch College/Mount Sinai
                 School of Medicine
             Program in Health Care
          Administration and Policy



Health Data Analysis and
                       ®
   Statistics Using SAS

                 Course Notes
                      STA9000
              Lecture 4-Organ
                  Procurement
       Transplantation Network
       OPTN- Liver Transplants
2


Health Data Analysis and Statistics Using SAS® Course Notes was developed by Raymond R. Arons.
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.
Health Data Analysis and Statistics Using SAS® Course Note

Copyright © 2009 Raymond R. Arons. All rights reserved. Printed in the United States of America. No
part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of
the publisher, Raymond R. Arons, Teaneck, New Jersey.

Prepared date 29July09.




                                         TABLE OF CONTENTS
Lecture 4-OPTN Liver Transplants                                                           3

Organ Procurement Transplantation Network Description                                4

Objectives of Chapter                                                                4
Section – 1 The Federal and Non-Profit Agencies Associated with
   the U.S. Liver Transplantation                                                     5
Budget Breakdown FY 2010                                                             12
Section 2 - Liver Transplantation Figures Published In the 2007 Annual Report
       of the Organ Procurement and Transplantation Network (OPTN)                   16
Section 3 – OTPN/UNOS Liver Transplantation Data Tables from 2007 Annual Report      26
Section 4 – OTPN/UNOS Liver Transplantation Public Use Data Set Variables            40
Demonstration 1: OPTN/UNOS Liver Data, PROC Format, Labels, PROC
     Contents, and PROC Freq Statements                                              46
Exercise 4.1                                                                         65
Demonstration 2: SAS Code for OPTN/UNOS Liver Indicator and Truth Logic Variables    78
Exercise 4.2                                                                         85

Demonstration 3: Multiple Linear Regression Model on OPTN Liver Transplant
      Patient Survival Time in Days (PTIME)                                           93

Exercise 4.3                                                                          95
Demonstration 4: Logistic Regression Model of Liver Transplant Patient Death.         99
Exercise 4.4                                                                         103
Demonstration 5: Survival Analysis of Liver Transplants Using Kaplan-Meier Methods   115
Exercise 4.5                                                                         119




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                    4




                                   Organ Procurement
                                   Transplantation Network
                                   OPTN- Liver Transplants
                                   Data
                               Lecture 4




     Objectives
         Provide an overview of U.S Organ Transplantation
         System from the Health and Human Services, Organ
         Procurement and Transplantation Network (OPTN),
         through United Network Organ System (UNOS) to
         Liver Transplants and estimated annual costs.
         Review the available descriptive data that is provided
         in the annual 2007 OPTN reports.
         Review the variables and their definitions that exist on
         the OPTN Liver transplantation data files.
         Identify the additional information that can be obtained
         from the raw data.
         Propose a range of potential study questions.
         Write SAS code to analyze the OPTN data.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      5




              Section – 1: The Federal and Non-
              Profit Agencies Associated with U.S.
              Liver Transplantation




      The U.S. Transplantation System




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                        6




     Health Resources and Service
     Administration (HRSA)
         The Health Resources and Services Administration
         (HRSA), an agency of the U.S. Department of Health
         and Human Services, is the primary Federal agency
         for improving access to health care services for people
         who are uninsured, isolated or medically vulnerable.
         Comprising six bureaus and 13 offices, HRSA
         provides leadership and financial support to health
         care providers in every state and U.S. territory. HRSA
         grantees provide health care to uninsured people,
         people living with HIV/AIDS, and pregnant women,
         mothers and children. They train health professionals
         and improve systems of care in rural communities.

                                                         continued...




  Health Resources and Service Administration
  (HRSA)
         HRSA oversees organ, bone marrow and cord blood
         donation. It supports programs that prepare against
         bioterrorism, compensate individuals harmed by
         vaccination, and maintains databases that protect
         against health care malpractice and health care waste,
         fraud and abuse.
         Since 1943 the agencies that were HRSA precursors
         have worked to improve the health of needy people.
         HRSA was created in 1982, when the Health
         Resources Administration and the Health Services
         Administration



                                                         continued...




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                          7




      HRSA Organ Transplantation Legislation

          Authorizing Legislation: Sections 371 - 378 of the
          Public Health Service Act, (P.L. 98-507 and
          P.L. 108-216), as amended.
          The National Organ Transplant Act of 1984 (NOTA),
          as amended, provides the authorities for the Program.
          The primary purpose of the Program is to extend and
          enhance the lives of individuals with end-stage organ
          failure for whom an organ transplant is the most
          appropriate therapeutic treatment.
          The Program works towards achieving this goal by
          providing for a national system, the Organ
          Procurement and Transplantation Network (OPTN), to
          allocate and distribute donor organs to individuals
          waiting for an organ transplant.




  OPTN Program Description and
  Accomplishments
          The allocation of organs is guided by organ allocation
          policies developed by the OPTN with analytic support
          provided by the Scientific Registry of Transplant
          Recipients (SRTR).
          In addition to the efficient and effective allocation of
          donor organs through the OPTN, the Program also
          supports efforts to increase the supply of donor organs
          made available for transplantation.
          Ideally, an organ would be available for every
          transplant candidate at the time the procedure would
          provide maximum benefit to the patient. Unfortunately,
          the demand for organ transplantation greatly exceeds
          the available supply of organs from deceased and
          living donors combined (see Figure 1).


                                                           continued...




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                           8




     OPTN Program Description and
     Accomplishments
         This trend is anticipated to continue, unless there is a
         major breakthrough in transplantation technology that
         will obviate the need for donor organs or the incidence
         of end-stage organ failure in the U.S. dramatically
         declines.
         This supply and demand imbalance is vividly
         evidenced by the 94,000 patients who were waiting for
         an organ transplant at the end of 2006. This number
         continues to increase as almost 98,000 patients were
         waiting for an organ transplant as of January 2008.
         Tragically, 6,700 individuals died, approximately 18
         per day, in 2006 while waiting for a donor organ.


                                                            continued...




     OPTN Program Description and
     Accomplishments
         The below graph shows trends from 1993 to 2006 in
         the number of patients on the transplant waitlist, the
         number of transplants performed from deceased
         donors only, and the number of transplants from living
         as well as deceased donors.
         The number of patients on the transplant waitlist has
         grown steadily from about 30,000 in 1993 to over
         94,000 in 2006.
         While the number of transplants performed has also
         grown over this time period, it has not grown as
         rapidly as the waitlist, leading to what is characterized
         on the graph as an “organ gap”.



                                                            continued...




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                     9




      OPTN Program Description and
      Accomplishments




       United Network for Organ Sharing
          A Virginia nonstock, not-for-profit corporation. The articles of
          incorporation establish the legal standing of the corporation (as in
          effect November 13, 1998).
          The name of the corporation is: United Network for Organ
          Sharing.
          Article II - Purpose and Powers
          (a) To establish a national Organ Procurement and
          Transplantation Network under the Public Health Service Act, in
          order to improve the effectiveness of the nation's renal and
          extrarenal organ procurement, distribution, and transplantation
          systems by increasing the availability of, and access to, donor
          organs for patients with end-stage organ failure; to develop,
          implement, and maintain quality assurance activities; and to
          systematically gather and analyze data and regularly publish the
          results of the national experience in organ procurement and
          preservation, tissue typing, and clinical organ transplantation. The
          Corporation is organized exclusively for charitable, educational,
          and scientific purposes related to organ procurement and
          transplantation.


                                                                      continued...




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                    10




     United Network for Organ Sharing

         (b) To have all the powers provided for in Section 13.1-826,
         Code of Virginia 1950, as amended, as at any time amended;
         provided, however,
          – (1) all of the assets, earnings and income of the
             Corporation shall be used exclusively for the purposes set
             forth above, including the payment of proper expenses
             incidental thereto, and
          – (2) no part of the net earnings of the Corporation shall inure
             to the benefit of or be distributable to its members,
             directors, officers, or other private persons, except that the
             Corporation shall be authorized and empowered to pay
             reasonable compensation for services rendered and to
             make payments and distributions in furtherance of the
             purposes set forth above, and



                                                                     continued...




     United Network for Organ Sharing
           – (3) no substantial part of the activities of the
             Corporation shall consist of carrying on
             propaganda, or otherwise attempting to influence
             legislation, nor shall it in any manner or to any
             extent participate in, or intervene in (including the
             publishing or distributing of statements), any
             political campaign on behalf of any candidate for
             public office; nor shall the Corporation engage in
             any activities that are unlawful under applicable
             federal, state or local laws, and
           – (4) the Corporation shall not operate for the
             purposes of carrying on a trade or business for
              profit.




                                                                     continued...




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                     11




      United Network for Organ Sharing
          c) The Corporation shall neither have nor exercise any
          power, nor shall it engage directly or indirectly in any
          activity, that would invalidate its status as a
          corporation which is exempt from federal income
          taxation as any organization described in IRC Section
          501(c)(3) or invalidate its status as a corporation,
          contributions to which are deductible under IRC
          Section 170(c)(2).




      United Network for Organ Sharing
          UNOS staff prepared preliminary OPTN financial
          statements for the period October 1, 2006, through
          September 30, 2007. OPTN expenditures were
          $177,000 less than the budget of $26,711,000. In
          addition to this budget variance, the OPTN expects to
          recover costs of $127,000 for peer review activities
          from two OPTN members. In following current
          practices, the $127,000 will be credited to the OPTN
          contract upon receipt from the member
          The 2008 budget exceeds the estimated OPTN
          contract expenditures in the OPTN contract UNOS
          signed with HRSA in 2005.

      http://www.unos.org/articles.asp




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                    12




     United Network for Organ Sharing
     The Board approved modifications to 3.6.4.5 (Liver Candidates with
     Exceptional Cases), which will provide standardized criteria and
     MELD/PELD scores for six diagnoses. The Board specified that
     candidates meeting the exceptional case criteria are eligible for
     additional MELD/PELD exception points. Unless the applicable RRB
     has a pre-existing agreement regarding point assignment for these
     diagnoses, an initial MELD score of 22/PELD score of 28 shall be
     assigned. For candidates with Primary Hyperoxaluria meeting the
     criteria in 3.6.4.5.5, an initial MELD score of 28/PELD score of 41
     shall be assigned
     http://www.unos.org/SharedContentDocuments/Executive_Summary_-_June_2009.pdf




     FY 2010 Budget

         HHS -$879 Billion

         Health Resources & Services Administration -
         $7.25 Billion

         OTPN- $60 million



         UNOS-$30 million (est.)


        http://www.hhs.gov/asrt/ob/docbudget/2010budgetinbrief.pdf




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                                 13




      Organ Procurement and
      Transplantation Network
              Supporting Transplantation: The FY 2010 Budget continues
              support for activities in organ, bone marrow, and cord blood stem
              cell transplantation through a combined investment of $60 million.
              Through a national system, the Organ Transplantation program
              allocates and distributes donor organs to individuals waiting for
              an organ transplant and supports efforts to increase the supply of
              donor organs. Similarly, the C.W. “Bill” Young Cell
              Transplantation
              Program provides support to patients who need a potentially life-
              saving marrow or cord blood transplant. In FY 2007 these
              programs helped to facilitate the donation of over 27,877 organs,
              and in FY 2008 increased the number of potential ethic and racial
              minority bone marrow donors to over 2 million.
              The Budget request also includes $12 million for the National
              Cord Blood Inventory program which will be used to support the
              collection and purchase of approximately 8,500 new cord blood
              units.




    Estimated U.S. Average 2008 First-Year Billed Charges Per Transplant

                       30 Days                                           180 Days
                       Pre-                    Hospital     Physician    Post-        Immuno-
                       transplan   Procureme   Transplant   During       transplant   suppressant
      Transplant       t           nt          Admission    Transplant   Admission    s             Total

      Heart Only       $34,200     $94,300     $486,400     $50,800      $99,700      $22,300       $787,700

      Single Lung      $7,500      $53,600     $256,600     $27,900      $84,300      $20,500       $450,400
      Only

      Double Lung      $20,700     $96,500     $344,700     $59,300      $113,800     $22,800       $657,800
      Only

      Heart-Lung       $49,100     $151,900    $682,500     $73,000      $143,300     $24,700       $1,123,800

      Liver Only       $21,200     $73,600     $286,100     $44,100      $77,800      $20,600       $523,400

      Kidney Only      $16,700     $67,500     $92,700      $17,500      $47,400      $17,200       $259,000

      Pancreas         $16,500     $68,400     $93,400      $16,300      $58,700      $22,200       $275,200
      Only

      Intestine Only   $48,400     $77,200     $743,800     $100,600     $124,300     $27,500       $1,121,800




     http://www.transplantliving.org/beforethetransplant/finance/costs.aspx

     http://www.milliman.com/expertise/healthcare/publications/rr/pdfs/2008-us-organ-tisse-RR4-1-08.pdf




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                          14




     Estimated U.S. 2008 First-Year Total
     Charges Per Transplant
                      Estimated 2008 Transplantation Costs
                      Transplant         N          Costs           Total

                      Heart Only                2247     $787,700    $1,769,961,900

                      Single Lung Only            802    $450,400      $361,220,800

                      Double Lung Only            764    $657,800      $502,559,200

                      Heart-Lung                   31 $1,123,800         $34,837,800

                      Liver-Only                6550     $523,400    $3,428,270,000

                      Kidney-Only              17447     $259,000    $4,518,773,000

                      Pancreas Only               399    $275,200      $109,804,800

                      Intestine Only               70 $1,121,800         $78,526,000

                      Grand Total                                   $10,803,953,500

     http://www.milliman.com/expertise/healthcare/publications/rr/pdfs/2008-us-organ-tisse-RR4-1-08.pdf




     2008 Estimated Liver Transplantation Costs


           Livers                                   -          $3.4 Billion
           All Transplants                          -         $10.8 Billion




     http://www.milliman.com/expertise/healthcare/publications/rr/pdfs/2008-us-organ-tisse-RR4-1-08.pdf




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      15




   Section 2 - Liver Transplantation Figures
   Published In the 2007 Annual Report of the
   Organ Procurement and Transplantation
   Network (OPTN).




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      16




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      17




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      18




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      19




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      20




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      21




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      22




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      23




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      24




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      25




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      26




   Section 3 - Liver Transplantation Data Tables
   Published in the 2007 Annual Report of the
   Organ Procurement and Transplantation
   Network (OPTN).




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      27




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      28




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      29




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      30




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      31




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      32




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      33




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      34




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      35




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      36




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      37




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                      38




        Section 4 – OTPN/UNOS Liver
        Transplantation Public Use Data Set
        Variables




Introduction to liver blood test
An initial step in detecting liver damage is a simple blood test to determine the presence of certain liver
enzymes in the blood. Under normal circumstances, these enzymes reside within the cells of the liver. But
when the liver is injured for any reason, these enzymes are spilled into the blood stream. Enzymes are
proteins that are present throughout the body, each with a unique function. Enzymes help to speed up
(catalyze) routine and necessary chemical reactions in the body.
Among the most sensitive and widely used of these liver enzymes are the aminotransferases. They include
aspartate aminotransferase (AST or SGOT) and alanine aminotransferase (ALT or SGPT). These enzymes
are normally contained within liver cells. If the liver is injured, the liver cells spill the enzymes into
blood, raising the enzyme levels in the blood and signaling the liver damage.
The MELD score
The MELD/PELD Calculator provided on this Web site uses the specific formulas approved by the
OPTN/UNOS Board of Directors and allocation of livers by the OPTN match system. The MELD/PELD
calculator collects data elements used in both the MELD and PELD score calculations. Please note the
following:
Serum Creatinine (mg/dl)* ,Bilirubin (mg/dl), INR *For patients who have had dialysis twice within the
last week, or 24 hours of CVVHD, the creatinine value will be automatically set to 4 mg/dl.
The PELD score calculation uses:
Albumin (g/dl) , Bilirubin (mg/dl) and INR. INR, Growth failure (based on gender, height and weight)
Age at listing

http//www.unos.org/resources/MeldPeldCalculator asp?index=97


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                           39

Functions of the Liver

The liver is one of the largest and most complex organs in the body. It weighs approximately 1,500-1,800
grams (or about three to four pounds) and is made up of a spongy mass of wedge-shaped lobes. The liver
has numerous functions that are necessary for life. The liver helps process carbohydrates, fats, and
proteins, and stores vitamins. It processes nutrients absorbed from food in the intestines and turns them
into materials that the body needs for life. For example, it makes the factors that the blood needs for
clotting. It also secretes bile to help digest fats, and breaks down toxic substances in the blood such as
drugs and alcohol.

Liver Transplant Procedures

A liver transplant may involve the whole liver, a reduced liver, or a liver segment. Most transplants
involve the whole organ but segmental transplants have been performed with increasing frequency in
recent years. This would allow two liver recipients to be transplanted from one cadaveric donor or to
allow for living donor liver donation. A reduced liver transplant may result if the donor liver is too large
for the recipient.
Introduction to liver blood test
An initial step in detecting liver damage is a simple blood test to determine the presence of certain liver
enzymes in the blood. Under normal circumstances, these enzymes reside within the cells of the liver. But
when the liver is injured for any reason, these enzymes are spilled into the blood stream. Enzymes are
proteins that are present throughout the body, each with a unique function. Enzymes help to speed up
(catalyze) routine and necessary chemical reactions in the body.
Among the most sensitive and widely used of these liver enzymes are the aminotransferases. They include
aspartate aminotransferase (AST or SGOT) and alanine aminotransferase (ALT or SGPT). These enzymes
are normally contained within liver cells. If the liver is injured, the liver cells spill the enzymes into
blood, raising the enzyme levels in the blood and signaling the liver damage.



http//www.unos.org/resources/MeldPeldCalculator asp?index=97




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                        40




      OPTN/UNOS Public Use Liver Data Set
      Specifications
          Data Set Name UNOS.LIVER
          Number of Records 88,636
          Number of Variables-27
          SAS data set




Creatinine: A chemical waste molecule that is generated from muscle metabolism. Creatinine is
produced from creatine, a molecule of major importance for energy production in muscles. Approximately
2% of the body's creatine is converted to creatinine every day. Creatinine is transported through the
bloodstream to the kidneys. The kidneys filter out most of the creatinine and dispose of it in the urine.
Although it is a waste, creatinine serves a vital diagnostic function
Total Bilirubin (TBIL)
Bilirubin is a breakdown product of heme (a part of haemoglobin in red blood cells). The liver is
responsible for clearing this, excreting it out throughbile into the instestine. Problems with the liver or
blockage of the drainage of bile will cause increased levels of bilirubin, as will increased haemolysis of
red cells.
INR
The liver is responsible for the production of coagulation factors. The INR measures the speed of a
particular pathway of coagulation, comparing it to normal. If the INR is increased, it means it is taking
longer than usual for blood to clot. The INR will only be increased if the liver is so damaged that
synthesis of vitamin K-dependent coagulation factors has been impaired: it is not a sensitive measure of
liver function. It is very important to normalize the INR before operating on people with liver problems,
(usually by transfusion with blood plasma containing the deficient factors), as they could bleed
excessively.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                        41




     OPTN/UNOS Public Use Data Variables
       cod             = 'Cause of death'
       diag           = 'Diagnosis at transplantation'
       px_stat        = 'Patient status pre-transplant'
       end_stat       = 'Patient status post-transplant'
       hgt_cm_trr     = 'Patient height (cm)at transplant'
       wgt_kg_trr      = 'Patient weight (kg)at transplant'
       sgpt_tx        = 'Blood (Serum) Glutamic- Oxaloacetic
                           Transaminase (SGOT) Test‘
       px_stat        = 'Current status of the patient'




                                                                     continued...

Development of the MELD/PELD Allocation System
Today, the model for end-stage liver disease (MELD)/pediatric end-stage liver disease (PELD) model is
the disease severity scoring system used to determine the allocation of donor livers in the US (see "MELD
and PELD Equations for Disease Severity").
In response to the US government's Final Rule Mandate, which clearly stated that waiting time must be
de-emphasized as a major determinant of organ allocation, the UNOS Liver and Intestinal Transplantation
Committee decided to further assess the Mayo end-stage liver disease model -- later renamed as the model
for end-stage liver disease -- as a potential basis for liver allocation. MELD, which was developed to
assess short-term prognosis of patients undergoing transjugular intrahepatic portal systemic shunt
procedures, was based on three simple biochemical variables -- serum creatinine, serum bilirubin, and the
international normalized ratio of prothrombin time (INR) In addition, the etiology of liver disease was
initially used in this model.
The advantage of MELD is that it relies on objective and standardized laboratory tests that are readily
available and reproducible throughout the world. None of the parameters in the model are subjective or
have political overtones, such as age, gender, race, or transplant center. Evaluation and validation of
MELD on the basis of both retrospective and prospective data was encouraging. The most recent and
important study to validate MELD was its application to the national UNOS waiting list. This study
confirmed that the MELD score, determined at the time of listing for liver transplantation, accurately
estimates liver disease severity and predicts the 3-month mortality rate among patients with chronic liver
disease, and could be applied for the allocation of donor livers. The conclusion was that MELD could be
applied to allocation of donor livers on the basis of disease severity.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                      42




      OPTN/UNOS Public Use Data Variables
          abo        = 'Blood type of patient'
          gender     = 'Gender of patient'
          tx_date   = 'Transplant date'
          prev_tx   = 'Previous transplant'
          end_stat   = 'Status at transplant '
          hgt_cm_don = 'Donor height(cm)at
                         harvesting‘
          wgt_kg_don = Donor weight (kg) at
                        harvesting




                                                                     continued...

The PELD committee developed a similar disease severity scoring system to meet the characteristics of
children with chronic liver disease. As serum creatinine levels are not predictive of early mortality in the
pediatric population, other variables had to be included. Using multivariate analysis, significant clinical
factors incorporated into the PELD score included serum bilirubin levels, international ratio of
prothrombin time, serum albumin levels, age <1 year, and growth failure defined as height or weight more
than two standard deviations below the normal for age and gender. It was recognized that the MELD and
PELD scores would not serve all liver transplant candidates equally well, and the most important
exceptions included patients with HCC. It was noted that patients with HCC often had very low MELD or
PELD scores, and thus would be disadvantaged by the new system. Therefore, it was proposed that an
estimate of risk for tumor progression beyond stage 2 disease, rather than risk of death, was necessary to
incorporate patients with HCC into the MELD/PELD allocation system. By recording the risk of tumor
progression beyond stage 2 disease with the risk of death as defined by the MELD score in patients with
chronic liver disease, a priority score could potentially be assigned to patients with HCC. Initially, and
somewhat arbitrarily, the allocation policy estimated the risk of tumor progression beyond stage 2 disease
or mortality at 15%, corresponding to a MELD score of 24 for patients meeting stage 1 HCC criteria. A
risk of 30%, a MELD score of 29, was estimated for patients with stage 2 HCC disease.
A regional review board has been appointed to review urgent cases, and those in which patients are
exempted from or disadvantaged by the MELD/PELD allocation system, such as patients with primary
familial amyloidosis, polycystic liver disease, and hepatopulmonary syndrome. It is at the discretion of
this regional review board that additional MELD points can be given to patients for whom the risk of
dying is considered to be above and beyond that estimated by the MELD/PELD system. Such cases are
considered on an individual basis




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                         43




      OPTN/UNOS Public Use Data Variables
           age_don                 = 'Donor age'
           ethcat_don              = 'Donor ethnicity'
           don_ty                  = 'Donor source'
           gender_don              = 'Donor gender'
           abo_don                 = 'Doner blood type'
           creat_tx                = 'Patient creatinine at transplant‘
           tbili_tx                = 'Patient billirubin at transplant'
           ethcat                  = 'Patient ethnicity'
                                                                               N
                                                                               u
                                                                               m
                                                                               b
                                                                               er
                                                                     continued...
                                                                               of
MELD and PELD Equations for Disease Severity
MELDa = (0.957 x log[creatinine mg/dl]) + (0.378 x log[bilirubin mg/dl]) + (1.12 x log[INR]) + 0.643 x
10
 PELD = (0.436 x ageb) - (0.687 x log[albumin g/dl]) + (0.480 x log[bilirubin mg/dl]) + (1.857 x
log[INR]) + (0.0667 x growth failurec) x 10
aCapped at 40 points.bAge <1 year = 1 MELD point; age >1 year = 0 MELD points.cGrowth failure = 1
MELD point; no growth failure = 0 MELD points. INR, international normalized ratio of prothrombin
time.
Russell H Wiesner, Mayo Clinic Transplant Center, Rochester, MN ,Patient Selection in an Era of Donor
Liver Shortage: US Policy: Sidebar: MELD and PELD Equations for Disease Severity
http://www.medscape.com/viewarticle/497528_3

Pre-MELD/PELD Liver Allocation Policy Criteria
Sickest First and Waiting Time
Liver allocation was initially based on a patient's level of care. Patients requiring continuous care in the
intensive care unit (ICU) -- including patients with acute esophageal variceal bleeding not responding to
endoscopic therapy, patients who developed hepatorenal syndrome, and patients with intractable ascites or
portosystemic encephalopathy -- received first priority. Patients requiring continuous hospitalization were
the next priority for allocation, followed by patients cared for at home. As the waiting list grew, however,
waiting time became the major factor in determining who received a donor liver. This allocation system
led to the establishment of many makeshift ICUs specifically for patients waiting for liver transplantation,
and many patients were added to the waiting list years before they actually needed a liver transplant, so


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                       44

they would be at the top of the list by the time they required a transplant. This led to numerous turned
down offers for deceased donor livers




      OPTN/UNOS Public Use Data Variables
          px_stat_date         = 'Date patient graft status was
                                 identified'
          grf_stat             = 'Status of liver graft'
          age                  = ‘Patient age at transplant'
          diag                 = 'Diagnosis at transplant'
          cold_isch            = 'Duration of cold ischemia-
                                  preserved donor liver’
          gtime                 = 'Graph survival time in days'
          ptime                 = 'Patient survival time in days'




                                                                      continued...

The Child-Turcotte-Pugh Scoring System
In 1996, the Child-Turcotte-Pugh (CTP) scoring system was adopted as the measure of liver disease
severity to prioritize liver allocation, and a separate 'Status 1' category was created for patients with
fulminant hepatic failure, primary nonfunction of the liver, hepatic artery thrombosis diagnosed within 7
days of transplantion, or decompensated Wilson's Disease. These candidates were given the highest
priority and this remains unchanged. Patients with chronic liver disease were grouped into three
categories: status 2a (CTP ≥ 10, admission to the ICU, and estimated <7 days to survive); status 2b (CTP
≥ 10 or a CTP ≥ 7 in patients with one or more major complications of portal hypertension, and patients
with stage 1 and 2 hepatocellular carcinoma [HCC]); and status 3 (CTP score of ≥ 7), the minimal listing
criteria. The CTP score was considered a shortcoming of the overall allocation system because it was
never evaluated for the prediction of mortality over time in patients with chronic liver disease.
Furthermore, the CTP score had two variables that were subjective in nature, namely ascites and
encephalopathy, which could easily be overestimated. Ultimately, the CTP score failed to prioritize
numerous patients waiting for deceased donor livers on the basis of disease severity.
Waiting Time
In 2000, the waiting list for liver transplantation grew to 20,000 patients, leading to longer waiting times
and more patient deaths on the waiting list. Waiting time became the dominant factor for determining
deceased donor liver allocation. This became less acceptable when two studies documented that time
spent on the waiting list was not associated with an increased death rate. Waiting time was also perceived

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                        45

as a shortcoming of the allocation system,[6] because it did not reflect the medical need for liver
transplantation and was used arbitrarily to determine who received a donor organ. Ultimately waiting time
also contributed to the failure of the allocation system because it did not prioritize patients waiting for
deceased donor livers.
Russell H Wiesner, Mayo Clinic Transplant Center, Rochester, MN Patient Selection in an Era of Donor
Liver Shortage: US Policy: Pre-MELD/PELD Liver Allocation Policy Criteria.
http://www.medscape.com/viewarticle/497528_8



      Example Analysis of Liver Transplant Data
          What are the predictors of surviving a liver
          transplantation considering the effects of gender, race,
          age, blood type, status pre-transplant, principal
          diagnosis and donor type?
          All else being equal, have the odds of receiving a liver
          transplant improved between blacks and whites?
          How does the MELD/PELD scoring system affect the
          likelihood of surviving a liver transplant when principal
          diagnosis categories and other clinical and demographic
          factors are considered?
          How do liver transplant survival rates vary across
          clinical and demographic effects?




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                          46




              1. OPTN/UNOS Liver Data, PROC Format, Labels, PROC
              Contents, and PROC Freq Statements.
         unos01d.sas


The program below contains the basic structure for a SAS analysis of the UNOS Liver data set.
PROC Format gives names to variable values, PROC Contents yields the specifications of your
data set, and PROC Freq provides the frequency distributions of each of the variables
/*unos01d.sas*/

Proc format;

Value li_cod          /**Causes of Death of Liver Transplant Recipients**/


  998 = '998        Unknown'
  999 = '999        Other Specify'
  4246='4246        Cardiovascular - Arterial Embolism '
  4247='4247        Cardiovascular - Pulmonary Embolism'
  4600='4600        Graft Failure:Primary               '
  4601='4601        Graft Failure:Vascular Thrombosis '
  4602='4602        Graft Failure:Biliary Tract Complication '
  4603='4603        Graft Failure:Hepatitis                   '
  4604='4604        Graft Failure:Recurrent (Non-Hepatitis)'
  4605='4605        Graft Failure:Rejection       '
  4606='4606        Graft Failure:Infection (Non-Hepatitis) '
  4610='4610        Graft Failure:Other Specify'
  4615='4615        Graft Vs. Host Disease'
  4620='4620        Cardio: Arrythmia '
  4621='4621        Cardio: Arterial Or Pulmonary Embolism'
  4622='4622        Cardio: Hyperkalemic Arrest '
  4623='4623        Cardio: Congestive Failure (Chf)'
  4624='4624        Cardio: Myocardial Infarction '
  4625='4625        Cardio: Other Specify '
  4626='4626        Cardiac Arrest '
  4630='4630        Cerebrovascular: Embolic Stroke'
  4631='4631        Cerebrovascular: Hemorrhagic Stroke'
  4635='4635        Cerebrovascular: Other Specify'
  4640='4640        Pulm Insuff Or Edema (Exc Pneumonia) (Ards)'
  4645='4645        Respiratory Failure: Other Specify Cause '
  4650='4650        Renal Failure'
  4660='4660        Multiple Organ System Failure'
  4700='4700        Hemorrhage: Lower Gastrointestinal'
  4701='4701        Hemorrhage: Neurological (Brain)'
  4702='4702        Hemorrhage: Variceal '
  4703='4703        Hemorrhage: Disseminated Intravascular..(Dic)'
  4705='4705        Hemorrhage: Other Specify '
  4706='4706        Hemorrhage '
Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                         47

     4800='4800      Inf: Bacterial Peritonitis'
     4801='4801      Inf: Pneumonia Legionella Pneumocystosis'
     4802='4802      Inf: Generalized Sepsis'
     4803='4803      Inf: Fungal Aspergillus Cryptococcal'
     4804='4804      Inf: Mixed Other Specify'
     4805='4805      Inf: Opportunistic'
     4806='4806      Inf: Viral'
     4810='4810      Inf: Other Specify'
     4811='4811      Infection'
     4850='4850      Malignancy: Primary Other Specify'
     4851='4851      Malignancy: Metastatic Other Specify'
     4855='4855      Malignancy: Other Specify'
     4856='4856      Malignancy'
     4860='4860      Post-Tx Lymphoproliferative Disorder'
     4900='4900      Operative: Other Specify'
     4910='4910      Brain Dead:Never Recovered From Surgery'
     4920='4920      Suicide:Attempted Suicide - Died Later'
     4930='4930      Trauma: Motor Vehicle'
     4935='4935      Trauma: Other Specify'
     4940='4940      Diabetes Mellitus'
     4941='4941      Fluid/Electrolyte Disorder'
     4942='4942      Acid/Base Disorder'
     4945='4945      Acute Pancreatitis'
     4950='4950      Aids'
     4951='4951      Immunosuppressive Drug Related - Hematologic'
     4952='4952      Immunosuppressive Drug Related - Non-Hematologic'
     4953='4953      Non-Immuno Drug Related - Hematologic'
     4954='4954      Non-Immuno Drug Related - Non-Hematolo.....Drug'

;

Value li_dgn         /***Primary diagnosis at Transplantation**/


    999 ='999     Other Specify              '
    4100='4100    Ahn: Drug Other Specify '
    4101='4101    Ahn: Type A              '
    4102='4102    Ahn: Type B- Hbsag+      '
    4103='4103    Ahn: Non A- Non B        '
    4104='4104    Ahn: Type C              '
    4105='4105    Ahn: Type D              '
    4106='4106    Ahn: Type B And C        '
    4107='4107    Ahn: Type B And D        '
    4108='4108    Ahn: Etiology Unknown      '
    4110='4110    Ahn: Other, Specify (E.G.Acute Viral Infection..'
    4200='4200    Cirrhosis: Drug/Indust Exposure Other Specify'
    4201='4201    Cirrhosis: Type A '
    4202='4202    Cirrhosis: Type B- Hbsag+ '
    4203='4203    Cirrhosis: Type Non A, Non B    '
    4204='4204    Cirrhosis: Type C '
    4102='4102    Ahn: Type B- Hbsag+      '

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                    48

4103='4103      Ahn: Non A- Non B         '
4104='4104      Ahn: Type C               '
4105='4105      Ahn: Type D               '
4106='4106      Ahn: Type B And C         '
4107='4107      Ahn: Type B And D         '
4108='4108      Ahn: Etiology Unknown '
4110='4110      Ahn: Other, Specify (E.G.Acute Viral Infection..'
4200='4200      Cirrhosis: Drug/Indust Exposure Other Specify'
4201='4201      Cirrhosis: Type A '
4202='4202      Cirrhosis: Type B- Hbsag+ '
4203='4203      Cirrhosis: Type Non A, Non B     '
4204='4204      Cirrhosis: Type C '
4205='4205      Cirrhosis: Type D '
4206='4206      Cirrhosis: Type B And C '
4207='4207      Cirrhosis: Type B And D '
4208='4208      Cirrhosis: Cryptogenic- Idiopathic '
4209='4209      Cirrhosis: Chronic Active Hepatitis:........'
4210='4210      Cirrhosis: Other, Specify (E.G., Histiocy...'
4212='4212      Cirrhosis: Autoimmune'
4213='4213      Cirrhosis: Cryptogenic (Idiopathic)'
4214='4214      Cirrhosis: Fatty Liver (Nash)'
4215='4215      Alcoholic Cirrhosis'
4216='4216      Alcoholic Cirrhosis With Hepatitis C'
4217='4217      Acute Alcoholic Hepatitis '
4220='4220      Primary Biliary Cirrhosis (Pbc)'
4230='4230      Sec Biliary Cirrhosis: Carolis Disease'
4231='4231      Sec Biliary Cirrhosis: Choledochol Cyst'
4235='4235      Sec Biliary Cirrhosis: Other Specify'
4240='4240      Psc: Crohns Disease'
4241='4241      Psc: Ulcerative Colitis'
4242='4242      Psc: No Bowel Disease'
4245='4245      Psc: Other Specify'
4250='4250      Familial Cholestasis: Bylers Disease'
4255='4255      Familial Cholestasis: Other Specify'
4260='4260      Choles Liver Disease: Other Specify'
4264='4264      Neonatal Cholestatic Liver Disease'
4265='4265      Neonatal Hepatitis Other Specify'
4270='4270      Biliary Atresia: Extrahepatic'
4271='4271      Biliary Hypoplasia: Nonsyndromic Paucity....'
4272='4272      Biliary Hypoplasia: Alagille’s Syndrome.....'
4275='4275      Biliary Atresia Or Hypoplasia: Other,Specify'
4280='4280      Congenital Hepatic Fibrosis'
4285='4285      Cystic Fibrosis'
4290='4290      Budd-Chiari Syndrome'
4300='4300      Metdis: Alpha-1-Antitrypsin Defic A-1-A'
4301='4301      Metdis: Wilsons Disease'
4302='4302      Metdis: Hemochromatosis - Hemosiderosis'
4303='4303      Metdis: Glyc Stor Dis Type I (Gsd-I)'
4304='4304      Metdis: Glyc Stor Dis Type Ii (Gsd-Iv)'
4305='4305      Metdis: Hyperlipidemia-Ii- Homozgyous Hy'
4306='4306      Metdis: Tyrosinemia'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                             49

4307='4307       Metdis: Primary Oxalosis/Oxaluria- Hyper'
4308='4308       Metdis: Maple Syrup Urine Disease'
4315='4315       Metdis: Other Specify'
4400='4400       Plm: Hepatoma - Hepatocellular Carcinoma'
4401='4401       Plm: Hepatoma (Hcc) And Cirrhosis'
4402='4402       Plm: Fibrolamellar (Fl-Hc)'
4403='4403       Plm: Cholangiocarcinoma (Ch-Ca)'
4404='4404       Plm: Hepatoblastoma (Hbl)'
4405='4405       Plm: Hemangioendothelioma-Hemangiosarcom '
4410='4410       Plm: Other Specify '
4420='4420       Bile Duct Cancer (Cholangioma-Biliary Tr'
4430='4430       Secondary Hepatic Malignancy Other Specify'
4450='4450       Benign Tumor: Hepatic Adenoma '
4451='4451       Benign Tumor: Polycystic Liver Disease'
4455='4455       Benign Tumor: Other Specify'
4500='4500       Tpn/Hyperalimentation Ind Liver Disease'
4510='4510       Graft Vs. Host Dis Sec To Non-Li Tx'
4520='4520       Trauma Other Specify'
4592='4592       Hepatitis B: Chronic Or Acute'
4593='4593       Hepatitis C: Chronic Or Actue'
4597='4597       Na: Non-Hd Followups Only'

;

value status         /***Transplantation Status on UNOS National List****/

1010   =    '1010    HL:   Status 1A'
1020   =    '1020    HL:   Status 1B'
1030   =    '1030    HL:   Status 2'
1090   =    '1090    HL:   Old Status 1'
1999   =    '1999    HL:   Temporarily Inactive '
2010   =    '2010    HR:   Status 1A '
2020   =    '2020    HR:   Status 1B '
2030   =    '2030    HR:   Status 2 '
2090   =    '2090    HR:   Old Status 1'
2999   =    '2999    HR:   Temporarily inactive'
3010   =    '3010    IN:   Status 1'
3020   =    '3020    IN:   Non-urgent'
3999   =    '3999    IN:   Temporarily Inactive'
4010   =    '4010    KI:   Active (1)'
4050   =    '4050    KI:   Active - Medically urgent (5)'
4060   =    '4060    KI:   Active - Critical Status (6)'
4099   =    '4099    KI:   Temporarily Inactive (7)'
4999   =    '4999    KI:   Old Temporarily inactive (7)'
5010   =    '5010    KP:   Active'
5099   =    '5099    KP:   Temporarily Inactive '
5999   =    '5999    KP:   Old Temporarily Inactive'
6002   =    '6002    LI:   Old status 2'
6004   =    '6004    LI:   Old status 4'
6010   =    '6010    LI:   Status 1'
6011   =    '6011    LI:   Status 1A'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      50

6012   =   '6012 LI: Status 1B'
6020   =   '6020 LI: Status 2A'
6025   =   '6025 LI: Region 7 Calculated 25'
6029   =   '6029 LI: Region 8 Lab Score 29'
6030   =   '6030LI: Status 2B'
6040   =   '6040LI: Status 3 '
6050   =   '6050LI: MELD/PELD'
6101   =   '6101LI: MELD/PELD -99'
6102   =   '6102LI: MELD/PELD -98'
6103   =   '6103LI: MELD/PELD -97'
6104   =   '6104LI: MELD/PELD -96'
6105   =   '6105LI: MELD/PELD -95'
6106   =   '6106LI: MELD/PELD -94'
6107   =   '6107LI: MELD/PELD -93'
6108   =   '6108LI: MELD/PELD -92'
6109   =   '6109LI: MELD/PELD -91'
6110   =   '6110LI: MELD/PELD -90'
6111   =   '6111LI: MELD/PELD -89'
6112   =   '6112LI: MELD/PELD -88'
6113   =   '6113LI: MELD/PELD -87'
6114   =   '6114LI: MELD/PELD -86'
6115   =   '6115LI: MELD/PELD -85'
6116   =   '6116LI: MELD/PELD -84'
6117   =   '6117LI: MELD/PELD -83'
6118   =   '6118LI: MELD/PELD -82'
6119   =   '6119LI: MELD/PELD -81'
6120   =   '6120LI: MELD/PELD -80'
6121   =   '6121LI: MELD/PELD -79'
6122   =   '6122LI: MELD/PELD -78'
6123   =   '6123LI: MELD/PELD -77'
6124   =   '6124LI: MELD/PELD -76'
6125   =   '6125LI: MELD/PELD -75'
6126   =   '6126LI: MELD/PELD -74'
6127   =   '6127LI: MELD/PELD -73'
6128   =   '6128LI: MELD/PELD -72'
6129   =   '6129LI: MELD/PELD -71'
6130   =   '6130LI: MELD/PELD -70'
6131   =   '6131LI: MELD/PELD -69'
6132   =   '6132LI: MELD/PELD -68'
6133   =   '6133LI: MELD/PELD -67'
6134   =   '6134LI: MELD/PELD -66'
6135   =   '6135LI: MELD/PELD -65'
6136   =   '6136LI: MELD/PELD -64'
6137   =   '6137LI: MELD/PELD -63'
6138   =   '6138LI: MELD/PELD -62'
6139   =   '6139LI: MELD/PELD -61'
6140   =   '6140LI: MELD/PELD -60'
6141   =   '6141LI: MELD/PELD -59'
6142   =   '6142LI: MELD/PELD -58'
6143   =   '6143LI: MELD/PELD -57'
6144   =   '6144LI: MELD/PELD -56'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      51

6145   =    '6145LI:      MELD/PELD   -55'
6146   =    '6146LI:      MELD/PELD   -54'
6147   =    '6147LI:      MELD/PELD   -53'
6148   =    '6148LI:      MELD/PELD   -52'
6149   =    '6149LI:      MELD/PELD   -51'
6150   =    '6150LI:      MELD/PELD   -50'
6151   =    '6151LI:      MELD/PELD   -49'
6152   =    '6152LI:      MELD/PELD   -48'
6153   =    '6153LI:      MELD/PELD   -47'
6154   =    '6154LI:      MELD/PELD   -46'
6155   =    '6155LI:      MELD/PELD   -45'
6156   =    '6156LI:      MELD/PELD   -44'
6157   =    '6157LI:      MELD/PELD   -43'
6158   =    '6158LI:      MELD/PELD   -42'
6159   =    '6159LI:      MELD/PELD   -41'
6160   =    '6160LI:      MELD/PELD   -40'
6161   =    '6161LI:      MELD/PELD   -39'
6162   =    '6162LI:      MELD/PELD   -38'
6163   =    '6163LI:      MELD/PELD   -37'
6164   =    '6164LI:      MELD/PELD   -36'
6165   =    '6165LI:      MELD/PELD   -35'
6166   =    '6166LI:      MELD/PELD   -34'
6167   =    '6167LI:      MELD/PELD   -33'
6168   =    '6168LI:      MELD/PELD   -32'
6169   =    '6169LI:      MELD/PELD   -31'
6170   =    '6170LI:      MELD/PELD   -30'
6171   =    '6171LI:      MELD/PELD   -29'
6172   =    '6172LI:      MELD/PELD   -28'
6173   =    '6173LI:      MELD/PELD   -27'
6174   =    '6174LI:      MELD/PELD   -26'
6175   =    '6175LI:      MELD/PELD   -25'
6176   =    '6176LI:      MELD/PELD   -24'
6177   =    '6177LI:      MELD/PELD   -23'
6178   =    '6178LI:      MELD/PELD   -22'
6179   =    '6179LI:      MELD/PELD   -21'
6180   =    '6180LI:      MELD/PELD   -20'
6181   =    '6181LI:      MELD/PELD   -19'
6182   =    '6182LI:      MELD/PELD   -18'
6183   =    '6183LI:      MELD/PELD   -17'
6184   =    '6184LI:      MELD/PELD   -16'
6185   =    '6185LI:      MELD/PELD   -15'
6186   =    '6186LI:      MELD/PELD   -14'
6187   =    '6187LI:      MELD/PELD   -13'
6188   =    '6188LI:      MELD/PELD   -12'
6189   =    '6189LI:      MELD/PELD   -11'
6190   =    '6190LI:      MELD/PELD   -10'
6191   =    '6191LI:      MELD/PELD   -9'
6192   =    '6192LI:      MELD/PELD   -8'
6193   =    '6193LI:      MELD/PELD   -7'
6194   =    '6194LI:      MELD/PELD   -6'
6195   =    '6195LI:      MELD/PELD   -5'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      52

6196   =   '6196LI:      MELD/PELD   -4'
6197   =   '6197LI:      MELD/PELD   -3'
6198   =   '6198LI:      MELD/PELD   -2'
6199   =   '6199LI:      MELD/PELD   -1'
6200   =   '6200LI:      MELD/PELD   0'
6201   =   '6201LI:      MELD/PELD   1'
6202   =   '6202LI:      MELD/PELD   2'
6203   =   '6203LI:      MELD/PELD   3'
6204   =   '6204LI:      MELD/PELD   4'
6205   =   '6205LI:      MELD/PELD   5'
6206   =   '6206LI:      MELD/PELD   6'
6207   =   '6207LI:      MELD/PELD   7'
6208   =   '6208LI:      MELD/PELD   8'
6209   =   '6209LI:      MELD/PELD   9'
6210   =   '6210LI:      MELD/PELD   10'
6211   =   '6211LI:      MELD/PELD   11'
6212   =   '6212LI:      MELD/PELD   12'
6213   =   '6213LI:      MELD/PELD   13'
6214   =   '6214LI:      MELD/PELD   14'
6215   =   '6215LI:      MELD/PELD   15'
6216   =   '6216LI:      MELD/PELD   16'
6217   =   '6217LI:      MELD/PELD   17'
6218   =   '6218LI:      MELD/PELD   18'
6219   =   '6219LI:      MELD/PELD   19'
6220   =   '6220LI:      MELD/PELD   20'
6221   =   '6221LI:      MELD/PELD   21'
6222   =   '6222LI:      MELD/PELD   22'
6223   =   '6223LI:      MELD/PELD   23'
6224   =   '6224LI:      MELD/PELD   24'
6225   =   '6225LI:      MELD/PELD   25'
6226   =   '6226LI:      MELD/PELD   26'
6227   =   '6227LI:      MELD/PELD   27'
6228   =   '6228LI:      MELD/PELD   28'
6229   =   '6229LI:      MELD/PELD   29'
6230   =   '6230LI:      MELD/PELD   30'
6232   =   '6232LI:      MELD/PELD   32'
6233   =   '6233LI:      MELD/PELD   33'
6234   =   '6234LI:      MELD/PELD   34'
6235   =   '6235LI:      MELD/PELD   35'
6231   =   '6231LI:      MELD/PELD   31'
6236   =   '6236LI:      MELD/PELD   36'
6237   =   '6237LI:      MELD/PELD   37'
6238   =   '6238LI:      MELD/PELD   38'
6239   =   '6239LI:      MELD/PELD   39'
6240   =   '6240LI:      MELD/PELD   40'
6241   =   '6241LI:      MELD/PELD   41'
6242   =   '6242LI:      MELD/PELD   42'
6243   =   '6243LI:      MELD/PELD   43'
6244   =   '6244LI:      MELD/PELD   44'
6245   =   '6245LI:      MELD/PELD   45'
6246   =   '6246LI:      MELD/PELD   46'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      53

6247   =    '6247LI:      MELD/PELD   47'
6248   =    '6248LI:      MELD/PELD   48'
6249   =    '6249LI:      MELD/PELD   49'
6250   =    '6250LI:      MELD/PELD   50'
6251   =    '6251LI:      MELD/PELD   51'
6252   =    '6252LI:      MELD/PELD   52'
6253   =    '6253LI:      MELD/PELD   53'
6254   =    '6254LI:      MELD/PELD   54'
6255   =    '6255LI:      MELD/PELD   55'
6256   =    '6256LI:      MELD/PELD   56'
6257   =    '6257LI:      MELD/PELD   57'
6258   =    '6258LI:      MELD/PELD   58'
6259   =    '6259LI:      MELD/PELD   59'
6260   =    '6260LI:      MELD/PELD   60'
6261   =    '6261LI:      MELD/PELD   61'
6262   =    '6262LI:      MELD/PELD   62'
6263   =    '6263LI:      MELD/PELD   63'
6264   =    '6264LI:      MELD/PELD   64'
6265   =    '6265LI:      MELD/PELD   65'
6266   =    '6266LI:      MELD/PELD   66'
6267   =    '6267LI:      MELD/PELD   67'
6268   =    '6268LI:      MELD/PELD   68'
6269   =    '6269LI:      MELD/PELD   69'
6270   =    '6270LI:      MELD/PELD   70'
6271   =    '6271LI:      MELD/PELD   71'
6272   =    '6272LI:      MELD/PELD   72'
6273   =    '6273LI:      MELD/PELD   73'
6274   =    '6274LI:      MELD/PELD   74'
6275   =    '6275LI:      MELD/PELD   75'
6276   =    '6276LI:      MELD/PELD   76'
6277   =    '6277LI:      MELD/PELD   77'
6278   =    '6278LI:      MELD/PELD   78'
6279   =    '6279LI:      MELD/PELD   79'
6280   =    '6280LI:      MELD/PELD   80'
6281   =    '6281LI:      MELD/PELD   81'
6282   =    '6282LI:      MELD/PELD   82'
6283   =    '6283LI:      MELD/PELD   83'
6284   =    '6284LI:      MELD/PELD   84'
6285   =    '6285LI:      MELD/PELD   85'
6286   =    '6286LI:      MELD/PELD   86'
6287   =    '6287LI:      MELD/PELD   87'
6288   =    '6288LI:      MELD/PELD   88'
6289   =    '6289LI:      MELD/PELD   89'
6290   =    '6290LI:      MELD/PELD   90'
6291   =    '6291LI:      MELD/PELD   91'
6292   =    '6292LI:      MELD/PELD   92'
6293   =    '6293LI:      MELD/PELD   93'
6294   =    '6294LI:      MELD/PELD   94'
6295   =    '6295LI:      MELD/PELD   95'
6296   =    '6296LI:      MELD/PELD   96'
6297   =    '6297LI:      MELD/PELD   97'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                           54

6298      =        '6298LI:   MELD/PELD 98'
6299      =        '6299LI:   MELD/PELD 99'
6999      =        '6999LI:   Temporarily Inactive'
7010      =        '7010LU:   Active'
7999      =        '7999LU:   Temporarily Inactive'
8010      =        '8010PA:   Active'
8099      =        '8099PA:   Temporarily Inactive'
8999      =        '8999PA:   Old Temporarily Inactive'
9010      =        '9010PI:   Status 1'
9020      =        '9020PI:   Status 2'
9030      =        '9030PI:   Active'
9099      =        '9099PI:   Temporarily Inactive'
9999      =        '9999PI:   Old Temporarily Inactive'

;
value $pxstat
  'A' = 'A Living'
  'D' = 'D Dead'
  'L' = 'L Lost to Follow up'
  'N' = 'N Not Seen'
  'R' = 'R Retransplanted'
;

value $graph_stat

    '.'        =    'Not reported'
    'N'        =    'N Failed'
    'U'        =    'U Unknown'
    'Y'        =    'Y Functioning'

    ;

value ethcat

  1 =         '1 White'
  2 =         '2 Black'
  4 =         '4 Hispanic'
  5 =         '5 Asian'
  6 =         '6 Amer Ind/Alaska Native'
  7 =         '7 Native Hawaiian/other Pacific Islander'
  9 =         '9 Multiracial'
998 =         '998 Unknown'
;

value $don_type

'C'       = 'Deceased Donor'
'F'       = 'Foreign Donor'
'L'       = 'Living Donor'

;

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                          55



value        $prev_tx

    'Y' = 'Yes Previous transplant'
    'N' = 'No Previous transplant'
;

value        $abotype

    'A'       =   'Type   A'
    'A1'      =   'Type   A1'
    'A1B'     =   'Type   A1B'
    'A2'      =   'Type   A2'
    'A2B'     =   'Type   A2B'
    'AB'      =   'Type   AB'
    'B'       =   'Type   B'
    'O'       =   'Type   O'
    'UNK'     =   'Type   UNK'

;

value $gender

    'M'     = 'Male'
    'F'     = 'Female'
;
data liver;
label cod                           = 'Cause of death'
      diag                         = 'Diagnosis at transplantation'
      px_stat                       = 'Patient stautus pre-transplant'
      end_stat                      = 'Patient status post-transplant'
      hgt_cm_trr                   = 'Patient height (cm)at transplant'
      wgt_kg_trr                   = 'Patient weight (kg)at transplant'
      sgpt_tx                      = 'Blood(Serum)Glutamic-Oxaloacetic
                                       Transaminase(SGOT)Test'
            px_stat                = 'Current status of the patient'
            abo                    = 'Blood type of patient'
            gender                 = 'Gender of patient'
            tx_date                = 'Transplant date'
            prev_tx                = 'Previous transplant'
            end_stat               = 'Status at transplant '
            hgt_cm_don             = 'Donor height(cm)at harvesting'
            wgt_kg_don             = 'Donor weight(kg)at harvesting'
            age_don                = 'Donor age'
            ethcat_don             = 'Donor ethnicity'
            don_ty                 = 'Donor source '
            gender_don             = 'Donor gender'
            abo_don                = 'Donor blood type'
            creat_tx               = 'Patient creatinine at transplant'
            tbili_tx               = 'Patient billirubin at transplant'
            ethcat                 = 'Patient ethnicity'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                56

        px_stat_date               =   'Date patient graft status was identified'
        grf_stat                   =   'Status of liver graft'
        age                        =   'Patient age at transplant'
        diag                       =   'Diagnosis at transplant'
        cold_isch                  =   'Duration of cold ischemia-preserved donor
liver'
;
set unos.liver;



options label nodate nonumber;
proc contents data=liver varnum;
run;

options label nodate nonumber;
proc freq data=liver ;
tables gender gender_don cod diag end_stat grf_stat
px_stat ethcat ethcat_don px_stat don_ty abo abo_don
;
format cod li_cod. diag li_dgn. grf_stat $graph_stat.
ethcat ethcat. ethcat_don ethcat. px_stat $pxstat. end_stat status.
don_ty $don_type. abo $abotype. abo_don $abotype. gender $gender.
gender_don $gender.
  ;
run;
options label nodate nonumber;




Below is the output of the Proc Contents for the Liver Transplantation data set.
                                              The SAS System

                                       The CONTENTS Procedure

      Data Set Name          WORK.LIVER                          Observations           88636
      Member Type            DATA                                Variables              27
      Engine                 V9                                  Indexes                0
      Created                Sunday, July 19, 2009 06:51:21 PM   Observation Length     160
      Last Modified          Sunday, July 19, 2009 06:51:21 PM   Deleted Observations   0

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                     57

       Protection                                                      Compressed             NO
       Data Set Type                                                   Sorted                 NO
       Label
       Data Representation        WINDOWS_32
       Encoding                   wlatin1 Western (Windows)



                                      Engine/Host Dependent Information

Data Set Page Size                 16384
Number of Data Set Pages           870
First Data Page                    1
Max Obs per Page                   102
Obs in First Data Page             75
Number of Data Set Repairs         0
Filename                           C:DOCUME~1DR0E98~1.RAYLOCALS~1TempSAS
                                   Temporary Files_TD3752liver.sas7bdat
Release Created                    9.0201M0
Host Created                       XP_PRO
                                                The SAS System

                                              The CONTENTS Procedure

                                         Variables in Creation Order

 # Variable       Type Len Format        Informat Label

 1   cod          Num    8   6.          6.        Cause of death
 2   diag         Num    8                         Diagnosis at transplant
 3   px_stat      Char   1   $1.         $1.       Current status of the patient
 4   end_stat     Num    8   6.                    Status at transplant
 5   hgt_cm_trr   Num    8   9.4         9.4       Patient height (cm)at transplant
 6   wgt_kg_trr   Num    8   9.4         9.4       Patient weight (kg)at transplant
 7   sgpt_tx      Num    8   10.2        10.2      Blood(Serum)Glutamic-Oxaloacetic
                                                   Transaminase(SGOT)Test
 8   abo          Char   3   $3.       $3.         Blood type of patient
 9   gender       Char   1   $1.       $1.         Gender of patient
10   tx_date      Num    8   MMDDYY10.             Transplant date
11   prev_tx      Char   1                         Previous transplant
12   hgt_cm_don   Num    8   8.          9.4       Doners height(cm)at harvesting
13   wgt_kg_don   Num    8   9.4         9.4       Doners weight(kg)at harvesting
14   age_don      Num    8                         Doners age
15   ethcat_don   Num    8                         Doners ethnicity
16   don_ty       Char   3   $3.         $3.       Doner source
17   gender_don   Char   1   $1.         $1.       Doners gender
18   abo_don      Char   3   $3.         $3.       Doners blood type
19   creat_tx     Num    8   9.4         9.4       Patients Creatinine at transplant
20   tbili_tx     Num    8   9.4         9.4       Patient billirubin at transplant
21   ethcat       Num    8                         Patints ethnicity
22   px_stat_     Num    8   MMDDYY10.             Date patient graft status was identified
     date
23   grf_stat     Char   1                         Status of liver graft
24   age          Num    8                         patient age at transplant
25   cold_isch    Num    8                         Duration of cold ischemia-preserved donor liver
26   GTIME        Num    5                         Graph survival time in days
27   PTIME        Num    5                         Patient survival time in days



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                            58

Below is the partial output of the Proc Freq for the selected variables of the UNOS Liver
Transplants with and without the cumulative frequencies.

                                         The SAS System

                                       The FREQ Procedure

                                        Gender of patient

                                                       Cumulative    Cumulative
                    gender    Frequency     Percent     Frequency      Percent
                    ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                    Female       34629       39.07         34629        39.07
                    Male         54007       60.93         88636       100.00



                                         Doners gender

                   gender_                             Cumulative    Cumulative
                   don        Frequency     Percent     Frequency      Percent
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                   Female        35486       40.04         35486        40.04
                   Male          53134       59.96         88620       100.00

                                     Frequency Missing = 16
                                         The SAS System

                                       The FREQ Procedure



                                          Cause of death

                                                            cod    Frequency     Percent
         ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
         998 Unknown                                                   2936       11.52
         999 Other Specify                                             2163        8.49
         4246 Cardiovascular - Arterial Embolism                          7        0.03
         4247 Cardiovascular - Pulmonary Embolism                        43        0.17
         4600 Graft Failure:Primary                                     685        2.69
         4601 Graft Failure:Vascular Thrombosis                         277        1.09
         4602 Graft Failure:Biliary Tract Complication                   66        0.26
         4603 Graft Failure:Hepatitis                                  1205        4.73
         4604 Graft Failure:Recurrent (Non-Hepatitis)                   336        1.32
         4605 Graft Failure:Rejection                                   515        2.02
         4606 Graft Failure:Infection (Non-Hepatitis)                   105        0.41
         4610 Graft Failure:Other Specify                               296        1.16
         4615 Graft Vs. Host Disease                                     90        0.35
         4620 Cardio: Arrythmia                                         204        0.80
         4621 Cardio: Arterial Or Pulmonary Embolism                    103        0.40
         4622 Cardio: Hyperkalemic Arrest                               169        0.66
         4623 Cardio: Congestive Failure (Chf)                          248        0.97
         4624 Cardio: Myocardial Infarction                             726        2.85
         4625 Cardio: Other Specify                                     449        1.76
         4626 Cardiac Arrest                                            838        3.29
         4630 Cerebrovascular: Embolic Stroke                           105        0.41


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                           59

          4631   Cerebrovascular: Hemorrhagic Stroke                    293        1.15
          4635   Cerebrovascular: Other Specify                         364        1.43
          4640   Pulm Insuff Or Edema (Exc Pneumonia) (Ards)            319        1.25
          4645   Respiratory Failure: Other Specify Cause               540        2.12
          4650   Renal Failure                                          516        2.03
          4660   Multiple Organ System Failure                         2225        8.73
          4700   Hemorrhage: Lower Gastrointestinal                     276        1.08
          4701   Hemorrhage: Neurological (Brain)                       301        1.18
          4702   Hemorrhage: Variceal                                    59        0.23
          4703   Hemorrhage: Disseminated Intravascular..(Dic)            6        0.02
          4705   Hemorrhage: Other Specify                              295        1.16
          4706   Hemorrhage                                             129        0.51
          4800   Inf: Bacterial Peritonitis                             221        0.87
          4801   Inf: Pneumonia Legionella Pneumocystosis               331        1.30
          4802   Inf: Generalized Sepsis                               3179       12.48
          4803   Inf: Fungal Aspergillus Cryptococcal                   432        1.70
          4804   Inf: Mixed Other Specify                                89        0.35
          4805   Inf: Opportunistic                                      38        0.15
          4806   Inf: Viral                                             204        0.80
          4810   Inf: Other Specify                                     334        1.31
          4811   Infection                                              233        0.91
          4850   Malignancy: Primary Other Specify                      590        2.32
          4851   Malignancy: Metastatic Other Specify                  1176        4.62
          4855   Malignancy: Other Specify                              382        1.50
          4856   Malignancy                                             365        1.43
          4860   Post-Tx Lymphoproliferative Disorder                   267        1.05
          4900   Operative: Other Specify                               351        1.38
          4910   Brain Dead:Never Recovered From Surgery                 99        0.39
          4920   Suicide:Attempted Suicide - Died Later                  62        0.24
          4930   Trauma: Motor Vehicle                                   92        0.36
          4935   Trauma: Other Specify                                   42        0.16
          4940   Diabetes Mellitus                                       21        0.08
          4941   Fluid/Electrolyte Disorder                               6        0.02
          4942   Acid/Base Disorder                                       1        0.00
          4945   Acute Pancreatitis                                      67        0.26
          4950   Aids                                                     1        0.00
          4953   Non-Immuno Drug Related - Hematologic                    2        0.01
          4954   Non-Immuno Drug Related - Non-Hematolo.....Drug          2        0.01




                                   Diagnosis at transplant

                                                           diag    Frequency     Percent
          ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
          999 Other Specify                                            3440        3.89
          4100 Ahn: Drug Other Specify                                  784        0.89
          4101 Ahn: Type A                                              187        0.21
          4102 Ahn: Type B- Hbsag+                                      785        0.89
          4104 Ahn: Type C                                             1321        1.49
          4105 Ahn: Type D                                                5        0.01
          4106 Ahn: Type B And C                                         80        0.09
          4107 Ahn: Type B And D                                         10        0.01
          4108 Ahn: Etiology Unknown                                   2355        2.66

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                   60

         4110   Ahn: Other, Specify (E.G.Acute Viral Infection..    1122    1.27
         4200   Cirrhosis: Drug/Indust Exposure Other Specify        149    0.17
         4201   Cirrhosis: Type A                                     47    0.05
         4202   Cirrhosis: Type B- Hbsag+                           2914    3.29
         4204   Cirrhosis: Type C                                  18998   21.46
         4205   Cirrhosis: Type D                                     23    0.03
         4206   Cirrhosis: Type B And C                              510    0.58
         4207   Cirrhosis: Type B And D                               47    0.05
         4208   Cirrhosis: Cryptogenic- Idiopathic                  2979    3.37
         4209   Cirrhosis: Chronic Active Hepatitis:........         175    0.20
         4210   Cirrhosis: Other, Specify (E.G., Histiocy...        1073    1.21
         4212   Cirrhosis: Autoimmune                               3110    3.51
         4213   Cirrhosis: Cryptogenic (Idiopathic)                 4517    5.10
         4214   Cirrhosis: Fatty Liver (Nash)                        960    1.08
         4215   Alcoholic Cirrhosis                                10623   12.00
         4216   Alcoholic Cirrhosis With Hepatitis C                4350    4.91
         4217   Acute Alcoholic Hepatitis                             68    0.08
         4220   Primary Biliary Cirrhosis (Pbc)                     4696    5.30
         4230   Sec Biliary Cirrhosis: Carolis Disease               118    0.13
         4231   Sec Biliary Cirrhosis: Choledochol Cyst               61    0.07
         4235   Sec Biliary Cirrhosis: Other Specify                 261    0.29
         4240   Psc: Crohns Disease                                  725    0.82
         4241   Psc: Ulcerative Colitis                             2137    2.41
         4242   Psc: No Bowel Disease                               1495    1.69
         4245   Psc: Other Specify                                  1176    1.33
         4250   Familial Cholestasis: Bylers Disease                  74    0.08
         4255   Familial Cholestasis: Other Specify                  115    0.13
         4260   Choles Liver Disease: Other Specify                  241    0.27
         4264   Neonatal Cholestatic Liver Disease                    12    0.01
         4265   Neonatal Hepatitis Other Specify                     219    0.25
         4270   Biliary Atresia: Extrahepatic                       3098    3.50
         4271   Biliary Hypoplasia: Nonsyndromic Paucity....         119    0.13
         4272   Biliary Hypoplasia: Alagille’s Syndrome.....         381    0.43
         4275   Biliary Atresia Or Hypoplasia: Other,Specify        1125    1.27
         4280   Congenital Hepatic Fibrosis                          199    0.22
         4285   Cystic Fibrosis                                      252    0.28
         4290   Budd-Chiari Syndrome                                 558    0.63
         4300   Metdis: Alpha-1-Antitrypsin Defic A-1-A             1470    1.66
         4301   Metdis: Wilsons Disease                              549    0.62
         4302   Metdis: Hemochromatosis - Hemosiderosis              615    0.69
         4303   Metdis: Glyc Stor Dis Type I (Gsd-I)                  62    0.07
         4304   Metdis: Glyc Stor Dis Type Ii (Gsd-Iv)                33    0.04
         4305   Metdis: Hyperlipidemia-Ii- Homozgyous Hy              10    0.01
         4306   Metdis: Tyrosinemia                                  124    0.14
         4307   Metdis: Primary Oxalosis/Oxaluria- Hyper             195    0.22
         4308   Metdis: Maple Syrup Urine Disease                     38    0.04
         4315   Metdis: Other Specify                                573    0.65
         4400   Plm: Hepatoma - Hepatocellular Carcinoma            1644    1.86
         4401   Plm: Hepatoma (Hcc) And Cirrhosis                   3061    3.46
         4402   Plm: Fibrolamellar (Fl-Hc)                            44    0.05
         4403   Plm: Cholangiocarcinoma (Ch-Ca)                      276    0.31
         4404   Plm: Hepatoblastoma (Hbl)                            269    0.30
         4405   Plm: Hemangioendothelioma-Hemangiosarcom             136    0.15
         4410   Plm: Other Specify                                   190    0.21
         4420   Bile Duct Cancer (Cholangioma-Biliary Tr              45    0.05
         4430   Secondary Hepatic Malignancy Other Specify           138    0.16
         4450   Benign Tumor: Hepatic Adenoma                         40    0.05

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                 61

          4451   Benign Tumor: Polycystic Liver Disease               293        0.33
          4455   Benign Tumor: Other Specify                           53        0.06
          4500   Tpn/Hyperalimentation Ind Liver Disease              800        0.90
          4510   Graft Vs. Host Dis Sec To Non-Li Tx                   90        0.10
          4520   Trauma Other Specify                                  71        0.08
          4593   Hepatitis C: Chronic Or Actue                          8        0.01

                                        Status at transplant

                                                                      Cumulative    Cumulative
                                 end_stat    Frequency     Percent     Frequency      Percent
   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
   4010 KI: Active (1)                              1        0.00             1         0.00
   6002 LI: Old status 2                         7483        8.55          7484         8.56
   6004 LI: Old status 4                         1433        1.64          8917        10.19
   6010 LI: Status 1                            11115       12.71         20032        22.90
   6011 LI: Status 1A                             927        1.06         20959        23.96
   6012 LI: Status 1B                             142        0.16         21101        24.12
   6020 LI: Status 2A                            4199        4.80         25300        28.92
   6030LI: Status 2B                            11786       13.47         37086        42.39
   6040LI: Status 3                             15177       17.35         52263        59.74
   6189LI: MELD/PELD -11                            1        0.00         52264        59.74
   6190LI: MELD/PELD -10                            9        0.01         52273        59.75
   6191LI: MELD/PELD -9                            11        0.01         52284        59.77
   6192LI: MELD/PELD -8                            13        0.01         52297        59.78
   6193LI: MELD/PELD -7                            11        0.01         52308        59.79
   6194LI: MELD/PELD -6                            14        0.02         52322        59.81
   6195LI: MELD/PELD -5                            11        0.01         52333        59.82
   6196LI: MELD/PELD -4                            14        0.02         52347        59.84
   6197LI: MELD/PELD -3                            25        0.03         52372        59.87
   6198LI: MELD/PELD -2                            21        0.02         52393        59.89
   6199LI: MELD/PELD -1                            23        0.03         52416        59.92
   6200LI: MELD/PELD 0                             21        0.02         52437        59.94
   6201LI: MELD/PELD 1                             30        0.03         52467        59.98
   6202LI: MELD/PELD 2                             34        0.04         52501        60.01
   6203LI: MELD/PELD 3                             22        0.03         52523        60.04
   6204LI: MELD/PELD 4                             28        0.03         52551        60.07
   6205LI: MELD/PELD 5                             28        0.03         52579        60.10
   6206LI: MELD/PELD 6                            278        0.32         52857        60.42
   6207LI: MELD/PELD 7                            200        0.23         53057        60.65
   6208LI: MELD/PELD 8                            217        0.25         53274        60.90
   6209LI: MELD/PELD 9                            284        0.32         53558        61.22
   6210LI: MELD/PELD 10                           457        0.52         54015        61.75
   6211LI: MELD/PELD 11                           396        0.45         54411        62.20
   6212LI: MELD/PELD 12                           505        0.58         54916        62.78
   6213LI: MELD/PELD 13                           594        0.68         55510        63.45
   6214LI: MELD/PELD 14                           710        0.81         56220        64.27
   6215LI: MELD/PELD 15                          1129        1.29         57349        65.56
   6216LI: MELD/PELD 16                          1212        1.39         58561        66.94
   6217LI: MELD/PELD 17                          1274        1.46         59835        68.40
   6218LI: MELD/PELD 18                          1532        1.75         61367        70.15
   6219LI: MELD/PELD 19                           933        1.07         62300        71.22
   6220LI: MELD/PELD 20                          1325        1.51         63625        72.73
   6221LI: MELD/PELD 21                          1045        1.19         64670        73.93
   6222LI: MELD/PELD 22                          3355        3.84         68025        77.76
   6223LI: MELD/PELD 23                          1263        1.44         69288        79.20
   6224LI: MELD/PELD 24                          3011        3.44         72299        82.65

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                               62

  6225LI:   MELD/PELD 25                          1621          1.85      73920        84.50
  6226LI:   MELD/PELD 26                           767          0.88      74687        85.38
  6227LI:   MELD/PELD 27                           716          0.82      75403        86.19
  6228LI:   MELD/PELD 28                          1144          1.31      76547        87.50
  6229LI:   MELD/PELD 29                          1691          1.93      78238        89.44
  6230LI:   MELD/PELD 30                          1014          1.16      79252        90.59
  6231LI:   MELD/PELD 31                           733          0.84      79985        91.43
  6232LI:   MELD/PELD 32                           633          0.72      80618        92.16
  6233LI:   MELD/PELD 33                           499          0.57      81117        92.73
  6234LI:   MELD/PELD 34                           455          0.52      81572        93.25
  6235LI:   MELD/PELD 35                           462          0.53      82034        93.77
  6236LI:   MELD/PELD 36                           389          0.44      82423        94.22
  6237LI:   MELD/PELD 37                           343          0.39      82766        94.61
  6238LI:   MELD/PELD 38                           316          0.36      83082        94.97
  6239LI:   MELD/PELD 39                           313          0.36      83395        95.33
  6240LI:   MELD/PELD 40                          1760          2.01      85155        97.34
  6241LI:   MELD/PELD 41                            27          0.03      85182        97.37
  6242LI:   MELD/PELD 42                             5          0.01      85187        97.38
  6243LI:   MELD/PELD 43                            12          0.01      85199        97.39
  6244LI:   MELD/PELD 44                            16          0.02      85215        97.41
  6245LI:   MELD/PELD 45                            19          0.02      85234        97.43
  6246LI:   MELD/PELD 46                            18          0.02      85252        97.45
  6247LI:   MELD/PELD 47                             4          0.00      85256        97.46
  6248LI:   MELD/PELD 48                             9          0.01      85265        97.47
  6249LI:   MELD/PELD 49                             2          0.00      85267        97.47
  6250LI:   MELD/PELD 50                             6          0.01      85273        97.48
  6251LI:   MELD/PELD 51                             2          0.00      85275        97.48
  6252LI:   MELD/PELD 52                             3          0.00      85278        97.48
  6253LI:   MELD/PELD 53                             1          0.00      85279        97.48
  6255LI:   MELD/PELD 55                             4          0.00      85283        97.49
  6256LI:   MELD/PELD 56                             2          0.00      85285        97.49
  6258LI:   MELD/PELD 58                             1          0.00      85286        97.49
  6260LI:   MELD/PELD 60                             1          0.00      85287        97.49
  6261LI:   MELD/PELD 61                             1          0.00      85288        97.49
  6263LI:   MELD/PELD 63                             1          0.00      85289        97.50
  6264LI:   MELD/PELD 64                             1          0.00      85290        97.50
  6265LI:   MELD/PELD 65                             1          0.00      85291        97.50
  6266LI:   MELD/PELD 66                             1          0.00      85292        97.50
  6267LI:   MELD/PELD 67                             1          0.00      85293        97.50
  6269LI:   MELD/PELD 69                             1          0.00      85294        97.50
  6299LI:   MELD/PELD 99                             1          0.00      85295        97.50
  6999LI:   Temporarily Inactive                  2185          2.50      87480       100.00

                                     Frequency Missing = 1156

                                       Status of liver graft

                                                           Cumulative    Cumulative
                grf_stat          Frequency     Percent     Frequency      Percent
                ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                N Failed             17030       21.06         17030        21.06
                U Unknown              709        0.88         17739        21.94
                Y Functioning        63129       78.06         80868       100.00

                                     Frequency Missing = 7768

                                   Current status of the patient

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                              63


                                                             Cumulative    Cumulative
             px_stat                Frequency     Percent     Frequency      Percent
             ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
             A Living                  46128       52.53         46128        52.53
             D dead                    25470       29.00         71598        81.53
             L Lost to Follow up        7565        8.61         79163        90.14
             R Retransplanted           8658        9.86         87821       100.00

                                     Frequency Missing = 815

                                        Patints ethnicity

                                                                       Cumulative    Cumulative
                                    ethcat    Frequency     Percent     Frequency      Percent
  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
  1 White                                        66103       74.58         66103        74.58
  2 Black                                         7882        8.89         73985        83.47
  4 Hispanic                                     10315       11.64         84300        95.11
  5 Asian                                         3272        3.69         87572        98.80
  6 Amer Ind/Alaska Native                         462        0.52         88034        99.32
  7 Native Hawaiian/other Pacific Islander         152        0.17         88186        99.49
  9 Multiracial                                    363        0.41         88549        99.90
  998 Unknown                                       87        0.10         88636       100.00



                                          Doners ethnicity

                                                                       Cumulative    Cumulative
                                ethcat_don    Frequency     Percent     Frequency      Percent
  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
  1 White                                        65430       73.82         65430        73.82
  2 Black                                        11012       12.42         76442        86.24
  4 Hispanic                                      9500       10.72         85942        96.96
  5 Asian                                         1576        1.78         87518        98.74
  6 Amer Ind/Alaska Native                         268        0.30         87786        99.04
  7 Native Hawaiian/other Pacific Islander         186        0.21         87972        99.25
  9 Multiracial                                    422        0.48         88394        99.73
  998 Unknown                                      242        0.27         88636       100.00
                                 Current status of the patient

                                                             Cumulative    Cumulative
             px_stat                Frequency     Percent     Frequency      Percent
             ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
             A Living                  46128       52.53         46128        52.53
             D dead                    25470       29.00         71598        81.53
             L Lost to Follow up        7565        8.61         79163        90.14
             R Retransplanted           8658        9.86         87821       100.00

                                     Frequency Missing = 815



                                          Doner source

                                                           Cumulative    Cumulative
                don_ty            Frequency     Percent     Frequency      Percent
                ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                   64

                Deceased Donor      84910       95.80          84910       95.80
                Foreign Donor         196        0.22          85106       96.02
                Living Donor         3530        3.98          88636      100.00




                                      Blood type of patient

                                                        Cumulative    Cumulative
                   abo         Frequency     Percent     Frequency      Percent
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                   Type A         34339       38.74         34339        38.74
                   Type A1          225        0.25         34564        39.00
                   Type A1B          12        0.01         34576        39.01
                   Type A2           46        0.05         34622        39.06
                   Type A2B          12        0.01         34634        39.07
                   Type AB         4226        4.77         38860        43.84
                   Type B         11286       12.73         50146        56.58
                   Type O         38488       43.42         88634       100.00
                   Type UNK           2        0.00         88636       100.00



                                        Doners blood type

                                                        Cumulative    Cumulative
                   abo_don     Frequency     Percent     Frequency      Percent
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                   Type A         17119       19.32         17119        19.32
                   Type A1        14527       16.39         31646        35.71
                   Type A1B         270        0.30         31916        36.02
                   Type A2         1145        1.29         33061        37.31
                   Type A2B          81        0.09         33142        37.40
                   Type AB         2184        2.46         35326        39.87
                   Type B          9546       10.77         44872        50.64
                   Type O         43718       49.34         88590        99.98
                   Type UNK          20        0.02         88610       100.00

                                      Frequency Missing = 26




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                               65




                Exercises 4.1


Using UNOS01d.sas, write the SAS code to produce the following:
1. PROC FREQ of blood type of donor by recipient.
2. PROC FREQ of principal diagnosis in rank order by race.
3. PROC FREQ of status transplant in rank order by race.
4. PROC FREQ of cause of death by race.
5. PROC FREQ of race by patient status.
6. PROC FREQ of donor gender by patient gender.


Below is SAS code for exercise 4.1-1.
options label nodate nonumber;
proc freq data=liver;
tables abo*abo_don;
format cod li_cod. diag li_dgn. grf_stat $graph_stat.
ethcat ethcat. ethcat_don ethcat. px_stat $pxstat. end_stat status.
don_ty $don_type. abo $abotype. abo_don $abotype. gender $gender.
gender_don $gender.
 ;
title 'Blood type of donor by recipient';
run;

Below is the PROC FREQ output for exercise 4.1-1.
                                    Blood type of donor by recipient

                                           The FREQ Procedure

                                        Table of abo by abo_don

 abo(Blood type of patient)        abo_don(Doners blood type)

 Frequency‚
 Percent ‚
 Row Pct ‚
 Col Pct ‚Type A ‚Type A1 ‚Type A1B‚Type A2 ‚Type A2B‚Type AB ‚Type B ‚Type O ‚Type UNK‚
Total
 ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 Type A   ‚ 16072 ‚ 13759 ‚        0 ‚    877 ‚      0 ‚     49 ‚     66 ‚   3492 ‚      8 ‚
34323
          ‚ 18.14 ‚ 15.53 ‚     0.00 ‚   0.99 ‚   0.00 ‚   0.06 ‚   0.07 ‚   3.94 ‚   0.01 ‚
38.73
          ‚ 46.83 ‚ 40.09 ‚     0.00 ‚   2.56 ‚   0.00 ‚   0.14 ‚   0.19 ‚ 10.17 ‚    0.02 ‚

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                               66

          ‚ 93.88 ‚ 94.71 ‚     0.00 ‚ 76.59 ‚    0.00 ‚   2.24 ‚   0.69 ‚   7.99 ‚ 40.00 ‚
 ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 Type A1 ‚     126 ‚     74 ‚      0 ‚     16 ‚      0 ‚      0 ‚      0 ‚      9 ‚      0 ‚
225
          ‚   0.14 ‚   0.08 ‚   0.00 ‚   0.02 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.01 ‚   0.00 ‚
0.25
          ‚ 56.00 ‚ 32.89 ‚     0.00 ‚   7.11 ‚   0.00 ‚   0.00 ‚   0.00 ‚   4.00 ‚   0.00 ‚
          ‚   0.74 ‚   0.51 ‚   0.00 ‚   1.40 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.02 ‚   0.00 ‚
 ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
abo(Blood type of patient)     abo_don(Doners blood type)

 Frequency‚
 Percent ‚
 Row Pct ‚
 Col Pct ‚Type A ‚Type A1 ‚Type A1B‚Type A2 ‚Type A2B‚Type AB ‚Type B ‚Type O ‚Type UNK‚
Total
 Type A1B ‚      2 ‚      0 ‚      2 ‚      1 ‚      0 ‚      4 ‚      2 ‚      1 ‚      0 ‚
12
          ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚
0.01
          ‚ 16.67 ‚    0.00 ‚ 16.67 ‚    8.33 ‚   0.00 ‚ 33.33 ‚ 16.67 ‚     8.33 ‚   0.00 ‚
          ‚   0.01 ‚   0.00 ‚   0.74 ‚   0.09 ‚   0.00 ‚   0.18 ‚   0.02 ‚   0.00 ‚   0.00 ‚
 ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 Type A2 ‚      25 ‚     17 ‚      0 ‚      2 ‚      0 ‚      0 ‚      0 ‚      2 ‚      0 ‚
46
          ‚   0.03 ‚   0.02 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚
0.05
          ‚ 54.35 ‚ 36.96 ‚     0.00 ‚   4.35 ‚   0.00 ‚   0.00 ‚   0.00 ‚   4.35 ‚   0.00 ‚
          ‚   0.15 ‚   0.12 ‚   0.00 ‚   0.17 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚
 ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 Type A2B ‚      3 ‚      1 ‚      2 ‚      0 ‚      1 ‚      2 ‚      1 ‚      2 ‚      0 ‚
12
          ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚
0.01
          ‚ 25.00 ‚    8.33 ‚ 16.67 ‚    0.00 ‚   8.33 ‚ 16.67 ‚    8.33 ‚ 16.67 ‚    0.00 ‚
          ‚   0.02 ‚   0.01 ‚   0.74 ‚   0.00 ‚   1.23 ‚   0.09 ‚   0.01 ‚   0.00 ‚   0.00 ‚
 ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 Type AB ‚     478 ‚    373 ‚    262 ‚     24 ‚     79 ‚   2046 ‚    690 ‚    271 ‚      3 ‚
4226
          ‚   0.54 ‚   0.42 ‚   0.30 ‚   0.03 ‚   0.09 ‚   2.31 ‚   0.78 ‚   0.31 ‚   0.00 ‚
4.77
          ‚ 11.31 ‚    8.83 ‚   6.20 ‚   0.57 ‚   1.87 ‚ 48.41 ‚ 16.33 ‚     6.41 ‚   0.07 ‚
          ‚   2.79 ‚   2.57 ‚ 97.04 ‚    2.10 ‚ 97.53 ‚ 93.68 ‚     7.23 ‚   0.62 ‚ 15.00 ‚
 ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 Type B   ‚     68 ‚     45 ‚      2 ‚      7 ‚      1 ‚     33 ‚   8670 ‚   2457 ‚      2 ‚
11285
          ‚   0.08 ‚   0.05 ‚   0.00 ‚   0.01 ‚   0.00 ‚   0.04 ‚   9.78 ‚   2.77 ‚   0.00 ‚
12.74
          ‚   0.60 ‚   0.40 ‚   0.02 ‚   0.06 ‚   0.01 ‚   0.29 ‚ 76.83 ‚ 21.77 ‚     0.02 ‚
          ‚   0.40 ‚   0.31 ‚   0.74 ‚   0.61 ‚   1.23 ‚   1.51 ‚ 90.82 ‚    5.62 ‚ 10.00 ‚
 ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 Type O   ‚    344 ‚    258 ‚      2 ‚    218 ‚      0 ‚     50 ‚    117 ‚ 37483 ‚       7 ‚
38479
          ‚   0.39 ‚   0.29 ‚   0.00 ‚   0.25 ‚   0.00 ‚   0.06 ‚   0.13 ‚ 42.30 ‚    0.01 ‚
43.43
          ‚   0.89 ‚   0.67 ‚   0.01 ‚   0.57 ‚   0.00 ‚   0.13 ‚   0.30 ‚ 97.41 ‚    0.02 ‚
          ‚   2.01 ‚   1.78 ‚   0.74 ‚ 19.04 ‚    0.00 ‚   2.29 ‚   1.23 ‚ 85.74 ‚ 35.00 ‚

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                67

 ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 Type UNK ‚      1 ‚      0 ‚      0 ‚      0 ‚      0 ‚      0 ‚      0 ‚      1 ‚      0 ‚
2
          ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚
0.00
          ‚ 50.00 ‚    0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚ 50.00 ‚    0.00 ‚
          ‚   0.01 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚
 ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 Total       17119    14527      270     1145       81     2184     9546    43718       20
88610
             19.32    16.39     0.30     1.29     0.09     2.46    10.77    49.34     0.02
100.00

                                        Frequency Missing = 26




Below is SAS code for exercise 4.1-2.
options label nodate nonumber;
proc freq data=liver order=freq;
tables diag*ethcat;
format cod li_cod. diag li_dgn. grf_stat $graph_stat.
ethcat ethcat. ethcat_don ethcat. px_stat $pxstat. end_stat status.
don_ty $don_type. abo $abotype. abo_don $abotype. gender $gender.
gender_don $gender.
 ;
title 'Principal diagnosis in rank order by race';
run;



Below is the partial PROC FREQ output for exercise 4.1-2.

                                     Principal Diagnosis by Race

                                          The FREQ Procedure

                                       Table of diag by ethcat

 diag(Diagnosis at transplant)      ethcat(Patints ethnicity)

 Frequency          ‚
 Percent            ‚
 Row Pct            ‚
 Col Pct            ‚1 White ‚4 Hispan‚2 Black ‚5 Asian ‚6 Amer I‚9 Multir‚7 Native‚998 Unkn‚
Total
                  ‚        ‚ic      ‚        ‚        ‚nd/Alask‚acial   ‚ Hawaiia‚own     ‚
                  ‚        ‚        ‚        ‚        ‚a Native‚        ‚n/other ‚        ‚
                  ‚        ‚        ‚        ‚        ‚        ‚        ‚Pacific ‚        ‚
                  ‚        ‚        ‚        ‚        ‚        ‚        ‚Islander‚        ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4204 Cirrhosis: ‚ 14115 ‚     2611 ‚   1572 ‚    535 ‚     64 ‚     71 ‚     24 ‚      6 ‚
18998


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                  68

 Type C            ‚   15.95 ‚     2.95 ‚   1.78 ‚   0.60 ‚   0.07 ‚   0.08 ‚   0.03 ‚   0.01 ‚
21.46
                  ‚ 74.30 ‚ 13.74 ‚     8.27 ‚   2.82 ‚   0.34 ‚   0.37 ‚   0.13 ‚   0.03 ‚
                  ‚ 21.38 ‚ 25.35 ‚ 19.96 ‚ 16.40 ‚ 13.85 ‚ 19.56 ‚ 15.79 ‚          6.98 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4215 Alcoholic C ‚   8949 ‚   1102 ‚    380 ‚     81 ‚     76 ‚     16 ‚      6 ‚     13 ‚
10623
 irrhosis         ‚ 10.11 ‚    1.24 ‚   0.43 ‚   0.09 ‚   0.09 ‚   0.02 ‚   0.01 ‚   0.01 ‚
12.00
                  ‚ 84.24 ‚ 10.37 ‚     3.58 ‚   0.76 ‚   0.72 ‚   0.15 ‚   0.06 ‚   0.12 ‚
                  ‚ 13.56 ‚ 10.70 ‚     4.82 ‚   2.48 ‚ 16.45 ‚    4.41 ‚   3.95 ‚ 15.12 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4220 Primary Bil ‚   3896 ‚    475 ‚    192 ‚     68 ‚     33 ‚     17 ‚      7 ‚      8 ‚
4696
 iary Cirrhosis ( ‚   4.40 ‚   0.54 ‚   0.22 ‚   0.08 ‚   0.04 ‚   0.02 ‚   0.01 ‚   0.01 ‚
5.30
 Pbc)             ‚ 82.96 ‚ 10.11 ‚     4.09 ‚   1.45 ‚   0.70 ‚   0.36 ‚   0.15 ‚   0.17 ‚
                  ‚   5.90 ‚   4.61 ‚   2.44 ‚   2.08 ‚   7.14 ‚   4.68 ‚   4.61 ‚   9.30 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4213 Cirrhosis: ‚    3578 ‚    558 ‚    260 ‚     90 ‚     16 ‚      6 ‚      4 ‚      5 ‚
4517
 Cryptogenic (Idi ‚   4.04 ‚   0.63 ‚   0.29 ‚   0.10 ‚   0.02 ‚   0.01 ‚   0.00 ‚   0.01 ‚
5.10
 opathic)         ‚ 79.21 ‚ 12.35 ‚     5.76 ‚   1.99 ‚   0.35 ‚   0.13 ‚   0.09 ‚   0.11 ‚
                  ‚   5.42 ‚   5.42 ‚   3.30 ‚   2.76 ‚   3.46 ‚   1.65 ‚   2.63 ‚   5.81 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4216 Alcoholic C ‚   3346 ‚    583 ‚    341 ‚     31 ‚     32 ‚     14 ‚      3 ‚      0 ‚
4350
 irrhosis With He ‚   3.78 ‚   0.66 ‚   0.39 ‚   0.04 ‚   0.04 ‚   0.02 ‚   0.00 ‚   0.00 ‚
4.91
 patitis C        ‚ 76.92 ‚ 13.40 ‚     7.84 ‚   0.71 ‚   0.74 ‚   0.32 ‚   0.07 ‚   0.00 ‚
                  ‚   5.07 ‚   5.66 ‚   4.33 ‚   0.95 ‚   6.93 ‚   3.86 ‚   1.97 ‚   0.00 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 999 Other Speci ‚    2380 ‚    432 ‚    427 ‚    155 ‚     13 ‚     25 ‚      8 ‚      0 ‚
3440
 fy               ‚   2.69 ‚   0.49 ‚   0.48 ‚   0.18 ‚   0.01 ‚   0.03 ‚   0.01 ‚   0.00 ‚
3.89
                  ‚ 69.19 ‚ 12.56 ‚ 12.41 ‚      4.51 ‚   0.38 ‚   0.73 ‚   0.23 ‚   0.00 ‚
                  ‚   3.61 ‚   4.19 ‚   5.42 ‚   4.75 ‚   2.81 ‚   6.89 ‚   5.26 ‚   0.00 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4212 Cirrhosis: ‚    2087 ‚    390 ‚    546 ‚     49 ‚     20 ‚     11 ‚      6 ‚      1 ‚
3110
 Autoimmune       ‚   2.36 ‚   0.44 ‚   0.62 ‚   0.06 ‚   0.02 ‚   0.01 ‚   0.01 ‚   0.00 ‚
3.51
                  ‚ 67.11 ‚ 12.54 ‚ 17.56 ‚      1.58 ‚   0.64 ‚   0.35 ‚   0.19 ‚   0.03 ‚
                  ‚   3.16 ‚   3.79 ‚   6.93 ‚   1.50 ‚   4.33 ‚   3.03 ‚   3.95 ‚   1.16 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4270 Biliary Atr ‚   1703 ‚    500 ‚    640 ‚    158 ‚     23 ‚     54 ‚     17 ‚      3 ‚
3098
 esia: Extrahepat ‚   1.92 ‚   0.56 ‚   0.72 ‚   0.18 ‚   0.03 ‚   0.06 ‚   0.02 ‚   0.00 ‚
3.50
 ic               ‚ 54.97 ‚ 16.14 ‚ 20.66 ‚      5.10 ‚   0.74 ‚   1.74 ‚   0.55 ‚   0.10 ‚
                  ‚   2.58 ‚   4.85 ‚   8.13 ‚   4.84 ‚   4.98 ‚ 14.88 ‚ 11.18 ‚     3.49 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4401 Plm: Hepato ‚   2020 ‚    498 ‚    214 ‚    284 ‚     21 ‚     16 ‚      4 ‚      4 ‚
3061



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                              69

 ma (Hcc) And Cir ‚   2.28 ‚   0.56 ‚   0.24 ‚   0.32 ‚   0.02 ‚   0.02 ‚   0.00 ‚   0.00 ‚
3.46
 rhosis           ‚ 65.99 ‚ 16.27 ‚     6.99 ‚   9.28 ‚   0.69 ‚   0.52 ‚   0.13 ‚   0.13 ‚
                  ‚   3.06 ‚   4.83 ‚   2.72 ‚   8.70 ‚   4.55 ‚   4.41 ‚   2.63 ‚   4.65 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4208 Cirrhosis: ‚    2354 ‚    358 ‚    169 ‚     54 ‚     22 ‚     13 ‚      4 ‚      5 ‚
2979
 Cryptogenic- Idi ‚   2.66 ‚   0.40 ‚   0.19 ‚   0.06 ‚   0.02 ‚   0.01 ‚   0.00 ‚   0.01 ‚
3.37
 opathic          ‚ 79.02 ‚ 12.02 ‚     5.67 ‚   1.81 ‚   0.74 ‚   0.44 ‚   0.13 ‚   0.17 ‚
                  ‚   3.57 ‚   3.48 ‚   2.15 ‚   1.65 ‚   4.76 ‚   3.58 ‚   2.63 ‚   5.81 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4202 Cirrhosis: ‚    1661 ‚    175 ‚    209 ‚    816 ‚      9 ‚     14 ‚     23 ‚      7 ‚
2914
 Type B- Hbsag+   ‚   1.88 ‚   0.20 ‚   0.24 ‚   0.92 ‚   0.01 ‚   0.02 ‚   0.03 ‚   0.01 ‚
3.29
                  ‚ 57.00 ‚    6.01 ‚   7.17 ‚ 28.00 ‚    0.31 ‚   0.48 ‚   0.79 ‚   0.24 ‚
                  ‚   2.52 ‚   1.70 ‚   2.65 ‚ 25.01 ‚    1.95 ‚   3.86 ‚ 15.13 ‚    8.14 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4108 Ahn: Etiolo ‚   1464 ‚    390 ‚    391 ‚     69 ‚     17 ‚     17 ‚      4 ‚      3 ‚
2355
 gy Unknown       ‚   1.65 ‚   0.44 ‚   0.44 ‚   0.08 ‚   0.02 ‚   0.02 ‚   0.00 ‚   0.00 ‚
2.66
                  ‚ 62.17 ‚ 16.56 ‚ 16.60 ‚      2.93 ‚   0.72 ‚   0.72 ‚   0.17 ‚   0.13 ‚
                  ‚   2.22 ‚   3.79 ‚   4.96 ‚   2.11 ‚   3.68 ‚   4.68 ‚   2.63 ‚   3.49 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 Total               66019    10300     7876     3263      462      363      152       86
88521
                     74.58    11.64     8.90     3.69     0.52     0.41     0.17     0.10
100.00




Below is SAS code for exercise 4.1-3.
options label nodate nonumber;
proc freq data=liver order=freq;
tables end_stat*ethcat;
format cod li_cod. diag li_dgn. grf_stat $graph_stat.
ethcat ethcat. ethcat_don ethcat. px_stat $pxstat. end_stat status.
don_ty $don_type. abo $abotype. abo_don $abotype. gender $gender.
gender_don $gender.
 ;
title 'Status at transplant in rank order(order=freq) by race';
run;




Below is the partial PROC FREQ output for exercise 4.1-3.
                                   Status at transplant in rank order(order=freq) by race


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                               70


                                         The FREQ Procedure

                                    Table of end_stat by ethcat

end_stat(Status at transplant)      ethcat(Patints ethnicity)

 Frequency         ‚
 Percent           ‚
 Row Pct           ‚
 Col Pct           ‚1 White ‚4 Hispan‚2 Black ‚5 Asian ‚6 Amer I‚9 Multir‚7 Native‚998 Unkn‚
Total
                  ‚        ‚ic      ‚        ‚        ‚nd/Alask‚acial   ‚ Hawaiia‚own     ‚
                  ‚        ‚        ‚        ‚        ‚a Native‚        ‚n/other ‚        ‚
                  ‚        ‚        ‚        ‚        ‚        ‚        ‚Pacific ‚        ‚
                  ‚        ‚        ‚        ‚        ‚        ‚        ‚Islander‚        ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 6040LI: Status 3 ‚ 12022 ‚    1463 ‚   1067 ‚    441 ‚     88 ‚     46 ‚     25 ‚     25 ‚
15177
                  ‚ 13.74 ‚    1.67 ‚   1.22 ‚   0.50 ‚   0.10 ‚   0.05 ‚   0.03 ‚   0.03 ‚
17.35
                  ‚ 79.21 ‚    9.64 ‚   7.03 ‚   2.91 ‚   0.58 ‚   0.30 ‚   0.16 ‚   0.16 ‚
                  ‚ 18.43 ‚ 14.34 ‚ 13.71 ‚ 13.64 ‚ 19.34 ‚ 12.85 ‚ 16.67 ‚ 30.12 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 6030LI: Status 2 ‚   9101 ‚   1269 ‚    942 ‚    351 ‚     55 ‚     36 ‚     32 ‚      0 ‚
11786
 B                ‚ 10.40 ‚    1.45 ‚   1.08 ‚   0.40 ‚   0.06 ‚   0.04 ‚   0.04 ‚   0.00 ‚
13.47
                  ‚ 77.22 ‚ 10.77 ‚     7.99 ‚   2.98 ‚   0.47 ‚   0.31 ‚   0.27 ‚   0.00 ‚
                  ‚ 13.96 ‚ 12.44 ‚ 12.10 ‚ 10.86 ‚ 12.09 ‚ 10.06 ‚ 21.33 ‚          0.00 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 6010 LI: Status ‚    7652 ‚   1434 ‚   1377 ‚    473 ‚     67 ‚     63 ‚     29 ‚     20 ‚
11115
 1                ‚   8.75 ‚   1.64 ‚   1.57 ‚   0.54 ‚   0.08 ‚   0.07 ‚   0.03 ‚   0.02 ‚
12.71
                  ‚ 68.84 ‚ 12.90 ‚ 12.39 ‚      4.26 ‚   0.60 ‚   0.57 ‚   0.26 ‚   0.18 ‚
                  ‚ 11.73 ‚ 14.05 ‚ 17.69 ‚ 14.63 ‚ 14.73 ‚ 17.60 ‚ 19.33 ‚ 24.10 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 6002 LI: Old sta ‚   5816 ‚    721 ‚    617 ‚    229 ‚     40 ‚     34 ‚      6 ‚     20 ‚
7483
 tus 2            ‚   6.65 ‚   0.82 ‚   0.71 ‚   0.26 ‚   0.05 ‚   0.04 ‚   0.01 ‚   0.02 ‚
8.55
                  ‚ 77.72 ‚    9.64 ‚   8.25 ‚   3.06 ‚   0.53 ‚   0.45 ‚   0.08 ‚   0.27 ‚
                  ‚   8.92 ‚   7.07 ‚   7.93 ‚   7.09 ‚   8.79 ‚   9.50 ‚   4.00 ‚ 24.10 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 6020 LI: Status ‚    3084 ‚    610 ‚    297 ‚    162 ‚     27 ‚     11 ‚      8 ‚      0 ‚
4199
 2A               ‚   3.53 ‚   0.70 ‚   0.34 ‚   0.19 ‚   0.03 ‚   0.01 ‚   0.01 ‚   0.00 ‚
4.80
                  ‚ 73.45 ‚ 14.53 ‚     7.07 ‚   3.86 ‚   0.64 ‚   0.26 ‚   0.19 ‚   0.00 ‚
end_stat(Status at transplant)     ethcat(Patints ethnicity)

 Frequency         ‚
 Percent           ‚
 Row Pct           ‚
 Col Pct           ‚1 White ‚4 Hispan‚2 Black ‚5 Asian ‚6 Amer I‚9 Multir‚7 Native‚998 Unkn‚
Total

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                              71

                  ‚        ‚ic      ‚        ‚        ‚nd/Alask‚acial   ‚ Hawaiia‚own     ‚
                  ‚        ‚        ‚        ‚        ‚a Native‚        ‚n/other ‚        ‚
                  ‚        ‚        ‚        ‚        ‚        ‚        ‚Pacific ‚        ‚
                  ‚        ‚        ‚        ‚        ‚        ‚        ‚Islander‚        ‚
                  ‚   4.73 ‚   5.98 ‚   3.82 ‚   5.01 ‚   5.93 ‚   3.07 ‚   5.33 ‚   0.00 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 6222LI: MELD/PEL ‚   2491 ‚    348 ‚    305 ‚    190 ‚     10 ‚      6 ‚      5 ‚      0 ‚
3355
 D 22             ‚   2.85 ‚   0.40 ‚   0.35 ‚   0.22 ‚   0.01 ‚   0.01 ‚   0.01 ‚   0.00 ‚
3.84
                  ‚ 74.25 ‚ 10.37 ‚     9.09 ‚   5.66 ‚   0.30 ‚   0.18 ‚   0.15 ‚   0.00 ‚
                  ‚   3.82 ‚   3.41 ‚   3.92 ‚   5.88 ‚   2.20 ‚   1.68 ‚   3.33 ‚   0.00 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 6224LI: MELD/PEL ‚   2205 ‚    335 ‚    302 ‚    138 ‚     11 ‚     15 ‚      5 ‚      0 ‚
3011
 D 24             ‚   2.52 ‚   0.38 ‚   0.35 ‚   0.16 ‚   0.01 ‚   0.02 ‚   0.01 ‚   0.00 ‚
3.44
                  ‚ 73.23 ‚ 11.13 ‚ 10.03 ‚      4.58 ‚   0.37 ‚   0.50 ‚   0.17 ‚   0.00 ‚
                  ‚   3.38 ‚   3.28 ‚   3.88 ‚   4.27 ‚   2.42 ‚   4.19 ‚   3.33 ‚   0.00 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 6999LI: Temporar ‚   1682 ‚    199 ‚    188 ‚     72 ‚     20 ‚      7 ‚      0 ‚     17 ‚
2185
 ily Inactive     ‚   1.92 ‚   0.23 ‚   0.21 ‚   0.08 ‚   0.02 ‚   0.01 ‚   0.00 ‚   0.02 ‚
2.50
                  ‚ 76.98 ‚    9.11 ‚   8.60 ‚   3.30 ‚   0.92 ‚   0.32 ‚   0.00 ‚   0.78 ‚
                  ‚   2.58 ‚   1.95 ‚   2.42 ‚   2.23 ‚   4.40 ‚   1.96 ‚   0.00 ‚ 20.48 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 6240LI: MELD/PEL ‚   1090 ‚    342 ‚    202 ‚    102 ‚     13 ‚      8 ‚      3 ‚      0 ‚
1760
 D 40             ‚   1.25 ‚   0.39 ‚   0.23 ‚   0.12 ‚   0.01 ‚   0.01 ‚   0.00 ‚   0.00 ‚
2.01
                  ‚ 61.93 ‚ 19.43 ‚ 11.48 ‚      5.80 ‚   0.74 ‚   0.45 ‚   0.17 ‚   0.00 ‚
                  ‚   1.67 ‚   3.35 ‚   2.60 ‚   3.16 ‚   2.86 ‚   2.23 ‚   2.00 ‚   0.00 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 6229LI: MELD/PEL ‚   1168 ‚    233 ‚    148 ‚    122 ‚      6 ‚     12 ‚      2 ‚      0 ‚
1691
 D 29             ‚   1.34 ‚   0.27 ‚   0.17 ‚   0.14 ‚   0.01 ‚   0.01 ‚   0.00 ‚   0.00 ‚
1.93
                  ‚ 69.07 ‚ 13.78 ‚     8.75 ‚   7.21 ‚   0.35 ‚   0.71 ‚   0.12 ‚   0.00 ‚
                  ‚   1.79 ‚   2.28 ‚   1.90 ‚   3.77 ‚   1.32 ‚   3.35 ‚   1.33 ‚   0.00 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 6225LI: MELD/PEL ‚   1094 ‚    245 ‚    139 ‚    123 ‚     13 ‚      6 ‚      1 ‚      0 ‚
1621
 D 25             ‚   1.25 ‚   0.28 ‚   0.16 ‚   0.14 ‚   0.01 ‚   0.01 ‚   0.00 ‚   0.00 ‚
1.85
                  ‚ 67.49 ‚ 15.11 ‚     8.57 ‚   7.59 ‚   0.80 ‚   0.37 ‚   0.06 ‚   0.00 ‚
                  ‚   1.68 ‚   2.40 ‚   1.79 ‚   3.81 ‚   2.86 ‚   1.68 ‚   0.67 ‚   0.00 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 6218LI: MELD/PEL ‚   1208 ‚    173 ‚    105 ‚     27 ‚     10 ‚      7 ‚      2 ‚      0 ‚
1532
 D 18             ‚   1.38 ‚   0.20 ‚   0.12 ‚   0.03 ‚   0.01 ‚   0.01 ‚   0.00 ‚   0.00 ‚
1.75
                  ‚ 78.85 ‚ 11.29 ‚     6.85 ‚   1.76 ‚   0.65 ‚   0.46 ‚   0.13 ‚   0.00 ‚
                  ‚   1.85 ‚   1.70 ‚   1.35 ‚   0.84 ‚   2.20 ‚   1.96 ‚   1.33 ‚   0.00 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 Total               65216    10203     7783     3232      455      358      150       83
87480

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                               72

                      74.55        11.66   8.90    3.69     0.52     0.41        0.17   0.09
100.00




Below is SAS code for exercise 4.1-4.
options label nodate nonumber;
proc freq data=liver order=freq;
tables cod*ethcat;
format cod li_cod. diag li_dgn. grf_stat $graph_stat.
ethcat ethcat. ethcat_don ethcat. px_stat $pxstat. end_stat status.
don_ty $don_type. abo $abotype. abo_don $abotype. gender $gender.
gender_don $gender.
 ;
title 'Cause of death in rank order(order=freq) by race';
run;


Below is the partial PROC FREQ output for exercise 4.1-4.
                              Cause of death in rank order(order=freq) by race
                                           The FREQ Procedure
                                         Table of cod by ethcat

 cod(Cause of death)     ethcat(Patints ethnicity)
 Frequency        ‚
 Percent          ‚
 Row Pct          ‚
 Col Pct          ‚1 White ‚4 Hispan‚2 Black ‚5 Asian ‚6 Amer I‚9 Multir‚7 Native‚998 Unkn‚
Total
                  ‚        ‚ic      ‚        ‚        ‚nd/Alask‚acial   ‚ Hawaiia‚own     ‚
                  ‚        ‚        ‚        ‚        ‚a Native‚        ‚n/other ‚        ‚
                  ‚        ‚        ‚        ‚        ‚        ‚        ‚Pacific ‚        ‚
                  ‚        ‚        ‚        ‚        ‚        ‚        ‚Islander‚        ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4802 Inf: Gener ‚    2437 ‚    297 ‚    323 ‚     77 ‚     22 ‚      7 ‚      5 ‚     11 ‚
3179
 alized Sepsis    ‚   9.57 ‚   1.17 ‚   1.27 ‚   0.30 ‚   0.09 ‚   0.03 ‚   0.02 ‚   0.04 ‚
12.48
                  ‚ 76.66 ‚    9.34 ‚ 10.16 ‚    2.42 ‚   0.69 ‚   0.22 ‚   0.16 ‚   0.35 ‚
                  ‚ 12.52 ‚ 12.02 ‚ 13.40 ‚      9.60 ‚ 14.47 ‚    8.05 ‚ 10.64 ‚ 31.43 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 998 Unknown      ‚   2244 ‚    327 ‚    253 ‚     85 ‚     11 ‚     11 ‚      4 ‚      1 ‚
2936
                  ‚   8.81 ‚   1.28 ‚   0.99 ‚   0.33 ‚   0.04 ‚   0.04 ‚   0.02 ‚   0.00 ‚
11.52
                  ‚ 76.43 ‚ 11.14 ‚     8.62 ‚   2.90 ‚   0.37 ‚   0.37 ‚   0.14 ‚   0.03 ‚
                  ‚ 11.52 ‚ 13.23 ‚ 10.50 ‚ 10.60 ‚       7.24 ‚ 12.64 ‚    8.51 ‚   2.86 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4660 Multiple O ‚    1639 ‚    217 ‚    265 ‚     71 ‚     15 ‚     10 ‚      7 ‚      1 ‚
2225
 rgan System Fail ‚   6.43 ‚   0.85 ‚   1.04 ‚   0.28 ‚   0.06 ‚   0.04 ‚   0.03 ‚   0.00 ‚
8.73
 ure              ‚ 73.66 ‚    9.75 ‚ 11.91 ‚    3.19 ‚   0.67 ‚   0.45 ‚   0.31 ‚   0.04 ‚
                  ‚   8.42 ‚   8.78 ‚ 11.00 ‚    8.85 ‚   9.87 ‚ 11.49 ‚ 14.89 ‚     2.86 ‚


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                73

 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 999 Other Specif ‚   1583 ‚    244 ‚    233 ‚     71 ‚     16 ‚      9 ‚      6 ‚      1 ‚
2163
 y                ‚   6.21 ‚   0.96 ‚   0.91 ‚   0.28 ‚   0.06 ‚   0.04 ‚   0.02 ‚   0.00 ‚
8.49
                  ‚ 73.19 ‚ 11.28 ‚ 10.77 ‚      3.28 ‚   0.74 ‚   0.42 ‚   0.28 ‚   0.05 ‚
                  ‚   8.13 ‚   9.87 ‚   9.67 ‚   8.85 ‚ 10.53 ‚ 10.34 ‚ 12.77 ‚      2.86 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4603 Graft Fail ‚     864 ‚    150 ‚    127 ‚     52 ‚      5 ‚      4 ‚      1 ‚      2 ‚
1205
 ure:Hepatitis    ‚   3.39 ‚   0.59 ‚   0.50 ‚   0.20 ‚   0.02 ‚   0.02 ‚   0.00 ‚   0.01 ‚
4.73
                  ‚ 71.70 ‚ 12.45 ‚ 10.54 ‚      4.32 ‚   0.41 ‚   0.33 ‚   0.08 ‚   0.17 ‚
                  ‚   4.44 ‚   6.07 ‚   5.27 ‚   6.48 ‚   3.29 ‚   4.60 ‚   2.13 ‚   5.71 ‚
 cod(Cause of death)     ethcat(Patints ethnicity)

 Frequency          ‚
 Percent            ‚
 Row Pct            ‚
 Col Pct            ‚1 White ‚4 Hispan‚2 Black ‚5 Asian ‚6 Amer I‚9 Multir‚7 Native‚998 Unkn‚
Total
                  ‚        ‚ic      ‚        ‚        ‚nd/Alask‚acial   ‚ Hawaiia‚own     ‚
                  ‚        ‚        ‚        ‚        ‚a Native‚        ‚n/other ‚        ‚
                  ‚        ‚        ‚        ‚        ‚        ‚        ‚Pacific ‚        ‚
                  ‚        ‚        ‚        ‚        ‚        ‚        ‚Islander‚        ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4851 Malignancy ‚     958 ‚    100 ‚     55 ‚     54 ‚      6 ‚      0 ‚      1 ‚      2 ‚
1176
 : Metastatic Oth ‚   3.76 ‚   0.39 ‚   0.22 ‚   0.21 ‚   0.02 ‚   0.00 ‚   0.00 ‚   0.01 ‚
4.62
 er Specify       ‚ 81.46 ‚    8.50 ‚   4.68 ‚   4.59 ‚   0.51 ‚   0.00 ‚   0.09 ‚   0.17 ‚
                  ‚   4.92 ‚   4.05 ‚   2.28 ‚   6.73 ‚   3.95 ‚   0.00 ‚   2.13 ‚   5.71 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4626 Cardiac Ar ‚     618 ‚     93 ‚     91 ‚     29 ‚      1 ‚      4 ‚      2 ‚      0 ‚
838
 rest             ‚   2.43 ‚   0.37 ‚   0.36 ‚   0.11 ‚   0.00 ‚   0.02 ‚   0.01 ‚   0.00 ‚
3.29
                  ‚ 73.75 ‚ 11.10 ‚ 10.86 ‚      3.46 ‚   0.12 ‚   0.48 ‚   0.24 ‚   0.00 ‚
                  ‚   3.17 ‚   3.76 ‚   3.78 ‚   3.62 ‚   0.66 ‚   4.60 ‚   4.26 ‚   0.00 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4624 Cardio: My ‚     606 ‚     64 ‚     35 ‚     13 ‚      3 ‚      4 ‚      0 ‚      1 ‚
726
 ocardial Infarct ‚   2.38 ‚   0.25 ‚   0.14 ‚   0.05 ‚   0.01 ‚   0.02 ‚   0.00 ‚   0.00 ‚
2.85
 ion              ‚ 83.47 ‚    8.82 ‚   4.82 ‚   1.79 ‚   0.41 ‚   0.55 ‚   0.00 ‚   0.14 ‚
                  ‚   3.11 ‚   2.59 ‚   1.45 ‚   1.62 ‚   1.97 ‚   4.60 ‚   0.00 ‚   2.86 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4600 Graft Fail ‚     486 ‚     71 ‚     89 ‚     28 ‚      4 ‚      4 ‚      1 ‚      2 ‚
685
 ure:Primary      ‚   1.91 ‚   0.28 ‚   0.35 ‚   0.11 ‚   0.02 ‚   0.02 ‚   0.00 ‚   0.01 ‚
2.69
                  ‚ 70.95 ‚ 10.36 ‚ 12.99 ‚      4.09 ‚   0.58 ‚   0.58 ‚   0.15 ‚   0.29 ‚
                  ‚   2.50 ‚   2.87 ‚   3.69 ‚   3.49 ‚   2.63 ‚   4.60 ‚   2.13 ‚   5.71 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4850 Malignancy ‚     499 ‚     33 ‚     32 ‚     18 ‚      5 ‚      0 ‚      2 ‚      1 ‚
590



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                    74

 : Primary Other   ‚    1.96 ‚     0.13 ‚     0.13 ‚   0.07 ‚   0.02 ‚   0.00 ‚   0.01 ‚   0.00 ‚
2.32
 Specify          ‚ 84.58 ‚    5.59 ‚   5.42 ‚   3.05 ‚   0.85 ‚   0.00 ‚   0.34 ‚   0.17 ‚
                  ‚   2.56 ‚   1.34 ‚   1.33 ‚   2.24 ‚   3.29 ‚   0.00 ‚   4.26 ‚   2.86 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4645 Respirator ‚     429 ‚     49 ‚     43 ‚     14 ‚      2 ‚      2 ‚      0 ‚      1 ‚
540
 y Failure: Other ‚   1.68 ‚   0.19 ‚   0.17 ‚   0.05 ‚   0.01 ‚   0.01 ‚   0.00 ‚   0.00 ‚
2.12
  Specify Cause   ‚ 79.44 ‚    9.07 ‚   7.96 ‚   2.59 ‚   0.37 ‚   0.37 ‚   0.00 ‚   0.19 ‚
                  ‚   2.20 ‚   1.98 ‚   1.78 ‚   1.75 ‚   1.32 ‚   2.30 ‚   0.00 ‚   2.86 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 4650 Renal Fail ‚     418 ‚     40 ‚     43 ‚      9 ‚      3 ‚      1 ‚      1 ‚      1 ‚
516
 ure              ‚   1.64 ‚   0.16 ‚   0.17 ‚   0.04 ‚   0.01 ‚   0.00 ‚   0.00 ‚   0.00 ‚
2.03
                  ‚ 81.01 ‚    7.75 ‚   8.33 ‚   1.74 ‚   0.58 ‚   0.19 ‚   0.19 ‚   0.19 ‚
                  ‚   2.15 ‚   1.62 ‚   1.78 ‚   1.12 ‚   1.97 ‚   1.15 ‚   2.13 ‚   2.86 ‚
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
 Total               19472     2471     2410      802      152       87       47       35
25476
                     76.43     9.70     9.46     3.15     0.60     0.34     0.18     0.14
100.00




Below is SAS code for exercise 4.1-5.
options label nodate nonumber;
proc freq data=liver order=freq;
tables ethcat*px_stat;
format cod li_cod. diag li_dgn. grf_stat $graph_stat.
ethcat ethcat. ethcat_don ethcat. px_stat $pxstat. end_stat status.
don_ty $don_type. abo $abotype. abo_don $abotype. gender $gender.
gender_don $gender.
 ;
title 'Race by patient status in rank order(order=freq)';
run;




Below is the partial PROC FREQ output for exercise 4.1-5.
                                            Race by patient status in rank order(order=freq)

                                               The FREQ Procedure

                                        Table of ethcat by px_stat



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                        75

                     ethcat(Patints ethnicity)
                                       px_stat(Current status of the patient)

                     Frequency        ‚
                     Percent          ‚
                     Row Pct          ‚
                     Col Pct          ‚A Living‚Dead    ‚R Retran‚L Lost t‚ Total
                                      ‚        ‚        ‚splanted‚o Follow‚
                                      ‚        ‚        ‚        ‚ up     ‚
                     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                     1 White          ‚ 34249 ‚ 19472 ‚     6367 ‚   5448 ‚ 65536
                                      ‚ 39.00 ‚ 22.17 ‚     7.25 ‚   6.20 ‚ 74.62
                                      ‚ 52.26 ‚ 29.71 ‚     9.72 ‚   8.31 ‚
                                      ‚ 74.25 ‚ 76.45 ‚ 73.54 ‚ 72.02 ‚
                     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                     4 Hispanic       ‚   5575 ‚   2467 ‚    982 ‚   1164 ‚ 10188
                                      ‚   6.35 ‚   2.81 ‚   1.12 ‚   1.33 ‚ 11.60
                                      ‚ 54.72 ‚ 24.21 ‚     9.64 ‚ 11.43 ‚
                                      ‚ 12.09 ‚    9.69 ‚ 11.34 ‚ 15.39 ‚
                     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                     2 Black          ‚   3917 ‚   2411 ‚    949 ‚    533 ‚   7810
                                      ‚   4.46 ‚   2.75 ‚   1.08 ‚   0.61 ‚   8.89
                                      ‚ 50.15 ‚ 30.87 ‚ 12.15 ‚      6.82 ‚
                                      ‚   8.49 ‚   9.47 ‚ 10.96 ‚    7.05 ‚
                     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                     5 Asian          ‚   1868 ‚    801 ‚    247 ‚    315 ‚   3231
                                      ‚   2.13 ‚   0.91 ‚   0.28 ‚   0.36 ‚   3.68
                                      ‚ 57.81 ‚ 24.79 ‚     7.64 ‚   9.75 ‚
                                      ‚   4.05 ‚   3.14 ‚   2.85 ‚   4.16 ‚
                     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                     Total               46128    25470     8658     7565    87821
                                         52.53    29.00     9.86     8.61   100.00




(Continued)
                             Race by patient status in rank order(order=freq)

                                           The FREQ Procedure

                                       Table of ethcat by px_stat

                     ethcat(Patints ethnicity)
                                       px_stat(Current status of the patient)

                     Frequency        ‚
                     Percent          ‚
                     Row Pct          ‚
                     Col Pct          ‚A Living‚Dead    ‚R Retran‚L Lost t‚     Total
                                      ‚        ‚        ‚splanted‚o Follow‚
                                      ‚        ‚        ‚        ‚ up     ‚
                     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                     6 Amer Ind/Alask ‚    224 ‚    151 ‚     47 ‚     37 ‚      459
                     a Native         ‚   0.26 ‚   0.17 ‚   0.05 ‚   0.04 ‚     0.52
                                      ‚ 48.80 ‚ 32.90 ‚ 10.24 ‚      8.06 ‚
                                      ‚   0.49 ‚   0.59 ‚   0.54 ‚   0.49 ‚
                     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                    76

                    9 Multiracial    ‚    198 ‚     87 ‚     47 ‚     28 ‚    360
                                     ‚   0.23 ‚   0.10 ‚   0.05 ‚   0.03 ‚   0.41
                                     ‚ 55.00 ‚ 24.17 ‚ 13.06 ‚      7.78 ‚
                                     ‚   0.43 ‚   0.34 ‚   0.54 ‚   0.37 ‚
                    ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                    7 Native Hawaiia ‚     80 ‚     46 ‚     10 ‚     14 ‚    150
                    n/other Pacific ‚    0.09 ‚   0.05 ‚   0.01 ‚   0.02 ‚   0.17
                    Islander         ‚ 53.33 ‚ 30.67 ‚     6.67 ‚   9.33 ‚
                                     ‚   0.17 ‚   0.18 ‚   0.12 ‚   0.19 ‚
                    ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                    998 Unknown      ‚     17 ‚     35 ‚      9 ‚     26 ‚     87
                                     ‚   0.02 ‚   0.04 ‚   0.01 ‚   0.03 ‚   0.10
                                     ‚ 19.54 ‚ 40.23 ‚ 10.34 ‚ 29.89 ‚
                                     ‚   0.04 ‚   0.14 ‚   0.10 ‚   0.34 ‚
                    ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                    Total               46128    25470     8658     7565    87821
                                        52.53    29.00     9.86     8.61   100.00

                                        Frequency Missing = 815

Below is SAS code for exercise 4.1-6.
proc freq data=liver;
tables gender*gender_don;
format cod li_cod. diag li_dgn. grf_stat $graph_stat.
ethcat ethcat. ethcat_don ethcat. px_stat $pxstat. end_stat status.
don_ty $don_type. abo $abotype. abo_don $abotype. gender $gender.
gender_don $gender.
 ;
title 'patient gender by donor gender)';
run;



Below is PROC FREQ output for exercise 4.1-6.

                                    patient gender by doner gender)

                                           The FREQ Procedure

                                     Table of gender by gender_don

                                   gender(Gender of patient)
                                             gender_don(Doners gender)

                                   Frequency‚
                                   Percent ‚
                                   Row Pct ‚
                                   Col Pct ‚Female ‚Male      ‚   Total
                                   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                                   Female   ‚ 16150 ‚ 18469 ‚     34619
                                            ‚ 18.22 ‚ 20.84 ‚     39.06
                                            ‚ 46.65 ‚ 53.35 ‚
                                            ‚ 45.51 ‚ 34.76 ‚
                                   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                                   Male     ‚ 19336 ‚ 34665 ‚     54001


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                         77

                                            ‚ 21.82 ‚ 39.12 ‚ 60.94
                                            ‚ 35.81 ‚ 64.19 ‚
                                            ‚ 54.49 ‚ 65.24 ‚
                                   ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                                   Total       35486    53134    88620
                                               40.04    59.96   100.00

                                         Frequency Missing = 16




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                    78




              2. SAS Code for OPTN/UNOS Liver Indicator and Truth
              Logic Variables
unos02d1.sas
/****unos02d.sas**********/
data liver;
set unos.liver;
/*************************************************/
/*Indicator variables were previously identified */
/*as dummy variables equal to 1 or 0 when they   */
/*existed or did not exist in an observation.    */
/*They are used in statistical analysis of data. */
/*************************************************/



       /****Indicator Variable for Gender*****/

         male          = (gender='M');
         female        = (gender='F');

/******************************************************/
/*Truth Logic is used to create a continuous variable */
/*that corresponds to the values (1-3, 1-5, etc.)    */
/*assigned to a variable in an observation and        */
/*is used in regression and logistic analysis.        */
/******************************************************/


       /*****Truth Logic for Patient Gender*************/

       patgendercat= 1*(gender='M') + 2*(gender='F');

/****Indicator variable for donor gender*****/

          maledon            = (gender_don='M');
          femaledon          = (gender_don='F');

/*****Truth Logic for donor gender*************/

       dongendercat= 1*(gender_don='M') + 2*(gender_don='F');


       /****Indicator Variable for Race*****/

       white                 = (ethcat=1);
       black                 = (ethcat=2);
       hispanic         = (ethcat=4);

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                        79

       asian              =   (ethcat=5);
       ameralaska         =   (ethcat=6);
       hawaiianpi         =   (ethcat=7);
       multirace          =   (ethcat=9);
       raceunknown        =   (ethcat=998);



        /*****Truth Logic For Race*************/

    racecat = 1*(ethcat=1) + 2*(ethcat=2) + 3*(ethcat=4)+
              4*(ethcat=5) + 5*(ethcat=6) + 6*(ethcat=7)+
              7*(ethcat=9) + 8*(ethcat=998);
      /*****Truth Logic For Donor Race*************/

    racecat = 1*(ethcat_don=1) + 2*(ethcat_don=2) + 3*(ethcat_don=4)+
              4*(ethcat_don=5) + 5*(ethcat_don=6) + 6*(ethcat_don=7)+
              7*(ethcat_don=9) + 8*(ethcat_don=998);

       /****Indicator Variable for Donor Race*****/

       donwhite        = (ethcat_don=1);
       donblack        = (ethcat_don=2);
       donhispanic         = (ethcat_don=4);
       donasian       = (ethcat_don=5);
      donameralaska  = (ethcat_don=6);
       donhawaiianpi   = (ethcat_don=7);
       donmultirace   = (ethcat_don=9);
      donraceunknown = (ethcat_don=998);



        /*****Truth Logic For Patient Race*************/

 donracecat = 1*(ethcat_don=1) + 2*(ethcat_don=2) +
                3*(ethcat_don=4)+ 4*(ethcat_don=5) +
                5*(ethcat_don=6) + 6*(ethcat_don=7)+
                7*(ethcat_don=9) + 8*(ethcat_don=998);

        /****Indicator Variable for Patient Status*****/

       living                      =   (px_stat='A');
       deceased                    =   (px_stat='D');
       lostfollowup                =   (px_stat='L');
       notseen                     =   (px_stat='N');
       retrans                     =   (px_stat='R');



      /*****Truth Logic For Patient Status************/


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                              80

   patstatcat=          1*(px_stat='A') + 2*(px_stat='D') + 3*(px_stat='L')+
                        4*(px_stat='N') + 5*(px_stat='R');


       /****Indicator Variable for Doner Blood Type*****/

        donA        =(abo_don='A');
        donA1        =(abo_don='A1');
        donA1B       =(abo_don='A1B');
        donA2        =(abo_don='A2');
        donA2B      =(abo_don='A2B');
        donAB       =(abo_don='AB');
        donB         =(abo_don='B');
        donO        =(abo_don='O');
        donunk        =(abo_don='UNK');


     /*****Truth Logic For Doner Blood Type************/

     abodoncat=      1*(abo_don='A')    + 2*(abo_don='A1') +
                     3*(abo_don='A1B') + 4*(abo_don='A2') +
                      5*(abo_don='A2B') + 6*(abo_don='AB') +
                     7*(abo_don='B')     + 8*(abo_don='O')   +
                9*(abo_don='UNK');

  /****Indicator Variable for Patient Blood Type*****/

       patA         = (abo='A');
       patA1       = (abo='A1');
       patA1B      = (abo='A1B');
       patA2       = (abo='A2');
       patA2B      = (abo='A2B');
       patAB       = (abo='AB');
       patB        = (abo='B');
       patO        = (abo='O');
       patunk      = (abo='UNK');

   /*****Truth Logic For Patient Blood Type************/

 abopatcat         =         1*(abo='A') + 2*(abo='A1') + 3*(abo='A1B') +
                             4*(abo='A2') + 5*(abo='A2B') + 6*(abo='AB') +
                             7*(abo='B') + 8*(abo='O')     + 9*(abo='UNK');

   /****Indicator Variable for Graph Status*****/

 graftnoreport           =     grf_stat='.';
 graftfailed             =     grf_stat='N';
 graftunknown            =     grf_stat='U';
 graftworking            =     grf_stat='Y';



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                            81

/*****Truth Logic For Patient Graph Status ************/

 graftcat                  = 1*(grf_stat='.') + 2*(grf_stat='N') +
                             3*(grf_stat='U') + 4*(grf_stat='Y');

/****Indicator Variable for Donor Type*****/

   deceased_donor            = (don_ty='C');
   foreign_donor             = (don_ty='F');
   living_donor              = (don_ty='L');

/*****Truth Logic For Patient Graph Status ************/

   dontypecat          = 1*(don_ty='C') + 2*(don_ty='F') +3*(don_ty='L');

/****Indicator Variable for Previous Transplant*****/

 yes_previous              = (prev_tx='Y');
 no_previous               = (prev_tx='N');


/*****Truth Logic For Patient Graph Status ************/
previoustxcat= 1*(prev_tx='Y') + 2*(prev_tx='N');


/****Indicator Variable for Age Groupings*****/

       agelt1          =           (age < 1);
       age1_5          =           (1=<age<=5);
       age6_10         =           ( 6=<age<=10);
       age11_17        =           (11=<age<=17);
       age18_34        =           (18=<age<=34);
       age35_49        =           (35=<age<=49);
       age50_64        =           (50=<age<=64);
       agegt65         =           (age >65);


/*****Truth Logic for Patient Age Gouping ************/


agecat = 1*(age < 1) + 2*(1=<age<=5) + 3*(6=<age<=10) +
     4*(11=<age<=17)+ 5*(18=<age<=34) + 6*(35=<age<=49) +
     7*(50=<age<=64)+ 8*(age >=65);



options nolabel nodate nonumber;
proc means n mean sum min max data=liver;
var male female patgendercat maledon femaledon
     dongendercat white black hispanic asian
     ameralaska hawaiianpi multirace raceunknown

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                            82

       racecat donwhite donblack donhispanic donasian
       donameralaska donhawaiianpi donmultirace
       donraceunknown donracecat living deceased
       lostfollowup notseen retrans patstatcat donA donA1
       donA1B donA2 donA2B donAB donB donO donunk abodoncat
       patA patA1 patA1B patA2 patA2B patAB patB
       patO patunk abopatcat graftnoreport
       graftfailed graftunknown graftworking graftcat
       deceased_donor foreign_donor living_donor dontypecat
       yes_previous no_previous previoustxcat agelt1 age1_5
       age6_10 age11_17 age18_34 age35_49 age50_64 agegt65
        agecat
;
run;
title 'Proc Means for Liver Tx Indicators and Truth Logic Variables';
options nolabel nodate nonumber;


Below is the output from the above PROC Means.
                    Proc Means for Liver Tx Indicators and Truth Logic Variables

                                        The MEANS Procedure

      Variable              N            Mean             Sum         Minimum         Maximum
      ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
      male              88636       0.6093122        54007.00               0       1.0000000
      female            88636       0.3906878        34629.00               0       1.0000000
      patgendercat      88636       1.3906878       123265.00       1.0000000       2.0000000
      maledon           88636       0.5994630        53134.00               0       1.0000000
      femaledon         88636       0.4003565        35486.00               0       1.0000000
      dongendercat      88636       1.4001760       124106.00               0       2.0000000
      white             88636       0.7457805        66103.00               0       1.0000000
      black             88636       0.0889255         7882.00               0       1.0000000
      hispanic          88636       0.1163748        10315.00               0       1.0000000
      asian             88636       0.0369150         3272.00               0       1.0000000
      ameralaska        88636       0.0052123     462.0000000               0       1.0000000
      hawaiianpi        88636       0.0017149     152.0000000               0       1.0000000
      multirace         88636       0.0040954     363.0000000               0       1.0000000
      raceunknown       88636     0.000981542      87.0000000               0       1.0000000
      racecat           88636       1.4622050       129604.00       1.0000000       8.0000000
      donwhite          88636       0.7381876        65430.00               0       1.0000000
      donblack          88636       0.1242385        11012.00               0       1.0000000
      donhispanic       88636       0.1071799         9500.00               0       1.0000000
      donasian          88636       0.0177806         1576.00               0       1.0000000
      donameralaska     88636       0.0030236     268.0000000               0       1.0000000
      donhawaiianpi     88636       0.0020985     186.0000000               0       1.0000000
      donmultirace      88636       0.0047610     422.0000000               0       1.0000000
      donraceunknown    88636       0.0027303     242.0000000               0       1.0000000
      donracecat        88636       1.4622050       129604.00       1.0000000       8.0000000
      living            88636       0.5204206        46128.00               0       1.0000000
      deceased          88636       0.2873550        25470.00               0       1.0000000
      lostfollowup      88636       0.0853491         7565.00               0       1.0000000
      notseen           88636               0               0               0               0
      retrans           88636       0.0976804         8658.00               0       1.0000000


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                83

      patstatcat        88636       1.8395799       163053.00               0       5.0000000
      donA              88636       0.1931382        17119.00               0       1.0000000
      donA1             88636       0.1638950        14527.00               0       1.0000000
      donA1B            88636       0.0030462     270.0000000               0       1.0000000
      donA2             88636       0.0129180         1145.00               0       1.0000000
      donA2B            88636     0.000913850      81.0000000               0       1.0000000
      donAB             88636       0.0246401         2184.00               0       1.0000000
      donB              88636       0.1076989         9546.00               0       1.0000000
      donO              88636       0.4932307        43718.00               0       1.0000000
      donunk            88636     0.000225642      20.0000000               0       1.0000000
      abodoncat         88636       5.4359177       481818.00               0       9.0000000
      patA              88636       0.3874159        34339.00               0       1.0000000
      patA1             88636       0.0025385     225.0000000               0       1.0000000
      patA1B            88636     0.000135385      12.0000000               0       1.0000000
      patA2             88636     0.000518976      46.0000000               0       1.0000000
      patA2B            88636     0.000135385      12.0000000               0       1.0000000
      patAB             88636       0.0476781         4226.00               0       1.0000000
      patB              88636       0.1273298        11286.00               0       1.0000000
      patO              88636       0.4342254        38488.00               0       1.0000000
      ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                   Proc Means for Liver Tx Indicators and Truth Logic Variables

                                       The MEANS Procedure

      Variable              N            Mean             Sum         Minimum         Maximum
      ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
      patunk            88636     0.000022564       2.0000000               0       1.0000000
      abopatcat         88636       5.0470351       447349.00       1.0000000       9.0000000
      graftnoreport     88636               0               0               0               0
      graftfailed       88636       0.1921341        17030.00               0       1.0000000
      graftunknown      88636       0.0079990     709.0000000               0       1.0000000
      graftworking      88636       0.7122275        63129.00               0       1.0000000
      graftcat          88636       3.2571754       288703.00               0       4.0000000
      deceased_donor    88636       0.9579629        84910.00               0       1.0000000
      foreign_donor     88636       0.0022113     196.0000000               0       1.0000000
      living_donor      88636       0.0398258         3530.00               0       1.0000000
      dontypecat        88636       1.0818629        95892.00       1.0000000       3.0000000
      yes_previous      88636       0.1145810        10156.00               0       1.0000000
      no_previous       88636       0.8854190        78480.00               0       1.0000000
      previoustxcat     88636       1.8854190       167116.00       1.0000000       2.0000000
      agelt1            88636       0.0346360         3070.00               0       1.0000000
      age1_5            88636       0.0457715         4057.00               0       1.0000000
      age6_10           88636       0.0170698         1513.00               0       1.0000000
      age11_17          88636       0.0256216         2271.00               0       1.0000000
      age18_34          88636       0.0753418         6678.00               0       1.0000000
      age35_49          88636       0.3057900        27104.00               0       1.0000000
      age50_64          88636       0.4248387        37656.00               0       1.0000000
      agegt65           88636       0.0548874         4865.00               0       1.0000000
      agecat            88636       6.0326391       534709.00       1.0000000       8.0000000

The method to validate your indicator variables consists of confirming that each has a minimum
value of zero and a maximum value of one. If this does not exist, check your code. For truth
logic variables, the minimum is usually 1 and the maximum equals the total number of values
assigned to the variable. Again, if this does not occur, check your logic code. For example,
previous transplant (yes_previous) has a minimum of 0 and a maximum of 1 while agecat has a
minimum of 1 and a maximum of 8 that corresponds to the number of age categories.
Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                             84

The N=88,636 is the total observation of liver transplants in the data set and for each variable
reflects the completeness of the data. In the above case with the exception of patient status=
notseen and graft status= noreport, there are no missing values in any observation. The mean
value is the percentage of each variable within a category. For those age50_64, they were 42.4
percent of the liver transplants or 37,656 between 1987 and 2008.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                   85




                Exercises 4.2


1. Using unos02d, write the indicator and truth logic code for the donor age grouping using the
same ranges for patient age.
2. Using unos02d, write the indicator and truth logic code for the end status using Meld/Peld
scores of (-11 to -1), (0 to 10), (11 to 20), (21 to 30), (31 to 40), (41 to 50) and (51 to 99).
3. Using unos02d, write the indicator and truth logic code for the end status using Status Scores
of 1, 1A, 1B, 2A, 2B, and 3.
4. Using unos02d, write the indicator and truth logic code for Cold Ischemic time with the ranges
of 0-5, 6-10, 11-16, 16-20, and 21.
5. Insert into a separate proc means the above variables plus all of the continuous variables such
as patient height, weight, age, donor height, weight, age, patient sgot, creatinine, graft and
patient survival time.
6. Convert days to years for graft and patient survival time and produce year from transplant
date.
7. From the proc means output, prepare a descriptive statistics narrative of the findings.


Below is SAS code for exercise 4.2-1 to 5
data liver;
set unos.liver;
/****Indicator Variable for Donor Age Groupings*****/

       donagelt1           =       (age_don < 1);
       donage1_5           =       (1=<age_don<=5);
       donage6_10          =       ( 6=<age_don<=10);
       donage11_17         =       (11=<age_don<=17);
       donage18_34         =       (18=<age_don<=34);
       donage35_49         =       (35=<age_don<=49);
       donage50_64         =       (50=<age_don<=64);
       donagegt65          =       (age_don >65);


/*****Truth Logic for Patient Age Gouping ************/

donoragecat = 1*(age_don < 1)     + 2*(1=<age_don<=5)   +
3*(6=<age_don<=10) + 4*(11=<age_don<=17)+ 5*(18=<age_don<=34) +
6*(35=<age_don<=49)+
               7*(50=<age_don<=64)+ 8*(age_don >=65);


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                          86

/*Answers to exercise 4.2-2*/
/*2. Using unos02d, write the indicator and truth logic code for the
/*end status using Meld/Peld scores of (-11 to -1), (0 to 10), (11 to
20), (21 to 30), (31 to 40), (41 to 50) and (51 to 99).*/

/****Indicator Variable for Meld/Peld Status Groupings*****/

meld_peld_neg11_neg1                    =      (6189=<end_stat<=6199);
meld_peld_pos0_10                       =      (6200=<end_stat<=6210);
meld_peld_pos11_20                       =     (6211=<end_stat<=6220);
meld_peld_pos21_30                       =     (6221=<end_stat<=6230);
meld_peld_pos31_40                       =     (6231=<end_stat<=6240);
meld_peld_pos41_50                       =     (6241=<end_stat<=6250);
meld_peld_pos51_99                       =     (6251=<end_stat<=6299);



/*****Truth Logic for Patient Meldpelcat ************/

  meldpelcat = 1*(6189=<end_stat<=6199) + 2*(6200=<end_stat<=6210) +
               3*(6211=<end_stat<=6220) + 4*(6221=<end_stat<=6230) +
               5*(6231=<end_stat<=6240) + 6*(6241=<end_stat<=6250) +
               7*(6251=<end_stat<=6299);

/*Answers to exercise 4.2-3*/
/*3. Using unos02d, write the indicator and truth logic code for the
end status */
/*using Status Scores of 1, 1A, 1B, 2A, 2B, and 3.*/

/****Indicator Variable for Non-Meld/Peld Status Groupings*****/

statold2                    =      (end_stat=6002);
statold4                    =      (end_stat=6004);
statscore1                  =      (end_stat=6010);
statscore1A                 =      (end_stat=6011);
statscore1B                 =      (end_stat=6012);
statscore2A                 =      (end_stat=6020);
statscore2B                 =      (end_stat=6030);
statscore3                   =      (end_stat=6040);

/*****Truth Logic for Patient Non-Meld/Peld Status Groupings****/

oldstatuscat          = 1*(end_stat=6002)       +   2*(end_stat=6004) +
                        3*(end_stat=6010)       +   4*(end_stat=6011)+
                        5*(end_stat=6012)       +   6*(end_stat=6020)+
                        7*(end_stat=6030)       +   8*(end_stat=6040);




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                    87

/*4. Using unos02d, write the indicator and truth logic code for Cold
Ischemic time in hours the with the ranges of 0-5, 6-10, 11-16, 16-20,
and 21+. */


/****Indicator Variable for Liver Cold Ischemic in Hours Prior to
Transplant***/


    cold0_5            =           (0=<cold_isch<=5);
    cold6_10           =           (6=<cold_isch<=10);
    cold11_16          =           (11=<cold_isch<=16);
    cold17_20          =           (17=<cold_isch<=20);
    coldGE21           =           (cold_isch>=21);

/****Truth Logic Variable for Liver Cold Ischemic in Hours Prior to
Transplant***/

    cold_ischcat       =           1*(0=<cold_isch<=5)   + 2*(6=<cold_isch<=10) +
                                   3*(11=<cold_isch<=16) + 4*(17=<cold_isch<=20)+
                                    5*(cold_isch>=21);

;


/*5. Insert into a separate proc means the above variables plus all of
the continuous variables, such as patient height, weight, age, donor
height weight, age, patient sgot, creatinine, graft survival time,
and patient survival time.*/

options nolabel nodate nonumber;
proc means n mean sum min max data=liver;
var donagelt1 donage1_5 donage6_10 donage11_17
donage18_34 donage35_49 donage50_64 donagegt65
donoragecat meld_peld_neg11_neg1 meld_peld_pos0_10
meld_peld_pos11_20 meld_peld_pos21_30 meld_peld_pos31_40
meld_peld_pos41_50 meld_peld_pos51_99 meldpelcat statold2
statold4 statscore1 statscore1A       statscore1B statscore2A
statscore2B statscore3 oldstatuscat cold0_5 cold6_10 cold11_16
cold17_20 coldGE21 cold_ischcat hgt_cm_trr wgt_kg_trr hgt_cm_don
wgt_kg_don sgpt_tx age_don creat_tx tbili_tx age gtime ptime
;
run;
title 'Proc Means for Additional Liver Tx Indicators, Truth Logic
     Variables and'
      ' all Continious Variables';
options nolabel nodate nonumber




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                            88

Below is the output for exercise 4.2-1 to 5
Proc Means for All and Additional Liver Tx Indicators, Truth Logic Variables and all Continuous
Variables
      Variable              N            Mean             Sum         Minimum         Maximum
      ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
      male              88636       0.6093122        54007.00               0       1.0000000
      female            88636       0.3906878        34629.00               0       1.0000000
      patgendercat      88636       1.3906878       123265.00       1.0000000       2.0000000
      maledon           88636       0.5994630        53134.00               0       1.0000000
      femaledon         88636       0.4003565        35486.00               0       1.0000000
      dongendercat      88636       1.4001760       124106.00               0       2.0000000
      white             88636       0.7457805        66103.00               0       1.0000000
      black             88636       0.0889255         7882.00               0       1.0000000
      hispanic          88636       0.1163748        10315.00               0       1.0000000
      asian             88636       0.0369150         3272.00               0       1.0000000
      ameralaska        88636       0.0052123     462.0000000               0       1.0000000
      hawaiianpi        88636       0.0017149     152.0000000               0       1.0000000
      multirace         88636       0.0040954     363.0000000               0       1.0000000
      raceunknown       88636     0.000981542      87.0000000               0       1.0000000
      racecat           88636       1.4932872       132359.00       1.0000000       8.0000000
      living            88636       0.5204206        46128.00               0       1.0000000
      deceased          88636       0.2873550        25470.00               0       1.0000000
      lostfollowup      88636       0.0853491         7565.00               0       1.0000000
      notseen           88636               0               0               0               0
      retrans           88636       0.0976804         8658.00               0       1.0000000
      patstatcat        88636       1.8395799       163053.00               0       5.0000000
      donA              88636       0.1931382        17119.00               0       1.0000000
      donA1             88636       0.1638950        14527.00               0       1.0000000
      donA1B            88636       0.0030462     270.0000000               0       1.0000000
      donA2             88636       0.0129180         1145.00               0       1.0000000
      donA2B            88636     0.000913850      81.0000000               0       1.0000000
      donAB             88636       0.0246401         2184.00               0       1.0000000
      donB              88636       0.1076989         9546.00               0       1.0000000
      donO              88636       0.4932307        43718.00               0       1.0000000
      donunk            88636     0.000225642      20.0000000               0       1.0000000
      abodoncat         88636       5.4359177       481818.00               0       9.0000000
      patA              88636       0.3874159        34339.00               0       1.0000000
      patA1             88636       0.0025385     225.0000000               0       1.0000000
      patA1B            88636     0.000135385      12.0000000               0       1.0000000
      patA2             88636     0.000518976      46.0000000               0       1.0000000
      patA2B            88636     0.000135385      12.0000000               0       1.0000000
      patAB             88636       0.0476781         4226.00               0       1.0000000
      patB              88636       0.1273298        11286.00               0       1.0000000
      patO              88636       0.4342254        38488.00               0       1.0000000
      patunk            88636     0.000022564       2.0000000               0       1.0000000
      abopatcat         88636       5.0470351       447349.00       1.0000000       9.0000000
      graftnoreport     88636               0               0               0               0
      graftfailed       88636       0.1921341        17030.00               0       1.0000000
      graftunknown      88636       0.0079990     709.0000000               0       1.0000000
      graftworking      88636       0.7122275        63129.00               0       1.0000000
      graftcat          88636       3.2571754       288703.00               0       4.0000000
      deceased_donor    88636       0.9579629        84910.00               0       1.0000000
      foreign_donor     88636       0.0022113     196.0000000               0       1.0000000
      living_donor      88636       0.0398258         3530.00               0       1.0000000
      dontypecat        88636       1.0818629        95892.00       1.0000000       3.0000000
      yes_previous      88636       0.1145810        10156.00               0       1.0000000


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                            89

      no_previous          88636      0.8854190       78480.00              0     1.0000000
      previoustxcat        88636      1.8854190      167116.00      1.0000000     2.0000000
      agelt1               88636      0.0346360        3070.00              0     1.0000000
      age1_5               88636      0.0457715        4057.00              0     1.0000000
      age6_10              88636      0.0170698        1513.00              0     1.0000000
      age11_17             88636      0.0256216        2271.00              0     1.0000000
      age18_34             88636      0.0753418        6678.00              0     1.0000000
      age35_49             88636      0.3057900       27104.00              0     1.0000000
      age50_64             88636      0.4248387       37656.00              0     1.0000000
      agegt65              88636      0.0548874        4865.00              0     1.0000000
      agecat               88636      6.0326391      534709.00      1.0000000     8.0000000
      donagelt1               88636      0.0165734        1469.00             0      1.0000000
      donage1_5               88636      0.0369150        3272.00             0      1.0000000
      donage6_10              88636      0.0282729        2506.00             0      1.0000000
      donage11_17             88636      0.1119184        9920.00             0      1.0000000
   donage18_34                88636      0.3227808       28610.00             0      1.0000000
   donage35_49                88636      0.2437948       21609.00             0      1.0000000
   donage50_64                88636      0.1797802       15935.00             0      1.0000000
   donagegt65                 88636      0.0530484        4702.00             0      1.0000000
   donoragecat                88636      5.4377454      481980.00     1.0000000      8.0000000
   meld_peld_neg11_neg1       88636      0.0017262    153.0000000             0      1.0000000
   meld_peld_pos0_10          88636      0.0180401        1599.00             0      1.0000000
   meld_peld_pos11_20         88636      0.1084210        9610.00             0      1.0000000
   meld_peld_pos21_30         88636      0.1763053       15627.00             0      1.0000000
   meld_peld_pos31_40         88636      0.0665982        5903.00             0      1.0000000
   meld_peld_pos41_50         88636      0.0013313    118.0000000             0      1.0000000
   meld_peld_pos51_99         88636    0.000248206     22.0000000             0      1.0000000
   meldpelcat                 88636      1.4110068      125066.00             0      7.0000000
   statold2                   88636      0.0844239        7483.00             0      1.0000000
   statold4                   88636      0.0161672        1433.00             0      1.0000000
   statscore1                 88636      0.1254005       11115.00             0      1.0000000
   statscore1A                88636      0.0104585    927.0000000             0      1.0000000
   statscore1B                88636      0.0016021    142.0000000             0      1.0000000
   statscore2A                88636      0.0473735        4199.00             0      1.0000000
   statscore2B                88636      0.1329708       11786.00             0      1.0000000
   statscore3                 88636      0.1712284       15177.00             0      1.0000000
   oldstatuscat               88636      3.1276682      277224.00             0      8.0000000
   cold0_5                    88636      0.1622591       14382.00             0      1.0000000
   cold6_10                   88636      0.4278059       37919.00             0      1.0000000
   cold11_16                  88636      0.1670089       14803.00             0      1.0000000
   cold17_20                  88636      0.0196196        1739.00             0      1.0000000
   coldGE21                   88636      0.0167652        1486.00             0      1.0000000
   cold_ischcat               88636      1.5973758      141585.00             0      4.0000000
   HGT_CM_TRR                 79064    163.4329425    12921662.16     4.0000000    225.0000000
   WGT_KG_TRR                 82104     73.4018192     6026582.97     1.3608000    200.0000000
   HGT_CM_DON                 75411    165.2848126    12464293.00     1.0000000    251.0000000
   WGT_KG_DON                 81778     71.0079675     5806889.57     0.4535924    453.1387776
   SGPT_TX                    59219    224.2110228    13277552.56     0.1000000       20000.00
   AGE_DON                    88552     34.6171967     3065422.00             0    120.0000000
   CREAT_TX                   87490      1.3690477      119777.98             0     21.0000000
   TBILI_TX                   86426      8.5326685      737444.41             0    118.9000000
   AGE                        88636     44.6404621     3956752.00             0     87.0000000
   GTIME                      87773        1547.89      135862846             0        7327.00
   PTIME                      87773        1547.84      135858253             0        7327.00




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                             90

Below is SAS code for exercise 4.2-6.

 /*6. Convert days to years for graft and patient survival time and
produce year from transplant date.*/

data liver;
set unos.liver;

gtimeyrs=gtime/365.25;
ptimeyrs=ptime/365.25;

txyear=year(tx_date);

options nolabel nodate nonumber;
proc means n mean sum min max data=liver;
var gtimeyrs ptimeyrs txyear;
run;
run;
title 'Proc Means for Additional Liver Years,patent and graft survival
time';
options nolabel nodate nonumber;
Below is SAS output for exercise 4.3-6.

                                          The MEANS Procedure

         Variable        N            Mean             Sum         Minimum         Maximum
         ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
         gtimeyrs    87773       4.2378886       371972.20               0      20.0602327
         ptimeyrs    87773       4.2377454       371959.62               0      20.0602327
         txyear      88636         1999.34       177213242         1987.00         2008.00
         ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

7. From the proc means output, prepare a descriptive statistics narrative of the findings.
Descriptive Statistics Summary
Between 1987 and the first few months of 2008, over this 22 year period, there were 88,636 liver
transplantations performed in the U.S. The demographics above indicated that Male transplant
patients were 60.9%, female transplant patients were 39.0%. Male donors contributed 59.9% of
the organs while female donors 40%. White patients comprised 74.5%, blacks 8.9%, Hispanics
11.6% and the remaining 5% spread across Asian, Native American and Hawaiian, Pacific
Islander and multiple races. White donors equaled 73.8%, blacks 12.4%, Hispanics 10.7%, and
the remaining 3.1% divided across Asian, Native American and Hawaiian, Pacific Islander and
multiple races.
Over this 22-year period, of the 88,636 transplants, 52.0% were living, 28.7% died and 8.5%
were lost for follow-up. Of the transplantations, 9.7% were re-transplanted.
The donor and patient blood were as follows: For patients, 43.4% Type O, 38.7% Type A, 16.4%
Type A1, 12.7% Type B, 4.7% Type AB and the remaining 0.5% distributed among type A1,

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                91

A1B, A2, and A2B. For donors, 49.3% type O, 19.3% type A, 16.3% type A1, 10.7% Type B and
the remaining 4.4% distributed among type, A1B, A2, and A2B. For further explanation of blood
types see http://en.wikipeda.org/wki/ABO_blood_group_system.
When follow-up was performed at various times post transplant, 19.2 percent of the liver
transplant grafts had failed, 71.2 were working and 9.6% of the graph status was unknown.
Deceased donors equaled 95.8%, living donors 3.9% and foreign donors 0.2%. Previous
transplantation occurred in 10,156 patients or 11.4%.
Selected patient age groupings in rank order were 42.4% from 50 to 64 years, 30.5% from 35 to
49 years 11.1% from11 to 17, 8.1% from 0 to 10, 7.5% from 18 to 34 and 5.4% greater to or
equal to 65. Selected donor age groups in rank order were 32.2% from 18 to 34 years, 24,4%
from 35 to 49 years 17.9% from 50 to 64, and 5.3% greater to or equal to 65.
The Meld/Peld liver disease severity score used beginning in 2002 to determine the likelihood
of death of the patient prior to transplant in rank order was 17.6%, 21 to 30; 10.8%, 11 to 20;
6.6% 31 to 40. Prior to 2002 the status of the transplant patient measuring severity in rank order
was 17.1%, Score 3; 13.3%, Score 2B; 12.5%, Score 1; 8.8%, Old Status; 2 4.7%, Score 2A.
The Meld/Peld and all of the status scores are mutually exclusive and should add up to 100%.
The time the liver is preserved cold after it is harvested from a donor is known as cold ischemic
time. The cold ischemic time in rank order for the transplantation patients as 42.8% from 6 to 10
hours, 16.7% from 11 to 16 hours, 16.2% from 0 to 5 hours, 1.9% from 17 to 20 hours and 1.6%
greater than or equal to 21 hours.
The mean height of the patient was 163.4 cm or 5.4 feet.. The mean height of the donor was
165.3 cm or 5.5 feet. The low mean height of the donor and patient is attributed to the number of
youngsters who are both patients and donors. The mean weight of the patient prior to
transplantation was 73.4 kg (161 lbs.) and the donor mean weight equaled 71.0 kg. (156.5lbs.).
The mean age of the donor was 34.6 years compared to the patient at 44.6.
The mean transplant patient blood(serum)glutamic-oxaloacetic transaminase(SGOT) test was
224.21. The NIH normal adult range 10 to 34 IU/L. The mean transplant patients Creatinine was
1.36 mg/l with a range of 0 to 21mg/l. The NIH normal ranges are 0.8 to 1.4 mg/l. The mean
transplant patient’s Bilirubin was 8.53 with a range of 0 to 18. The NIH normal high ranges for
male are 0.3 to 1.9 mg/dl. www.nlm.nih.gov/midlineplus.ency/003479.htm#normal
Lastly the mean time before liver graft failing was 1,547 days (4.2 years) with a range of 0 to
7,327 days (20 years). The mean patient survival time was 1547 (4.2 years) days with a range of
0 to 7,327 days (20 years). This does not reflect the improved survival rates that have occurred
since 1987 , which will be measured in a later section. However, the sum of years of life for
these 88,636 patients over this 22-year period is 371,972 years.
In summary of the 88,636 liver transplantations performed between 1987 and 2008, 52.0% were
remained alive. More transplants were males from male donors. Recipients and donors were
more likely to be white. Type O was the dominant blood type for both patients and donors. The
largest age groups for patients were 50 to 64 years and for donors 18 to 34 years. The most likely
Meld/Peld disease severity score was 21 to 30 and the older severity score prior to 2002 was

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                        92

Score 3. Six to 10 hours was the more common cold ischemic time. The mean height and weight
of patients was 5.4 feet and 161 pounds, respectively. The mean height and weight of donors
was 5.5 feet and 156 pounds, respectively. The clinical chemistry markers indicated the mean
SGOT was 224.2 IU/L, bilirubin was 8.53mg/dl, and creatinine was 1.36mg/l. Lastly, over this
22-year period, the mean number of years before graft and patient death was 4.2 years.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                  93




               3. Multiple Linear Regression Model on OPTN Liver
               Transplant Patient Survival Time in Days (PTIME)
            unos03d.sas

Below is the linear regression model (Proc Reg) of the patient survival time in days of care and the
effects of age, gender, race, transplant year, donor source, donor age, Meld/Peld and older
severity score, and cold ischemic time.
/****unos03d.sas**********/
/*Below is the linear regression model (Proc Reg) of the patient */
/*survival time in days of care and the effects of age, gender, */
/*race, transplant year, donor source, donor age, donor race */
/*Meld/Peld and older severity score, and cold ischemic time*/

options nolabel nodate nonumber;
Proc Reg data=liver;
model ptime=age age_don white donwhite male maledon txyearcat
            deceased_donor meld_peld_pos21_30 statscore3 cold6_10;
run;
title 'linear regression model of the patient survival time in days';
options nolabel nodate nonumber;

Below is the output of the linear regression.
                               linear regression model of the patient survival time in days

                                           The REG Procedure
                                             Model: MODEL1
                                      Dependent Variable: PTIME

                        Number of Observations Read                         88636
                        Number of Observations Used                         87689
                        Number of Observations with Missing Values            947



                                           Analysis of Variance

                                                 Sum of             Mean
           Source                    DF         Squares           Square    F Value   Pr > F

           Model                      11    60031556770     5457414252      2946.15   <.0001
           Error                   87677    1.624117E11        1852386
           Corrected Total         87688    2.224432E11



                          Root MSE           1361.02395    R-Square        0.2699
                          Dependent Mean     1546.83826    Adj R-Sq        0.2698
                          Coeff Var            87.98748



                                           Parameter Estimates


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                               94

                                          Parameter       Standard
           Variable                DF      Estimate          Error     t Value    Pr > |t|

           Intercept               1     3244.98436       31.49376      103.04      <.0001
           AGE                     1        0.11743        0.28768        0.41      0.6831
           AGE_DON                 1       -5.79403        0.28321      -20.46      <.0001
           white                   1       93.62677       10.82212        8.65      <.0001
           donwhite                1      109.95161       10.67399       10.30      <.0001
           male                    1      -65.45225        9.59968       -6.82      <.0001
           maledon                 1       32.34375        9.63490        3.36      0.0008
           txyearcat               1     -126.55629        1.05015     -120.51      <.0001
           deceased_donor          1      -21.46791       23.84214       -0.90      0.3679
           meld_peld_pos21_30      1     -150.27926       13.86360      -10.84      <.0001
           statscore3              1      381.04028       13.21076       28.84      <.0001
           cold6_10                1       59.61080        9.46631        6.30      <.0001

As seen above in the PROC REG models output of patient survival time in days (ptime) for
liver transplants from 1987-2008, with the exception of patient age and donor type, all of the
effects are significant at p<.0001. Controlling for donor and patient age, donor and patient race,
donor and patient gender, year of transplant, type of donor, severity scores and cold ischemic
time the following are the findings:
1. All else being equal, as the age of the donor increases by one year the patient will lose 5.7
   days of life. p<.0001
2. All else being equal, white patients will have 93 more days of life compared to non-whites.
   p<.0001
3. All else being equal, those obtaining white donor livers will have 109 more days of life
   compared to those obtaining non-whites donor livers. p<.0001
4. All else being equal, male liver recipients will have 65 fewer days of life than females.
   p<.0001
5. All else being equal, patients receiving male donor hearts will have 32 more days of life
   compared to those receiving female donor hearts. p<.001
6. All else being equal, for every year increase in age, a liver recipient will loose 126 days of
   life. p<.0001
7. All else being equal, a patient with a meld/peld score of 21 to 30 compared to all other scores
   will have 150 fewer days of life. p<.0001
8. All else being equal, those with older severity scores of three (3) will have 381 additional
   days of life. p<.0001
9. All else being equal, those with cold ischemic times of 6-20 hours compared to longer or
   shorter times will have 59.6 additional days of life . p<.0001
10. The coefficient of determination R-Square is 0.2699, which indicates that 73.1 percent of
    patient survival time is explained by other effects not included in the model.


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                  95




                Exercise 4.3


Using unos03d.sas, perform the exercises below and interpret the findings:
1. Remove patient age and donor type from the model to improve parsimony (simplicity) and
compare it to original model.
2. Substitute patient liver graft failure for patent survival time in the model.
3. Create a model with only patient height and weight and other clinical chemistry measurement.
/*Answer to Exercise 4.3 */

options nolabel nodate nonumber;
Proc Reg data=liver;
model ptime=age_don white donwhite male maledon txyearcat
            meld_peld_pos21_30 statscore3 cold6_10;
run;
title 'linear regression with age and donor type removed from'
' model of the patient survival time in days';

Proc Reg output for exercise 4.3.
                          Linear regression model of the patient survival time in days



                                           The REG Procedure
                                             Model: MODEL1
                                      Dependent Variable: PTIME

                        Number of Observations Read                            88636
                        Number of Observations Used                            87689
                        Number of Observations with Missing Values               947



                                            Analysis of Variance

                                                   Sum of             Mean
           Source                    DF           Squares           Square     F Value   Pr > F

           Model                       9      60029892715        6669988079    3600.80   <.0001
           Error                   87679      1.624133E11           1852363
           Corrected Total         87688      2.224432E11



                         Root MSE              1361.01539    R-Square         0.2699
                         Dependent Mean        1546.83826    Adj R-Sq         0.2698
                         Coeff Var               87.98692

                                           Parameter Estimates




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                        96

                                             Parameter         Standard
            Variable                DF        Estimate            Error     t Value     Pr > |t|

            Intercept                1      3226.07993         20.81544      154.98       <.0001
            AGE_DON                  1        -5.75274          0.26082      -22.06       <.0001
            white                    1        94.35660         10.71380        8.81       <.0001
            donwhite                 1       110.17522         10.67101       10.32       <.0001
            male                     1       -65.52955          9.59093       -6.83       <.0001
            maledon                  1        32.32149          9.59802        3.37       0.0008
            txyearcat                1      -126.39437          1.03600     -122.00       <.0001
            meld_peld_pos21_30       1      -151.03028         13.74371      -10.99       <.0001
            statscore3               1       381.71376         13.18509       28.95       <.0001
            cold6_10                 1        58.12153          9.31513        6.24       <.0001



Comparing the first model with the effects of age and donor type, there is no significant differences
observed between this model with of age and donor type removed.
/*Answer to Exercise 4.3 */

options nolabel nodate nonumber;
Proc Reg data=liver;
model gtime=age_don white donwhite male maledon txyearcat
            meld_peld_pos21_30 statscore3 cold6_10;
run;
title 'linear regression model of the graph survival time'

Proc Reg output for exercise 4.3.
                     linear regression model of the graph survival time'

                                              The REG Procedure
                                                Model: MODEL1
                                         Dependent Variable: GTIME

                        Number of Observations Read                           88636
                        Number of Observations Used                           87689
                        Number of Observations with Missing Values              947



                                           Analysis of Variance

                                                  Sum of             Mean
           Source                     DF         Squares           Square     F Value     Pr > F

           Model                       9     60025383060       6669487007     3600.70     <.0001
           Error                   87679     1.624054E11          1852273
           Corrected Total         87688     2.224308E11



                         Root MSE             1360.98236      R-Square      0.2699
                         Dependent Mean       1546.89064      Adj R-Sq      0.2698
                         Coeff Var              87.98181



                                            Parameter Estimates



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                  97

                                            Parameter       Standard
            Variable               DF        Estimate          Error       t Value    Pr > |t|

            Intercept               1      3226.12595       20.81493        154.99     <.0001
            AGE_DON                 1        -5.75297        0.26082        -22.06     <.0001
            white                   1        94.33729       10.71354          8.81     <.0001
            donwhite                1       110.16816       10.67075         10.32     <.0001
            male                    1       -65.49751        9.59069         -6.83     <.0001
            maledon                 1        32.26677        9.59779          3.36     0.0008
            txyearcat               1      -126.38813        1.03597       -122.00     <.0001
            meld_peld_pos21_30      1      -151.09602       13.74337        -10.99     <.0001
            statscore3              1       381.67376       13.18477         28.95     <.0001
            cold6_10                1        58.08216        9.31490          6.24     <.0001

There appears to be no difference between the model of graph survival time and patient survival
time. A look at the raw OPTN/UNOS data (unos.liver) shows these values are the same for each
observation.


3. Create a model with only patient height and weight and other clinical chemistry measurement.
/*Answer to Exercise 4.3 */

options label nodate nonumber;
Proc Reg data=liver;
model ptime=sgpt_tx creat_tx tbili_tx hgt_cm_trr
            wgt_kg_trr hgt_cm_don wgt_kg_don
;
options nolabel nodate nonumber;
title 'linear regression model of graph survival time with height
weight and chemistry';
run;

Proc Reg Output for exercise 4.3
                linear regression model of graph survival time with height weight and chemistry

                                             The REG Procedure
                                               Model: MODEL1
                                        Dependent Variable: PTIME

                        Number of Observations Read                         88636
                        Number of Observations Used                         42249
                        Number of Observations with Missing Values          46387



                                           Analysis of Variance

                                                 Sum of             Mean
           Source                    DF         Squares           Square    F Value    Pr > F

           Model                       7     1278220766      182602967       110.98    <.0001
           Error                   42241    69501466235        1645356
           Corrected Total         42248    70779687001



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                98


                         Root MSE           1282.71416     R-Square      0.0181
                         Dependent Mean     1280.69237     Adj R-Sq      0.0179
                         Coeff Var           100.15787



                                          Parameter Estimates

                                       Parameter         Standard
                Variable       DF       Estimate            Error     t Value     Pr > |t|

                Intercept          1   1369.28647        53.28463      25.70       <.0001
                SGPT_TX            1     -0.00145         0.00903      -0.16       0.8721
                CREAT_TX           1    -74.76085         5.04766     -14.81       <.0001
                TBILI_TX           1     -2.87170         0.60351      -4.76       <.0001
                HGT_CM_TRR         1      2.05532         0.39878       5.15       <.0001
                WGT_KG_TRR         1     -3.48845         0.36902      -9.45       <.0001
                HGT_CM_DON         1      2.11001         0.41087       5.14       <.0001
                WGT_KG_DON         1     -5.33215         0.38082     -14.00       <.0001

1. All else being equal, SGPT values of the patient before transplant alone are not significant
   predictors of patient survival time in days.. p=.8721.
2. All else being equal, every unit increase in creatinine level before transplant will result in
   74.7 fewer days of life. p<.0001.
3. All else being equal, every unit increase in bilirubin level before transplant will result in 2.87
   fewer days of life. p<.0001.
4. All else being equal, each centimeter increase in height of the transplant patient will result in
   2.05 additional days of life. p<.0001.
5. All else being equal, every kilogram increase in weight of the transplant patient will result in
   3.48 fewer days of life. p<.0001.
6. All else being equal, each centimeter increase in height of the liver donor will result in 2.11
   additional days of life. p<.0001.
7. All else being equal, every kilogram increase in weight of the liver donor will result in 5.33
   fewer days of life. p<.0001.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                 99




               4. Logistic Regression Model of Patient of Liver Transplant
               Patient Death
           unos04d.sas

Below is the logistic regression model of death following a liver transplantation using the effects
of patient age, donor age and gender, and patient race.
/*unos04d.sas*/
options nolabel nodate nonumber;
proc logistic data=liver des;
    class patgendercat (param=ref ref='1')                         /*ref patient female**/
          dongendercat (param=ref ref='1')                         /*ref donor female**/
          racecat      (param=ref ref='1')                         /*ref patient race white*/

;
      model deceased=age age_don patgendercat dongendercat racecat

;

      units age=10 age_don=10;
       title 'logistic regression model of the patient status of death';
run;
quit;
options nolabel nodate nonumber;
;

Below is the logistic regression model of death output.
                         Logistic regression model of the patient status of death
                                         The LOGISTIC Procedure
                                           Model Information

                             Data Set                        WORK.LIVER
                             Response Variable               deceased
                             Number of Response Levels       2
                             Model                           binary logit
                             Optimization Technique          Fisher's scoring

                                   Number of Observations Read        88636
                                   Number of Observations Used        88552
                                              Response Profile

                                     Ordered                         Total
                                       Value     deceased        Frequency

                                           1             1          25450
                                           2             0          63102

                                    Probability modeled is deceased=1.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                               100

NOTE: 84 observations were deleted due to missing values for the response or explanatory
variables.



                                           Class Level Information

               Class               Value                        Design Variables

               patgendercat        1            0
                                   2            1

               dongendercat        1            0
                                   2            1

               racecat             1            0       0       0         0      0     0   0
                                   2            1       0       0         0      0     0   0
                                   3            0       1       0         0      0     0   0
                                   4            0       0       1         0      0     0   0
                                   5            0       0       0         1      0     0   0
                                   6            0       0       0         0      1     0   0
                                   7            0       0       0         0      0     1   0
                                   8            0       0       0         0      0     0   1



                                           Model Convergence Status

                            Convergence criterion (GCONV=1E-8) satisfied.
                       logistic regression model of the patient status of death

                                           The LOGISTIC Procedure

                                              Model Fit Statistics

                                                                     Intercept
                                                    Intercept              and
                                   Criterion             Only       Covariates

                                   AIC              106230.54       105454.56
                                   SC               106239.93       105567.25
                                   -2 Log L         106228.54       105430.56



                                   Testing Global Null Hypothesis: BETA=0

                         Test                    Chi-Square          DF       Pr > ChiSq

                         Likelihood Ratio           797.9861         11          <.0001
                         Score                      769.8822         11          <.0001
                         Wald                       759.6023         11          <.0001




                                    Type 3 Analysis of Effects

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                      101


                                                                 Wald
                            Effect                    DF   Chi-Square     Pr > ChiSq

                            AGE                       1      589.2217           <.0001
                            AGE_DON                   1        0.2799           0.5968
                            patgendercat              1       19.9454           <.0001
                            dongendercat              1        0.0303           0.8617
                            racecat                   7       69.1360           <.0001



                                   Analysis of Maximum Likelihood Estimates

                                                           Standard           Wald
              Parameter             DF       Estimate         Error     Chi-Square       Pr > ChiSq

              Intercept          1     -1.4176      0.0252     3175.6624                     <.0001
              AGE                1      0.0115    0.000475      589.2217                     <.0001
              AGE_DON            1    -0.00024    0.000451        0.2799                     0.5968
              patgendercat 2     1      0.0691      0.0155       19.9454                     <.0001
              dongendercat 2     1    -0.00272      0.0156        0.0303                     0.8617
              racecat      2     1     -0.1078      0.0233       21.4977                     <.0001
              racecat      3     1     -0.1593      0.0251       40.2186                     <.0001
              racecat      4     1     -0.0818      0.0570        2.0564                     0.1516
              racecat      5     1     -0.3244      0.1456        4.9646                     0.0259
              racecat      6     1      0.2508      0.1547        2.6294                     0.1049
              racecat      7     1     -0.2207      0.1142        3.7342                     0.0533
              racecat      8     1      0.2358      0.1485        2.5221                     0.1123
                      logistic regression model of the patient status of death

                                             The LOGISTIC Procedure

                                              Odds Ratio Estimates

                                                          Point           95% Wald
                        Effect                         Estimate       Confidence Limits

                        AGE                                1.012        1.011        1.013
                        AGE_DON                            1.000        0.999        1.001
                        patgendercat     2   vs   1        1.072        1.040        1.105
                        dongendercat     2   vs   1        0.997        0.967        1.028
                        racecat          2   vs   1        0.898        0.858        0.940
                        racecat          3   vs   1        0.853        0.812        0.896
                        racecat          4   vs   1        0.921        0.824        1.030
                        racecat          5   vs   1        0.723        0.543        0.962
                        racecat          6   vs   1        1.285        0.949        1.740
                        racecat          7   vs   1        0.802        0.641        1.003
                        racecat          8   vs   1        1.266        0.946        1.693

                     Association of Predicted Probabilities and Observed Responses

                        Percent Concordant                  55.0      Somers' D    0.116
                        Percent Discordant                  43.4      Gamma        0.118
                        Percent Tied                         1.6      Tau-a        0.047
                        Pairs                         1605945900      c            0.558




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                  102

                                             Odds Ratios

                             Effect                     Unit     Estimate

                             AGE                     10.0000        1.122
                             AGE_DON                 10.0000        0.998



As seen above in the proc logistic output of death after transplant considering the effects of
patient age, donor age and gender, and patient race, the findings are as follows:
1. All else being equal, for every additional year of age at transplant the likelihood of death
   increases by 1.2 percent, p<.0001[CI 1.011, 1.0131].
2. All else being equal, donor age does not have a significant effect upon patient death after
   transplant., p=.5968[CI 0.999 , 1.0011].
3. All else being equal, females compared to males are 7.2 percent more likely to die after
   transplant, p<.0001[CI 1.040, 1.1050].
4. All else being equal, donor gender does not have a significant effect upon patient death after
   transplant., p=.8617[CI 0.967, 1.0280].
5. All else being equal, blacks compared to white are 10.2 less likely to die after transplant,
   p<.0001[CI 0.858, 0.940].
6. All else being equal, Hispanics compared to whites are 13.7 less likely to die after transplant,
   p<.0001[CI 0.812, 0.896].




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                              103




               Exercises 4.4


1. Add to the logistic model unos04d.sas, the effects of year of transplant on dying using 1996 as
the reference year and interpret the findings.
2. Change the logistic model of exercise 4.4-1 to consider survival rather than death..
Answer to exercise 4.4-1.
/*1. Add to the logistic model unos04d.sas, the effects of year of
transplant using 1966 as*/
/*the reference year and interpret the findings. */
options nolabel nodate nonumber;
proc logistic data=liver des;
    class patgendercat (param=ref ref='1') /*ref patient female**/
          dongendercat (param=ref ref='1') /*ref donor female**/
          racecat      (param=ref ref='1') /*ref patient race white*/
          txyearcat    (param=ref ref='10') /*ref tx year 1996*/
;
    model deceased=age age_don patgendercat dongendercat racecat
          txyearcat
;

      units age=10 age_don=10;
       title 'logistic regression model of the patient status of death';
run;
quit;


Proc logistic output for exercise 4.4-1.

                       logistic regression model of the patient status of death

                                          The LOGISTIC Procedure

                                            Model Information

                             Data Set                       WORK.LIVER
                             Response Variable              deceased
                             Number of Response Levels      2
                             Model                          binary logit
                             Optimization Technique         Fisher's scoring



                                   Number of Observations Read     88636
                                   Number of Observations Used     88552



                                              Response Profile

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                           104


                                   Ordered                          Total
                                     Value      deceased        Frequency

                                         1             1           25450
                                         2             0           63102

                                   Probability modeled is deceased=1.

NOTE: 84 observations were deleted due to missing values for the response or explanatory
variables.



                                       Class Level Information

                                        Class              Value

                                        patgendercat       1
                                                           2

                                        dongendercat       1
                                                           2

                                        racecat            1
                                                           2
                                                           3
                                                           4
                                                           5
                                                           6
                                                           7
                                                           8

                                        txyearcat          1
                                                           2
                                                           3
                                                           4
                                                           5
                                                           6
                                                           7
                                                           8
                                                           9
                                                           10
                                                           11
                                                           12
                                                           13
                                                           14
                                                           15
                                                           16
                                                           17
                                                           18
                                                           19
                                                           20
                                                           21
                                                           22

                                       Class Level Information



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                        105

                                                Design Variables

          0
          1

          0
          1

          0   0    0   0    0      0   0
          1   0    0   0    0      0   0
          0   1    0   0    0      0   0
          0   0    1   0    0      0   0
          0   0    0   1    0      0   0
          0   0    0   0    1      0   0
          0   0    0   0    0      1   0
          0   0    0   0    0      0   1

          1   0    0   0    0      0   0   0    0   0   0   0   0     0   0     0   0   0   0   0   0
          0   1    0   0    0      0   0   0    0   0   0   0   0     0   0     0   0   0   0   0   0
          0   0    1   0    0      0   0   0    0   0   0   0   0     0   0     0   0   0   0   0   0
          0   0    0   1    0      0   0   0    0   0   0   0   0     0   0     0   0   0   0   0   0
          0   0    0   0    1      0   0   0    0   0   0   0   0     0   0     0   0   0   0   0   0
          0   0    0   0    0      1   0   0    0   0   0   0   0     0   0     0   0   0   0   0   0
          0   0    0   0    0      0   1   0    0   0   0   0   0     0   0     0   0   0   0   0   0
          0   0    0   0    0      0   0   1    0   0   0   0   0     0   0     0   0   0   0   0   0
          0   0    0   0    0      0   0   0    1   0   0   0   0     0   0     0   0   0   0   0   0
          0   0    0   0    0      0   0   0    0   0   0   0   0     0   0     0   0   0   0   0   0
          0   0    0   0    0      0   0   0    0   1   0   0   0     0   0     0   0   0   0   0   0
          0   0    0   0    0      0   0   0    0   0   1   0   0     0   0     0   0   0   0   0   0
          0   0    0   0    0      0   0   0    0   0   0   1   0     0   0     0   0   0   0   0   0
          0   0    0   0    0      0   0   0    0   0   0   0   1     0   0     0   0   0   0   0   0
          0   0    0   0    0      0   0   0    0   0   0   0   0     1   0     0   0   0   0   0   0
          0   0    0   0    0      0   0   0    0   0   0   0   0     0   1     0   0   0   0   0   0
          0   0    0   0    0      0   0   0    0   0   0   0   0     0   0     1   0   0   0   0   0
          0   0    0   0    0      0   0   0    0   0   0   0   0     0   0     0   1   0   0   0   0
          0   0    0   0    0      0   0   0    0   0   0   0   0     0   0     0   0   1   0   0   0
          0   0    0   0    0      0   0   0    0   0   0   0   0     0   0     0   0   0   1   0   0
          0   0    0   0    0      0   0   0    0   0   0   0   0     0   0     0   0   0   0   1   0
          0   0    0   0    0      0   0   0    0   0   0   0   0     0   0     0   0   0   0   0   1



                                           Model Convergence Status

                             Convergence criterion (GCONV=1E-8) satisfied.



                                               Model Fit Statistics

                                                                    Intercept
                                                    Intercept             and
                                   Criterion             Only      Covariates

                                   AIC              106230.54       97754.883
                                   SC               106239.93       98064.798
                                   -2 Log L         106228.54       97688.883




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                 106

                                   Testing Global Null Hypothesis: BETA=0

                        Test                   Chi-Square         DF      Pr > ChiSq

                        Likelihood Ratio        8539.6600         32          <.0001
                        Score                   7849.3305         32          <.0001
                        Wald                    6924.0794         32          <.0001



                                         Type 3 Analysis of Effects

                                                           Wald
                           Effect              DF    Chi-Square        Pr > ChiSq

                           AGE                  1     1133.8575           <.0001
                           AGE_DON              1      197.6462           <.0001
                           patgendercat         1        2.6282           0.1050
                           dongendercat         1        1.0245           0.3115
                           racecat              7       21.4843           0.0031
                           txyearcat           21     6328.2080           <.0001



                                 Analysis of Maximum Likelihood Estimates

                                                      Standard           Wald
             Parameter              DF    Estimate       Error     Chi-Square       Pr > ChiSq

             Intercept               1     -1.5634      0.0422         1375.1982       <.0001
             AGE                     1      0.0171    0.000509         1133.8575       <.0001
             AGE_DON                 1     0.00678    0.000482          197.6462       <.0001
             patgendercat   2        1     -0.0263      0.0162            2.6282       0.1050
             dongendercat   2        1      0.0166      0.0164            1.0245       0.3115
             racecat        2        1      0.0692      0.0244            8.0469       0.0046
             racecat        3        1      0.0761      0.0264            8.2701       0.0040
             racecat        4        1      0.0883      0.0596            2.1947       0.1385
             racecat        5        1     -0.0562      0.1515            0.1378       0.7105
             racecat        6        1      0.3620      0.1600            5.1213       0.0236
             racecat        7        1      0.0873      0.1188            0.5404       0.4622
             racecat        8        1     -0.0900      0.1513            0.3535       0.5522
             txyearcat      1        1      0.9286      0.1188           61.0672       <.0001
             txyearcat      2        1      0.6491      0.0600          117.0390       <.0001
             txyearcat      3        1      0.7031      0.0549          164.0513       <.0001
             txyearcat      4        1      0.5534      0.0515          115.3177       <.0001
             txyearcat      5        1      0.5584      0.0501          124.2864       <.0001
             txyearcat      6        1      0.4099      0.0496           68.2059       <.0001
             txyearcat      7        1      0.3027      0.0482           39.4757       <.0001
             txyearcat      8        1      0.1406      0.0478            8.6573       0.0033
             txyearcat      9        1      0.0861      0.0469            3.3710       0.0664
             txyearcat      11       1     -0.0475      0.0465            1.0412       0.3076
             txyearcat      12       1     -0.1645      0.0460           12.7835       0.0003
             txyearcat      13       1     -0.2520      0.0457           30.4572       <.0001
             txyearcat      14       1     -0.4253      0.0458           86.1805       <.0001
             txyearcat      15       1     -0.4780      0.0456          109.8532       <.0001
             txyearcat      16       1     -0.6581      0.0462          203.2506       <.0001
             txyearcat      17       1     -0.8089      0.0462          306.3459       <.0001
             txyearcat      18       1     -0.9278      0.0460          406.9406       <.0001
             txyearcat      19       1     -1.1043      0.0466          560.5756       <.0001

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                107

              txyearcat      20    1      -1.4722       0.0493      892.8329           <.0001
              txyearcat      21    1      -2.2320       0.0599     1389.9345           <.0001
              txyearcat      22    1      -4.7871       1.0027       22.7937           <.0001



                                          Odds Ratio Estimates

                                                     Point           95% Wald
                       Effect                     Estimate       Confidence Limits

                       AGE                           1.017        1.016        1.018
                       AGE_DON                       1.007        1.006        1.008
                       patgendercat   2 vs 1         0.974        0.944        1.006
                       dongendercat   2 vs 1         1.017        0.985        1.050
                       racecat        2 vs 1         1.072        1.022        1.124
                       racecat        3 vs 1         1.079        1.025        1.136
                       racecat        4 vs 1         1.092        0.972        1.228
                       racecat        5 vs 1         0.945        0.702        1.272
                       racecat        6 vs 1         1.436        1.050        1.965
                       racecat        7 vs 1         1.091        0.865        1.377
                       racecat        8 vs 1         0.914        0.679        1.230
                       txyearcat      1 vs 10        2.531        2.005        3.195
                       txyearcat      2 vs 10        1.914        1.701        2.153
                       txyearcat      3 vs 10        2.020        1.814        2.249
                       txyearcat      4 vs 10        1.739        1.572        1.924
                       txyearcat      5 vs 10        1.748        1.584        1.928
                       txyearcat      6 vs 10        1.507        1.367        1.661
                       txyearcat      7 vs 10        1.354        1.232        1.488
                       txyearcat      8 vs 10        1.151        1.048        1.264
                       txyearcat      9 vs 10        1.090        0.994        1.195
                       txyearcat      11 vs 10       0.954        0.870        1.045
                       txyearcat      12 vs 10       0.848        0.775        0.928
                       txyearcat      13 vs 10       0.777        0.711        0.850
                       txyearcat      14 vs 10       0.654        0.597        0.715
                       txyearcat      15 vs 10       0.620        0.567        0.678
                       txyearcat      16 vs 10       0.518        0.473        0.567
                       txyearcat      17 vs 10       0.445        0.407        0.488
                       txyearcat      18 vs 10       0.395        0.361        0.433
                       txyearcat      19 vs 10       0.331        0.302        0.363
                       txyearcat      20 vs 10       0.229        0.208        0.253
                       txyearcat      21 vs 10       0.107        0.095        0.121
                       txyearcat      22 vs 10       0.008        0.001        0.059



                     Association of Predicted Probabilities and Observed Responses

                        Percent Concordant             69.0    Somers' D   0.384
                        Percent Discordant             30.6    Gamma       0.386
                        Percent Tied                    0.4    Tau-a       0.157
                        Pairs                    1605945900    c           0.692



                       logistic regression model of the patient status of death

                                         The LOGISTIC Procedure

                                                 Odds Ratios

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                  108


                            Effect                       Unit     Estimate

                            AGE                       10.0000        1.187
                            AGE_DON                   10.0000        1.070

As seen above in the proc logistic output of death after transplant considering the effects of
patient age, donor age and gender, patient race and year of transplant , the findings are as
follows:
1. All else being equal, for every additional year of age at transplant the likelihood of death
   increases by 1.7 percent, p<.0001[CI 1.016, 1.0181].
2. All else being equal, for every year of the age of the donor at transplant the likelihood of
   death increases by 0.7 percent, p<.0001[CI 1.016, 1.0181].
3. All else being equal, both patient and donor gender are insignificant effects upon those likely
   to die after transplant,.
4. All else being equal, blacks compared to whites are 7.2 percent more likely to die after
   transplant, p<.0.01[CI 1.022, 1.124].
5. All else being equal, Hispanics compared to whites are 7.9 percent more likely to die after
   transplant, p<.0.01[CI 1.025, 1.136].
6. All else being equal, patients transplanted in 1989 compared to 1996 were twice (2.020) as
   likely to die after transplant, p<.0.0001[CI 1.814, 2.249].
7. All else being equal, patients transplanted in 2006 compared to 1996 were 87.1 percent less
   likely to die after transplant, p<.0.0001[CI 0.208, 0.253].




Answer to exercise 4.4-2.
/*2. Change the logistic model of exercise 4.4-1 to consider survival
rather than death*/
/*options nolabel nodate nonumber; */

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                           109

proc logistic data=liver des;
    class patgendercat (param=ref ref='1') /*ref patient female**/
          dongendercat (param=ref ref='1') /*ref donor female**/
          racecat      (param=ref ref='1') /*ref patient race white*/
          txyearcat      (param=ref ref='10') /*ref tx year 1996*/
;
    model living=age age_don patgendercat dongendercat racecat
          txyearcat
;

      units age=10 age_don=10;
       title 'logistic regression model of the patient status of alive';
run;
quit;
options nolabel nodate nonumber;

Proc logistic output for exercise 4.4-2.
                         logistic regression model of the patient status of being alive

                                          The LOGISTIC Procedure

                                            Model Information

                             Data Set                        WORK.LIVER
                             Response Variable               living
                             Number of Response Levels       2
                             Model                           binary logit
                             Optimization Technique          Fisher's scoring



                                   Number of Observations Read        88636
                                   Number of Observations Used        88552



                                               Response Profile

                                     Ordered                         Total
                                       Value       living        Frequency

                                           1             1           46093
                                           2             0           42459

                                     Probability modeled is living=1.

NOTE: 84 observations were deleted due to missing values for the response or explanatory
variables.



                                         Class Level Information

                                          Class              Value

                                          patgendercat       1
                                                             2



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                   110

                                       dongendercat        1
                                                           2

                                       racecat             1
                                                           2
                                                           3
                                                           4
                                                           5
                                                           6
                                                           7
                                                           8

                                       txyearcat           1
                                                           2
                                                           3
                                                           4
                                                           5
                                                           6
                                                           7
                                                           8
                                                           9
                                                           10
                                                           11
                                                           12
                                                           13
                                                           14
                                                           15
                                                           16
                                                           17
                                                           18
                                                           19
                                                           20
                                                           21
                                                           22

                                       Class Level Information

                                           Design Variables

         0
         1

         0
         1

         0   0    0   0    0   0   0
         1   0    0   0    0   0   0
         0   1    0   0    0   0   0
         0   0    1   0    0   0   0
         0   0    0   1    0   0   0
         0   0    0   0    1   0   0
         0   0    0   0    0   1   0
         0   0    0   0    0   0   1

         1   0    0   0    0   0   0   0   0   0   0   0       0   0   0   0   0   0   0   0   0
         0   1    0   0    0   0   0   0   0   0   0   0       0   0   0   0   0   0   0   0   0
         0   0    1   0    0   0   0   0   0   0   0   0       0   0   0   0   0   0   0   0   0

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                            111

          0   0    0   1    0      0   0   0    0    0   0    0   0     0     0    0    0   0   0   0   0
          0   0    0   0    1      0   0   0    0    0   0    0   0     0     0    0    0   0   0   0   0
          0   0    0   0    0      1   0   0    0    0   0    0   0     0     0    0    0   0   0   0   0
          0   0    0   0    0      0   1   0    0    0   0    0   0     0     0    0    0   0   0   0   0
          0   0    0   0    0      0   0   1    0    0   0    0   0     0     0    0    0   0   0   0   0
          0   0    0   0    0      0   0   0    1    0   0    0   0     0     0    0    0   0   0   0   0
          0   0    0   0    0      0   0   0    0    0   0    0   0     0     0    0    0   0   0   0   0
          0   0    0   0    0      0   0   0    0    1   0    0   0     0     0    0    0   0   0   0   0
          0   0    0   0    0      0   0   0    0    0   1    0   0     0     0    0    0   0   0   0   0
          0   0    0   0    0      0   0   0    0    0   0    1   0     0     0    0    0   0   0   0   0
          0   0    0   0    0      0   0   0    0    0   0    0   1     0     0    0    0   0   0   0   0
          0   0    0   0    0      0   0   0    0    0   0    0   0     1     0    0    0   0   0   0   0
          0   0    0   0    0      0   0   0    0    0   0    0   0     0     1    0    0   0   0   0   0
          0   0    0   0    0      0   0   0    0    0   0    0   0     0     0    1    0   0   0   0   0
          0   0    0   0    0      0   0   0    0    0   0    0   0     0     0    0    1   0   0   0   0
          0   0    0   0    0      0   0   0    0    0   0    0   0     0     0    0    0   1   0   0   0
          0   0    0   0    0      0   0   0    0    0   0    0   0     0     0    0    0   0   1   0   0
          0   0    0   0    0      0   0   0    0    0   0    0   0     0     0    0    0   0   0   1   0
          0   0    0   0    0      0   0   0    0    0   0    0   0     0     0    0    0   0   0   0   1



                                           Model Convergence Status

                             Convergence criterion (GCONV=1E-8) satisfied.



                                               Model Fit Statistics

                                                                    Intercept
                                                    Intercept             and
                                   Criterion             Only      Covariates

                                   AIC              122611.96         105637.71
                                   SC               122621.36         105947.62
                                   -2 Log L         122609.96         105571.71



                                   Testing Global Null Hypothesis: BETA=0

                        Test                        Chi-Square          DF        Pr > ChiSq

                        Likelihood Ratio            17038.2552          32             <.0001
                        Score                       15989.6946          32             <.0001
                        Wald                        13860.1677          32             <.0001




                                           Type 3 Analysis of Effects

                                                               Wald
                            Effect                  DF   Chi-Square          Pr > ChiSq

                            AGE                     1         34.8506             <.0001
                            AGE_DON                 1        669.7725             <.0001
                            patgendercat            1         31.3904             <.0001

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                 112

                           dongendercat        1         2.4775           0.1155
                           racecat             7       162.1487           <.0001
                           txyearcat          21     13730.8457           <.0001



                                 Analysis of Maximum Likelihood Estimates

                                                      Standard           Wald
             Parameter             DF     Estimate       Error     Chi-Square      Pr > ChiSq

             Intercept              1      0.00424      0.0396         0.0115           0.9147
             AGE                    1     -0.00270    0.000458        34.8506           <.0001
             AGE_DON                1      -0.0119    0.000458       669.7725           <.0001
             patgendercat   2       1       0.0869      0.0155        31.3904           <.0001
             dongendercat   2       1      -0.0245      0.0156         2.4775           0.1155
             racecat        2       1      -0.2093      0.0229        83.5753           <.0001
             racecat        3       1      -0.2162      0.0246        77.4271           <.0001
             racecat        4       1      -0.2879      0.0558        26.6660           <.0001
             racecat        5       1       0.0578      0.1373         0.1771           0.6739
             racecat        6       1      -0.3304      0.1560         4.4862           0.0342
             racecat        7       1      -0.1205      0.1076         1.2547           0.2627
             racecat        8       1      -0.0383      0.1489         0.0663           0.7968
             txyearcat      1       1      -1.6463      0.1726        91.0171           <.0001
             txyearcat      2       1      -1.3304      0.0741       322.0483           <.0001
             txyearcat      3       1      -1.1792      0.0653       325.7096           <.0001
             txyearcat      4       1      -1.0185      0.0590       298.1991           <.0001
             txyearcat      5       1      -0.8943      0.0559       255.5065           <.0001
             txyearcat      6       1      -0.6650      0.0535       154.7815           <.0001
             txyearcat      7       1      -0.4891      0.0504        94.1616           <.0001
             txyearcat      8       1      -0.2369      0.0483        24.1021           <.0001
             txyearcat      9       1      -0.1437      0.0470         9.3478           0.0022
             txyearcat      11      1       0.1959      0.0454        18.5915           <.0001
             txyearcat      12      1       0.3626      0.0445        66.4972           <.0001
             txyearcat      13      1       0.5233      0.0439       142.2907           <.0001
             txyearcat      14      1       0.7127      0.0434       269.1792           <.0001
             txyearcat      15      1       0.8313      0.0432       370.4007           <.0001
             txyearcat      16      1       1.1341      0.0435       679.9726           <.0001
             txyearcat      17      1       1.2992      0.0433       898.7326           <.0001
             txyearcat      18      1       1.5013      0.0433      1204.7821           <.0001
             txyearcat      19      1       1.6946      0.0436      1508.6824           <.0001
             txyearcat      20      1       2.1153      0.0456      2148.5186           <.0001
             txyearcat      21      1       2.0269      0.0453      1998.1635           <.0001
             txyearcat      22      1      -1.0982      0.2092        27.5634           <.0001




                                          Odds Ratio Estimates

                                                      Point           95% Wald
                      Effect                       Estimate       Confidence Limits

                      AGE                            0.997        0.996         0.998
                      AGE_DON                        0.988        0.987         0.989
                      patgendercat 2 vs 1            1.091        1.058         1.124
                      dongendercat 2 vs 1            0.976        0.947         1.006

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                  113

                       racecat         2 vs 1         0.811            0.776       0.848
                       racecat         3 vs 1         0.806            0.768       0.845
                       racecat         4 vs 1         0.750            0.672       0.836
                       racecat         5 vs 1         1.059            0.810       1.386
                       racecat         6 vs 1         0.719            0.529       0.976
                       racecat         7 vs 1         0.886            0.718       1.095
                       racecat         8 vs 1         0.962            0.719       1.289
                       txyearcat       1 vs 10        0.193            0.137       0.270
                       txyearcat       2 vs 10        0.264            0.229       0.306
                       txyearcat       3 vs 10        0.308            0.271       0.350
                       txyearcat       4 vs 10        0.361            0.322       0.405
                       txyearcat       5 vs 10        0.409            0.366       0.456
                       txyearcat       6 vs 10        0.514            0.463       0.571
                       txyearcat       7 vs 10        0.613            0.556       0.677
                       txyearcat       8 vs 10        0.789            0.718       0.867
                       txyearcat       9 vs 10        0.866            0.790       0.950
                       txyearcat       11 vs 10       1.216            1.113       1.330
                       txyearcat       12 vs 10       1.437            1.317       1.568
                       txyearcat       13 vs 10       1.688            1.549       1.839
                       txyearcat       14 vs 10       2.040            1.873       2.221
                       txyearcat       15 vs 10       2.296            2.110       2.499
                       txyearcat       16 vs 10       3.108            2.854       3.385
                       txyearcat       17 vs 10       3.666            3.368       3.991
                       txyearcat       18 vs 10       4.488            4.123       4.885
                       txyearcat       19 vs 10       5.445            4.998       5.931
                       txyearcat       20 vs 10       8.292            7.583       9.068
                       txyearcat       21 vs 10       7.590            6.945       8.296
                       txyearcat       22 vs 10       0.333            0.221       0.502



                     Association of Predicted Probabilities and Observed Responses

                        Percent Concordant              74.4     Somers' D       0.490
                        Percent Discordant              25.4     Gamma           0.492
                        Percent Tied                     0.2     Tau-a           0.245
                        Pairs                     1957062687     c               0.745



                                                  Odds Ratios

                             Effect                             Unit      Estimate

                             AGE                          10.0000              0.973
                             AGE_DON                      10.0000              0.888




As seen above in the proc logistic output of living after transplant considering the effects of
patient age, donor age and gender, patient race and year of transplant , the findings are as
follows:
1. All else being equal, each additional year in patient age at transplantation, the likelihood of
   surviving decreases by 0.3 percent. p<.0001[CI 0.996, 0.998]
2. All else being equal, for each year increase in donor age at transplantation, the patient’s
   likelihood of being alive decreases by 0.2 percent. p<.0001[CI 0.987, 0.989]
Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                             114

3. All else being equal, female patients compared to males are 9.1 percent more likely of
   surviving after transplant. p<.0.001[CI 1.058, 1.1240]
4. All else being equal, patients having female donor compared to male donor has no significant
   effect upon survival after transplant.
5. All else being equal, blacks compared to whites are 18.9 percent less likely to survive after
   transplant p<.0.001[CI 0.776, 0.848]
6. All else being equal, Hispanics compared to whites are 19.1 percent less likely to survive
   after transplant. p<.0.001[CI0.768, 0.845]
7. All else being equal, patients transplanted in the year 1989 compared to 1996 were 69.2
   percent less likely to survive. p<.0.0001[CI 0.271, 0.350
8. All else being equal, patients transplanted in 2000 compared to 1996 were twice as likely to
   survive. p<.0.0001[CI 1.873, 2.221]




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                115




               5. Survival Analysis


“Survival analysis is a collection of specialized methods used to analyze data in which time until
an event occurs in the response variable of interest. The response variable, often called in
survival analysis, a failure time, survival time, or event time, and is usually continuous and can
be measured in weeks, months, years etc. . Events can be death, onset of disease, marriages,
arrests, etc.. What is unique about survival analysis is that even if the subject did not experience
the event (death), the subject’s survival time or length of time is taken into account”
Survival Analysis Using the Proportional Hazard Model Course Notes, 2006 SAS institute, Cary
NC, pp 1-3, ISBN 978-1-59994-306.


Below is the SAS code for a Life Test Procedure Survival Analysis.
*unos05d.sas*/

proc lifetest data=liver plots =(s,c,ls, lls) cs=none;
    time txyearcat*deceased(0);
     strata gender / test=(all);

        title 'Liver Transplant Survival Rates';
run;
quit;

Partial Output of the Life Test Procedure of Liver transplants .
                                          The LIFETEST Procedure

                                          Stratum 2: GENDER = M

                                   Product-Limit Survival Estimates

                                                       Survival
                                                       Standard    Number      Number
               txyearcat       Survival    Failure      Error      Failed       Left

                  19.0000*           .            .           .    14551       11867
                  19.0000*           .            .           .    14551       11866
                  19.0000*           .            .           .    14551       11865
                  19.0000*           .            .           .    14551       11864
                  19.0000*           .            .           .    14551       11863
                  19.0000*           .            .           .    14551       11862
                  19.0000*           .            .           .    14551       11861
                  19.0000*           .            .           .    14551       11860
                  19.0000*           .            .           .    14551       11859
                  19.0000*           .            .           .    14551       11858
                  19.0000*           .            .           .    14551       11857
                  19.0000*           .            .           .    14551       11856


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                              116

                 19.0000*              .           .           .     14551          11855
                 19.0000*              .           .           .     14551          11854
                 19.0000*              .           .           .     14551          11853
                 19.0000*              .           .           .     14551          11852
                 19.0000*              .           .           .     14551          11851
                 19.0000*              .           .           .     14551          11850
                 19.0000*              .           .           .     14551          11849
                 19.0000*              .           .           .     14551          11848
                 19.0000*              .           .           .     14551          11847
                 19.0000*              .           .           .     14551          11846
                 19.0000*              .           .           .     14551          11845
                 19.0000*              .           .           .     14551          11844
                                      Liver Transplant Survival Rates

                                            The LIFETEST Procedure

                                             Stratum 2: GENDER = M

                     NOTE: The marked survival times are censored observations.



                            Summary Statistics for Time Variable txyearcat

                                              Quartile Estimates

                                      Point            95% Confidence Interval
                      Percent       Estimate      Transform      [Lower      Upper)

                            75         .          LOGLOG            .           .
                            50         .          LOGLOG            .           .
                            25       16.0000      LOGLOG          15.0000     16.0000



                                              Mean    Standard Error

                                            17.6839           0.0241

NOTE: The mean survival time and its standard error were underestimated because the largest
      observation was censored and the estimation was restricted to the largest event time.



                        Summary of the Number of Censored and Uncensored Values

                                                                                Percent
                    Stratum        GENDER        Total   Failed    Censored    Censored

                          1    F            34629   10078       24551       70.90
                          2    M            54007   15392       38615       71.50
                    -------------------------------------------------------------
                      Total                 88636   25470       63166       71.26
                                   Liver Transplant Survival Rates

                                            The LIFETEST Procedure

                  Testing Homogeneity of Survival Curves for txyearcat over Strata




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                 117

                                               Rank Statistics

                                                                            Modified
          GENDER       Log-Rank       Wilcoxon       Tarone        Peto         Peto   Fleming

          F              797.25       54404932     205342.7       697.88     697.87     712.69
          M             -797.25        -5.44E7      -205343      -697.88    -697.87    -712.69



                              Covariance Matrix for the Log-Rank Statistics

                                     GENDER              F             M

                                     F             5725.14       -5725.14
                                     M            -5725.14        5725.14



                              Covariance Matrix for the Wilcoxon Statistics

                                     GENDER              F             M

                                     F            2.187E13       -2.19E13
                                     M            -2.19E13       2.187E13



                               Covariance Matrix for the Tarone Statistics

                                     GENDER              F             M

                                     F            3.2996E8         -3.3E8
                                     M              -3.3E8       3.2996E8



                                   Covariance Matrix for the Peto Statistics

                                     GENDER              F             M

                                     F             3919.25       -3919.25
                                     M            -3919.25        3919.25



                           Covariance Matrix for the Modified Peto Statistics

                                     GENDER              F             M

                                     F              3919.10      -3919.10
                                     M             -3919.10       3919.10
                                         Liver Transplant Survival Rates

                              Covariance Matrix for the Fleming Statistics

                                     GENDER              F             M

                                     F             4119.94      -4119.94
                                     M            -4119.94       4119.94
                                         Test of Equality over Strata



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                              118

                                                                  Pr >
                             Test        Chi-Square      DF    Chi-Square

                             Log-Rank        111.0194     1      <.0001
                             Wilcoxon        135.3590     1      <.0001
                             Tarone          127.7890     1      <.0001
                             Peto            124.2695     1      <.0001
                             Modified Peto   124.2694     1      <.0001
                             Fleming(1)      123.2863     1      <.0001

The above results of the nonparametric tests show there is a significant difference in the survival
functions between males and females




The plot of survival function shows that over 22 years males have had longer survival rates
compared to females.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                 119




               Exercise 4.5


1. Produce a survival analysis using patient race - white, black and Hispanic - as the strata and
determine which race has the highest survival rate.
2. Produce a survival analysis using donor race - white, black and Hispanic -as the strata and
determine which race has the highest survival rate
3. Produce a survival analysis using patient age groups as the strata.




Answer to exercise 4.5-1.
/*2. Produce a survival analysis using race white, black and Hispanic
as the strata and determine which race has the highest survival rate.
.*/

proc lifetest data=liver plots =(s,c,ls, lls) cs=none;
where ethcat=1 or ethcat=2 or ethcat=4;
    time txyearcat*deceased(0);
     strata ethcat / test=(all);


        title 'Liver Transplant Survival Rates';
run;
quit;




Partial output of Proc Lifetest for Exercise 4.5-1

                                   Liver Transplant Survival Rates

                                          The LIFETEST Procedure

                                          Stratum 3: ETHCAT = 4

                                   Product-Limit Survival Estimates

                                                       Survival
                                                       Standard      Number    Number
               txyearcat       Survival    Failure      Error        Failed     Left


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                       120


                 21.0000*               .           .            .      2466      38
                 21.0000*               .           .            .      2466      37
                 21.0000*               .           .            .      2466      36
                 21.0000*               .           .            .      2466      35
                 21.0000*               .           .            .      2466      34
                 21.0000*               .           .            .      2466      33
                 21.0000*               .           .            .      2466      32
                 21.0000*               .           .            .      2466      31
                 21.0000*               .           .            .      2466      30
                 22.0000           0.5803      0.4197       0.0211      2467      29
                 22.0000*               .           .            .      2467      28
                 22.0000*               .           .            .      2467      27
                 22.0000*               .           .            .      2467      26
                 22.0000*               .           .            .      2467      25
                 22.0000*               .           .            .      2467      24
                 22.0000*               .           .            .      2467      23
                 22.0000*               .           .            .      2467      22
                 22.0000*               .           .            .      2467      21
                 22.0000*               .           .            .      2467      20
                 22.0000*               .           .            .      2467      19
                 22.0000*               .           .            .      2467      18
                 22.0000*               .           .            .      2467      17
                 22.0000*               .           .            .      2467      16
                 22.0000*               .           .            .      2467      15
                 22.0000*               .           .            .      2467      14
                 22.0000*               .           .            .      2467      13
                 22.0000*               .           .            .      2467      12
                 22.0000*               .           .            .      2467      11
                 22.0000*               .           .            .      2467      10
                 22.0000*               .           .            .      2467       9
                 22.0000*               .           .            .      2467       8
                 22.0000*               .           .            .      2467       7
                 22.0000*               .           .            .      2467       6
                 22.0000*               .           .            .      2467       5
                 22.0000*               .           .            .      2467       4
                 22.0000*               .           .            .      2467       3
                 22.0000*               .           .            .      2467       2
                 22.0000*               .           .            .      2467       1
                 22.0000*               .           .            .      2467       0

                     NOTE: The marked survival times are censored observations.



                                            Stratum 3: ETHCAT = 4




                         Summary Statistics for Time Variable txyearcat

                                              Quartile Estimates

                                      Point             95% Confidence Interval

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                         121

                       Percent        Estimate     Transform        [Lower       Upper)

                             75         .          LOGLOG            .            .
                             50         .          LOGLOG            .            .
                             25       17.0000      LOGLOG          17.0000      18.0000



                                               Mean     Standard Error

                                          18.9788                0.0538

NOTE: The mean survival time and its standard error were underestimated because the largest
      observation was censored and the estimation was restricted to the largest event time.



                        Summary of the Number of Censored and Uncensored Values

                                                                                          Percent
                   Stratum            ETHCAT           Total   Failed     Censored       Censored

                         1               1       66103   19472       46631       70.54
                         2               2        7882    2411        5471       69.41
                         3               4       10315    2467        7848       76.08
                   -------------------------------------------------------------------
                     Total                       84300   24350       59950       71.12



                   Testing Homogeneity of Survival Curves for txyearcat over Strata



                                                 Rank Statistics

                                                                               Modified
          ETHCAT       Log-Rank       Wilcoxon         Tarone           Peto       Peto        Fleming

          1              767.31       54511758        203704.2      698.36       698.35         711.22
          2               14.87       -4190729        -8535.46      -16.17       -16.17         -14.15
          4             -782.18       -5.032E7         -195169     -682.19      -682.18        -697.06



                             Covariance Matrix for the Log-Rank Statistics

                             ETHCAT                1               2                 4

                             1             4207.29          -1785.89       -2421.40
                             2            -1785.89           2096.54        -310.65
                             4            -2421.40           -310.65        2732.05



                             Covariance Matrix for the Wilcoxon Statistics

                             ETHCAT                1               2                 4

                             1            1.406E13          -5.98E12       -8.08E12
                             2            -5.98E12          6.984E12          -1E12
                             4            -8.08E12             -1E12        9.08E12



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                             122

                               Covariance Matrix for the Tarone Statistics

                           ETHCAT               1               2              4

                           1            2.2595E8          -9.602E7     -1.299E8
                           2            -9.602E7          1.1234E8     -1.632E7
                           4            -1.299E8          -1.632E7     1.4625E8

                               Covariance Matrix for the Peto Statistics

                           ETHCAT               1               2              4

                           1              2834.79      -1204.39      -1630.40
                           2             -1204.39       1410.48       -206.09
                           4             -1630.40       -206.09       1836.49
                                      Liver Transplant Survival Rates

                                         The LIFETEST Procedure

                          Covariance Matrix for the Modified Peto Statistics

                           ETHCAT               1               2              4

                           1             2834.67          -1204.34     -1630.33
                           2            -1204.34           1410.42      -206.08
                           4            -1630.33           -206.08      1836.41



                               Covariance Matrix for the Fleming Statistics

                           ETHCAT               1               2              4

                           1             2984.23          -1267.78     -1716.45
                           2            -1267.78           1485.01      -217.23
                           4            -1716.45           -217.23      1933.67

                                      Test of Equality over Strata
                                                                        Pr >
                               Test        Chi-Square         DF     Chi-Square

                               Log-Rank        226.5981        2      <.0001
                               Wilcoxon        292.7058        2      <.0001
                               Tarone          268.7596        2      <.0001
                               Peto            259.6070        2      <.0001
                               Modified Peto   259.6106        2      <.0001
                               Fleming(1)      257.1350        2      <.0001
The results of the above non-parametric tests show that there is a significant difference between
the survival functions between whites, blacks and Hispanics.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                123




This plot of survival function shows that over 22 years whites (ethcat=1) have a longer liver
transplant survival rate when compared to Hispanics (ethcat=4) and blacks (ethcat=2). It also
should be noted survival rates, over in the past five years, between blacks and whites have
almost become equal.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                       124

Answer to exercise 4.5-2.
/*2. Produce a survival analysis using doner race white, black and
Hispanic as the strata.*/

proc lifetest data=liver plots =(s,c,ls, lls) cs=none;
where ethcat_don=1 or ethcat_don=2 or ethcat_don=4;
    time txyearcat*deceased(0);
     strata ethcat_don / test=(all);


        title 'Liver Transplant Survival Rates';
run;
quit;



Partial output of Proc Lifetest for Donor Race, Exercise 4.5-2.
                                         The LIFETEST Procedure

                                         Stratum 3: ETHCAT_DON = 4

                                   Product-Limit Survival Estimates

                                                       Survival
                                                       Standard      Number   Number
               txyearcat      Survival     Failure      Error        Failed    Left

                 21.0000*           .             .           .       2473      40
                 21.0000*           .             .           .       2473      39
                 21.0000*           .             .           .       2473      38
                 21.0000*           .             .           .       2473      37
                 21.0000*           .             .           .       2473      36
                 21.0000*           .             .           .       2473      35
                 21.0000*           .             .           .       2473      34
                 21.0000*           .             .           .       2473      33
                 21.0000*           .             .           .       2473      32
                 21.0000*           .             .           .       2473      31
                 21.0000*           .             .           .       2473      30
                 21.0000*           .             .           .       2473      29
                 21.0000*           .             .           .       2473      28
                 22.0000*           .             .           .       2473      27
                 22.0000*           .             .           .       2473      26
                 22.0000*           .             .           .       2473      25
                 22.0000*           .             .           .       2473      24
                 22.0000*           .             .           .       2473      23
                 22.0000*           .             .           .       2473      22
                 22.0000*           .             .           .       2473      21
                 22.0000*           .             .           .       2473      20
                 22.0000*           .             .           .       2473      19
                 22.0000*           .             .           .       2473      18
                 22.0000*           .             .           .       2473      17
                 22.0000*           .             .           .       2473      16
                 22.0000*           .             .           .       2473      15
                 22.0000*           .             .           .       2473      14


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                125

                  22.0000*              .              .             .       2473         13
                  22.0000*              .              .             .       2473         12
                  22.0000*              .              .             .       2473         11
                  22.0000*              .              .             .       2473         10
                  22.0000*              .              .             .       2473          9
                  22.0000*              .              .             .       2473          8
                  22.0000*              .              .             .       2473          7
                  22.0000*              .              .             .       2473          6
                  22.0000*              .              .             .       2473          5
                  22.0000*              .              .             .       2473          4
                  22.0000*              .              .             .       2473          3
                  22.0000*              .              .             .       2473          2
                  22.0000*              .              .             .       2473          1
                  22.0000*              .              .             .       2473          0

                      NOTE: The marked survival times are censored observations.
                                    Liver Transplant Survival Rates

                                            The LIFETEST Procedure

                                            Stratum 3: ETHCAT_DON = 4

                             Summary Statistics for Time Variable txyearcat

                                                Quartile Estimates

                                       Point            95% Confidence Interval
                       Percent       Estimate      Transform      [Lower      Upper)

                             75         .          LOGLOG            .            .
                             50         .          LOGLOG            .            .
                             25       17.0000      LOGLOG          17.0000      18.0000



                                                Mean    Standard Error

                                            18.3210              0.0510

NOTE: The mean survival time and its standard error were underestimated because the largest
      observation was censored and the estimation was restricted to the largest event time.



                        Summary of the Number of Censored and Uncensored Values

                                                                                      Percent
                  Stratum          ETHCAT_DON          Total   Failed     Censored   Censored

                        1               1       65430   19275       46155       70.54
                        2               2       11012    2973        8039       73.00
                        3               4        9500    2473        7027       73.97
                  -------------------------------------------------------------------
                    Total                       85942   24721       61221       71.24
                                    Liver Transplant Survival Rates

                                            The LIFETEST Procedure

                   Testing Homogeneity of Survival Curves for txyearcat over Strata

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                               126



                                            Rank Statistics

         ETHCAT_                                                          Modified
         DON          Log-Rank     Wilcoxon       Tarone          Peto        Peto   Fleming

         1               1151.8    78602574     299192.2      1022.0        1022.0   1042.3
         2               -496.7    -3.326E7      -127436      -437.6        -437.6   -446.4
         4               -655.1    -4.534E7      -171756      -584.3        -584.3   -595.8



                             Covariance Matrix for the Log-Rank Statistics

                         ETHCAT_DON              1             2               4

                         1                 4685.12      -2464.48         -2220.63
                         2                -2464.48       2892.59          -428.11
                         4                -2220.63       -428.11          2648.74



                             Covariance Matrix for the Wilcoxon Statistics

                         ETHCAT_DON              1             2               4

                         1                1.616E13      -8.55E12         -7.61E12
                         2                -8.55E12      9.927E12         -1.38E12
                         4                -7.61E12      -1.38E12         8.986E12



                             Covariance Matrix for the Tarone Statistics

                         ETHCAT_DON              1             2               4

                         1                2.5531E8      -1.347E8         -1.206E8
                         2                -1.347E8        1.57E8          -2.23E7
                         4                -1.206E8       -2.23E7         1.4291E8



                              Covariance Matrix for the Peto Statistics

                         ETHCAT_DON              1             2               4

                         1                  3147.89      -1659.62        -1488.27
                         2                 -1659.62       1938.37         -278.75
                         4                 -1488.27       -278.75         1767.01
                                      Liver Transplant Survival Rates

                                         The LIFETEST Procedure

                          Covariance Matrix for the Modified Peto Statistics

                         ETHCAT_DON              1             2               4

                         1                 3147.76      -1659.55         -1488.20
                         2                -1659.55       1938.29          -278.74
                         4                -1488.20       -278.74          1766.94

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                        127



                              Covariance Matrix for the Fleming Statistics

                         ETHCAT_DON               1                2                4

                         1                  3313.76       -1746.76         -1567.00
                         2                 -1746.76        2040.94          -294.18
                         4                 -1567.00        -294.18          1861.18



                                      Test of Equality over Strata

                                                                          Pr >
                              Test          Chi-Square        DF       Chi-Square

                              Log-Rank        290.6337         2        <.0001
                              Wilcoxon        395.1013         2        <.0001
                              Tarone          361.3777         2        <.0001
                              Peto            341.4192         2        <.0001
                              Modified Peto   341.4225         2        <.0001
                              Fleming(1)      337.2794         2        <.0001




The results of the above non-parametric tests show that there is a significant difference between the
survival functions between recipients of whites, blacks and Hispanics donors.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                            128

This plot of survival function shows that over 22 years those receiving livers from white donors
(ethcat=1) have a longer liver transplant survival rate when compared to Hispanics (ethcat=4)
and blacks (ethcat=2). This has been consistent for 22 years.




/*3. Produce a survival analysis using patient age groups as the
strata. */

proc lifetest data=liver plots =(s,c,ls, lls) cs=none;
    time txyearcat*deceased(0);
     strata agecat / test=(all);


        title 'Liver Transplant Survival Rates';
run;
quit;




                                   Liver Transplant Survival Rates

                                         The LIFETEST Procedure

                                         Stratum 8: agecat = 8

                                   Product-Limit Survival Estimates

                                                      Survival
                                                      Standard    Number     Number
               txyearcat      Survival    Failure      Error      Failed      Left


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                               129


                  22.0000*           .              .             .       2325           9
                  22.0000*           .              .             .       2325           8
                  22.0000*           .              .             .       2325           7
                  22.0000*           .              .             .       2325           6
                  22.0000*           .              .             .       2325           5
                  22.0000*           .              .             .       2325           4
                  22.0000*           .              .             .       2325           3
                  22.0000*           .              .             .       2325           2
                  22.0000*           .              .             .       2325           1
                  22.0000*           .              .             .       2325           0

                      NOTE: The marked survival times are censored observations.



                             Summary Statistics for Time Variable txyearcat

                                             Quartile Estimates

                                     Point           95% Confidence Interval
                       Percent     Estimate     Transform      [Lower      Upper)

                             75      .          LOGLOG            .            .
                             50    21.0000      LOGLOG            .            .
                             25    15.0000      LOGLOG          14.0000      15.0000



                                             Mean    Standard Error

                                         17.4546              0.0663

NOTE: The mean survival time and its standard error were underestimated because the largest
      observation was censored and the estimation was restricted to the largest event time.



                        Summary of the Number of Censored and Uncensored Values

                                                                                   Percent
                  Stratum          agecat           Total   Failed     Censored   Censored

                        1               1        3070     627             2443         79.58
                        2               2        4057     847             3210         79.12
                        3               3        1513     251             1262         83.41
                        4               4        2271     463             1808         79.61
                                    Liver Transplant Survival Rates

                                         The LIFETEST Procedure

                        Summary of the Number of Censored and Uncensored Values

                                                                                   Percent
                  Stratum          agecat           Total   Failed     Censored   Censored

                        5                5           6678    1748          4930        73.82
                        6                6          27104    7795         19309        71.24
                        7                7          37656   11414         26242        69.69
                        8                8           6287    2325          3962        63.02

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                  130

                   -------------------------------------------------------------------
                     Total                       88636   25470       63166       71.26
                                     Liver Transplant Survival Rates

                                        The LIFETEST Procedure

                   Testing Homogeneity of Survival Curves for txyearcat over Strata



                                           Rank Statistics

                                                                          Modified
          agecat         Log-Rank   Wilcoxon     Tarone          Peto         Peto     Fleming

          1              -148.01    -8326456   -34721.7      -120.19       -120.19     -123.53
          2              -105.90    -4610268   -21788.7       -78.51        -78.51      -81.48
          3              -102.57    -5779113   -23844.8       -83.30        -83.30      -85.60
          4              -110.01    -5898304   -24821.2       -87.72        -87.72      -90.34
          5               139.66    16723985   51116.82       161.32        161.32      161.48
          6               806.92    52487545   207508.4       693.69        693.69      709.07
          7              -689.48    -4.725E7    -181334      -605.47       -605.46     -617.86
          8               209.39     2656151    27884.9       120.18        120.17      128.25



                             Covariance Matrix for the Log-Rank Statistics

 agecat             1           2         3          4           5            6          7          8

 1             730.48      -28.46    -10.58     -17.09     -47.90        -208.78    -355.62    -62.05
 2             -28.46      891.74    -13.05     -21.06     -59.05        -257.30    -436.66    -76.16
 3             -10.58      -13.05    339.15      -7.83     -21.94         -95.76    -161.78    -28.21
 4             -17.09      -21.06     -7.83     544.66     -35.44        -154.66    -262.75    -45.83
 5             -47.90      -59.05    -21.94     -35.44    1464.24        -432.59    -738.45   -128.87
 6            -208.78     -257.30    -95.76    -154.66    -432.59        4907.42   -3200.32   -558.02
 7            -355.62     -436.66   -161.78    -262.75    -738.45       -3200.32    6136.81   -981.23
 8             -62.05      -76.16    -28.21     -45.83    -128.87        -558.02    -981.23   1880.37



                             Covariance Matrix for the Wilcoxon Statistics

 agecat             1           2         3          4           5            6          7          8

 1             2.89E12    -1.2E11    -4.5E10   -7.12E10   -1.98E11      -8.77E11   -1.35E12   -2.32E11
 2             -1.2E11   3.577E12   -5.64E10    -8.9E10   -2.48E11       -1.1E12   -1.68E12   -2.89E11
 3             -4.5E10   -5.64E10   1.379E12   -3.35E10   -9.33E10      -4.12E11    -6.3E11   -1.09E11
 4            -7.12E10    -8.9E10   -3.35E10   2.167E12   -1.47E11      -6.52E11      -1E12   -1.73E11
 5            -1.98E11   -2.48E11   -9.33E10   -1.47E11   5.766E12      -1.82E12   -2.78E12    -4.8E11
 6            -8.77E11    -1.1E12   -4.12E11   -6.52E11   -1.82E12      1.931E13   -1.23E13   -2.13E12
 7            -1.35E12   -1.68E12    -6.3E11      -1E12   -2.78E12      -1.23E13   2.308E13   -3.31E12
 8            -2.32E11   -2.89E11   -1.09E11   -1.73E11    -4.8E11      -2.13E12   -3.31E12   6.718E12
                                     Liver Transplant Survival Rates

                                        The LIFETEST Procedure

                              Covariance Matrix for the Tarone Statistics

 agecat             1           2         3          4           5            6          7          8

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                    131


  1         42999350    -1738916        -651605   -1040061   -2895291    -1.279E7   -2.036E7   -3525283
  2         -1738916    52912751        -810452   -1292224   -3600003    -1.589E7   -2.522E7   -4364853
  3          -651605     -810452       20313772    -484178   -1348360    -5956796   -9430101   -1632280
  4         -1040061    -1292224        -484178   32224989   -2151333    -9509395   -1.513E7   -2619655
  5         -2895291    -3600003       -1348360   -2151333   85844237    -2.645E7   -4.211E7   -7291945
  6         -1.279E7    -1.589E7       -5956796   -9509395   -2.645E7    2.8866E8   -1.859E8   -3.219E7
  7         -2.036E7    -2.522E7       -9430101   -1.513E7   -4.211E7    -1.859E8   3.5044E8   -5.233E7
  8         -3525283    -4364853       -1632280   -2619655   -7291945    -3.219E7   -5.233E7   1.0395E8



                               Covariance Matrix for the Peto Statistics

  agecat            1              2         3          4           5          6          7          8

  1           507.83      -20.34         -7.60     -12.17     -33.97      -149.37    -242.31    -42.05
  2           -20.34      623.72         -9.44     -15.10     -42.16      -185.23    -299.51    -51.95
  3            -7.60       -9.44        238.78      -5.64     -15.75       -69.28    -111.68    -19.37
  4           -12.17      -15.10         -5.64     379.91     -25.20      -110.90    -179.71    -31.18
  5           -33.97      -42.16        -15.75     -25.20    1015.40      -309.15    -502.04    -87.13
  6          -149.37     -185.23        -69.28    -110.90    -309.15      3407.66   -2201.73   -382.00
  7          -242.31     -299.51       -111.68    -179.71    -502.04     -2201.73    4172.97   -635.99
  8           -42.05      -51.95        -19.37     -31.18     -87.13      -382.00    -635.99   1249.68



                           Covariance Matrix for the Modified Peto Statistics

  agecat            1              2         3          4           5          6          7          8

  1           507.81      -20.34         -7.60     -12.17     -33.97      -149.36    -242.30    -42.05
  2           -20.34      623.70         -9.44     -15.09     -42.16      -185.22    -299.49    -51.95
  3            -7.60       -9.44        238.77      -5.64     -15.75       -69.28    -111.68    -19.37
  4           -12.17      -15.09         -5.64     379.90     -25.20      -110.90    -179.71    -31.18
  5           -33.97      -42.16        -15.75     -25.20    1015.36      -309.14    -502.02    -87.13
  6          -149.36     -185.22        -69.28    -110.90    -309.14      3407.53   -2201.65   -381.98
  7          -242.30     -299.49       -111.68    -179.71    -502.02     -2201.65    4172.80   -635.96
  8           -42.05      -51.95        -19.37     -31.18     -87.13      -381.98    -635.96   1249.62



                                       Liver Transplant Survival Rates

                                           The LIFETEST Procedure

                              Covariance Matrix for the Fleming Statistics

  agecat            1              2         3          4           5          6          7          8

  1           533.17      -21.31         -7.96     -12.76     -35.61      -156.48    -254.81    -44.24
  2           -21.31      654.52         -9.88     -15.81     -44.16      -193.95    -314.77    -54.63
  3            -7.96       -9.88        250.45      -5.91     -16.50       -72.52    -117.33    -20.36
  4           -12.76      -15.81         -5.91     398.77     -26.41      -116.16    -188.93    -32.80
  5           -35.61      -44.16        -16.50     -26.41    1066.24      -323.88    -528.00    -91.68
  6          -156.48     -193.95        -72.52    -116.16    -323.88      3578.20   -2313.63   -401.58
  7          -254.81     -314.77       -117.33    -188.93    -528.00     -2313.63    4389.00   -671.53
  8           -44.24      -54.63        -20.36     -32.80     -91.68      -401.58    -671.53   1316.81




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                                        132

                                      Test of Equality over Strata

                                                                       Pr >
                             Test           Chi-Square        DF    Chi-Square

                             Log-Rank         263.8732         7      <.0001
                             Wilcoxon         268.5349         7      <.0001
                             Tarone           274.2439         7      <.0001
                             Peto             268.1175         7      <.0001
                             Modified Peto    268.1196         7      <.0001
                             Fleming(1)       267.7420         7      <.0001




The results of the above non-parametric tests show that there is a significant difference between the
survival functions between the various age groups of patients.




This plot of survival function shows that those receiving livers in age group 6-10 years old
(agecat=3) have a longer liver transplant survival rate when compared to all other age groups.

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                                                          133

The age group greater than 65 (agecat=8) has the lowest survival rate and appears to be
consistent over the 22 years.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Lecture 4-OPTN Liver Transplants                      134




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Baruch College/Mount Sinai
                  School of Medicine
              Program in Health Care
           Administration and Policy



Health Data Analysis and
                       ®
   Statistics Using SAS

                     Course Notes
                         STA9000
        Chapter 5- Office of Statewide
       Health Planning & Development
       (OSHPD) California Emergency
                     Department Data
2


Health Data Analysis and Statistics Using SAS® Course Notes was developed by Raymond R. Arons.
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.
Health Data Analysis and Statistics Using SAS® Course Note

Copyright © 2009 Raymond R. Arons. All rights reserved. Printed in the United States of America. No
part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of
the publisher, Raymond R. Arons, Teaneck, New Jersey.

Prepared date 7Aug09.




                                         TABLE OF CONTENTS
Chapter 5-OSPHD Emergency Department                                                       3

 Objectives of Chapter                                                                 4

Section – 1 The Office of Statewide Health Planning and Development (OSPHD) – Putting
             the Pieces Together                                                      5
Section 2 - Using OSHPD Data to Understand Health and Healthcare Patterns:
           Descriptive Reports and Research Briefs                                   14
Section 3 – Using the National Hospital Ambulatory Medical Care Survey (NHAMCS)
               data for injury analysis, 2004                                        18
Section 4 – OSPHD Public Use Data Variables                                          22
Section 5 - Emergency Department and Ambulatory Surgery Center File Documentation    23
Demonstration 1 OSPHD California 2007 Emergency Department Data PROC Format,
Labels, PROC Contents, and PROC Freq Statements                                      33
Exercise 5.1                                                                         51
Demonstration 2 SAS Code for OSPHD Indicator and Truth Logic Variables with
PROC MEANS and PROC TABULATE                                                          66
Exercise 5.2                                                                         73

Demonstration 3 Multiple Linear Regression Model of California ED visits with the    response
variable of Patient Age (age_years)                                             87

Exercise 5.3                                                                          89
Demonstration 4 Logistic Regression Model of California Self Pay Emergency Department
Visits                                                                                93
Exercise 5.4                                                                         98




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                4




                            Office of Statewide Health
                            Planning & Development
                            (OSHPD) California
                            Emergency Department
                            Data

                            Lecture 5




     Objectives
         Provide an overview of Office of Statewide Health
         Planning & Development (OSHPD) California
         Emergency Department Data
         Review the available descriptive data that is provided
         in the annual 2007 OSPHD reports.
         Review the variables and their definitions that exist on
         the (OSHPD) California Emergency Department Data
         OPTN Liver transplantation data files.
         Identify the additional information that can be obtained
         from the raw data.
         Pose the range of potential study questions.
         Write SAS code to analyze the OSPHD data.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                       5




          The Office of
          Statewide Health
          Planning and
          Development
                                         David M. Carlisle, MD,
                                           PhD
                                         Director, OSHPD

                                         Ron Spingarn
                                         Deputy Director,
                                         Healthcare Information Division




     Office of Statewide Health
     Planning and Development
         456 Employees
         Annual Budget of $88.9 million
         Offices in Sacramento and Los Angeles
         Five Divisions and Five Boards/Commissions




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                    6



 OSHPD in the California
 Government Hierarchy
                                      Governor


                                   Health & Human
             CPHS                     Services


               Health
                            Social       Mental                            Public
                Care
                           Services      Health         OSHPD
              Services                                                     Health

    Other CHHS Departments: Aging, Alcohol and Drug Programs, Child Support Services,
    Community Services and Development, Developmental Services, Emergency Medical
    Services Authority, Managed Risk Medical Insurance Board, and Rehabilitation




     OSHPD History

        Created as a result of the break up of the
        Department of Public Health in 1978.
      Responsible for:
        Hospital construction and plan review.
        Collection and dissemination of healthcare
        information.
        Collection and reporting of outcome data on selected
        medical conditions and procedures.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                           7




      Origin of OSHPD’s Data Collection

      OSHPD data and quality programs have evolved over
      more than three decades.
      1971 -- SB 283 established California Hospital Disclosure
      Act, created California Hospital Commission (CHC)
         To set standards for hospital uniform accounting &
         reporting
         To prepare for hospital rate setting as means of
         health care cost control
         Allow scrutiny of financial aspects of CA hospitals
         Data collection began in July 1974.




Thanks to Michael Kassis for compiling this historical information!



      Data Collection (continued)
      1974 -- CHC’s jurisdiction expanded, mandating uniform accounting
      and reporting system for long-term care (LTC) facilities
          CHC renamed the California Health Facilities Commission
          (CHFC) reflecting broadened responsibilities
          LTC data collection began for FYs starting on or after 1/1/1977
      1980 -- SB 1370 added responsibilities:
          Collect quarterly financial and utilization data to assess success
          of hospital industry’s voluntary effort to contain costs
          Integrate CHFC’s LTC disclosure report with Medi-Cal cost
          report to reduce reporting burden on health facilities
          Collect 12 discharge data elements on hospital inpatients to
          inform understanding of the characteristics of care rendered by
          hospitals
          Submission of quarterly financial, patient-level data began in
          1981




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                                 8




      Data Collection (continued)

      1982 -- AB 3480 expanded inpatient discharge data
      elements
         Total charges, other diagnoses, other procedures and
         dates, date of principal procedure, starting 1/1/1983.
         Option to report the Abstract (Medical) Record
         Number.
      1984 -- SB 181: Health Data and Advisory Council
      Consolidation Act
         Transferred functions of CHFC to OSHPD, eliminated
         State Advisory Health Council and formed advisory
         body (California Health Policy and Data Advisory
         Commission -- CHPDAC)



OSHPD Data and Quality Measurement History
1985 -- AB 2011 (Chapter 1021) required hospitals to submit hospital inpatient discharge data
semiannually, not later than six months after the end of each semiannual period commencing six months
after January 1, 1986.
1988 -- SB 2398 (Chapter 1140) added external cause of injury and patient social security number
effective with discharges on July 1, 1990.
1991 -- AB 524 - Bronzan (Chapter 1075) established the California Hospital Outcomes Project (CHOP)
in order to promote and conduct risk adjusted outcome studies of hospitals and strengthen patient
discharge data through additions or changes. The bill also created the Technical Advisory Committee
(TAC) within CHPDAC.
SB 697 - Torres (Chapter 812) required private not-for-profit hospitals to develop and annually submit
community benefits plans that include a description of the activities that the hospital has undertaken in
order to address identified community needs within its mission and financial capacity, and the process by
which the hospital developed the plan in consultation with the community. Submission of plans began
with fiscal years ending in 1995.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                               9




     Our Vision:
                           “Equitable Healthcare
                         Accessibility for California”




     OSHPD’s Divisions


                                                 Workforce
                        Facilities              Development
                       Development
         Healthcare
         Professions
          Education
         Foundation
                                     OSHPD
                Cal-Mortgage                            Healthcare
                    Loan                               Information
                 Insurance


                                     Administration
                                                        Plus Six Advisory Bodies




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                         10




     Major Challenges – Policy:
          Ensuring Patient Confidentiality and Secure Data
          Informing the Public and Policy-Makers to Help
          Ensure Access to Healthcare
          Assessing Quality of Care
          Enforcing Seismic Safety




     Shifting Landscape
          New Legislators
          Hospital Construction
          Healthcare Reform (state & federal)
          New Federal Administration
          Economic Stimulus Package for CA
          Healthcare Information Technology




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                                         11




      Facilities Development Division


     Reviews plans and
      inspects health facility
      construction projects to
      ensure compliance
      with building
      standards.

     Ensures patient safety in
      these facilities in the
      event of an earthquake
      or other disaster.




The 1971 San Fernando, California, earthquake (magnitude 6.7) severely damaged the recently built
Olive View Hospital. This building was not instrumented with seismic sensors. Accordingly, no data were
obtained to understand how the damage initiated and progressed during the intense shaking. The building
was razed and replaced with a stronger structure that survived the 1994 Northridge earthquake.


Most loss of life and property in earthquakes is the result of damage to or collapse of buildings or other
structures from strong shaking. Key to reducing such losses are recordings of structural response to
damaging levels of shaking. Using these recordings, engineers can better design new buildings and
strengthen existing buildings to survive future quakes. The U.S. Geological Survey (USGS) and
cooperators are engaged in a national effort to acquire these critically needed strong-motion
measurements in earthquake-prone urban areas.


http://pubs.usgs.gov/fs/2003/fs068-03/




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                 12




     Healthcare Information Division
   Collects and maintains data
   from California- licensed:
       Hospitals
       Long-term care facilities
       Home health agencies
       Hospices, and
       Primary care and specialty
       clinics




     Healthcare Information Division

                                                 Workforce
                        Facilities              Development
                       Development
         Healthcare
         Professions
          Education                                              Healthcare
         Foundation
                                     OSHPD
                                                                 Outcomes
                                                                  Center
                Cal-Mortgage                            Healthcare
                    Loan                               Information
                 Insurance
                                                                              ARSS

                                     Administration
                                                               PDS
                                                      DMO              HIRC




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                   13




     Healthcare Outcomes Center




    Produces:
       Risk-adjusted outcome reports, assessing quality of care of
       hospitals and surgeons for Coronary Artery Bypass Graft
       (CABG) Surgery and Community-Acquired Pneumonia
        Inpatient Mortality Indicators (currently on 8 conditions or
        procedures)




     OSPHD Contacts

             Visit our Web site at:
                     www.oshpd.ca.gov
             or contact us at:
                 Ombudsman@oshpd.ca.gov




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                             14




    Using OSHPD Data to
    Understand Health and
    Healthcare Patterns:
    Descriptive Reports and
    Research Briefs




                                               Presenter:
                                               Mary Tran, PhD,
                                                 MPH



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                               15




    Kinds of healthcare information you can find in
    the data
    Patient information:
        Demographics, source of admission, and area of residence
        Diagnoses, procedures, type of discharge
        Source of payment, length of stay, charges

    Facility information:
        Hospital type of ownership, capacity, financing
        Staffing ratios, time on diversion
        Area of location

    Examples of possible linkages, with IRB approvals:
       Hospitalization records with death certificates
       Hospitalization records with outpatient visits
       Multiple hospitalizations over time for the same patient




     Examples of subjects you can address:


         Specific types of illness or injury that are leading to
         hospitalization—trends, demographics, geography
         How patients are utilizing the healthcare system (who
         goes where for what kind of care?)
         Reflections of public health trends (as revealed by
         patterns of hospitalization or ED visits)
         Trends in sources of payment for healthcare
         Tracking capacity of the healthcare system




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                                                                                            16




      Examples of analyses from
      OSHPD reports




     How many episodes of care happen in ED,
     compared to hospitalizations?
      Patient Profile Report, 2005

                   ED-Visits only                                                                                                                   8,556,699




         ASC-Hospital associated                                1,738,755




              ASC-Free standing                         1,052,398




        Inpatient-Physical Rehab         36,309



              Inpatient-Chemical
                                         13,538
                 Dependency


             Inpatient-Psychiatric         197,822                    Total Inpatient: 3,990,255
                                                                      Total ASC Free-standing + Hospital-associated: 2,831,212
                                                                      Total ED Visits + Admissions: 10,182,025
                   Inpatient-SNF         68,714




                   Inpatient-GAC                                                        3,673,824


                                     0            1,000,000    2,000,000    3,000,000   4,000,000   5,000,000   6,000,000   7,000,000   8,000,000   9,000,000




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                                                                          17




   Do urban areas make
   more use of emergency
   rooms for medical care?
   Patient Profile Report, 2005




 Are the same types of procedures routinely
 performed in inpatient vs. outpatient settings?
  Patient Profile Report, 2005
                 Top 10 Procedures for Inpatient and Outpatient Encounters. California, 2005
                                                        GENERAL ACUTE           ASC FREE-         ASC HOSPITAL          EMERGENCY
                                                            CARE                STANDING             BASED              DEPARTMENT

     Principal Procedure (CCS Code)
                                                           F         M         F         M         F         M           F           M
     Other procedures to assist delivery                 239,767
     Cesarean section                                    163,197
     Repair of current obstetric laceration               55,651
     Hysterectomy, abdominal and vaginal                  49,647
     Respiratory intubation, mechanical ventilation       35,436     39,091
     Blood transfusion                                    34,224     25,586
     Upper gastrointestinal endoscopy, biopsy             34,025     30,266    54,451    38,031    64,570    46,700
     Prophylactic vaccinations and inoculations           31,789     23,531
     Forceps, vacuum, and breech delivery                 30,211
     Episiotomy                                           29,136
     Circumcision                                                    55,094
     PTCA                                                            38,471
     Appendectomy                                                    23,304
     Cardiac catheterization                                         23,116                                  22,632
     Other vascular catheterization, not heart                       20,415
     Colonoscopy and biopsy                                                   151,050   130,478   124,217   107,128
     Lens and cataract procedures                                              80,454    52,988    65,994    44,443
     Insertion of catheter, injection to spinal canal                          73,888    57,198    37,955    26,574
     OR procedures on skin and breast                                          27,242              18,177
     Procedures on muscles and tendons                                         14,104    13,879              17,542
     Excision of semilunar cartilage of knee                                   13,776    18,385              20,742
     Procedures on eyelids, conjunctiva, cornea                                13,163     8,254
     Decompression peripheral nerve                                            11,781
     Other OR therapeutic procedures on joints                                 10,348    12,405
     Inguinal and femoral hernia repair                                                   8,544              36,896
     Arthroplasty other than hip or knee                                                  6,177
     Excision of skin lesion                                                                                 15,268
     Lumpectomy, quadrantectomy of breast                                                          30,977
     Cholecystectomy                                                                               22,449
     D and C after delivery                                                                        18,617
     Pathology                                                                                     18,450
     Interview, evaluation, consultation                                                                              1,181,059   1,034,969
     Laboratory - Chemistry and Hematology                                                                              142,021      99,541
     Suture of skin and subcutaneous tissue                                                                              92,509     185,634
     Traction, splints, and other wound care                                                                             78,742      95,264
     Diagnostic radiology                                                                                                78,115      80,593
     Routine chest X-ray                                                                                                 49,284      45,036
     Electrocardiogram                                                                                                   39,638      30,630
     Microscopic examination                                                                                             38,500      22,573
     Incision and drainage (skin, subQ)                                                                                  23,512      28,540
     Total number of encounters                         1,477,340   908,067   590,471   454,982   968,245   761,625   2,209,650   2,015,345




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                             18




     Other OSPHD reports in the pipeline

         HIV/AIDS: Trends in Hospital and Emergency Room
         Patients
         Gunshot Wounds: Trends in Hospital and Emergency
         Room Patients
         Emergency Rooms: Patterns of Utilization
         Status of California’s Safety Net




Section 3- Using the National Hospital Ambulatory Medical Care Survey (NHAMCS)
        data for injury analysis, 2004                                       l




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                                  19




Linda McCaig, Ambulatory Care Statistics Branch, Division of Health Care Statistics, Using National
Hospital Ambulatory Medical Care Survey (NHAMCS) data for injury analysis, 2004




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                 20




 Highlights From the 1994-2004 National Hospital
 Ambulatory Surgery Survey (NHAMCS)




                                                      continued...




 Highlights From the 2004 National Hospital
 Ambulatory Surgery Survey (NHAMCS)




                                                      continued...




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                 21




     Highlights From the 2004 National Hospital
     Ambulatory Surgery Survey (NHAMCS)




                                                      continued...




   Highlights From the 2004 National Hospital
   Ambulatory Surgery Survey (NHAMCS)




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                  22




     OSPHD Public Use Data Variables
          Facility Identification Number
          Patient Type (Am-Surg. or ED)
          License Type
           – Free standing
           – Hospital Based
          Age in Years (at admission)
          Age Range (20 Categories)
          Age Range (5 Categories)
          Gender                                                 N
          Ethnicity                                              u
                                                                 m
          Race
                                                                 b
                                                                 er
                                                       continued...
                                                                 of



     OSPHD Public Use Data Variables
          Patient Zip Code (first 3 digits)
          Patient County
          Quarter of Year Service
          Patient Disposition
          Expected Source of Payment
          Principal External Cause of Injury –E-Code
          Other External Cause of Injury - E-Code
          Principal Diagnosis
          Other Diagnosis
          Principal Procedure
          Other Procedures




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                       23



                           INTRODUCTION




Emergency Department and Ambulatory Surgery Center



                              File Documentation

                Public Version July – December 2007



                                  SAS (version 9.1) File
                             Comma-Delimited Text File




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                                 24



                                 INTRODUCTION
    General Information:
The California Office of Statewide Health Planning and Development (OSHPD) provides public
datasets of data collected from licensed emergency departments and ambulatory surgery
centers in California. The ambulatory surgery data includes both hospital-based and
freestanding clinics. Each record within the dataset consists of one outpatient encounter, also
known as a service visit, for each time a patient is treated. Data collected for these encounters
include demographic, clinical, payment, and facility information.
The public data is released twice a year by OSHPD once it has been screened by the automated
reporting software (MIRCal) and corrected by the individual facilities. Separate public files are
available for emergency departments and ambulatory surgery center encounters. Because of its
size, the emergency department data is divided into three separate files based on the geographic
location of the facility as indicated below:
              •        Los Angeles County
              •        Southern California (seven counties, not including Los Angeles)
              •        Northern California (50 counties)


Masked Variables:
To protect patient confidentiality, records with unique combinations of certain demographic
variables will have one or more of those variables masked to make sure the files are de-
identified. In most cases, masking involves defaulting the variable to blank or missing. Each
unique record will have the minimum number of fields masked to ensure it is no longer unique.

The variable masking occurs in the following order:
    ORDER OF
                  DATA FIELDS SUBJECT TO MASKING
    MASKING
         1st      Age in years (on service date)
        2nd       Ethnicity
        3rd       Race
         4th      Sex
         5th      Age Category 20 (20 Age Categories)
         6th      Age Category 5 (5 Age Categories)
         7th      Service Quarter
         8th      Patient ZIP Code (5-digit)*
         9th      Small County Groups**
        10th      Patient ZIP Code (3-digit)* *Five-digit ZIP will be masked to three-digits; if record is
                  still unique, ZIP will be totally masked with an asterisk.




                  **Small counties with total populations of 30,000 or less are grouped into 3 categories:
                  Central (CE), Northeastern (NE), and Northwestern (NW). Listings of small counties
                  for each reporting year are provided in Appendix A along with the number of records
                  that were masked by variable.

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA 10
                                                 3 of
Chapter 5-OSPHD Emergency Department                                                            25



Modifications and Variant Action Reports:
Some facilities have applied for and been granted "modifications" to standard emergency
department or ambulatory surgery data reporting requirements. Other facilities were unable to
complete specific fields as required and were deemed "non-compliant" at the time of reporting.
See Appendix B (Data Exceptions and Modifications) for a listing of all non-compliant facilities
and those with approved modifications and their affected variables.

Importing Notes:
There are several fields that although they appear to contain numeric data, should be treated as
text. This is particularly important when working with diagnosis and procedure codes. These
fields are comprised of ICD-9-CM (diagnosis) and CPT (procedure) codes. Diagnosis and
procedure codes are stored without decimals and many contain leading zeros. For example,
the ICD-9-CM code for Salmonella Gastroenteritis is “003.0” (implied decimal following the third
digit from the left). If it is not formatted as text, the leading zeros may be dropped and the code
will appear as “30”, an invalid diagnosis code.

File Format:
In the comma-delimited set, the length of each field and the length of each record will vary
according to the data reported. To assist you in using the comma delimited patient-level
datasets, a header row identifying each data element is provided in the position of the first
record. The SAS data set was created using SAS version 9.1 for Windows.

The attributes for each data field is provided below.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                                26



                                        File Documentation
 Facility Identification Number
        Field Name: Fac_ID Definition: A unique six-digit identifier assigned to each
 facility by the Office of Statewide Health Planning and Development. The first two digits
 indicate the county in which the facility is located. The last four digits are unique within
 each county. A list of facility numbers and their names are provided in Appendices C
 (emergency departments) and D (ambulatory Surgery centers). Variable Type:
 Character Variable Length: 6



 Patient Type

Field Name: Pat_Type Definition: A one character filed that indicates the type of facility
where a particular patient encounter occurred. A represents Ambulatory Surgery Center
and E represents Emergency Department. Variable Type: Character Variable Length: 1




 License Type

Field Name: Lic_Type Definition: The license type of the reporting facility where C=Clinic and
H=Hospital. For Ambulatory Surgery Centers, this variable can be used to distinguish
between freestanding surgery centers and hospital based clinics. Variable Type: Character
Variable Length: 1



 Age in Years (at Admission)
 Field Name: Age_Yrs Definition: Age of the patient at the time of service. This is based on
 the reported service data and patient’s date of birth. If the date of birth is unknown or invalid,
 the age in years is set to “0”. Variable Type: Numeric Variable Length: 3




 Age Range (20 categories)
 Field Name: agecat20 Definition: Age range (based on 20 categories) of the patient at the time of
 service. 01 = Under 1 year 11 = 45–49 years 02 = 1–4 years 12 = 50–54 years 03 = 5–9 years 13 =
 55–59 years



 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                         27



       04 = 10–14 years 14 = 60–64 years 05 = 15–19 years
       15 = 65–69 years 06 = 20–24 years 16 = 70–74 years
       07 = 25–29 years 17 = 75–79 years 08 = 30–34 years
       18 = 80–84 years 09 = 35–39 years 19 = 85 years or
       greater 10 = 40–44 years 00 = Unknown age




Variable   Type:     Character
Variable Length: 2

Age Range (5 categories)
Field Name: agecat20 Definition: Age range (based on 5 categories) of the patient at the
time of service. 1 = Under 1 year 4 = 35–64 years 2 = 1–17 years 5 = 65 years or greater 3
= 18–34 years 0 = Unknown Age Variable Type: Character Variable Length: 1




Gender
Field Name: Sex Definition: Gender of the patient at time of service. M = Male F =
Female U = Unknown / Invalid Variable Type: Character Variable Length: 1




Ethnicity
Field Name: Eth Definition: Ethnicity (self reported) of the patient. E1 = Hispanic E2 =
Non-Hispanic 99 = Unknown / Invalid / Blank Variable Type: Character Variable
Length: 2




Race
Field Name: Race Definition: Patient’s racial background (self-
reported). R1 = American Indian / Alaskan Native

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                         28



R2 = Asian R3 = Black / African American R4 = Native Hawaiian / Other Pacific
Islander R5 = White R9 = Other Race 99 = Unknown / Invalid / Blank Variable
Type Character Variable Length 2




Patient Zip Code
      Field Name: Patzip Definition: The patient’s 5-digit Zip Code of residence. If the Zip Code
is unknown it is assigned a value of 99999. In the masking process the Zip Code may be
masked at the 3-digit level (i.e. first 3 digits) Variable Type: Character Variable Length: 5




Patient County
Field Name: Patco Definition: The patient’s county of residence. OSHPD assigns the county of
residence based on the patient’s reported Zip Code. Invalid, blank and unknown zip codes are
assigned a county code value of 00. Counties with populations of less than 30,000 residents
are assigned to one of three small county codes. 01 = Alameda 21 = Marin 42 = Santa Barbara
03 = Amador 23 = Mendocino 43 = Santa Clara 04 = Butte 24 = Merced 44 = Santa Cruz 05 =
Calaveras 27 = Monterey 45 = Shasta 06 = Colusa 28 = Napa 47 = Siskiyou 07 = Contra Costa
29 = Nevada 48 = Solano 09 = El Dorado 30 = Orange 49 = Sonoma 10 = Fresno 31 = Placer
50 = Stanislaus 11 = Glenn 33 = Riverside 51 = Sutter 12 = Humboldt 34 = Sacramento 52 =
Tehama 13 = Imperial 35 = San Benito 53 = Trinity 15 = Kern 36 = San Bernardino 54 = Tulare
16 = Kings 37 = San Diego 55 = Tuolumne 17 = Lake 38 = San Francisco 56 = Ventura 18 =
Lassen 39 = San Joaquin 57 = Yolo 19 = Los Angeles 40 = San Luis Obispo 58 = Yuba 20 =
Madera 41 = San Mateo 00 = Unknown / Invalid CE = Alpine, Inyo, Mariposa & Mono Counties
combined NE = Del Norte, Modoc, Plumas & Sierra Counties combined NW = Colusa, Glenn &
Trinity Counties combined Variable Type: Character Variable Length: 2




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                           29




Quarter of Service
Field Name: Serv_Q Definition: The calendar quarter when service
was provided.
      1 = January - March
      2 = April - June
      3 = July - September
      4 = October - December
Variable   Type:     Character
Variable Length: 1

Disposition
Field Name: Dispn Definition: The consequent arrangement or event ending a patient’s
encounter in the reporting facility. 01 = Discharged to home of self care (routine discharge) 02
= Discharged/Transferred to a short term general care hospital or inpatient care 03 =
Discharged/Transferred to a skilled nursing facility with Medicare certification 04 =
Discharged/Transferred to an intermediate care facility 05 = Discharged/Transferred to
another type of institution not on this list 06 = Discharged/Transferred home under the care of
a home health service organization 07 = Left or discontinued care against medical advice 20 =
Died 43 = Discharged/Transferred to a federal health care facility 50 = Discharged home with
hospice care 51 = Discharged to a medical facility with hospice care 61 =
Discharged/Transferred to a hospital-based Medicare approved swing bed 62 =
Discharged/Transferred to an inpatient rehabilitation facility or unit of a hospital 63 =
Discharged/Transferred to a Medicare certified long term care hospital 64 =
Discharged/Transferred to a nursing facility certified under Medicaid but not Medicare 65 =
Discharged/Transferred to a psychiatric hospital or unit of a hospital 66 =
Discharged/Transferred to a critical access hospital 00 = Other 99 = Invalid / Blank Variable
Type: Character Variable Length: 2




Expected Source of Payment
Field Name: payer Definition: The type of entity or organization expected to pay
the greatest share of the
                  patient’s bill. For a complete list of definitions for these payers see
                  Appendix E.
     09 = Self Pay
     11 = Other Non-federal Programs
     12 = Preferred Provider Organization (PPO)
Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                           30



 13 = Point of Service (POS) 14 = Exclusive Provider Organization (EPO) 16 = Health
 Maintenance Organization (HMO) Medicare Risk AM = Automobile Medical BL = Blue Cross
 / Blue Shield CH = CHAMPUS (TRICARE) CI = Commercial Insurance Company DS =
 Disability HM = Health Maintenance Organization MA = Medicare Part A MB = Medicare
 Part B MC = Medi-Cal (California’s Medicaid program) OF = Other Federal Program TV =
 Title V VA = Veterans Affairs Plan WC = Workers’ Compensation Health Claim 00 = Other
 99 = Invalid / Unknown Variable Type: Vharacter, Variable Length 2




 External Cause of Injury - Principal E-Code
 Field Name: EC_Prin Definition: The external cause of injury or poisoning or adverse effect
 code (E800E999) which describes the mechanism that resulted in the most severe injury,
 poisoning, or adverse effect related to the encounter. An E-code is to be included for the first
 reported encounter during which the injury, poisoning, or adverse effect was first diagnosed
 and/or treated. If a patient was first diagnosed in a doctor’s office and then sent to an ED or AS
 facility, the E-code is to be reported on the ED or AS record. They are coded according to the
                                                                      rd
 ICD-9-CM. Variable Type: Character (implied decimal after the 3 character from the left)
 Variable Length: 5 (7 for SAS variables)




 External Cause of Injury - Other E-Code (up to 4)

Field Name(s): EC1 – EC4 Definition: The additional external cause of injury or poisoning or
adverse effect codes (E800-E999) that completely describe the mechanisms that contributed to,
or the causal events surrounding, any injury, poisoning, or adverse effect. Up to 4 other E-
codes should be included for the first reported encounter during which the injury, poisoning, or
adverse effect was first diagnosed and/or treated. If a patient was first diagnosed in a doctor’s
office and then sent to an ED or AS facility, the E-code is to be reported on the ED or AS




 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                             31




Principal Diagnosis
Field Name(s):         Dx_Prin
Definition:   The condition, problem, or other reason established to be the chief cause of the
encounter. Procedures are coded according to the Current Procedural Terminology (CPT). The
version used depends on the year the encounter was reported. They are coded according to the
                                                                     rd
ICD-9-CM Variable Type: Character (implied decimal after the 3 character from the Variable
Length: 5 (7 for SAS variables)


Other Diagnoses (up to 24)
Field Name(s):         Odx1-Odx24
 Definition:   All conditions that coexist at the time of the encounter for emergency or
 ambulatory surgery care, that develop subsequently during the encounter, or that affect the
 treatment received. They are coded according to the ICD9-CM. Variable Type: Character
                             rd
 (implied decimal after the 3 character from the left)
 Variable Length: 5 (7 for SAS variables)



Principal Procedure
Field Name(s):         Pr_Prin
Definition:    The procedure that is surgical in nature, or carries a procedural risk, or carries
an anesthetic risk and is most closely related to the principal diagnosis, as the chief reason for
the encounter. Procedures are coded according to the Current Procedural Terminology (CPT).
The version used depends nd the year the encounter was reported Variable Type: Character
                            on
                                                   .
(implied decimal after the 2 character from the left)
Variable Length: 4 (5 for SAS variables)


Other Procedures (up to 20)
Field Name(s):         Opr1-Opr20
Definition:    All other procedures, related to the encounter, which are surgical in nature, carry
a procedural risk, or carry an anesthetic risk. Procedures are coded according to the Current
Procedural Terminology (CPT). The version used depends on the year the encounter was
                                                                nd
reported Variable Type: Character (implied decimal after the 2 character from the left)
Variable Length: 4 (5 for SAS variables)




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                            32



Modifications and Variant Action Reports:
Some facilities have applied for and been granted "modifications" to standard emergency
department or ambulatory surgery data reporting requirements. Other facilities were unable to
complete specific fields as required and were deemed "non-compliant" at the time of reporting.
See Appendix B (Data Exceptions and Modifications) for a listing of all non-compliant facilities
and those with approved modifications and their affected variables.

Importing Notes:
There are several fields that although they appear to contain numeric data, should be treated as
text. This is particularly important when working with diagnosis and procedure codes. These
fields are comprised of ICD-9-CM (diagnosis) and CPT (procedure) codes. Diagnosis and
procedure codes are stored without decimals and many contain leading zeros. For example,
the ICD-9-CM code for Salmonella Gastroenteritis is “003.0” (implied decimal following the third
digit from the left). If it is not formatted as text, the leading zeros may be dropped and the code
will appear as “30”, an invalid diagnosis code.

File Format:
In the comma-delimited set, the length of each field and the length of each record will vary
according to the data reported. To assist you in using the comma delimited patient-level
datasets, a header row identifying each data element is provided in the position of the first
record. The SAS data set was created using SAS version 9.1 for Windows.

The attributes for each data field is provided below.




.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA 10
                                                 3 of
Chapter 5-OSPHD Emergency Department                                                           33




             1. OSPHD California 2007 Emergency Department Data
             PROC Format, Labels, PROC Contents, and PROC Freq
             Statements
        oshpd01.sas

The program below contains the basic structure for a SAS analysis of the OSPHD Emergency
Department. PROC Format provides the names of the values of the variables, PROC Contents
yields the specifications of your data set, and PROC Freq provides the frequency distributions of
each of the variables. In most instances, the PROC Formats are partial lists of the actual code
due to their size.

/*oshpd01.sas*/

proc format;

    value $diag3df

        '001'='(001)      Cholera'
        '002'='(002)      Typhoid and paratyphoid fevers'
        '003'='(003)      Other salmonella infections'
        '004'='(004)      Shigellosis'
        '005'='(005)      Other food poisoning (bacterial)'
        '006'='(006)      Amebiasis'
        '007'='(007)      Other protozoal intestinal dise...'
        '008'='(008)      Intestinal infections due to ot...'
        '009'='(009)      Ill-defined intestinal infections'
        '010'='(010)      Primary tuberculous infection'
        '011'='(011)      Pulmonary tuberculosis'
        '012'='(012)      Other respiratory tuberculosis'
        '013'='(013)      Tuberculosis of meninges and ce...'
        '014'='(014)      Tuberculosis of intestine/perit...'
        '015'='(015)      Tuberculosis of bones and joints'
        '016'='(016)      Tuberculosis of genitourinary s...'
        '017'='(017)      Tuberculosis of other organs'
        '018'='(018)      Miliary tuberculosis'
        '020'='(020)      Plague'
        '021'='(021)      Tularemia'
        '022'='(022)      Anthrax'
        '023'='(023)      Brucellosis'
        '024'='(024)      Glanders'
        '025'='(025)      Melioidosis'
        '026'='(026)      Rat-bite fever'
        '027'='(027)      Other zoonotic bacterial diseases'
        '030'='(030)      Leprosy'
        '031'='(031)      Diseases due to other mycobacteria'
        '032'='(032)      Diphtheria'
        '033'='(033)      Whooping cough'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                            34

        '034'='(034)      Streptococcal sore throat and s...'
        '035'='(035)      Erysipelas'
        '036'='(036)      Meningococcal infection'
        '037'='(037)      Tetanus'
        '038'='(038)      Septicemia'
        '039'='(039)      Actinomycotic infections'
        '040'='(040)      Other bacterial diseases'
        '041'='(041)      Bacterial infec in conditns cla...'
        '042'='(042)      Human immunodeficiency virus in...'
        '043'='(043)      Human immunodeficiency virus in...'
        '044'='(044)      Other human immunodeficiency vi...'
        '045'='(045)      Acute poliomyelitis'
        '046'='(046)      Slow virus infection of central...'
        '047'='(047)      Meningitis due to enterovirus'
        '048'='(048)      Other enterovirus diseases of c...'
        '049'='(049)      Oth non-arthropod-borne viral d...'
        '050'='(050)      Smallpox'
        '051'='(051)      Cowpox and paravaccinia'
        '052'='(052)      Chickenpox'
        '053'='(053)      Herpes zoster'
        '054'='(054)      Herpes simplex'
        '055'='(055)      Measles'
        '056'='(056)      Rubella'
        '057'='(057)      Other viral exanthemata'
        '060'='(060)      Yellow fever'
        '061'='(061)      Dengue'
        '062'='(062)      Mosquito-borne viral encephalitis'
        '063'='(063)      Tick-borne viral encephalitis'
        '064'='(064)      Viral encephalitis transmitted ...'
        '065'='(065)      Arthropod-borne hemorrhagic fever'
        '066'='(066)      Other arthropod-borne viral dis...'
        '070'='(070)      Viral hepatitis'
        '071'='(071)      Rabies'
        '072'='(072)      Mumps'
        '073'='(073)      Ornithosis'
        '074'='(074)      Specific diseases due to Coxsac...'
        '075'='(075)      Infectious mononucleosis'
        '076'='(076)      Trachoma'
        '077'='(077)      Other diseases of conjunctiva d...'
        '078'='(078)      Other diseases due to viruses a...'
        '079'='(079)      Viral infection in conditns cla...'
        '080'='(080)      Louse-borne [epidemic] typhus'
        '081'='(081)      Other typhus'
        '082'='(082)      Tick-borne rickettsioses'
        '083'='(083)      Other rickettsioses'
        '084'='(084)      Malaria'
        '085'='(085)      Leishmaniasis'
        '086'='(086)      Trypanosomiasis'
        '087'='(087)      Relapsing fever'
        '088'='(088)      Other arthropod-borne diseases'
;

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                           35



    value    $ecodef

               'E8000'='E8000      RR COLLISION NOS-EMPLOY'
               'E8001'='E8001      RR COLL NOS-PASSENGER'
               'E8002'='E8002      RR COLL NOS-PEDESTRIAN'
               'E8003'='E8003      RR COLL NOS-PED CYCLIST'
               'E8008'='E8008      RR COLL NOS-PERSON NEC'
               'E8009'='E8009      RR COLL NOS-PERSON NOS'
               'E8010'='E8010      RR COLL W OTH OBJ-EMPLOY'
               'E8011'='E8011      RR COLL W OTH OBJ-PASNGR'
               'E8012'='E8012      RR COLL W OTH OBJ-PEDEST'
               'E8013'='E8013      RR COLL W OTH OBJ-CYCL'
               'E8018'='E8018      RR COL W OTH OBJ-PER NEC'
               'E8019'='E8019      RR COL W OTH OBJ-PER NOS'
               'E8020'='E8020      RR ACC W DERAIL-EMPLOYEE'
               'E8021'='E8021      RR ACC W DERAIL-PASSENG'
               'E8022'='E8022      RR ACC W DERAIL-PEDEST'
               'E8023'='E8023      RR ACC W DERAIL-PED CYCL'
               'E8028'='E8028      RR ACC W DERAIL-PERS NEC'
               'E8029'='E8029      RR ACC W DERAIL-PERS NOS'
               'E8030'='E8030      RR ACC W EXPLOSION-EMPL'
               'E8031'='E8031      RR ACC W EXPLOS-PASNGR'
               'E8032'='E8032      RR ACC W EXPLOS-PEDEST'
               'E8033'='E8033      RR ACC W EXPLOS-PED CYCL'
               'E8038'='E8038      RR ACC W EXPLOS-PERS NEC'
               'E8039'='E8039      RR ACC W EXPLOS-PERS NOS'
               'E8040'='E8040      FALL ON/FROM TRAIN-EMPL'
               'E8041'='E8041      FALL FROM TRAIN-PASSENGR'
               'E8042'='E8042      FALL FROM TRAIN-PEDEST'
               'E8043'='E8043      FALL FROM TRAIN-PED CYCL'
               'E8048'='E8048      FALL FROM TRAIN-PERS NEC'
               'E8049'='E8049      FALL FROM TRAIN-PERS NOS'
               'E8050'='E8050      HIT BY TRAIN-EMPLOYEE'
               'E8051'='E8051      HIT BY TRAIN-PASSENGER'
               'E8052'='E8052      HIT BY TRAIN-PEDESTRIAN'
               'E8053'='E8053      HIT BY TRAIN-PED CYCLIST'
               'E8058'='E8058      HIT BY TRAIN-PERSON NEC'
               'E8059'='E8059      HIT BY TRAIN-PERSON NOS'
               'E8060'='E8060      RR ACC NEC-EMPLOYEE'
               'E8061'='E8061      RR ACC NEC-PASSENGER'
               'E8062'='E8062      RR ACC NEC-PEDESTRIAN'
               'E8063'='E8063      RR ACC NEC-PED CYCLIST'
               'E8068'='E8068      RR ACC NEC-PERSON NEC'
               'E8069'='E8069      RR ACC NEC-PERSON NOS'
               'E8070'='E8070      RR ACCIDENT NOS-EMPLOYEE'
               'E8071'='E8071      RR ACC NOS-PASSENGER'
               'E8072'='E8072      RR ACC NOS-PEDESTRIAN'
               'E8073'='E8073      RR ACC NOS-PED CYCLIST'
               'E8078'='E8078      RR ACC NOS-PERSON NEC'
               'E8079'='E8079      RR ACC NOS-PERSON NOS'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                           36

               'E8100'='E8100      MV-TRAIN COLL-DRIVER'
               'E8101'='E8101      MV-TRAIN COLL-PASNGR'
               'E8102'='E8102      MV-TRAIN COLL-MOTORCYCL'
               'E8103'='E8103      MV-TRAIN COLL-MCYCL PSGR'
               'E8104'='E8104      MV-TRAIN COLL-ST CAR'
               'E8105'='E8105      MV-TRAIN COLL-ANIM RID'
               'E8106'='E8106      MV-TRAIN COLL-PED CYCL'
               'E8107'='E8107      MV-TRAIN COLL-PEDEST'
               'E8108'='E8108      MV-TRAIN COLL-PERS NEC'
               'E8109'='E8109      MV-TRAIN COLL-PERS NOS'
               'E8110'='E8110      REENTRANT MV COLL-DRIVER'
               'E8111'='E8111      REENTRANT MV COLL-PASNGR'
               'E8112'='E8112      REENTRANT COLL-MOTCYCL'
               'E8113'='E8113      REENTRANT COLL-MCYC PSGR'
               'E8114'='E8114      REENTRANT COLL-ST CAR'
               'E8115'='E8115      REENTRANT COLL-ANIM RID'
               'E8116'='E8116      REENTRANT COLL-PED CYCL'
               'E8117'='E8117      REENTRANT COLL-PEDEST'
               'E8118'='E8118      REENTRANT COLL-PERS NEC'
               'E8119'='E8119      REENTRANT COLL-PERS NOS'
               'E8120'='E8120      MV COLLISION NOS-DRIVER'
               'E8121'='E8121      MV COLLISION NOS-PASNGR'
               'E8122'='E8122      MV COLLIS NOS-MOTORCYCL'
               'E8123'='E8123      MV COLL NOS-MCYCL PSNGR'
               'E8124'='E8124      MV COLLISION NOS-ST CAR'
               'E8125'='E8125      MV COLL NOS-ANIM RID'
               'E8126'='E8126      MV COLL NOS-PED CYCL'
               'E8127'='E8127      MV COLLISION NOS-PEDEST'
               'E8128'='E8128      MV COLLIS NOS-PERS NEC'
               'E8129'='E8129      MV COLLIS NOS-PERS NOS'
               'E8130'='E8130      MV-OTH VEH COLL-DRIVER'
               'E8131'='E8131      MV-OTH VEH COLL-PASNGR'
               'E8132'='E8132      MV-OTH VEH COLL-MOTCYCL'
               'E8133'='E8133      MV-OTH VEH COLL-MCYC PSG'
               'E8134'='E8134      MV-OTH VEH COLL-ST CAR'
               'E8135'='E8135      MV-OTH VEH COLL-ANIM RID'
               'E8136'='E8136      MV-OTH VEH COLL-PED CYCL'
               'E8137'='E8137      MV-OTH VEH COLL-PEDEST'
               'E8138'='E8138      MV-OTH VEH COLL-PERS NEC'
               'E8139'='E8139      MV-OTH VEH COLL-PERS NOS'
               'E8140'='E8140      MV COLL W PEDEST-DRIVER'
               'E8141'='E8141      MV COLL W PEDEST-PASNGR'
               'E8142'='E8142      MV COLL W PEDEST-MOTCYCL'
               'E8143'='E8143      MV COLL W PED-MCYCL PSGR'
               'E8144'='E8144      MV COLL W PEDEST-ST CAR'
               'E8145'='E8145      MV COLL W PED-ANIM RID'
               'E8146'='E8146      MV COLL W PED-PED CYCL'
               'E8147'='E8147      MV COLL W PEDEST-PEDEST'


    VALUE $proc2df

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                      37



        '00'='Blank/00:Procedures and interventns, NEC'
        '01'='01:Incision and excision of skull, br...'
        '02'='02:Other operations on skull, brain, ...'
        '03'='03:Operations on spinal cord and spin...'
        '04'='04:Operations on cranial and peripher...'
        '05'='05:Operations on sympathetic nerves o...'
        '06'='06:Operations on thyroid and parathyr...'
        '07'='07:Operations on other endocrine glands'
        '08'='08:Operations on eyelids'
        '09'='09:Operations on lacrimal system'
        '10'='10:Operations on conjunctiva'
        '11'='11:Operations on cornea'
        '12'='12:Operations on iris, ciliary body, ...'
        '13'='13:Operations on lens'
        '14'='14:Operations on retina, choroid, vit...'
        '15'='15:Operations on extraocular muscles'
        '16'='16:Operations on orbit and eyeball'
        '18'='18:Operations on external ear'
        '19'='19:Reconstructive operations on middl...'
        '20'='20:Other operations on middle and inn...'
        '21'='21:Operations on nose'
        '22'='22:Operations on nasal sinuses'
        '23'='23:Removal and restoration of teeth'
        '24'='24:Other operations on teeth, gums, a...'
        '25'='25:Operations on tongue'
        '26'='26:Operations on salivary glands and ...'
        '27'='27:Other operations on mouth and face'
        '28'='28:Operations on tonsils and adenoids'
        '29'='29:Operations on pharynx'
        '30'='30:Excision of larynx'
        '31'='31:Other operations on larynx and tra...'
        '32'='32:Excision of lung and bronchus'
        '33'='33:Other operations on lung and bronchus'
        '34'='34:Operations on chest wall, pleura, ...'
        '35'='35:Operations on valves and septa of ...'
        '36'='36:Operations on vessels of heart'
        '37'='37:Other operations on heart and peri...'
        '38'='38:Incision, excision, and occlusion ...'
        '39'='39:Other operations on vessels'
        '40'='40:Operations on lymphatic system'
        '41'='41:Operations on bone marrow and spleen'
        '42'='42:Operations on esophagus'
        '43'='43:Incision and excision of stomach'
        '44'='44:Other operations on stomach'
        '45'='45:Incision, excision, and anastomosi...'
        '46'='46:Other operations on intestine'
        '47'='47:Operations on appendix'
        '48'='48:Operations on rectum, rectosigmoid...'
        '49'='49:Operations on anus'
        '50'='50:Operations on liver'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                      38

        '51'='51:Operations on gallbladder and bili...'
        '52'='52:Operations on pancreas'
        '53'='53:Repair of hernia'
        '54'='54:Other operations on abdominal region'
        '55'='55:Operations on kidney'
        '56'='56:Operations on ureter'
        '57'='57:Operations on urinary bladder'
        '58'='58:Operations on urethra'
        '59'='59:Other operations on urinary tract'
        '60'='60:Operations on prostate and seminal...'
        '61'='61:Operations on scrotum and tunica v...'
        '62'='62:Operations on testes'
        '63'='63:Operations on spermatic cord, epid...'
        '64'='64:Operations on penis'
        '65'='65:Operations on ovary'
        '66'='66:Operations on fallopian tubes'
        '67'='67:Operations on cervix'
        '68'='68:Other incision and excision of uterus'
        '69'='69:Other operations on uterus and sup...'
        '70'='70:Operations on vagina and cul-de-sac'
        '71'='71:Operations on vulva and perineum'
        '72'='72:Forceps, vacuum, and breech delivery'
        '73'='73:Other procedures inducing or assis...'
        '74'='74:Cesarean section and removal of fetus'
        '75'='75:Other obstetric operations'
        '76'='76:Operations on facial bones and joints'
        '77'='77:Incision, excision, and division o...'
        '78'='78:Other operations on bones, except ...'
        '79'='79:Reduction of fracture and dislocation'
        '80'='80:Incision and excision of joint str...'
        '81'='81:Repair and plastic operations on j...'
        '82'='82:Operations on muscle, tendon, and ...'
        '83'='83:Operations on muscle, tendon, fasc...'
        '84'='84:Other procedures on musculoskeleta...'
        '85'='85:Operations on the breast'
        '86'='86:Operations on skin and subcutaneou...'
        '87'='87:Diagnostic radiology'
        '88'='88:Other diagnostic radiology and rel...'
        '89'='89:Interview, evaluation, consultatio...'
        '90'='90:Microscopic examination I'
        '91'='91:Microscopic examination II'
        '92'='92:Nuclear medicine'
        '93'='93:Physical therapy/respiratory thera...'
        '94'='94:Procedures related to the psyche'
        '95'='95:Ophthalmologic and otologic diagno...'
        '96'='96:Nonoperative intubation and irriga...'
        '97'='97:Replacement and removal of therape...'
        '98'='98:Nonoperative removal of foreign body'
        '99'='99:Other nonoperative procedures'
;

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                      39




    value $hospitalf

                       '010735'='ALAMEDA HOSPITAL'
                      '010739'='ALTA BATES SUMMIT MED CTR-ALTA BATES CAMPUS
'
                      '010776'='CHILDRENS HOSPITAL AND RESEARCH CTR AT
                           OAKLAND '
                      '010805'='EDEN MEDICAL CENTER '
                      '010846'='ALAMEDA CO MED CTR - HIGHLAND CAMPUS '
                      '010856'='KAISER FND HOSP - OAKLAND CAMPUS '
                      '010858'='KAISER FND HOSP - HAYWARD '
                      '010937'='ALTA BATES SUMMIT MED CTR-SUMMIT CAMPUS-
                           HAWTHORNE '
                      '010967'='ST. ROSE HOSPITAL '
                      '010983'='VALLEY MEMORIAL HOSPITAL - LIVERMORE '
                      '010987'='WASHINGTON HOSPITAL - FREMONT '
                      '013619'='SAN LEANDRO HOSPITAL '
                      '014132'='KAISER FND HOSP - FREMONT '
                      '034002'='SUTTER AMADOR HOSPITAL '
                      '040802'='BIGGS GRIDLEY MEMORIAL HOSPITAL '
                      '040875'='FEATHER RIVER HOSPITAL '
                      '040937'='OROVILLE HOSPITAL '
                      '040962'='ENLOE MEDICAL CENTER- ESPLANADE CAMPUS '
                      '050932'='MARK TWAIN ST. JOSEPHS HOSPITAL '
                      '060870'='COLUSA REGIONAL MEDICAL CENTER '
                      '070904'='DOCTORS MEDICAL CENTER - SAN PABLO '
                      '070924'='CONTRA COSTA REGIONAL MEDICAL CENTER '
                      '070934'='SUTTER DELTA MEDICAL CENTER '
                      '070988'='JOHN MUIR MEDICAL CENTER-WALNUT CREEK CAMPUS
                      '070990'='KAISER FND HOSP - WALNUT CREEK '
                      '071018'='JOHN MUIR MEDICAL CENTER-CONCORD CAMPUS '
                      '074017'='SAN RAMON REGIONAL MEDICAL CENTER '
                      '074093'='KAISER FND HOSP - RICHMOND CAMPUS '
                      '074097'='KAISER FOUND HSP-ANTIOCH '
                      '084001'='SUTTER COAST HOSPITAL '
                      '090793'='BARTON MEMORIAL HOSPITAL '
                      '090933'='MARSHALL MEDICAL CENTER (1-RH) '
                      '100005'='COMMUNITY MEDICAL CENTER - CLOVIS '
                      '100697'='COALINGA REGIONAL MEDICAL CENTER '
                      '100717'='COMMUNITY REGIONAL MEDICAL CENTER-FRESNO '
                      '100745'='KINGSBURG MEDICAL CENTER '
                      '100797'='SIERRA KINGS DISTRICT HOSPITAL '
                      '100899'='ST. AGNES MEDICAL CENTER '
                      '104062'='KAISER FND HOSP - FRESNO '
                      '110889'='GLENN MEDICAL CENTER '
                      '121002'='MAD RIVER COMMUNITY HOSPITAL '
                      '121031'='JEROLD PHELPS COMMUNITY HOSPITAL '
                      '121051'='REDWOOD MEMORIAL HOSPITAL '
                      '121080'='ST JOSEPH HOSPITAL EUREKA '

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                     40

                      '130699'='EL CENTRO REGIONAL MEDICAL CENTER '
                      '130760'=' PIONEERS MEMORIAL HOSPITAL '
                      '141273'='NORTHERN INYO HOSPITAL '
                      '141338'='SOUTHERN INYO HOSPITAL '
                      '150706'='DELANO REGIONAL MEDICAL CENTER '
                      '150722'='BAKERSFIELD MEMORIAL HOSPITAL- 34TH STREET '
                      '150736'='KERN MEDICAL CENTER'
                      '150737'='KERN VALLEY HEALTHCARE DISTRICT'
                      '150761'='MERCY HOSPITAL - BAKERSFIELD'
                      '150782'='RIDGECREST REGIONAL HOSPITAL    '
                      '190148'='CENTINELA HOSPITAL MEDICAL CENTER'
                      '190155'='CENTURY CITY DOCTORS HOSPITAL'
                      '190159'='TRI-CITY REGIONAL MEDICAL CENTER'
                      '190170'='CHILDRENS HOSPITAL OF LOS ANGELES'
                      '190197'='COMMUNITY AND MISSION HSP OF HNTG PK -
                                 SLAUSON'
                      '190198'='LOS ANGELES COMMUNITY HOSPITAL'
                      '190200'='SAN GABRIEL VALLEY MEDICAL CENTER'
                      '190240'='LAKEWOOD REGIONAL MEDICAL CENTER'
                      '190243'='DOWNEY REGIONAL MEDICAL CENTER'
                      '190256'='EAST LOS ANGELES DOCTORS HOSPITAL'
                      '190280'='ENCINO-TARZANA REGIONAL MED CTR-ENCINO'
                      '190298'='FOOTHILL PRESBYTERIAN HOSPITAL-JOHNSTON
                                 MEMORIAL'
                      '190315'='GARFIELD MEDICAL CENTER'
                      '190323'='GLENDALE ADVENTIST MEDICAL CENTER - WILSON
                                 TERRACE'
                      '190328'='EAST VALLEY HOSPITAL MEDICAL CENTER'
                      '190352'='GREATER EL MONTE COMMUNITY HOSPITAL'
                      '190382'='HOLLYWOOD PRESBYTERIAN MEDICAL CENTER'
                      '190385'='PROVIDENCE HOLY CROSS MEDICAL CENTER'
                      '190392'='GOOD SAMARITAN HOSPITAL-LOS ANGELES'
                      '190400'='HUNTINGTON MEMORIAL HOSPITAL'
                      '190413'='CITRUS VALLEY MEDICAL CENTER - IC CAMPUS'
                      '190422'='TORRANCE MEMORIAL MEDICAL CENTER'
                      '190429'='KAISER FND HOSP - SUNSET'
                      '190430'='KAISER FND HOSP - BELLFLOWER'
                      '190431'='KAISER FND HOSP - HARBOR CITY'
                      '190432'='KAISER FND HOSP - PANORAMA CITY'
                      '190434'='KAISER FND HOSP - WEST LA'
                      '190455'='LANCASTER COMMUNITY HOSPITAL'
                      '190470'='LITTLE COMPANY OF MARY HOSPITAL'
                      '190475'='COMMUNITY HOSPITAL OF LONG BEACH'
                      '190500'='CENTINELA FREEMAN REG MED CTR-MARINA CAMPUS'
                      '190517'='ENCINO-TARZANA REGIONAL MED CTR-TARZANA'
                      '190521'='MEMORIAL HOSPITAL OF GARDENA'
                      '190522'='GLENDALE MEMORIAL HOSPITAL AND HEALTH
                                 CENTER'
                      '190524'='MISSION COMMUNITY HOSPITAL - PANORAMA
                                 CAMPUS'
                      '190525'='LONG BEACH MEMORIAL MEDICAL CENTER'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                  41

  value $countyf

                      '01'   =   'Alameda'
                      '03'   =   'Amador'
                      '04'   =   'Butte'
                      '05'   =   'Calaveras'
                      '06'   =   'Colusa'
                      '07'   =   'Contra Costa'
                      '09'   =   'El Dorado'
                      '10'   =   'Fresno'
                      '11'   =   'Glenn'
                      '12'   =   'Humboldt'
                      '13'   =   'Imperial'
                      '15'   =   'Kern'
                      '16'   =   'Kings'
                      '17'   =   'Lake'
                      '18'   =   'Lassen'
                      '19'   =   'Los Angeles'
                      '20'   =   'Madera'
                      '21'   =   'Marin'
                      '23'   =   'Mendocino'
                      '24'   =   'Merced'
                      '27'   =   'Monterey'
                      '28'   =   'Napa'
                      '29'   =   'Nevada'
                      '30'   =   'Orange'
                      '31'   =   'Placer'
                      '33'   =   'Riverside'
                      '34'   =   'Sacramento'
                      '35'   =   'San Benito'
                      '36'   =   'San Bernardino'
                      '37'   =   'San Diego'
                      '38'   =   'San Francisco'
                      '39'   =   'San Joaquin'
                      '40'   =   'San Luis Obispo'
                      '41'   =   'San Mateo'
                      '42'   =   'Santa Barbara'
                      '43'   =   'Santa Clara'
                      '44'   =   'Santa Cruz'
                      '45'   =   'Shasta'
                      '47'   =   'Siskiyou'
                      '48'   =   'Solano'
                      '49'   =   'Sonoma'
                      '50'   =   'Stanislaus'
                      '51'   =   'Sutter'
                      '52'   =   'Tehama'
                      '53'   =   'Trinity'
                      '54'   =   'Tulare'
                      '55'   =   'Tuolumne'
                      '56'   =   'Ventura'
                      '57'   =   'Yolo'

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                   42

                      '58'   =   'Yuba'
                      '00'   =   'County Unknown'
                      'CE'   =   'Alpine, Inyo, Mariposa & Mono'
                      'NE'   =   'Del Norte, Modoc, Plumas & Sierra'
                      'NW'   =   'Colusa, Glenn & Trinity'

;

    value $licencef
        'C'='free standing'
        'H'='hospital based'
;
    value $agecat5f
         '1' ='Under 1 year'
         '2' ='1-17 years'
         '3' ='18-34 years'
         '4' ='35-64 years'
         '5' ='65 years & over'
         '*' ='masked age group'

;


     value $sexf
        'F' ='female'
        'M' ='male'
        'U' ='unknown sex'
        '*' ='masked sex'
;

      value $ethf

         'E1'='Hispanic'
         'E2'='non_Hispanic'
         '99'='ukn_ethnic'
         '*' ='masked ethnic'

;

     value $racef

            'R1' ='native american'
            'R2' ='asian'
            'R3' ='black'
            'R4' ='hawaiian'
            'R5' ='white'
            'R9' ='other race'
            '99' ='unknown race'
            '*' ='masked race'
     value $payerf


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                     43



               '09'   ='selfpay'
               '11'   ='other non-federal'
               '12'   ='prefered provided org (PPO)'
               '13'   ='point of service (POS)'
               '14'   ='Exclusive Provider Organization (EPO)'
               '16'   ='Medicare HMO'
               'AM'   ='automible med'
               'BL'   ='Bluecross'
               'CH'   ='Tricare'
               'CI'   ='commercial'
               'DS'   ='disability'
               'HM'   ='other HMO'
               'MA'   ='Medicare Part A'
               'MB'   ='Medicare Part B'
               'MC'   ='Medical-Cal'
               'OF'   ='Other Federal'
               'TV'   ='Title V'
               'VA'   ='Veterans Adm'
               'WC'   ='Worker Comp'
               '00'   ='Other payer'
               '99'   ='Payer Blank'


;
        value $dispnf


               '01' = '(01)Sent home or self care'
               '02' = '(02)Sent to a short term general care hospital or
                          inpatient care'
               '03' = '(03)Sent to a skilled nursing facility with Medicare
                          certification'
               '04' = '(04)Sent to an intermediate care facility'
               '05' = '(05)Sent to another type of institution not on this
                          list'
               '06' = '(06)Sent home under the care of a home health
                          service organization'
               '07' = '(07)Left or discontinued care against medical
                          advice'
               '20' = '(20)Died'
               '43' = '(43)Sent to a federal health care facility'
               '50' = '(50)Sent home with hospice care'
               '51' = '(51)Sent to a medical facility with hospice care'
               '61' = '(61)Sent to a hospital-based Medicare approved swing
                          bed'
               '62' = '(62)Sent to an inpatient rehabilitation facility or
                                unit of a hospital'
               '63' = '(63)Sent to a Medicare certified long term care
                          hospital'


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                      44

                '64' = '(64)Sent to a nursing facility certified under
                           Medicaid but not Medicare'
                '65' = '(65)Sent to a psychiatric hospital or unit of a
                           hospital'
                '66' = '(66)Sent to a critical access hospital'
                '00' = '(00)Disposition Other'
                '99' = '(99)Disposition Invalid_Blank'
;

           value $serv_q

             3 = 'Third Quarter 2007'
             4 = 'Fourth Quarter 2007'
;
run;

data ed2007;
set osphd.caled2007 (keep=fac_id age_yrs agecat5 sex eth race
patzip patco serv_q dispn payer ec_prin
dx_prin odx1 odx2 pr_prin opr1);


label           fac_id      =    'Facility Number (6-digit)'
                age_yrs     =    'Age in Years at Service Date'
                agecat5     =    'Age Categories 5'
                sex         =    'Sex'
                eth         =    'Ethnicity'
                race        =    'Race'
                patzip      =    'Patient Zip Code'
                patco       =    'Patient County of Residenc'
                serv_q      =    'Quarter of Service'
                dispn       =    'Disposition of the Patient'
                payer       =    'Expected Source of Payment'
                ec_prin     =    'Principal E-code'
                dx_prin     =    'Principal Diagnosis'
                odx1        =    'Other Diagnosis 1'
                odx2        =    'Other Diagnosis 2'
                pr_prin     =    'Principal Procedure'
                opr1        =    'Other Procedure 1'

    ;
;
/*      Substrings functions to select the*/
/*      first N characters of a variable */
/*      Must have length statement       */
/*      dx_prin is 5 characters long –we need first 3*/
/*      pr_prin is 4 characters long –we need first 2*/

    length    dx_prin3 $3;
    length    pr_prin2 $2;


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                              45

 dx_prin3=substr(dx_prin,1,3);
 pr_prin2=substr(pr_prin,1,2);

options label nodate nonumber;
proc contents data=ed2007 varnum;
run;
options label nodate nonumber;
proc freq data=ed2007;
tables agecat5 sex eth race patco
serv_q dispn payer
;
format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef.
patco $countyf.    serv_q dispn $dispnf. payer $payerf.
  ;
run;
options label nodate nonumber;

Below is the output of the Proc Contents for the California OSPHD data .
                                                                  The SAS System

                                        The CONTENTS Procedure

    Data Set Name         WORK.ED2007                                Observations           4364548
    Member Type           DATA                                       Variables              17
    Engine                V9                                         Indexes                0
    Created               Saturday, August 08, 2009 06:29:19 PM      Observation Length     65
    Last Modified         Saturday, August 08, 2009 06:29:19 PM      Deleted Observations   0
    Protection                                                       Compressed             NO
    Data Set Type                                                    Sorted                 NO
    Label
    Data Representation   WINDOWS_32
    Encoding              wlatin1 Western (Windows)



                                    Engine/Host Dependent Information

Data Set Page Size           8192
Number of Data Set Pages     34917
First Data Page              1
Max Obs per Page             125
Obs in First Data Page       80
Number of Data Set Repairs   0
Filename                     C:DOCUME~1RAYMON~1.AROLOCALS~1TempSAS
                             Temporary Files_TD2820ed2007.sas7bdat
Release Created              9.0201M0
Host Created                 XP_PRO



                                       Variables in Creation Order

                    #     Variable     Type    Len    Label

                    1     fac_id       Char      6    Facility Number (6-digit)
                    2     age_yrs      Num       3    Age in Years at Service Date


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                   46

                    3    agecat5       Char       1     Age Categories 5
                    4    sex           Char       1     Sex
                    5    eth           Char       2     Ethnicity
                    6    race          Char       2     Race
                    7    patzip        Char       5     Patient Zip Code
                    8    patco         Char       2     Patient County of Residenc
                    9    serv_q        Char       1     Quarter of Service
                   10    dispn         Char       2     Disposition of the Patient
                   11    payer         Char       2     Expected Source of Payment
                   12    ec_prin       Char       7     Principal E-code
                   13    dx_prin       Char       7     Principal Diagnosis
                   14    odx1          Char       7     Other Diagnosis 1
                   15    odx2          Char       7     Other Diagnosis 2
                   16    pr_prin       Char       5     Principal Procedure
                   17    opr1          Char       5     Other Procedure 1




Below is the output of the Proc Freq for the California OSPHD data.
                                              The SAS System

                                         The FREQ Procedure

                                          Age Categories 5

                                                            Cumulative    Cumulative
               agecat5             Frequency     Percent     Frequency      Percent
               ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
               masked age group      207909        4.76        207909         4.76
               0                        198        0.00        208107         4.77
               Under 1 year          161311        3.70        369418         8.46
               1-17 years            908157       20.81       1277575        29.27
               18-34 years          1111672       25.47       2389247        54.74
               35-64 years          1465023       33.57       3854270        88.31
               65 years & over       510278       11.69       4364548       100.00



                                                  Sex

                                                         Cumulative    Cumulative
                 sex            Frequency     Percent     Frequency      Percent
                 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                 masked sex       442466       10.14        442466        10.14
                 female          2130477       48.81       2572943        58.95
                 male            1791507       41.05       4364450       100.00
                 unknown sex          98        0.00       4364548       100.00



                                               Ethnicity

                                                          Cumulative    Cumulative
                eth              Frequency     Percent     Frequency      Percent
                ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                masked ethnic      846250       19.39        846250        19.39
                ukn_ethnic         168051        3.85       1014301        23.24
                Hispanic          1190871       27.29       2205172        50.52


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                           47

                non_Hispanic      2159376         49.48        4364548   100.00



                                                 Race

                                                           Cumulative    Cumulative
               race               Frequency     Percent     Frequency      Percent
               ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
               masked race          710284       16.27        710284        16.27
               unknown race         126835        2.91        837119        19.18
               native american       11001        0.25        848120        19.43
               asian                115621        2.65        963741        22.08
               black                379891        8.70       1343632        30.79
               hawaiian              14802        0.34       1358434        31.12
               white               2311007       52.95       3669441        84.07
               other race           695107       15.93       4364548       100.00
                                          The SAS System

                                          The FREQ Procedure

                                       Patient County of Residence

                                                                    Cumulative    Cumulative
      patco                                Frequency     Percent     Frequency      Percent
      ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
      *                                         382        0.01           382         0.01
      County Unknown                         115702        2.65        116084         2.66
      Alameda                                186248        4.27        302332         6.93
      Amador                                   5966        0.14        308298         7.06
      Butte                                   29674        0.68        337972         7.74
      Calaveras                                6380        0.15        344352         7.89
      Contra Costa                           137924        3.16        482276        11.05
      El Dorado                               21978        0.50        504254        11.55
      Fresno                                 115053        2.64        619307        14.19
      Humboldt                                23977        0.55        643284        14.74
      Imperial                                34185        0.78        677469        15.52
      Kern                                   100344        2.30        777813        17.82
      Kings                                   21597        0.49        799410        18.32
      Lake                                    14922        0.34        814332        18.66
      Lassen                                   4995        0.11        819327        18.77
      Los Angeles                           1051560       24.09       1870887        42.87
      Madera                                  22816        0.52       1893703        43.39
      Marin                                   29658        0.68       1923361        44.07
      Mendocino                               18836        0.43       1942197        44.50
      Merced                                  35855        0.82       1978052        45.32
      Monterey                                55059        1.26       2033111        46.58
      Napa                                    16339        0.37       2049450        46.96
      Nevada                                  12242        0.28       2061692        47.24
      Orange                                 281870        6.46       2343562        53.70
      Placer                                  32879        0.75       2376441        54.45
      Riverside                              246686        5.65       2623127        60.10
      Sacramento                             164159        3.76       2787286        63.86
      San Benito                               8025        0.18       2795311        64.05
      San Bernardino                         267990        6.14       3063301        70.19
      San Diego                              302019        6.92       3365320        77.11
      San Francisco                           82529        1.89       3447849        79.00
      San Joaquin                             88816        2.03       3536665        81.03

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                           48

      San Luis Obispo                           37074          0.85   3573739       81.88
      San Mateo                                 74571          1.71   3648310       83.59
      Santa Barbara                             43457          1.00   3691767       84.59
      Santa Clara                              157136          3.60   3848903       88.19
      Santa Cruz                                29036          0.67   3877939       88.85
      Shasta                                    35393          0.81   3913332       89.66
      Siskiyou                                   8297          0.19   3921629       89.85
      Solano                                    51526          1.18   3973155       91.03
      Sonoma                                    54896          1.26   4028051       92.29
      Stanislaus                                85193          1.95   4113244       94.24
      Sutter                                    12697          0.29   4125941       94.53
      Tehama                                    13499          0.31   4139440       94.84
      Tulare                                    67073          1.54   4206513       96.38
      Tuolumne                                   9219          0.21   4215732       96.59
                                            The SAS System

                                          The FREQ Procedure

                                       Patient County of Residenc

                                                                    Cumulative    Cumulative
      patco                                Frequency     Percent     Frequency      Percent
      ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
      Ventura                                 86190        1.97       4301922        98.57
      Yolo                                    20390        0.47       4322312        99.03
      Yuba                                    13573        0.31       4335885        99.34
      Alpine, Inyo, Mariposa & Mono            7194        0.16       4343079        99.51
      Del Norte, Modoc, Plumas & Sierra       13102        0.30       4356181        99.81
      Colusa, Glenn & Trinity                  8367        0.19       4364548       100.00



                                          Quarter of Service

                                                             Cumulative    Cumulative
             serv_q                 Frequency     Percent     Frequency      Percent
             ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
             *                        133987        3.07        133987         3.07
             Third Quarter 2007      2113448       48.42       2247435        51.49
             Fourth Quarter 2007     2117113       48.51       4364548       100.00



                                       Disposition of the Patient

 dispn                                                                      Frequency     Percent
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 (00)Disposition Other                                                         35391        0.81
 (01)Sent home or self care                                                  4107639       94.11
 (02)Sent to a short term general care hospital or inpatient care              56573        1.30
 (03)Sent to a skilled nursing facility with Medicare certification            12374        0.28
 (04)Sent to an intermediate care facility                                      2862        0.07
 (05)Sent to another type of institution not on this list                      17537        0.40
 (06)Sent home under the care of a home health service organization             1978        0.05
 (07)Left or discontinued care against medical advice                          91514        2.10
 (20)Died                                                                       7993        0.18
 (43)Sent to a federal health care facility                                      351        0.01
 (50)Sent home with hospice care                                                 476        0.01
 (51)Sent to a medical facility with hospice care                                164        0.00

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                             49

 (61)Sent to a hospital-based Medicare approved swing bed                        25        0.00
 (62)Sent to an inpatient rehabilitation facility or unit of a hospital         690        0.02
 (63)Sent to a Medicare certified long term care hospital                      1621        0.04
 (64)Sent to a nursing facility certified under Medicaid but not Medicare       266        0.01
 (65)Sent to a psychiatric hospital or unit of a hospital                     25800        0.59
 (66)Sent to a critical access hospital                                         637        0.01
 (99)Disposition Invalid_Blank                                                  657        0.02

                                       Disposition of the Patient

                                                                           Cumulative
Cumulative
dispn                                                                       Frequency     Percent
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
ƒ
(00)Disposition Other                                                          35391        0.81
(01)Sent home or self care                                                   4143030       94.92
(02)Sent to a short term general care hospital or inpatient care             4199603       96.22
(03)Sent to a skilled nursing facility with Medicare certification           4211977       96.50
(04)Sent to an intermediate care facility                                    4214839       96.57
(05)Sent to another type of institution not on this list                     4232376       96.97
(06)Sent home under the care of a home health service organization           4234354       97.02
(07)Left or discontinued care against medical advice                         4325868       99.11
(20)Died                                                                     4333861       99.30
(43)Sent to a federal health care facility                                   4334212       99.30
(50)Sent home with hospice care                                              4334688       99.32
(51)Sent to a medical facility with hospice care                             4334852       99.32
(61)Sent to a hospital-based Medicare approved swing bed                     4334877       99.32
(62)Sent to an inpatient rehabilitation facility or unit of a hospital       4335567       99.34
(63)Sent to a Medicare certified long term care hospital                     4337188       99.37
(64)Sent to a nursing facility certified under Medicaid but not Medicare     4337454       99.38
(65)Sent to a psychiatric hospital or unit of a hospital                     4363254       99.97
(66)Sent to a critical access hospital                                       4363891       99.98
(99)Disposition Invalid_Blank                                                4364548      100.00



                                       Expected Source of Payment

                                                                      Cumulative    Cumulative
    payer                                    Frequency     Percent     Frequency      Percent
    ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
    Other payer                                 64563        1.48         64563         1.48
    selfpay                                    763197       17.49        827760        18.97
    other non-federal                          102253        2.34        930013        21.31
    prefered provided org (PPO)                264994        6.07       1195007        27.38
    point of service (POS)                      16455        0.38       1211462        27.76
    Exclusive Provider Organization (EPO)       12904        0.30       1224366        28.05
    Medicare HMO                               181625        4.16       1405991        32.21
    Payer Blank                                  1554        0.04       1407545        32.25
    automible med                                2660        0.06       1410205        32.31
    Bluecross                                  240964        5.52       1651169        37.83
    Tricare                                     31592        0.72       1682761        38.56
    commercial                                 155151        3.55       1837912        42.11
    disability                                     11        0.00       1837923        42.11
    other HMO                                  886968       20.32       2724891        62.43
    Medicare Part A                            289889        6.64       3014780        69.07
    Medicare Part B                            159774        3.66       3174554        72.74

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                             50

    Medical-Cal                             1064731   24.39   4239285    97.13
    Other Federal                             38440    0.88   4277725    98.01
    Title V                                    3027    0.07   4280752    98.08
    Veterans Adm                               2754    0.06   4283506    98.14
    Worker Comp                               81042    1.86   4364548   100.00




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                      51




             Exercises 5.1


1. Produce a PROC FREQ in rank order of the emergency department principal diagnoses by
   gender in the last half of 2007.
2. Produce a PROC FREQ in rank order of the emergency department principal diagnoses by
   death in the last half of 2007.
3. Produce a PROC FREQ in rank order of the emergency department principal procedures by
   ethnicity in the last half of 2007.
4. Produce a PROC FREQ in rank order of the emergency department principal injuries by
   gender in the last half of 2007.
5. Produce a PROC FREQ in rank order of California EDs principal injuries by age groupings
   in the last half of 2007.
6. Produce a PROC FREQ in rank order of California EDs principal injuries by death and
   gender in the last half of 2007.
7. Briefly describe the findings in a paragraph for each exercise.


Below is SAS code for exercise 5.1-1.
options label nodate nonumber;
proc freq data=ed2007 order=freq;
tables dx_prin3*sex
;
format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef.
patco $countyf. serv_q $serv_q. dispn $dispnf. payer $payerf.
dx_prin3 $diag3df.
  ;
title 'California EDs Principal Diagnoses by Gender';
run;
options label nodate nonumber;



Below is the partial PROC FREQ output for exercise 5.1-1.
                           California EDs Principal Diagnoses by Gender

                                         The FREQ Procedure

                                       Table of dx_prin3 by sex

                   dx_prin3            sex(Sex)



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                 52

                   Frequency        ‚
                   Percent          ‚
                   Row Pct          ‚
                   Col Pct          ‚female ‚male     ‚masked s‚unknown ‚   Total
                                    ‚        ‚        ‚ex      ‚sex     ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (789) Other symp ‚ 129614 ‚ 69805 ‚ 18853 ‚        4 ‚   218276
                   toms involving a ‚   2.97 ‚   1.60 ‚   0.43 ‚   0.00 ‚     5.00
                   bdome...         ‚ 59.38 ‚ 31.98 ‚     8.64 ‚   0.00 ‚
                                    ‚   6.08 ‚   3.90 ‚   4.26 ‚   4.08 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (780) General sy ‚ 100612 ‚ 88454 ‚ 22413 ‚        1 ‚   211480
                   mptoms           ‚   2.31 ‚   2.03 ‚   0.51 ‚   0.00 ‚     4.85
                                    ‚ 47.58 ‚ 41.83 ‚ 10.60 ‚      0.00 ‚
                                    ‚   4.72 ‚   4.94 ‚   5.07 ‚   1.02 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (786) Symptoms i ‚ 94734 ‚ 76502 ‚ 19431 ‚         3 ‚   190670
                   nvolving respira ‚   2.17 ‚   1.75 ‚   0.45 ‚   0.00 ‚     4.37
                   tory ...         ‚ 49.68 ‚ 40.12 ‚ 10.19 ‚      0.00 ‚
                                    ‚   4.45 ‚   4.27 ‚   4.39 ‚   3.06 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (873) Other open ‚ 30529 ‚ 62446 ‚ 13427 ‚         6 ‚   106408
                    wound of head   ‚   0.70 ‚   1.43 ‚   0.31 ‚   0.00 ‚     2.44
                                    ‚ 28.69 ‚ 58.69 ‚ 12.62 ‚      0.01 ‚
                                    ‚   1.43 ‚   3.49 ‚   3.03 ‚   6.12 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (682) Other cell ‚ 43151 ‚ 50131 ‚     7485 ‚      2 ‚   100769
                   ulitis and absce ‚   0.99 ‚   1.15 ‚   0.17 ‚   0.00 ‚     2.31
                   ss               ‚ 42.82 ‚ 49.75 ‚     7.43 ‚   0.00 ‚
                                    ‚   2.03 ‚   2.80 ‚   1.69 ‚   2.04 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (784) Symptoms i ‚ 57975 ‚ 32752 ‚     8803 ‚      2 ‚   99532
                   nvolving head an ‚   1.33 ‚   0.75 ‚   0.20 ‚   0.00 ‚    2.28
                   d neck           ‚ 58.25 ‚ 32.91 ‚     8.84 ‚   0.00 ‚
                                    ‚   2.72 ‚   1.83 ‚   1.99 ‚   2.04 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (787) Symptoms i ‚ 48489 ‚ 36641 ‚     8368 ‚      4 ‚   93502
                   nvolving digesti ‚   1.11 ‚   0.84 ‚   0.19 ‚   0.00 ‚    2.14
                   ve sy...         ‚ 51.86 ‚ 39.19 ‚     8.95 ‚   0.00 ‚
                                    ‚   2.28 ‚   2.05 ‚   1.89 ‚   4.08 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (724) Other and ‚ 48012 ‚ 35686 ‚      8590 ‚      2 ‚   92290
                   unspecified diso ‚   1.10 ‚   0.82 ‚   0.20 ‚   0.00 ‚    2.11
                   rders...         ‚ 52.02 ‚ 38.67 ‚     9.31 ‚   0.00 ‚
                                    ‚   2.25 ‚   1.99 ‚   1.94 ‚   2.04 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (465) Acute uppe ‚ 40474 ‚ 39119 ‚     6074 ‚      0 ‚   85667
                   r respiratory in ‚   0.93 ‚   0.90 ‚   0.14 ‚   0.00 ‚    1.96
                   fecti...         ‚ 47.25 ‚ 45.66 ‚     7.09 ‚   0.00 ‚
                                    ‚   1.90 ‚   2.18 ‚   1.37 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (599) Other diso ‚ 60969 ‚ 16134 ‚     8441 ‚      0 ‚   85544
                   rders of urethra ‚   1.40 ‚   0.37 ‚   0.19 ‚   0.00 ‚    1.96
                    and ...         ‚ 71.27 ‚ 18.86 ‚     9.87 ‚   0.00 ‚
                                    ‚   2.86 ‚   0.90 ‚   1.91 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                      53

                   (847) Sprains an ‚ 41512 ‚ 30093 ‚ 11728 ‚         1 ‚ 83334
                   d strains of oth ‚   0.95 ‚   0.69 ‚   0.27 ‚   0.00 ‚   1.91
                   er an...         ‚ 49.81 ‚ 36.11 ‚ 14.07 ‚      0.00 ‚
                                    ‚   1.95 ‚   1.68 ‚   2.65 ‚   1.02 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (959) Injury, ot ‚ 26923 ‚ 32218 ‚     8585 ‚      1 ‚ 67727
                   her and unspecif ‚   0.62 ‚   0.74 ‚   0.20 ‚   0.00 ‚   1.55
                   ied              ‚ 39.75 ‚ 47.57 ‚ 12.68 ‚      0.00 ‚
                                    ‚   1.26 ‚   1.80 ‚   1.94 ‚   1.02 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (493) Asthma     ‚ 31909 ‚ 28945 ‚     5559 ‚      4 ‚ 66417
                                    ‚   0.73 ‚   0.66 ‚   0.13 ‚   0.00 ‚   1.52
                                    ‚ 48.04 ‚ 43.58 ‚     8.37 ‚   0.01 ‚
                                    ‚   1.50 ‚   1.62 ‚   1.26 ‚   4.08 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (382) Suppurativ ‚ 28101 ‚ 31329 ‚     4974 ‚      0 ‚ 64404
                   e and unspecifie ‚   0.64 ‚   0.72 ‚   0.11 ‚   0.00 ‚   1.48
                   d oti...         ‚ 43.63 ‚ 48.64 ‚     7.72 ‚   0.00 ‚
                                    ‚   1.32 ‚   1.75 ‚   1.12 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (462) Acute phar ‚ 28880 ‚ 22200 ‚     5015 ‚      0 ‚ 56095
                   yngitis          ‚   0.66 ‚   0.51 ‚   0.11 ‚   0.00 ‚   1.29
                                    ‚ 51.48 ‚ 39.58 ‚     8.94 ‚   0.00 ‚
                                    ‚   1.36 ‚   1.24 ‚   1.13 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (558) Other noni ‚ 28304 ‚ 22571 ‚     5002 ‚      1 ‚ 55878
                   nfective gastroe ‚   0.65 ‚   0.52 ‚   0.11 ‚   0.00 ‚   1.28
                   nteri...         ‚ 50.65 ‚ 40.39 ‚     8.95 ‚   0.00 ‚
                                    ‚   1.33 ‚   1.26 ‚   1.13 ‚   1.02 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (V58) Other and ‚ 19777 ‚ 32117 ‚      1537 ‚      4 ‚ 53435
                   unspecified afte ‚   0.45 ‚   0.74 ‚   0.04 ‚   0.00 ‚   1.22
                   rcare            ‚ 37.01 ‚ 60.10 ‚     2.88 ‚   0.01 ‚
                                    ‚   0.93 ‚   1.79 ‚   0.35 ‚   4.08 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (883) Open wound ‚ 16917 ‚ 27740 ‚     6625 ‚      0 ‚ 51282
                    of finger(s)    ‚   0.39 ‚   0.64 ‚   0.15 ‚   0.00 ‚   1.17
                                    ‚ 32.99 ‚ 54.09 ‚ 12.92 ‚      0.00 ‚
                                    ‚   0.79 ‚   1.55 ‚   1.50 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   Total             2130477 1791507    442466       98 4364548
                                       48.81    41.05    10.14     0.00   100.00




2. Produce a PROC FREQ in rank order of the emergency department principal diagnoses by
ethnicity in the last half of 2007.
Below is SAS code for exercise 5.1-2
options label nodate nonumber;
proc freq data=ed2007 order=freq;
tables dx_prin3*eth
;
format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef.

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                    54

patco $countyf. serv_q $serv_q. dispn $dispnf. payer $payerf.
dx_prin3 $diag3df.
 ;
title 'California EDs Principal Diagnoses by Ethnicity';
run;
options label nodate nonumber;

Below is the partial PROC FREQ output for exercise 5.1-2
                              California EDs Principal Diagnoses by Ethnicity

                                       Table of dx_prin3 by eth

                   dx_prin3            eth(Ethnicity)

                   Frequency        ‚
                   Percent          ‚
                   Row Pct          ‚
                   Col Pct          ‚non_Hisp‚Hispanic‚masked e‚ukn_ethn‚       Total
                                    ‚anic    ‚        ‚thnic   ‚ic      ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (789) Other symp ‚ 105592 ‚ 64591 ‚ 39413 ‚     8680 ‚   218276
                   toms involving a ‚   2.42 ‚   1.48 ‚   0.90 ‚   0.20 ‚     5.00
                   bdome...         ‚ 48.38 ‚ 29.59 ‚ 18.06 ‚      3.98 ‚
                                    ‚   4.89 ‚   5.42 ‚   4.66 ‚   5.17 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (780) General sy ‚ 100912 ‚ 57826 ‚ 43908 ‚     8834 ‚   211480
                   mptoms           ‚   2.31 ‚   1.32 ‚   1.01 ‚   0.20 ‚     4.85
                                    ‚ 47.72 ‚ 27.34 ‚ 20.76 ‚      4.18 ‚
                                    ‚   4.67 ‚   4.86 ‚   5.19 ‚   5.26 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (786) Symptoms i ‚ 102049 ‚ 40836 ‚ 40297 ‚     7488 ‚   190670
                   nvolving respira ‚   2.34 ‚   0.94 ‚   0.92 ‚   0.17 ‚     4.37
                   tory ...         ‚ 53.52 ‚ 21.42 ‚ 21.13 ‚      3.93 ‚
                                    ‚   4.73 ‚   3.43 ‚   4.76 ‚   4.46 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (873) Other open ‚ 49506 ‚ 29160 ‚ 23129 ‚      4613 ‚   106408
                    wound of head   ‚   1.13 ‚   0.67 ‚   0.53 ‚   0.11 ‚     2.44
                                    ‚ 46.52 ‚ 27.40 ‚ 21.74 ‚      4.34 ‚
                                    ‚   2.29 ‚   2.45 ‚   2.73 ‚   2.75 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (682) Other cell ‚ 57808 ‚ 25348 ‚ 13922 ‚      3691 ‚   100769
                   ulitis and absce ‚   1.32 ‚   0.58 ‚   0.32 ‚   0.08 ‚     2.31
                   ss               ‚ 57.37 ‚ 25.15 ‚ 13.82 ‚      3.66 ‚
                                    ‚   2.68 ‚   2.13 ‚   1.65 ‚   2.20 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (784) Symptoms i ‚ 50765 ‚ 26973 ‚ 17854 ‚      3940 ‚       99532
                   nvolving head an ‚   1.16 ‚   0.62 ‚   0.41 ‚   0.09 ‚        2.28
                   d neck           ‚ 51.00 ‚ 27.10 ‚ 17.94 ‚      3.96 ‚
                                    ‚   2.35 ‚   2.26 ‚   2.11 ‚   2.34 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (787) Symptoms i ‚ 43247 ‚ 30148 ‚ 16638 ‚      3469 ‚       93502
                   nvolving digesti ‚   0.99 ‚   0.69 ‚   0.38 ‚   0.08 ‚        2.14
                   ve sy...         ‚ 46.25 ‚ 32.24 ‚ 17.79 ‚      3.71 ‚
                                    ‚   2.00 ‚   2.53 ‚   1.97 ‚   2.06 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (724) Other and ‚ 53749 ‚ 19096 ‚ 16014 ‚       3431 ‚       92290

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                       55

                   unspecified diso ‚   1.23 ‚   0.44 ‚   0.37 ‚   0.08 ‚  2.11
                   rders...         ‚ 58.24 ‚ 20.69 ‚ 17.35 ‚      3.72 ‚
                                    ‚   2.49 ‚   1.60 ‚   1.89 ‚   2.04 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (465) Acute uppe ‚ 30241 ‚ 39662 ‚ 12804 ‚      2960 ‚ 85667
                   r respiratory in ‚   0.69 ‚   0.91 ‚   0.29 ‚   0.07 ‚  1.96
                   fecti...         ‚ 35.30 ‚ 46.30 ‚ 14.95 ‚      3.46 ‚
                                    ‚   1.40 ‚   3.33 ‚   1.51 ‚   1.76 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (599) Other diso ‚ 41656 ‚ 24426 ‚ 16165 ‚      3297 ‚ 85544
                   rders of urethra ‚   0.95 ‚   0.56 ‚   0.37 ‚   0.08 ‚  1.96
                    and ...         ‚ 48.70 ‚ 28.55 ‚ 18.90 ‚      3.85 ‚
                                    ‚   1.93 ‚   2.05 ‚   1.91 ‚   1.96 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (847) Sprains an ‚ 42258 ‚ 17390 ‚ 20764 ‚      2922 ‚ 83334
                   d strains of oth ‚   0.97 ‚   0.40 ‚   0.48 ‚   0.07 ‚  1.91
                   er an...         ‚ 50.71 ‚ 20.87 ‚ 24.92 ‚      3.51 ‚
                                    ‚   1.96 ‚   1.46 ‚   2.45 ‚   1.74 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (959) Injury, ot ‚ 33009 ‚ 15450 ‚ 15873 ‚      3395 ‚ 67727
                   her and unspecif ‚   0.76 ‚   0.35 ‚   0.36 ‚   0.08 ‚  1.55
                   ied              ‚ 48.74 ‚ 22.81 ‚ 23.44 ‚      5.01 ‚
                                    ‚   1.53 ‚   1.30 ‚   1.88 ‚   2.02 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (493) Asthma     ‚ 33202 ‚ 19715 ‚ 11300 ‚      2200 ‚ 66417
                                    ‚   0.76 ‚   0.45 ‚   0.26 ‚   0.05 ‚  1.52
                                    ‚ 49.99 ‚ 29.68 ‚ 17.01 ‚      3.31 ‚
                                    ‚   1.54 ‚   1.66 ‚   1.34 ‚   1.31 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   (382) Suppurativ ‚ 21739 ‚ 30355 ‚     9725 ‚   2585 ‚ 64404
                   e and unspecifie ‚   0.50 ‚   0.70 ‚   0.22 ‚   0.06 ‚  1.48
                   d oti...         ‚ 33.75 ‚ 47.13 ‚ 15.10 ‚      4.01 ‚
                                    ‚   1.01 ‚   2.55 ‚   1.15 ‚   1.54 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   Total             2159376 1190871    846250   168051 4364548

3. Produce a PROC FREQ in rank order of the emergency department principal procedures by
ethnicity in the last half of 2007.
Below is SAS code for exercise 5.1-3.
/*3. Produce a PROC FREQ in rank order of California EDs principal
        procedures by ethnicity in the last half of 2007.*/

options label nodate nonumber;
proc freq data=ed2007 order=freq;
tables pr_prin2*eth
;
format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef.
patco $countyf. serv_q $serv_q. pr_prin2 $proc2df. payer $payerf.
dx_prin3 $diag3df.
  ;
title 'California EDs Principal Procedures by Ethnicity';
run;
options label nodate nonumber;

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                               56

Below is the partial PROC FREQ output for exercise 5.1-3.
                           California EDs Principal Procedures by Ethnicity

                                          The FREQ Procedure
                                       Table of pr_prin2 by eth

                   pr_prin2            eth(Ethnicity)

                   Frequency        ‚
                   Percent          ‚
                   Row Pct          ‚
                   Col Pct          ‚non_Hisp‚Hispanic‚masked e‚ukn_ethn‚ Total
                                    ‚anic    ‚        ‚thnic   ‚ic      ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   *                ‚ 969256 ‚ 518622 ‚ 381057 ‚ 112715 ‚1981650
                                    ‚ 22.21 ‚ 11.88 ‚     8.73 ‚   2.58 ‚ 45.40
                                    ‚ 48.91 ‚ 26.17 ‚ 19.23 ‚      5.69 ‚
                                    ‚ 44.89 ‚ 43.55 ‚ 45.03 ‚ 67.07 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   99:Other nonoper ‚ 575324 ‚ 351481 ‚ 231247 ‚ 25840 ‚1183892
                   ative procedures ‚ 13.18 ‚    8.05 ‚   5.30 ‚   0.59 ‚ 27.13
                                    ‚ 48.60 ‚ 29.69 ‚ 19.53 ‚      2.18 ‚
                                    ‚ 26.64 ‚ 29.51 ‚ 27.33 ‚ 15.38 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   90:Microscopic e ‚ 96949 ‚ 47912 ‚ 34675 ‚      6000 ‚ 185536
                   xamination I     ‚   2.22 ‚   1.10 ‚   0.79 ‚   0.14 ‚   4.25
                                    ‚ 52.25 ‚ 25.82 ‚ 18.69 ‚      3.23 ‚
                                    ‚   4.49 ‚   4.02 ‚   4.10 ‚   3.57 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   12:Operations on ‚ 70153 ‚ 37377 ‚ 32054 ‚      4622 ‚ 144206
                    iris, ciliary b ‚   1.61 ‚   0.86 ‚   0.73 ‚   0.11 ‚   3.30
                   ody, ...         ‚ 48.65 ‚ 25.92 ‚ 22.23 ‚      3.21 ‚
                                    ‚   3.25 ‚   3.14 ‚   3.79 ‚   2.75 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   36:Operations on ‚ 78384 ‚ 30773 ‚ 25689 ‚       821 ‚ 135667
                    vessels of hear ‚   1.80 ‚   0.71 ‚   0.59 ‚   0.02 ‚   3.11
                   t                ‚ 57.78 ‚ 22.68 ‚ 18.94 ‚      0.61 ‚
                                    ‚   3.63 ‚   2.58 ‚   3.04 ‚   0.49 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   29:Operations on ‚ 44832 ‚ 21534 ‚ 20636 ‚      2067 ‚ 89069
                    pharynx         ‚   1.03 ‚   0.49 ‚   0.47 ‚   0.05 ‚   2.04
                                    ‚ 50.33 ‚ 24.18 ‚ 23.17 ‚      2.32 ‚
                                    ‚   2.08 ‚   1.81 ‚   2.44 ‚   1.23 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   73:Other procedu ‚ 38855 ‚ 20048 ‚ 15955 ‚      2786 ‚ 77644
                   res inducing or ‚    0.89 ‚   0.46 ‚   0.37 ‚   0.06 ‚   1.78
                   assis...         ‚ 50.04 ‚ 25.82 ‚ 20.55 ‚      3.59 ‚
                                    ‚   1.80 ‚   1.68 ‚   1.89 ‚   1.66 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   71:Operations on ‚ 30687 ‚ 18477 ‚ 12017 ‚      3656 ‚ 64837
                    vulva and perin ‚   0.70 ‚   0.42 ‚   0.28 ‚   0.08 ‚   1.49
                   eum              ‚ 47.33 ‚ 28.50 ‚ 18.53 ‚      5.64 ‚
                                    ‚   1.42 ‚   1.55 ‚   1.42 ‚   2.18 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   80:Incision and ‚ 35877 ‚ 18560 ‚      9577 ‚    175 ‚ 64189
                   excision of join ‚   0.82 ‚   0.43 ‚   0.22 ‚   0.00 ‚   1.47


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                57

                   t str...         ‚ 55.89 ‚ 28.91 ‚ 14.92 ‚      0.27 ‚
                                    ‚   1.66 ‚   1.56 ‚   1.13 ‚   0.10 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   85:Operations on ‚ 20445 ‚ 11068 ‚     7389 ‚    131 ‚   39033
                    the breast      ‚   0.47 ‚   0.25 ‚   0.17 ‚   0.00 ‚    0.89
                                    ‚ 52.38 ‚ 28.36 ‚ 18.93 ‚      0.34 ‚
                                    ‚   0.95 ‚   0.93 ‚   0.87 ‚   0.08 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   93:Physical ther ‚ 22674 ‚    7313 ‚   8578 ‚    441 ‚   39006
                   apy/respiratory ‚    0.52 ‚   0.17 ‚   0.20 ‚   0.01 ‚    0.89
                   thera...         ‚ 58.13 ‚ 18.75 ‚ 21.99 ‚      1.13 ‚
                                    ‚   1.05 ‚   0.61 ‚   1.01 ‚   0.26 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   81:Repair and pl ‚ 17178 ‚ 14415 ‚     6150 ‚    151 ‚   37894
                   astic operations ‚   0.39 ‚   0.33 ‚   0.14 ‚   0.00 ‚    0.87
                    on j...         ‚ 45.33 ‚ 38.04 ‚ 16.23 ‚      0.40 ‚
                                    ‚   0.80 ‚   1.21 ‚   0.73 ‚   0.09 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   10:Operations on ‚ 19775 ‚    9072 ‚   4782 ‚   1090 ‚   34719
                    conjunctiva     ‚   0.45 ‚   0.21 ‚   0.11 ‚   0.02 ‚    0.80
                                    ‚ 56.96 ‚ 26.13 ‚ 13.77 ‚      3.14 ‚
                                    ‚   0.92 ‚   0.76 ‚   0.57 ‚   0.65 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   70:Operations on ‚ 16354 ‚    8521 ‚   7042 ‚   1119 ‚   33036
                    vagina and cul- ‚   0.37 ‚   0.20 ‚   0.16 ‚   0.03 ‚    0.76
                   de-sac           ‚ 49.50 ‚ 25.79 ‚ 21.32 ‚      3.39 ‚
                                    ‚   0.76 ‚   0.72 ‚   0.83 ‚   0.67 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ

                   94:Procedures re ‚ 12613 ‚ 14386 ‚     4928 ‚    405 ‚   32332
                   lated to the psy ‚   0.29 ‚   0.33 ‚   0.11 ‚   0.01 ‚    0.74
                   che              ‚ 39.01 ‚ 44.49 ‚ 15.24 ‚      1.25 ‚
                                    ‚   0.58 ‚   1.21 ‚   0.58 ‚   0.24 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   51:Operations on ‚ 16513 ‚    7031 ‚   5076 ‚   1030 ‚   29650
                    gallbladder and ‚   0.38 ‚   0.16 ‚   0.12 ‚   0.02 ‚    0.68
                    bili...         ‚ 55.69 ‚ 23.71 ‚ 17.12 ‚      3.47 ‚
                                    ‚   0.76 ‚   0.59 ‚   0.60 ‚   0.61 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   72:Forceps, vacu ‚ 13760 ‚    6330 ‚   5959 ‚   1094 ‚   27143
                   um, and breech d ‚   0.32 ‚   0.15 ‚   0.14 ‚   0.03 ‚    0.62
                   elivery          ‚ 50.69 ‚ 23.32 ‚ 21.95 ‚      4.03 ‚
                                    ‚   0.64 ‚   0.53 ‚   0.70 ‚   0.65 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   87:Diagnostic ra ‚   9060 ‚   6079 ‚   2556 ‚     94 ‚   17789
                   diology          ‚   0.21 ‚   0.14 ‚   0.06 ‚   0.00 ‚    0.41
                                    ‚ 50.93 ‚ 34.17 ‚ 14.37 ‚      0.53 ‚
                                    ‚   0.42 ‚   0.51 ‚   0.30 ‚   0.06 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   82:Operations on ‚   7632 ‚   4190 ‚   3411 ‚     45 ‚   15278
                    muscle, tendon, ‚   0.17 ‚   0.10 ‚   0.08 ‚   0.00 ‚    0.35
                    and ...         ‚ 49.95 ‚ 27.43 ‚ 22.33 ‚      0.29 ‚
                                    ‚   0.35 ‚   0.35 ‚   0.40 ‚   0.03 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   76:Operations on ‚   5374 ‚   6280 ‚   2461 ‚    793 ‚   14908
                    facial bones an ‚   0.12 ‚   0.14 ‚   0.06 ‚   0.02 ‚    0.34
                   d joints         ‚ 36.05 ‚ 42.13 ‚ 16.51 ‚      5.32 ‚

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                     58

                                    ‚   0.25 ‚   0.53 ‚   0.29 ‚   0.47 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   74:Cesarean sect ‚   7408 ‚   4012 ‚   2672 ‚    303 ‚     14395
                   ion and removal ‚    0.17 ‚   0.09 ‚   0.06 ‚   0.01 ‚      0.33
                   of fetus         ‚ 51.46 ‚ 27.87 ‚ 18.56 ‚      2.10 ‚
                                    ‚   0.34 ‚   0.34 ‚   0.32 ‚   0.18 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   84:Other procedu ‚   2898 ‚   3296 ‚   1086 ‚      9 ‚      7289
                   res on musculosk ‚   0.07 ‚   0.08 ‚   0.02 ‚   0.00 ‚      0.17
                   eleta...         ‚ 39.76 ‚ 45.22 ‚ 14.90 ‚      0.12 ‚
                                    ‚   0.13 ‚   0.28 ‚   0.13 ‚   0.01 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   62:Operations on ‚   3513 ‚   2025 ‚   1260 ‚    129 ‚      6927
                    testes          ‚   0.08 ‚   0.05 ‚   0.03 ‚   0.00 ‚      0.16
                                    ‚ 50.71 ‚ 29.23 ‚ 18.19 ‚      1.86 ‚
                                    ‚   0.16 ‚   0.17 ‚   0.15 ‚   0.08 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   11:Operations on ‚   2869 ‚   2337 ‚   1435 ‚    226 ‚      6867
                    cornea          ‚   0.07 ‚   0.05 ‚   0.03 ‚   0.01 ‚      0.16
                                    ‚ 41.78 ‚ 34.03 ‚ 20.90 ‚      3.29 ‚
                                    ‚   0.13 ‚   0.20 ‚   0.17 ‚   0.13 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ

                   Total               2159376   1190871   846250   168051   4364548
                                         49.48     27.29    19.39     3.85    100.00



4. Produce a PROC FREQ in rank order of the emergency department principal injuries by
gender in the last half of 2007.


Below is SAS code for exercise 5.1-4.
options label nodate nonumber;
proc freq data=ed2007 order=freq;
tables ec_prin*sex
;
format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef.
patco $countyf. serv_q $serv_q. pr_prin2 $proc2df. payer $payerf.
dx_prin3 $diag3df. ec_prin $ecodef.

 ;
title 'California EDs Principal Injuries by Gender';
run;




Below is Partial PROC FREQ output for exercise 5.1-4.
                              California EDs Principal Injuries by Gender

                                         The FREQ Procedure

                                       Table of ec_prin by sex

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                59


                   ec_prin(Principal E-code)    sex(Sex)

                   Frequency        ‚
                   Percent          ‚
                   Row Pct          ‚
                   Col Pct          ‚female ‚male     ‚masked s‚unknown ‚   Total
                                    ‚        ‚        ‚ex      ‚sex     ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E8859 FALL FROM ‚ 52345 ‚ 32982 ‚ 12630 ‚          0 ‚   97957
                   SLIPPING NEC     ‚   4.68 ‚   2.95 ‚   1.13 ‚   0.00 ‚    8.76
                                    ‚ 53.44 ‚ 33.67 ‚ 12.89 ‚      0.00 ‚
                                    ‚ 11.68 ‚    6.28 ‚   8.70 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E927 ACCID FROM ‚ 39039 ‚ 40638 ‚ 11591 ‚          4 ‚   91272
                    OVEREXERTION    ‚   3.49 ‚   3.63 ‚   1.04 ‚   0.00 ‚    8.16
                                    ‚ 42.77 ‚ 44.52 ‚ 12.70 ‚      0.00 ‚
                                    ‚   8.71 ‚   7.74 ‚   7.98 ‚ 11.43 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E8889 FALL NOS   ‚ 32796 ‚ 27514 ‚     7752 ‚      1 ‚   68063
                                    ‚   2.93 ‚   2.46 ‚   0.69 ‚   0.00 ‚    6.08
                                    ‚ 48.18 ‚ 40.42 ‚ 11.39 ‚      0.00 ‚
                                    ‚   7.32 ‚   5.24 ‚   5.34 ‚   2.86 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9179 OBJ W-W/O ‚ 21557 ‚ 33171 ‚      7846 ‚      1 ‚   62575
                   SUB FALL NEC     ‚   1.93 ‚   2.96 ‚   0.70 ‚   0.00 ‚    5.59
                                    ‚ 34.45 ‚ 53.01 ‚ 12.54 ‚      0.00 ‚
                                    ‚   4.81 ‚   6.31 ‚   5.40 ‚   2.86 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9289 ACCIDENT N ‚ 25772 ‚ 26093 ‚     6099 ‚      2 ‚   57966
                   OS               ‚   2.30 ‚   2.33 ‚   0.55 ‚   0.00 ‚    5.18
                                    ‚ 44.46 ‚ 45.01 ‚ 10.52 ‚      0.00 ‚
                                    ‚   5.75 ‚   4.97 ‚   4.20 ‚   5.71 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9208 ACC-CUTTIN ‚ 16070 ‚ 27168 ‚     6184 ‚      0 ‚   49422
                   G INSTRUM NEC    ‚   1.44 ‚   2.43 ‚   0.55 ‚   0.00 ‚    4.42
                                    ‚ 32.52 ‚ 54.97 ‚ 12.51 ‚      0.00 ‚
                                    ‚   3.59 ‚   5.17 ‚   4.26 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E8120 MV COLLISI ‚ 22556 ‚ 15478 ‚     7652 ‚      1 ‚   45687
                   ON NOS-DRIVER    ‚   2.02 ‚   1.38 ‚   0.68 ‚   0.00 ‚    4.08
                                    ‚ 49.37 ‚ 33.88 ‚ 16.75 ‚      0.00 ‚
                                    ‚   5.03 ‚   2.95 ‚   5.27 ‚   2.86 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9170 SPORTS ACC ‚   5162 ‚ 21434 ‚    4367 ‚      0 ‚   30963
                    W/O SUB FALL    ‚   0.46 ‚   1.92 ‚   0.39 ‚   0.00 ‚    2.77
                                    ‚ 16.67 ‚ 69.22 ‚ 14.10 ‚      0.00 ‚
                                    ‚   1.15 ‚   4.08 ‚   3.01 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9600 UNARMED FI ‚   6777 ‚ 15652 ‚    2664 ‚      3 ‚   25096
                   GHT OR BRAWL     ‚   0.61 ‚   1.40 ‚   0.24 ‚   0.00 ‚    2.24
                                    ‚ 27.00 ‚ 62.37 ‚ 10.62 ‚      0.01 ‚
                                    ‚   1.51 ‚   2.98 ‚   1.83 ‚   8.57 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E8121 MV COLLISI ‚ 11501 ‚    6512 ‚   4565 ‚      2 ‚   22580
                   ON NOS-PASNGR    ‚   1.03 ‚   0.58 ‚   0.41 ‚   0.00 ‚    2.02
                                    ‚ 50.93 ‚ 28.84 ‚ 20.22 ‚      0.01 ‚

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                60

                                    ‚   2.57 ‚   1.24 ‚   3.14 ‚   5.71 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E8881 FALL STRIK ‚   8173 ‚   9917 ‚   2343 ‚      0 ‚   20433
                   ING OBJECT NEC   ‚   0.73 ‚   0.89 ‚   0.21 ‚   0.00 ‚    1.83
                                    ‚ 40.00 ‚ 48.53 ‚ 11.47 ‚      0.00 ‚
                                    ‚   1.82 ‚   1.89 ‚   1.61 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9288 ACCIDENT N ‚   7658 ‚   9596 ‚   2609 ‚      0 ‚   19863
                   EC               ‚   0.68 ‚   0.86 ‚   0.23 ‚   0.00 ‚    1.78
                                    ‚ 38.55 ‚ 48.31 ‚ 13.13 ‚      0.00 ‚
                                    ‚   1.71 ‚   1.83 ‚   1.80 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E8888 FALL NEC   ‚   9193 ‚   8209 ‚   2292 ‚      0 ‚   19694
                                    ‚   0.82 ‚   0.73 ‚   0.20 ‚   0.00 ‚    1.76
                                    ‚ 46.68 ‚ 41.68 ‚ 11.64 ‚      0.00 ‚
                                    ‚   2.05 ‚   1.56 ‚   1.58 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9203 KNIFE/SWOR ‚   6470 ‚   9472 ‚   2162 ‚      0 ‚   18104
                   D/DAGGER ACC     ‚   0.58 ‚   0.85 ‚   0.19 ‚   0.00 ‚    1.62
                                    ‚ 35.74 ‚ 52.32 ‚ 11.94 ‚      0.00 ‚
                                    ‚   1.44 ‚   1.80 ‚   1.49 ‚   0.00 ‚

                   E8261 PED CYCL A ‚   3308 ‚ 12031 ‚    2341 ‚      0 ‚   17680
                   CC-PED CYCLIST   ‚   0.30 ‚   1.08 ‚   0.21 ‚   0.00 ‚    1.58
                                    ‚ 18.71 ‚ 68.05 ‚ 13.24 ‚      0.00 ‚
                                    ‚   0.74 ‚   2.29 ‚   1.61 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E918 CAUGHT BET ‚    6451 ‚   8052 ‚   2289 ‚      0 ‚   16792
                   WEEN OBJECTS     ‚   0.58 ‚   0.72 ‚   0.20 ‚   0.00 ‚    1.50
                                    ‚ 38.42 ‚ 47.95 ‚ 13.63 ‚      0.00 ‚
                                    ‚   1.44 ‚   1.53 ‚   1.58 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E8809 FALL ON ST ‚   9116 ‚   5208 ‚   2371 ‚      0 ‚   16695
                   AIR/STEP NEC     ‚   0.81 ‚   0.47 ‚   0.21 ‚   0.00 ‚    1.49
                                    ‚ 54.60 ‚ 31.19 ‚ 14.20 ‚      0.00 ‚
                                    ‚   2.03 ‚   0.99 ‚   1.63 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E8849 FALL-1 LEV ‚   5215 ‚   8559 ‚   2313 ‚      0 ‚   16087
                   EL TO OTH NEC    ‚   0.47 ‚   0.77 ‚   0.21 ‚   0.00 ‚    1.44
                                    ‚ 32.42 ‚ 53.20 ‚ 14.38 ‚      0.00 ‚
                                    ‚   1.16 ‚   1.63 ‚   1.59 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E915 FB ENTERIN ‚    7144 ‚   7222 ‚   1518 ‚      1 ‚   15885
                   G OTH ORIFICE    ‚   0.64 ‚   0.65 ‚   0.14 ‚   0.00 ‚    1.42
                                    ‚ 44.97 ‚ 45.46 ‚     9.56 ‚   0.01 ‚
                                    ‚   1.59 ‚   1.37 ‚   1.05 ‚   2.86 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9174 STAT OB W/ ‚   5156 ‚   8028 ‚   1719 ‚      2 ‚   14905
                   O SUB FALL NEC   ‚   0.46 ‚   0.72 ‚   0.15 ‚   0.00 ‚    1.33
                                    ‚ 34.59 ‚ 53.86 ‚ 11.53 ‚      0.01 ‚
                                    ‚   1.15 ‚   1.53 ‚   1.18 ‚   5.71 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9060 DOG BITE   ‚   6126 ‚   6902 ‚   1769 ‚      0 ‚   14797
                                    ‚   0.55 ‚   0.62 ‚   0.16 ‚   0.00 ‚    1.32
                                    ‚ 41.40 ‚ 46.64 ‚ 11.96 ‚      0.00 ‚
                                    ‚   1.37 ‚   1.31 ‚   1.22 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                             61

                   Total                448249   525310   145189       35   1118783
                                         40.07    46.95    12.98     0.00    100.00



Below is SAS code for exercise 5.1-5.
/*5. Produce a PROC FREQ in rank order of California EDs principal
           injuries by age groupings in the last half of 2007.*/

options label nodate nonumber;
proc freq data=ed2007 order=freq;
tables ec_prin*agecat5
;
format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef.
patco $countyf. serv_q $serv_q. pr_prin2 $proc2df. payer $payerf.
dx_prin3 $diag3df. ec_prin $ecodef.

 ;
title 'California EDs Principal Injuries by Age Categories';
run;


Below is partial PROC FREQ output for exercise 5.1-5,
                           California EDs Principal Injuries by Age Categories

                                          The FREQ Procedure

                                       Table of ec_prin by agecat5

     ec_prin(Principal E-code)       agecat5(Age Categories 5)

     Frequency        ‚
     Percent          ‚
     Row Pct          ‚
     Col Pct          ‚35-64 ye‚18-34 ye‚1-17 ye‚65 years‚masked a‚Under 1 ‚0        ‚   Total
                      ‚ars     ‚ars     ‚ars     ‚ & over ‚ge group‚year    ‚        ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E8859 FALL FROM ‚ 29780 ‚ 12871 ‚ 21413 ‚ 27052 ‚        6442 ‚    398 ‚      1 ‚   97957
     SLIPPING NEC     ‚   2.66 ‚   1.15 ‚   1.91 ‚   2.42 ‚   0.58 ‚   0.04 ‚   0.00 ‚    8.76
                      ‚ 30.40 ‚ 13.14 ‚ 21.86 ‚ 27.62 ‚       6.58 ‚   0.41 ‚   0.00 ‚
                      ‚   8.96 ‚   4.52 ‚   7.09 ‚ 23.42 ‚    9.02 ‚   3.09 ‚   2.04 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E927 ACCID FROM ‚ 33453 ‚ 27736 ‚ 19284 ‚       4800 ‚   5707 ‚    291 ‚      1 ‚   91272
      OVEREXERTION    ‚   2.99 ‚   2.48 ‚   1.72 ‚   0.43 ‚   0.51 ‚   0.03 ‚   0.00 ‚    8.16
                      ‚ 36.65 ‚ 30.39 ‚ 21.13 ‚      5.26 ‚   6.25 ‚   0.32 ‚   0.00 ‚
                      ‚ 10.07 ‚    9.75 ‚   6.38 ‚   4.16 ‚   7.99 ‚   2.26 ‚   2.04 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E8889 FALL NOS   ‚ 17845 ‚    8694 ‚ 19291 ‚ 17817 ‚     3768 ‚    647 ‚      1 ‚   68063
                      ‚   1.60 ‚   0.78 ‚   1.72 ‚   1.59 ‚   0.34 ‚   0.06 ‚   0.00 ‚    6.08
                      ‚ 26.22 ‚ 12.77 ‚ 28.34 ‚ 26.18 ‚       5.54 ‚   0.95 ‚   0.00 ‚
                      ‚   5.37 ‚   3.06 ‚   6.38 ‚ 15.42 ‚    5.28 ‚   5.03 ‚   2.04 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E9179 OBJ W-W/O ‚ 15662 ‚ 15031 ‚ 23864 ‚       3351 ‚   4031 ‚    634 ‚      2 ‚   62575
     SUB FALL NEC     ‚   1.40 ‚   1.34 ‚   2.13 ‚   0.30 ‚   0.36 ‚   0.06 ‚   0.00 ‚    5.59
                      ‚ 25.03 ‚ 24.02 ‚ 38.14 ‚      5.36 ‚   6.44 ‚   1.01 ‚   0.00 ‚

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                             62

                      ‚   4.71 ‚   5.28 ‚   7.90 ‚   2.90 ‚   5.64 ‚   4.93 ‚   4.08 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E9289 ACCIDENT N ‚ 21696 ‚ 14878 ‚ 11499 ‚      6351 ‚   2857 ‚    681 ‚      4 ‚   57966
     OS               ‚   1.94 ‚   1.33 ‚   1.03 ‚   0.57 ‚   0.26 ‚   0.06 ‚   0.00 ‚    5.18
                      ‚ 37.43 ‚ 25.67 ‚ 19.84 ‚ 10.96 ‚       4.93 ‚   1.17 ‚   0.01 ‚
                      ‚   6.53 ‚   5.23 ‚   3.81 ‚   5.50 ‚   4.00 ‚   5.29 ‚   8.16 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E9208 ACC-CUTTIN ‚ 14622 ‚ 16107 ‚ 12856 ‚      2501 ‚   3101 ‚    234 ‚      1 ‚   49422
     G INSTRUM NEC    ‚   1.31 ‚   1.44 ‚   1.15 ‚   0.22 ‚   0.28 ‚   0.02 ‚   0.00 ‚    4.42
                      ‚ 29.59 ‚ 32.59 ‚ 26.01 ‚      5.06 ‚   6.27 ‚   0.47 ‚   0.00 ‚
                      ‚   4.40 ‚   5.66 ‚   4.25 ‚   2.17 ‚   4.34 ‚   1.82 ‚   2.04 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E8120 MV COLLISI ‚ 19149 ‚ 19301 ‚     1269 ‚   2801 ‚   3161 ‚      5 ‚      1 ‚   45687
     ON NOS-DRIVER    ‚   1.71 ‚   1.73 ‚   0.11 ‚   0.25 ‚   0.28 ‚   0.00 ‚   0.00 ‚    4.08
                      ‚ 41.91 ‚ 42.25 ‚     2.78 ‚   6.13 ‚   6.92 ‚   0.01 ‚   0.00 ‚
                      ‚   5.76 ‚   6.78 ‚   0.42 ‚   2.42 ‚   4.43 ‚   0.04 ‚   2.04 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E9170 SPORTS ACC ‚   2958 ‚   7207 ‚ 18480 ‚     113 ‚   2197 ‚      8 ‚      0 ‚   30963
      W/O SUB FALL    ‚   0.26 ‚   0.64 ‚   1.65 ‚   0.01 ‚   0.20 ‚   0.00 ‚   0.00 ‚    2.77
                      ‚   9.55 ‚ 23.28 ‚ 59.68 ‚     0.36 ‚   7.10 ‚   0.03 ‚   0.00 ‚
                      ‚   0.89 ‚   2.53 ‚   6.12 ‚   0.10 ‚   3.08 ‚   0.06 ‚   0.00 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E9600 UNARMED FI ‚   7573 ‚ 11614 ‚    4411 ‚    282 ‚   1205 ‚      4 ‚      7 ‚   25096
     GHT OR BRAWL     ‚   0.68 ‚   1.04 ‚   0.39 ‚   0.03 ‚   0.11 ‚   0.00 ‚   0.00 ‚    2.24
                      ‚ 30.18 ‚ 46.28 ‚ 17.58 ‚      1.12 ‚   4.80 ‚   0.02 ‚   0.03 ‚
                      ‚   2.28 ‚   4.08 ‚   1.46 ‚   0.24 ‚   1.69 ‚   0.03 ‚ 14.29 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E8121 MV COLLISI ‚   5004 ‚   6953 ‚   7034 ‚   1217 ‚   2022 ‚    349 ‚      1 ‚   22580
     ON NOS-PASNGR    ‚   0.45 ‚   0.62 ‚   0.63 ‚   0.11 ‚   0.18 ‚   0.03 ‚   0.00 ‚    2.02
                      ‚ 22.16 ‚ 30.79 ‚ 31.15 ‚      5.39 ‚   8.95 ‚   1.55 ‚   0.00 ‚
                      ‚   1.51 ‚   2.44 ‚   2.33 ‚   1.05 ‚   2.83 ‚   2.71 ‚   2.04 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E8881 FALL STRIK ‚   3633 ‚   2007 ‚   9789 ‚   3346 ‚   1251 ‚    407 ‚      0 ‚   20433
     ING OBJECT NEC   ‚   0.32 ‚   0.18 ‚   0.87 ‚   0.30 ‚   0.11 ‚   0.04 ‚   0.00 ‚    1.83
                      ‚ 17.78 ‚    9.82 ‚ 47.91 ‚ 16.38 ‚     6.12 ‚   1.99 ‚   0.00 ‚
                      ‚   1.09 ‚   0.71 ‚   3.24 ‚   2.90 ‚   1.75 ‚   3.16 ‚   0.00 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E9288 ACCIDENT N ‚   6365 ‚   5291 ‚   5128 ‚   1547 ‚   1285 ‚    246 ‚      1 ‚   19863
     EC               ‚   0.57 ‚   0.47 ‚   0.46 ‚   0.14 ‚   0.11 ‚   0.02 ‚   0.00 ‚    1.78
                      ‚ 32.04 ‚ 26.64 ‚ 25.82 ‚      7.79 ‚   6.47 ‚   1.24 ‚   0.01 ‚
                      ‚   1.92 ‚   1.86 ‚   1.70 ‚   1.34 ‚   1.80 ‚   1.91 ‚   2.04 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E8888 FALL NEC   ‚   5186 ‚   2749 ‚   5534 ‚   4859 ‚   1094 ‚    271 ‚      1 ‚   19694
                      ‚   0.46 ‚   0.25 ‚   0.49 ‚   0.43 ‚   0.10 ‚   0.02 ‚   0.00 ‚    1.76
                      ‚ 26.33 ‚ 13.96 ‚ 28.10 ‚ 24.67 ‚       5.55 ‚   1.38 ‚   0.01 ‚
                      ‚   1.56 ‚   0.97 ‚   1.83 ‚   4.21 ‚   1.53 ‚   2.11 ‚   2.04 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E9203 KNIFE/SWOR ‚   6911 ‚   6953 ‚   2248 ‚    985 ‚    995 ‚     12 ‚      0 ‚   18104
     D/DAGGER ACC     ‚   0.62 ‚   0.62 ‚   0.20 ‚   0.09 ‚   0.09 ‚   0.00 ‚   0.00 ‚    1.62
                      ‚ 38.17 ‚ 38.41 ‚ 12.42 ‚      5.44 ‚   5.50 ‚   0.07 ‚   0.00 ‚
                      ‚   2.08 ‚   2.44 ‚   0.74 ‚   0.85 ‚   1.39 ‚   0.09 ‚   0.00 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     Frequency        ‚
     Percent          ‚
     Row Pct          ‚
     Col Pct          ‚35-64 ye‚18-34 ye‚1-17 ye‚65 years‚masked a‚Under 1 ‚0        ‚   Total
                      ‚ars     ‚ars     ‚ars     ‚ & over ‚ge group‚year    ‚        ‚

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                            63

     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E8261 PED CYCL A ‚   5011 ‚   3962 ‚   7120 ‚    386 ‚   1197 ‚      4 ‚      0 ‚ 17680
     CC-PED CYCLIST   ‚   0.45 ‚   0.35 ‚   0.64 ‚   0.03 ‚   0.11 ‚   0.00 ‚   0.00 ‚   1.58
                      ‚ 28.34 ‚ 22.41 ‚ 40.27 ‚      2.18 ‚   6.77 ‚   0.02 ‚   0.00 ‚
                      ‚   1.51 ‚   1.39 ‚   2.36 ‚   0.33 ‚   1.68 ‚   0.03 ‚   0.00 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E918 CAUGHT BET ‚    4442 ‚   3929 ‚   6220 ‚    848 ‚   1177 ‚    176 ‚      0 ‚ 16792
     WEEN OBJECTS     ‚   0.40 ‚   0.35 ‚   0.56 ‚   0.08 ‚   0.11 ‚   0.02 ‚   0.00 ‚   1.50
                      ‚ 26.45 ‚ 23.40 ‚ 37.04 ‚      5.05 ‚   7.01 ‚   1.05 ‚   0.00 ‚
                      ‚   1.34 ‚   1.38 ‚   2.06 ‚   0.73 ‚   1.65 ‚   1.37 ‚   0.00 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E8809 FALL ON ST ‚   6049 ‚   3711 ‚   3166 ‚   2274 ‚   1280 ‚    215 ‚      0 ‚ 16695
     AIR/STEP NEC     ‚   0.54 ‚   0.33 ‚   0.28 ‚   0.20 ‚   0.11 ‚   0.02 ‚   0.00 ‚   1.49
                      ‚ 36.23 ‚ 22.23 ‚ 18.96 ‚ 13.62 ‚       7.67 ‚   1.29 ‚   0.00 ‚
                      ‚   1.82 ‚   1.30 ‚   1.05 ‚   1.97 ‚   1.79 ‚   1.67 ‚   0.00 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E8849 FALL-1 LEV ‚   3317 ‚   2649 ‚   6878 ‚    798 ‚   1265 ‚   1180 ‚      0 ‚ 16087
     EL TO OTH NEC    ‚   0.30 ‚   0.24 ‚   0.61 ‚   0.07 ‚   0.11 ‚   0.11 ‚   0.00 ‚   1.44
                      ‚ 20.62 ‚ 16.47 ‚ 42.76 ‚      4.96 ‚   7.86 ‚   7.34 ‚   0.00 ‚
                      ‚   1.00 ‚   0.93 ‚   2.28 ‚   0.69 ‚   1.77 ‚   9.17 ‚   0.00 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E915 FB ENTERIN ‚    2800 ‚   2185 ‚   8379 ‚   1038 ‚    774 ‚    709 ‚      0 ‚ 15885
     G OTH ORIFICE    ‚   0.25 ‚   0.20 ‚   0.75 ‚   0.09 ‚   0.07 ‚   0.06 ‚   0.00 ‚   1.42
                      ‚ 17.63 ‚ 13.76 ‚ 52.75 ‚      6.53 ‚   4.87 ‚   4.46 ‚   0.00 ‚
                      ‚   0.84 ‚   0.77 ‚   2.77 ‚   0.90 ‚   1.08 ‚   5.51 ‚   0.00 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E9174 STAT OB W/ ‚   3413 ‚   3835 ‚   5856 ‚    808 ‚    883 ‚    110 ‚      0 ‚ 14905
     O SUB FALL NEC   ‚   0.31 ‚   0.34 ‚   0.52 ‚   0.07 ‚   0.08 ‚   0.01 ‚   0.00 ‚   1.33
                      ‚ 22.90 ‚ 25.73 ‚ 39.29 ‚      5.42 ‚   5.92 ‚   0.74 ‚   0.00 ‚
                      ‚   1.03 ‚   1.35 ‚   1.94 ‚   0.70 ‚   1.24 ‚   0.86 ‚   0.00 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     E9060 DOG BITE   ‚   4545 ‚   2996 ‚   5270 ‚   1011 ‚    928 ‚     47 ‚      0 ‚ 14797
                      ‚   0.41 ‚   0.27 ‚   0.47 ‚   0.09 ‚   0.08 ‚   0.00 ‚   0.00 ‚   1.32
                      ‚ 30.72 ‚ 20.25 ‚ 35.62 ‚      6.83 ‚   6.27 ‚   0.32 ‚   0.00 ‚
                      ‚   1.37 ‚   1.05 ‚   1.74 ‚   0.88 ‚   1.30 ‚   0.37 ‚   0.00 ‚
     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
     Total              332199   284573   302155   115511    71431    12865       49 1118783
                         29.69    25.44    27.01    10.32     6.38     1.15     0.00   100.00




Below is SAS code for exercise 5.1-6.
/*6. Produce a PROC FREQ in rank order of California EDs principal
           injuries by death and gender in the last half of 2007.*/
options label nodate nonumber;
proc freq data=ed2007 order=freq;
where dispn='20';
tables ec_prin*sex
;
format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef.
patco $countyf. serv_q $serv_q. pr_prin2 $proc2df. payer $payerf.
Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                  64

dx_prin3 $diag3df.         ec_prin $ecodef.

 ;
title 'California EDs Principal Injury Death by Sex';
run;


Below is partial PROC FREQ output for exercise 5.1-6.
                               California EDs Principal Injury Death by Sex

                                          The FREQ Procedure

                                        Table of ec_prin by sex

                   ec_prin(Principal E-code)       sex(Sex)

                   Frequency        ‚
                   Percent          ‚
                   Row Pct          ‚
                   Col Pct          ‚male    ‚female ‚masked s‚unknown ‚      Total
                                    ‚        ‚        ‚ex      ‚sex     ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9654 ASSAULT-FI ‚     86 ‚      7 ‚     10 ‚      1 ‚       104
                   REARM NEC        ‚   8.37 ‚   0.68 ‚   0.97 ‚   0.10 ‚     10.13
                                    ‚ 82.69 ‚    6.73 ‚   9.62 ‚   0.96 ‚
                                    ‚ 13.74 ‚    3.29 ‚   5.43 ‚ 25.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E8147 MV COLL W ‚      39 ‚     23 ‚     11 ‚      0 ‚       73
                   PEDEST-PEDEST    ‚   3.80 ‚   2.24 ‚   1.07 ‚   0.00 ‚     7.11
                                    ‚ 53.42 ‚ 31.51 ‚ 15.07 ‚      0.00 ‚
                                    ‚   6.23 ‚ 10.80 ‚    5.98 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E8120 MV COLLISI ‚     24 ‚      8 ‚     14 ‚      0 ‚       46
                   ON NOS-DRIVER    ‚   2.34 ‚   0.78 ‚   1.36 ‚   0.00 ‚     4.48
                                    ‚ 52.17 ‚ 17.39 ‚ 30.43 ‚      0.00 ‚
                                    ‚   3.83 ‚   3.76 ‚   7.61 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9229 FIREARM AC ‚     37 ‚      3 ‚      5 ‚      1 ‚       46
                   CIDENT NOS       ‚   3.60 ‚   0.29 ‚   0.49 ‚   0.10 ‚     4.48
                                    ‚ 80.43 ‚    6.52 ‚ 10.87 ‚    2.17 ‚
                                    ‚   5.91 ‚   1.41 ‚   2.72 ‚ 25.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E966 ASSAULT-CU ‚      33 ‚      6 ‚      5 ‚      0 ‚       44
                   TTING INSTR      ‚   3.21 ‚   0.58 ‚   0.49 ‚   0.00 ‚     4.28
                                    ‚ 75.00 ‚ 13.64 ‚ 11.36 ‚      0.00 ‚
                                    ‚   5.27 ‚   2.82 ‚   2.72 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9650 ASSAULT-HA ‚     25 ‚      4 ‚      3 ‚      0 ‚       32
                   NDGUN            ‚   2.43 ‚   0.39 ‚   0.29 ‚   0.00 ‚     3.12
                                    ‚ 78.13 ‚ 12.50 ‚     9.38 ‚   0.00 ‚
                                    ‚   3.99 ‚   1.88 ‚   1.63 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E8121 MV COLLISI ‚     10 ‚     12 ‚      9 ‚      0 ‚       31
                   ON NOS-PASNGR    ‚   0.97 ‚   1.17 ‚   0.88 ‚   0.00 ‚     3.02
                                    ‚ 32.26 ‚ 38.71 ‚ 29.03 ‚      0.00 ‚
                                    ‚   1.60 ‚   5.63 ‚   4.89 ‚   0.00 ‚

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                               65

                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9289 ACCIDENT N ‚     10 ‚     13 ‚      7 ‚      0 ‚     30
                   OS               ‚   0.97 ‚   1.27 ‚   0.68 ‚   0.00 ‚   2.92
                                    ‚ 33.33 ‚ 43.33 ‚ 23.33 ‚      0.00 ‚
                                    ‚   1.60 ‚   6.10 ‚   3.80 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E8122 MV COLLIS ‚      20 ‚      1 ‚      8 ‚      0 ‚     29
                   NOS-MOTORCYCL    ‚   1.95 ‚   0.10 ‚   0.78 ‚   0.00 ‚   2.82
                                    ‚ 68.97 ‚    3.45 ‚ 27.59 ‚    0.00 ‚
                                    ‚   3.19 ‚   0.47 ‚   4.35 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E8889 FALL NOS   ‚     13 ‚      8 ‚      7 ‚      0 ‚     28
                                    ‚   1.27 ‚   0.78 ‚   0.68 ‚   0.00 ‚   2.73
                                    ‚ 46.43 ‚ 28.57 ‚ 25.00 ‚      0.00 ‚
                                    ‚   2.08 ‚   3.76 ‚   3.80 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9530 INJURY-HAN ‚     20 ‚      7 ‚      0 ‚      0 ‚     27
                   GING             ‚   1.95 ‚   0.68 ‚   0.00 ‚   0.00 ‚   2.63
                                    ‚ 74.07 ‚ 25.93 ‚     0.00 ‚   0.00 ‚
                                    ‚   3.19 ‚   3.29 ‚   0.00 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9854 UNDETER CI ‚     20 ‚      2 ‚      3 ‚      0 ‚     25
                   RC-FIREARM NEC   ‚   1.95 ‚   0.19 ‚   0.29 ‚   0.00 ‚   2.43
                                    ‚ 80.00 ‚    8.00 ‚ 12.00 ‚    0.00 ‚
                                    ‚   3.19 ‚   0.94 ‚   1.63 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9550 INJURY-HAN ‚     11 ‚      5 ‚      7 ‚      1 ‚     24
                   DGUN             ‚   1.07 ‚   0.49 ‚   0.68 ‚   0.10 ‚   2.34
                                    ‚ 45.83 ‚ 20.83 ‚ 29.17 ‚      4.17 ‚
                                    ‚   1.76 ‚   2.35 ‚   3.80 ‚ 25.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   E9651 ASSAULT-SH ‚     21 ‚      0 ‚      2 ‚      0 ‚     23
                   OTGUN            ‚   2.04 ‚   0.00 ‚   0.19 ‚   0.00 ‚   2.24
                                    ‚ 91.30 ‚    0.00 ‚   8.70 ‚   0.00 ‚
                                    ‚   3.35 ‚   0.00 ‚   1.09 ‚   0.00 ‚
                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
                   Total                 626      213      184        4     1027
                                       60.95    20.74    17.92     0.39   100.00




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                  66




               2. SAS Code for OSPHD Indicator and Truth Logic Variables
               with PROC MEANS and PROC TABULATE
osphd02d.sas
The program below contains SAS code that creates indicator and truth logic variables for
analysis of the OSPHD emergency department data. The PROC Means calculates the means,
sums, minimum and maximum value for each variable. The PROC Tabulate produces multiple
analyses such as hospital by payer and mean age.
/****osph02d.sas**********/

data ed2007;
set osphd.caled2007 (keep=fac_id age_yrs agecat5 sex eth race
patzip patco serv_q dispn payer ec_prin
dx_prin odx1 odx2 pr_prin opr1);


/****gender indicator variables ***/

male                   =(sex='M');
female                 =(sex='F');
othgen                 =(sex='U');
unkgen                 =(sex='*');

/** Create Gender Categories Using Truth logic**/

gendercat=1*(sex='M')+ 2*(sex='F') + 3*(sex='U') + 4*(sex='*');


/****ethnic indicator variabbles ***/

hispanic               =(eth='E1');
non_hispanic           =(eth='E2');
hispanic_unk           =(eth='99');
hispanic_blnk          =(eth='*');

/** Create Race Ethnic Categories Using Truth logic**/

ethnicat=1*(eth='E1')+ 2*(eth='E2') + 3*(eth='99') + 4*(eth='*');

/****race indicator variables ***/

native_american        =(race='R1');
asian                  =(race='R2');
black                  =(race='R3');
hawaiian               =(race='R4');
white                  =(race='R5');
othrace                =(race='R9');

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                 67

unkrace                =(race='99');
race_blk               =(race='*');

/** Create Race Categories Using Truth logic**/

racecat=1*(race='R1') + 2*(race='R2') + 3*(race='R3') + 4*(race='R4')+
        5*(race='R5') + 6*(race='R9') + 7*(race='99') + 8*(race='*');

/****payer indicator variables ***/

selfpay                =(payer='09');
othnonfed              =(payer='11');
ppo                    =(payer='12');
pos                    =(payer='13');
epo                    =(payer='14');
carehmo                =(payer='16');
automed                =(payer='AM');
bluecross              =(payer='BL');
tricare                =(payer='CH');
commercial             =(payer='CI');
disability             =(payer='DS');
othhmo                 =(payer='HM');
careparta              =(payer='MA');
carepartb              =(payer='MB');
medical                =(payer='MC');
othfed                 =(payer='OF');
titleV                 =(payer='TV');
veterans               =(payer='VA');
workcomp               =(payer='WC');
payoth                 =(payer='00');
payblank               =(payer='99');


/** Create Payer Categories Using Truth logic**/

paycat=1*(payer='09') + 2*(payer='11') + 3*(payer='12') +
      4*(payer='13') + 5*(payer='14') + 6*(payer='16') +
      7*(payer='AM') + 8*(payer='BL') +
      9*(payer='CH') + 10*(payer='CI') + 11*(payer='DS') +
     12*(payer='HM') + 13*(payer='MA') + 14*(payer='MB') +
     15*(payer='MC') +16*(payer='OF') +
     17*(payer='TV') + 18*(payer='VA') + 19*(payer='WC') +
     20*(payer='00') + 21*(payer='99');

/*******Disposition Indicator Variables*****************/


home                          = (dispn='01');
inpatinpatient_care           = (dispn='02');
snf                           = (dispn='03');
intermediate_care            = (dispn='04');

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                   68

other_type_inst              = (dispn='05');
home_health                  = (dispn='06');
lma                          = (dispn='07');
died                         = (dispn='20');
federal_health               = (dispn='43');
home_hospice_care            = (dispn='50');
hospital_hospice             = (dispn='51');
hospital_swing_bed           = (dispn='61');
inpatient_rehab              = (dispn='62');
ltc_hospital                 = (dispn='63');
snf_no_cert                  = (dispn='64');
psych_hospital               = (dispn='65');
critical_hospital            = (dispn='66');
dispo_other                   = (dispn='00');
dispo_invalid                = (dispn='99');

/*******Disposition Truth Logic Variables*****************/

dispocat= 1*(dispn='01') + 2*(dispn='02') +3*(dispn='03') +
          4*(dispn='04') + 5*(dispn='05') +6*(dispn='06') +
          7*(dispn='07') + 8*(dispn='20') +9*(dispn='43') +
         10*(dispn='50') + 11*(dispn='51') +12*(dispn='61') +
         13*(dispn='62') + 14*(dispn='63') +15*(dispn='64') +
         16*(dispn='65') + 17*(dispn='66') +18*(dispn='00') +
         19*(dispn='99');

/*******age category indicator variables********/

agelt1                 =(agecat5='1');
age1to17               =(agecat5='2');
age18to34              =(agecat5='3');
age35to64              =(agecat5='4');
agege65                =(agecat5='5');
uknagecat              =(agecat5='*');

/** Create Age Categories Using Truth logic**/

agegroup=      1*(agecat5='*') + 2*(agecat5='0') + 3*(agecat5='1') +
               4*(agecat5='2') + 5*(agecat5='3') + 6*(agecat5='4') +
               7*(agecat5='5');



/* Substrings funtions to select the*/
/* first N characters of a variable */
/* Must have length statement       */

 length     dx_prin3 $3;
 length     pr_prin2 $2;

 dx_prin3=substr(dx_prin,1,3);

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                          69

 pr_prin2=substr(pr_prin,1,2);


options nolabel nodate nonumber;
proc contents data=ed2007;
run;

proc means n mean sum min max data=ed2007;
var
age_yrs agelt1 age1to17 age18to34 age35to64
agege65 uknagecat
male female unkgen hispanic non_hispanic hispanic_unk
hispanic_blnk
white black native_american asian hawaiian
othrace unkrace race_blk
selfpay othnonfed ppo pos epo carehmo automed
bluecross tricare commercial disability othhmo
careparta carepartb medical othfed titleV
veterans workcomp payoth payblank
age_yrs home inpatinpatient_care snf intermediate_care
other_type_inst home_health lma died federal_health
home_hospice_care hospital_hospice hospital_swing_bed
inpatient_rehab ltc_hospital snf_no_cert psych_hospital
critical_hospital dispo_other dispo_invalid gendercat ethnicat
racecat paycat agegroup dispocat;
title 'Means of Demographic Variable in the Last Half 2007 California
EDs';
run;




Below is the Proc Means Output
                        Means of Demographic Variable in the Last Half 2007 California EDs
                                        The MEANS Procedure
  Variable                     N            Mean             Sum         Minimum         Maximum
  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
  age_yrs                2887049      33.5966369     96995137.00               0      85.0000000
  agelt1                 4364548       0.0369594       161311.00               0       1.0000000
  age1to17               4364548       0.2080758       908157.00               0       1.0000000
  age18to34              4364548       0.2547050      1111672.00               0       1.0000000
  age35to64              4364548       0.3356643      1465023.00               0       1.0000000
  agege65                4364548       0.1169143       510278.00               0       1.0000000
  uknagecat              4364548       0.0476359       207909.00               0       1.0000000
  male                   4364548       0.4104679      1791507.00               0       1.0000000
  female                 4364548       0.4881323      2130477.00               0       1.0000000
  unkgen                 4364548       0.1013773       442466.00               0       1.0000000
  hispanic               4364548       0.2728509      1190871.00               0       1.0000000
  non_hispanic           4364548       0.4947536      2159376.00               0       1.0000000
  hispanic_unk           4364548       0.0385036       168051.00               0       1.0000000
  hispanic_blnk          4364548       0.1938918       846250.00               0       1.0000000
  white                  4364548       0.5294952      2311007.00               0       1.0000000

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                         70

  black                  4364548          0.0870402     379891.00              0       1.0000000
  native_american        4364548          0.0025205      11001.00              0       1.0000000
  asian                  4364548          0.0264909     115621.00              0       1.0000000
  hawaiian               4364548          0.0033914      14802.00              0       1.0000000
  othrace                4364548          0.1592621     695107.00              0       1.0000000
  unkrace                4364548          0.0290603     126835.00              0       1.0000000
  race_blk               4364548          0.1627394     710284.00              0       1.0000000
  selfpay                4364548          0.1748628     763197.00              0       1.0000000
  othnonfed              4364548          0.0234281     102253.00              0       1.0000000
  ppo                    4364548          0.0607151     264994.00              0       1.0000000
  pos                    4364548          0.0037701      16455.00              0       1.0000000
  epo                    4364548          0.0029565      12904.00              0       1.0000000
  carehmo                4364548          0.0416137     181625.00              0       1.0000000
  automed                4364548        0.000609456       2660.00              0       1.0000000
  bluecross              4364548          0.0552094     240964.00              0       1.0000000
  tricare                4364548          0.0072383      31592.00              0       1.0000000
  commercial             4364548          0.0355480     155151.00              0       1.0000000
  disability             4364548       2.5203068E-6    11.0000000              0       1.0000000
  othhmo                 4364548          0.2032210     886968.00              0       1.0000000
  careparta              4364548          0.0664190     289889.00              0       1.0000000
  carepartb              4364548          0.0366072     159774.00              0       1.0000000
  medical                4364548          0.2439499    1064731.00              0       1.0000000
  othfed                 4364548          0.0088073      38440.00              0       1.0000000
  titleV                 4364548        0.000693543       3027.00              0       1.0000000
  veterans               4364548        0.000630993       2754.00              0       1.0000000
  workcomp               4364548          0.0185682      81042.00              0       1.0000000
  payoth                 4364548          0.0147926      64563.00              0       1.0000000
  payblank               4364548        0.000356051       1554.00              0       1.0000000
  home                   4364548          0.9411373    4107639.00              0       1.0000000
  inpatinpatient_care    4364548          0.0129619      56573.00              0       1.0000000
  snf                    4364548          0.0028351      12374.00              0       1.0000000
  intermediate_care      4364548        0.000655738       2862.00              0       1.0000000
  other_type_inst        4364548          0.0040181      17537.00              0       1.0000000
  home_health            4364548        0.000453197       1978.00              0       1.0000000
  lma                    4364548          0.0209676      91514.00              0       1.0000000
  died                   4364548          0.0018313       7993.00              0       1.0000000
  federal_health         4364548        0.000080421   351.0000000              0       1.0000000
  home_hospice_care      4364548        0.000109061   476.0000000              0       1.0000000
  hospital_hospice       4364548        0.000037575   164.0000000              0       1.0000000
  hospital_swing_bed     4364548         5.72797E-6    25.0000000              0       1.0000000
  inpatient_rehab        4364548        0.000158092   690.0000000              0       1.0000000
  ltc_hospital           4364548        0.000371402       1621.00              0       1.0000000
  snf_no_cert            4364548        0.000060946   266.0000000              0       1.0000000
  psych_hospital         4364548          0.0059113      25800.00              0       1.0000000
  critical_hospital      4364548        0.000145949   637.0000000              0       1.0000000
  dispo_other            4364548          0.0081087      35391.00              0       1.0000000
  dispo_invalid          4364548        0.000150531   657.0000000              0       1.0000000
  gendercat              4364548          1.7923091    7822619.00      1.0000000       4.0000000
  ethnicat               4364548          2.1534363    9398776.00      1.0000000       4.0000000
  racecat                4364548          5.4385742   23736918.00      1.0000000       8.0000000
  paycat                 4364548          9.8440441   42964803.00      1.0000000      21.0000000
  agegroup               4364548          5.0968187   22245310.00      1.0000000       7.0000000
  dispocat               4364548          1.4187671    6192277.00      1.0000000      19.0000000

The PROC Means validates your indicator variables and consists of a minimum value of zero
and a maximum value of one. If this does not exist, check your code. For truth logic variables,

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                           71

the minimum is usually 1 and the maximum equals the total number of values assigned to the
variable. Again, if this does not occur, check your logic code. For example, pay category (paycat)
has a minimum of 0 and a maximum of 21, while the white indicator variable has a minimum of
0 and a maximum of 1.
The n=4,364,548 are the total emergency department visits in the last half of 2007. The mean
value is the percentage of each variable within a category. For example, females were 48.8
percent of the emergency department visits.

Below is the PROC Tabulate produces hospital by selfpay and mean age.
options nolabel nodate nonumber;
proc tabulate data=ed2007 order=freq;
class selfpay fac_id;
var age_yrs;
tables fac_id all,
(selfpay all)*(age_yrs*(n*f=6.0 mean*f=3.2)) /rts=30;
format fac_id $hospitalf.;
run;
title 'Distribution in Rank order of the Hospital Selfpay Patients';


                             Distribution in Rank order of the Hospital Selfpay Patients
                  „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ†
                  ‚                            ‚       selfpay       ‚          ‚
                  ‚                            ‡ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ‰          ‚
                  ‚                            ‚    0     ‚    1     ‚   All    ‚
                  ‚                            ‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰
                  ‚                            ‚ age_yrs ‚ age_yrs ‚ age_yrs ‚
                  ‚                            ‡ƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒ‰
                  ‚                            ‚      ‚Me-‚      ‚Me-‚      ‚Me-‚
                  ‚                            ‚ N    ‚an ‚ N    ‚an ‚ N    ‚an ‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚fac_id                      ‚      ‚   ‚      ‚   ‚      ‚   ‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰      ‚   ‚      ‚   ‚      ‚   ‚
                  ‚ARROWHEAD REGIONAL MEDICAL ‚       ‚   ‚      ‚   ‚      ‚   ‚
                  ‚CENTER                      ‚ 21346‚ 32‚ 15367‚ 32‚ 36713‚ 32‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚LOS ANGELES CO USC MEDICAL ‚       ‚   ‚      ‚   ‚      ‚   ‚
                  ‚CENTER                      ‚ 3309‚ 38‚ 18794‚ 29‚ 22103‚ 30‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚KAISER FND HOSP - SAN DIEGO ‚ 22478‚ 42‚ 1420‚ 29‚ 23898‚ 41‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚190034                      ‚ 26546‚ 28‚ 5579‚ 29‚ 32125‚ 28‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚KAISER FND HOSP - BELLFLOWER‚ 17844‚ 35‚ 1835‚ 27‚ 19679‚ 34‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚RIVERSIDE COUNTY REGIONAL   ‚      ‚   ‚      ‚   ‚      ‚   ‚
                  ‚MEDICAL CENTER              ‚ 14138‚ 30‚ 10423‚ 32‚ 24561‚ 31‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚COMMUNITY REGIONAL MEDICAL ‚       ‚   ‚      ‚   ‚      ‚   ‚
                  ‚CENTER-FRESNO               ‚ 20229‚ 33‚ 5379‚ 33‚ 25608‚ 33‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚KAISER FND HOSP - FONTANA   ‚ 12731‚ 36‚ 3369‚ 24‚ 16100‚ 34‚


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                72

                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚GROSSMONT HOSPITAL          ‚ 17462‚ 41‚ 4847‚ 31‚ 22309‚ 39‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚SOUTHWEST HEALTHCARE SYSTEM-‚      ‚   ‚      ‚   ‚      ‚   ‚
                  ‚MURRIETA                    ‚ 22553‚ 33‚ 2850‚ 29‚ 25403‚ 33‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚POMONA VALLEY HOSPITAL      ‚      ‚   ‚      ‚   ‚      ‚   ‚
                  ‚MEDICAL CENTER              ‚ 16841‚ 29‚ 3674‚ 29‚ 20515‚ 29‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚LONG BEACH MEMORIAL MEDICAL ‚      ‚   ‚      ‚   ‚      ‚   ‚
                  ‚CENTER                      ‚ 15298‚ 24‚ 2683‚ 27‚ 17981‚ 24‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚DOCTORS MEDICAL CENTER      ‚ 18219‚ 30‚ 4887‚ 31‚ 23106‚ 30‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚KAWEAH DELTA DISTRICT       ‚      ‚   ‚      ‚   ‚      ‚   ‚
                  ‚HOSPITAL                    ‚ 23577‚ 30‚     .‚ .‚ 23577‚ 30‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚KAISER FND HOSP - SOUTH     ‚      ‚   ‚      ‚   ‚      ‚   ‚
                  ‚SACRAMENTO                  ‚ 16382‚ 36‚ 2707‚ 28‚ 19089‚ 35‚
                  Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒŒ
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰      ‚   ‚      ‚   ‚      ‚   ‚
                  ‚TRI-CITY MEDICAL CENTER     ‚ 18232‚ 39‚ 3587‚ 30‚ 21819‚ 37‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚CEDARS SINAI MEDICAL CENTER ‚ 12416‚ 40‚ 3053‚ 33‚ 15469‚ 38‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚KAISER FND HOSP - BALDWIN   ‚      ‚   ‚      ‚   ‚      ‚   ‚
                  ‚PARK                        ‚ 11466‚ 37‚ 1421‚ 27‚ 12887‚ 36‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚MEMORIAL HOSPITAL MEDICAL   ‚      ‚   ‚      ‚   ‚      ‚   ‚
                  ‚CENTER - MODESTO            ‚ 18352‚ 36‚ 2997‚ 28‚ 21349‚ 35‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚SANTA CLARA VALLEY MEDICAL ‚       ‚   ‚      ‚   ‚      ‚   ‚
                  ‚CENTER                      ‚ 14123‚ 39‚ 3199‚ 34‚ 17322‚ 38‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚HOAG MEMORIAL HOSPITAL      ‚      ‚   ‚      ‚   ‚      ‚   ‚
                  ‚PRESBYTERIAN                ‚ 17674‚ 42‚     .‚ .‚ 17674‚ 42‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚RIVERSIDE COMMUNITY HOSPITAL‚ 15998‚ 29‚ 3214‚ 29‚ 19212‚ 29‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚KAISER FND HOSP - WEST LA   ‚ 10814‚ 49‚ 1814‚ 34‚ 12628‚ 47‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚CHILDRENS HOSPITAL OF LOS   ‚      ‚   ‚      ‚   ‚      ‚   ‚
                  ‚ANGELES                     ‚ 20732‚4.2‚     .‚ .‚ 20732‚4.2‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚KAISER FND HOSP - SUNSET    ‚ 8656‚ 43‚ 1228‚ 34‚ 9884‚ 42‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚All                         ‚ 2.4E6‚ 34‚488201‚ 31‚2.89E6‚ 34‚




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                        73




             Exercises 5.2


1. Using osphd02d.sas, write the indicator and truth logic code for California counties.
2. Using osphd02d.sas, produce a PROC Tabulate and identify the California Counties with the
most ED deaths.
3. From a Proc Means, using the class statement for selfpay output, prepare a descriptive
statistics narrative of the findings.
4. Using a PROC Tabulate, identify the diseases presented to the California EDs when
patzip=99999 is a proxy for the homeless. Describe your findings,


Below is SAS code for exercise 5.2-1 to 4.
Answer to exercise 5.2-1.
/*1. Using osphd02d, write the indicator and truth logic code for
California */
/*Counties. Insert them into a PROC Means and see if your code works*/

data ed2007;
set osphd.caled2007 (keep= patco);


Alameda            =    (patco='01');
Amador             =    (patco='03');
Butte              =   (patco='04');
Calaveras          =   (patco='05');
Colusa             =   (patco='06');
Contra_Costa       =   (patco='07');
El_Dorado          =   (patco='09');
Fresno             =   (patco='10');
Glenn              =   (patco='11');
Humboldt           =   (patco='12');
Imperial           =   (patco='13');
Kern               =   (patco='15');
Kings              =   (patco='16');
Lake               =   (patco='17');
Lassen             =   (patco='18');
LosAngeles         =   (patco='19');
Madera             =   (patco='20');
Marin              =   (patco='21');
Mendocino          =   (patco='23');
Merced             =   (patco='24');
Monterey           =   (patco='27');

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                    74

Napa            =    (patco='28');
Nevada         =    (patco='29');
Orange         =    (patco='30');
Placer         =    (patco='31');
Riverside      =    (patco='33');
Sacramento      =   (patco='34');
San_Benito      =   (patco='35');
San_Bernardino =    (patco='36');
San_Diego      =    (patco='37');
San_Francisco =     (patco='38');
San_Joaquin     =   (patco='39');
SanLuisObispo =     (patco='40');
San_Mateo      =    (patco='41');
Santa_Barbara =     (patco='42');
Santa_Clara     =   (patco='43');
Santa_Cruz     =    (patco='44');
Shasta         =    (patco='45');
Siskiyou       =    (patco='47');
Solano         =    (patco='48');
Sonoma         =    (patco='49');
Stanislaus     =    (patco='50');
Sutter         =    (patco='51');
Tehama         =    (patco='52');
Trinity        =    (patco='53');
Tulare         =    (patco='54');
Tuolumne       =    (patco='55');
Ventura        =    (patco='56');
Yolo           =    (patco='57');
Yuba           =    (patco='58');
CountyUnknown =     (patco='00');
Alpine_Inyo_Mariposa =(patco='CE');
Del_Norte_Modoc       =(patco='NE');
Colusa_Glenn_Trinity =(patco='NW');
missing_county        =(patco='*');


patcocat =      1*(patco='01') + 2*(patco='03') + 3*(patco='04') +
                 4*(patco='05') + 5*(patco='06') + 6*(patco='07') +
                 7*(patco='09') + 8*(patco='10') + 9*(patco='11') +
               10*(patco='12') + 11*(patco='13') + 12*(patco='15') +
               13*(patco='16') + 14*(patco='17') + 15*(patco='18') +
               16*(patco='19') + 17*(patco='20') + 18*(patco='21') +
               19*(patco='23') + 20*(patco='24') + 21*(patco='27') +
               22*(patco='28') + 23*(patco='29') + 24*(patco='30') +
                25*(patco='31') + 26*(patco='33') + 27*(patco='34') +
                28*(patco='35') + 29*(patco='36') + 30*(patco='37') +
                31*(patco='38') + 32*(patco='39') + 33*(patco='40') +
             34*(patco='41') + 35*(patco='42') + 36*(patco='43') +
              37*(patco='44') + 38*(patco='45') + 39*(patco='47') +
              40*(patco='48') + 41*(patco='49') + 42*(patco='50') +
              43*(patco='51') + 44*(patco='52') + 45*(patco='53') +

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                          75

             46*(patco='54') + 47*(patco='55') + 48*(patco='56') +
             49*(patco='57') + 50*(patco='58') + 51*(patco='00') +
             52*(patco='CE') + 53*(patco='NE') + 54*(patco='NW') +
             55*(patco='*');

options nolabel nodate nonumber;
proc means n mean sum min max data=ed2007;
var Alameda Amador Butte Calaveras Colusa
Contra_Costa El_Dorado Fresno Glenn
Humboldt Imperial Kern Kings Lake Lassen
LosAngeles Madera Mendocino Marin Merced
Monterey Napa Nevada Orange Placer Riverside
Sacramento San_Benito San_Bernardino San_Diego
San_Francisco San_Joaquin SanLuisObispo
San_Mateo Santa_Barbara Santa_Clara Santa_Cruz
Shasta Siskiyou Solano Sonoma Stanislaus
Sutter Tehama Trinity Tulare Tuolumne Ventura
Yolo Yuba CountyUnknown Alpine_Inyo_Mariposa
Del_Norte_Modoc Colusa_Glenn_Trinity
patcocat
;
title 'Means of County Variable in the Last Half 2007 California EDs';
run;
options nolabel nodate nonumber;

Below is the output for exercise 5.2-1.
                      Means of County Variable in the Last Half 2007 California EDs

                                          The MEANS Procedure

  Variable                      N            Mean             Sum         Minimum         Maximum
  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
  Alameda                 4364548       0.0426729       186248.00               0       1.0000000
  Amador                  4364548       0.0013669         5966.00               0       1.0000000
  Butte                   4364548       0.0067989        29674.00               0       1.0000000
  Calaveras               4364548       0.0014618         6380.00               0       1.0000000
  Colusa                  4364548               0               0               0               0
  Contra_Costa            4364548       0.0316010       137924.00               0       1.0000000
  El_Dorado               4364548       0.0050356        21978.00               0       1.0000000
  Fresno                  4364548       0.0263608       115053.00               0       1.0000000
  Glenn                   4364548               0               0               0               0
  Humboldt                4364548       0.0054936        23977.00               0       1.0000000
  Imperial                4364548       0.0078324        34185.00               0       1.0000000
  Kern                    4364548       0.0229907       100344.00               0       1.0000000
  Kings                   4364548       0.0049483        21597.00               0       1.0000000
  Lake                    4364548       0.0034189        14922.00               0       1.0000000
  Lassen                  4364548       0.0011444         4995.00               0       1.0000000
  LosAngeles              4364548       0.2409322      1051560.00               0       1.0000000
  Madera                  4364548       0.0052276        22816.00               0       1.0000000
  Mendocino               4364548       0.0043157        18836.00               0       1.0000000
  Marin                   4364548       0.0067952        29658.00               0       1.0000000
  Merced                  4364548       0.0082151        35855.00               0       1.0000000
  Monterey                4364548       0.0126151        55059.00               0       1.0000000
  Napa                    4364548       0.0037436        16339.00               0       1.0000000

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                         76

  Nevada                  4364548       0.0028049        12242.00               0       1.0000000
  Orange                  4364548       0.0645817       281870.00               0       1.0000000
  Placer                  4364548       0.0075332        32879.00               0       1.0000000
  Riverside               4364548       0.0565204       246686.00               0       1.0000000
  Sacramento              4364548       0.0376119       164159.00               0       1.0000000
  San_Benito              4364548       0.0018387         8025.00               0       1.0000000
  San_Bernardino          4364548       0.0614015       267990.00               0       1.0000000
  San_Diego               4364548       0.0691982       302019.00               0       1.0000000
  San_Francisco           4364548       0.0189089        82529.00               0       1.0000000
  San_Joaquin             4364548       0.0203494        88816.00               0       1.0000000
  SanLuisObispo           4364548       0.0084944        37074.00               0       1.0000000
  San_Mateo               4364548       0.0170856        74571.00               0       1.0000000
  Santa_Barbara           4364548       0.0099568        43457.00               0       1.0000000
  Santa_Clara             4364548       0.0360028       157136.00               0       1.0000000
  Santa_Cruz              4364548       0.0066527        29036.00               0       1.0000000
  Shasta                  4364548       0.0081092        35393.00               0       1.0000000
  Siskiyou                4364548       0.0019010         8297.00               0       1.0000000
  Solano                  4364548       0.0118056        51526.00               0       1.0000000
  Sonoma                  4364548       0.0125777        54896.00               0       1.0000000
  Stanislaus              4364548       0.0195193        85193.00               0       1.0000000
  Sutter                  4364548       0.0029091        12697.00               0       1.0000000
  Tehama                  4364548       0.0030929        13499.00               0       1.0000000
  Trinity                 4364548               0               0               0               0
  Tulare                  4364548       0.0153677        67073.00               0       1.0000000
  Tuolumne                4364548       0.0021122         9219.00               0       1.0000000
  Ventura                 4364548       0.0197477        86190.00               0       1.0000000
  Yolo                    4364548       0.0046717        20390.00               0       1.0000000
  Yuba                    4364548       0.0031098        13573.00               0       1.0000000
  CountyUnknown           4364548       0.0265095       115702.00               0       1.0000000
  Alpine_Inyo_Mariposa    4364548       0.0016483         7194.00               0       1.0000000
  Del_Norte_Modoc         4364548       0.0030019        13102.00               0       1.0000000
  Colusa_Glenn_Trinity    4364548       0.0019170         8367.00               0       1.0000000
  patcocat                4364548      24.1934608       105593521       1.0000000      55.0000000
  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ



2. Using osphd02d, produce a PROC Tabulate of the California counties in rank order of ED
deaths. Add the above code into osphd02 and the PROC Tabulate below.
Below is SAS code for exercise 5.2-2.
/*2. Using osphd02d, produce a PROC Tabulate to identify the
California Counties with the most ED deaths*/
/*osphd02d.sas*/
options nolabel nodate nonumber;
proc tabulate data=ed2007 order=freq;
class died patco;
var age_yrs;
tables patco all,
(died all)*(age_yrs*(n*f=6.0 mean*f=3.2)) /rts=30;
format patco $countyf. dispn;
title 'Distribution in Rank order of the County ED Deaths';
run;
options nolabel nodate nonumber


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                77

Below is Partial Proc Tabulate for exercise 5.2-2.

                               Distribution in Rank order of the County ED Deaths

                  „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ†
                  ‚                            ‚        died         ‚          ‚
                  ‚                            ‡ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ‰          ‚
                  ‚                            ‚    0     ‚    1     ‚   All    ‚
                  ‚                            ‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰
                  ‚                            ‚ age_yrs ‚ age_yrs ‚ age_yrs ‚
                  ‚                            ‡ƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒ‰
                  ‚                            ‚      ‚Me-‚      ‚Me-‚      ‚Me-‚
                  ‚                            ‚ N    ‚an ‚ N    ‚an ‚ N    ‚an ‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚patco                       ‚      ‚   ‚      ‚   ‚      ‚   ‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰      ‚   ‚      ‚   ‚      ‚   ‚
                  ‚Los Angeles                 ‚632660‚ 31‚   904‚ 62‚633564‚ 31‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚San Diego                   ‚199414‚ 36‚   246‚ 64‚199660‚ 36‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚Orange                      ‚174899‚ 34‚   252‚ 66‚175151‚ 34‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚San Bernardino              ‚186261‚ 29‚   261‚ 59‚186522‚ 29‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚Riverside                   ‚177735‚ 32‚   252‚ 62‚177987‚ 32‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚Alameda                     ‚121411‚ 35‚   184‚ 62‚121595‚ 35‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚Sacramento                  ‚ 98329‚ 37‚   242‚ 60‚ 98571‚ 37‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚Santa Clara                 ‚ 91068‚ 34‚   126‚ 66‚ 91194‚ 34‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚Contra Costa                ‚ 94378‚ 37‚   106‚ 63‚ 94484‚ 37‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚County Unknown              ‚ 36316‚ 40‚    76‚ 43‚ 36392‚ 40‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚Fresno                      ‚ 81984‚ 29‚   128‚ 53‚ 82112‚ 29‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚Kern                        ‚ 74225‚ 30‚   126‚ 55‚ 74351‚ 30‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚San Joaquin                 ‚ 61285‚ 34‚   162‚ 59‚ 61447‚ 34‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚Ventura                     ‚ 65308‚ 36‚   121‚ 65‚ 65429‚ 36‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚Stanislaus                  ‚ 66387‚ 31‚   106‚ 56‚ 66493‚ 31‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚San Francisco               ‚ 47693‚ 42‚    29‚ 71‚ 47722‚ 42‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚San Mateo                   ‚ 45273‚ 39‚    58‚ 70‚ 45331‚ 39‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚Tulare                      ‚ 54784‚ 28‚    91‚ 59‚ 54875‚ 28‚
                  ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
                  ‚Monterey                    ‚ 43138‚ 29‚    51‚ 59‚ 43189‚ 29‚
                  Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒ ƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒ
                  ‚All                         ‚2.88E6‚ 34‚ 4368‚ 61‚2.89E6‚ 34‚
                  Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒŒ


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                         78

3. Using the osphd02d insert the below Proc Means below and a class statement, and identify the
differences in demographic characteristics of the selfpay and non-self pay population.
var options nolabel nodate nonumber;
proc means n mean sum data=ed2007;
class selfpay;
var
age_yrs agelt1 age1to17 age18to34 age35to64
agege65 uknagecat
male female unkgen hispanic non_hispanic hispanic_unk
hispanic_blnk
white black native_american asian hawaiian
othrace unkrace race_blk
selfpay othnonfed ppo pos epo carehmo automed
bluecross tricare commercial disability othhmo
careparta carepartb medical othfed titleV
veterans workcomp payoth payblank
age_yrs home inpatinpatient_care snf intermediate_care
other_type_inst home_health lma died federal_health
home_hospice_care hospital_hospice hospital_swing_bed
inpatient_rehab ltc_hospital snf_no_cert psych_hospital
critical_hospital dispo_other dispo_invalid gendercat ethnicat
racecat paycat agegroup dispocat
Alameda Amador Butte Calaveras Colusa
Contra_Costa El_Dorado      Fresno Glenn
Humboldt Imperial Kern      Kings Lake Lassen
LosAngeles Madera Mendocino Marin Merced
Monterey Napa Nevada Orange Placer Riverside
Sacramento San_Benito San_Bernardino San_Diego
San_Francisco San_Joaquin SanLuisObispo
San_Mateo Santa_Barbara Santa_Clara Santa_Cruz
Shasta Siskiyou Solano      Sonoma Stanislaus
Sutter Tehama Trinity Tulare Tuolumne Ventura
Yolo Yuba CountyUnknown Alpine_Inyo_Mariposa
Del_Norte_Modoc Colusa_Glenn_Trinity
patcocat
;
title 'Means of Selfpay vs Non-selfpay Patients in the Last Half 2007
California EDs';
run;
options nolabel nodate nonumber;

                                       The MEANS Procedure

                  Means of Selfpay Variable in the Last Half 2007 California EDs

                                       The MEANS Procedure

         selfpay      N Obs    Variable                      N            Mean             Sum
    ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
               0    3601351    age_yrs                 2398848      34.2003266     82041385.00
                               agelt1                  3601351       0.0401921       144746.00
                               age1to17                3601351       0.2246407       809010.00

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                         79

                               age18to34              3601351      0.2238168     806043.00
                               age35to64              3601351      0.3284206    1182758.00
                               agege65                3601351      0.1377691     496155.00
                               uknagecat              3601351      0.0451267     162517.00
                               male                   3601351      0.3976305    1432007.00
                               female                 3601351      0.5043360    1816291.00
                               unkgen                 3601351      0.0980174     352995.00
                               hispanic               3601351      0.2633628     948462.00
                               non_hispanic           3601351      0.5069595    1825739.00
                               hispanic_unk           3601351      0.0398048     143351.00
                               hispanic_blnk          3601351      0.1898729     683799.00
                               white                  3601351      0.5357620    1929467.00
                               black                  3601351      0.0840843     302817.00
                               native_american        3601351      0.0024996       9002.00
                               asian                  3601351      0.0288431     103874.00
                               hawaiian               3601351      0.0034612      12465.00
                               othrace                3601351      0.1559134     561499.00
                               unkrace                3601351      0.0302081     108790.00
                               race_blk               3601351      0.1592283     573437.00
                               selfpay                3601351              0             0
                               othnonfed              3601351      0.0283930     102253.00
                               ppo                    3601351      0.0735818     264994.00
                               pos                    3601351      0.0045691      16455.00
                               epo                    3601351      0.0035831      12904.00
                               carehmo                3601351      0.0504325     181625.00
                               automed                3601351    0.000738612       2660.00
                               bluecross              3601351      0.0669093     240964.00
                               tricare                3601351      0.0087723      31592.00
                               commercial             3601351      0.0430813     155151.00
                               disability             3601351   3.0544093E-6    11.0000000
                               othhmo                 3601351      0.2462876     886968.00
                               careparta              3601351      0.0804945     289889.00
                               carepartb              3601351      0.0443650     159774.00
                               medical                3601351      0.2956477    1064731.00
                               othfed                 3601351      0.0106738      38440.00
                               titleV                 3601351    0.000840518       3027.00
                               veterans               3601351    0.000764713       2754.00
                               workcomp               3601351      0.0225032      81042.00
                               payoth                 3601351      0.0179274      64563.00
                               payblank               3601351    0.000431505       1554.00
                               home                   3601351      0.9435242    3397962.00
                               inpatinpatient_care    3601351      0.0136310      49090.00
                               snf                    3601351      0.0033696      12135.00
                               intermediate_care      3601351    0.000761103       2741.00
                               other_type_inst        3601351      0.0037028      13335.00
               0    3601351    home_health            3601351    0.000490927       1768.00
                               lma                    3601351      0.0172785      62226.00
                               died                   3601351      0.0017710       6378.00
                               federal_health         3601351    0.000081081   292.0000000
                               home_hospice_care      3601351    0.000119955   432.0000000
                               hospital_hospice       3601351    0.000042206   152.0000000
                               hospital_swing_bed     3601351    5.831145E-6    21.0000000
                               inpatient_rehab        3601351    0.000159385   574.0000000
                               ltc_hospital           3601351    0.000433171       1560.00
                               snf_no_cert            3601351    0.000071917   259.0000000
                               psych_hospital         3601351      0.0057248      20617.00
                               critical_hospital      3601351    0.000154109   555.0000000

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                    80

                               dispo_other            3601351     0.0085329      30730.00
                               dispo_invalid          3601351   0.000145501   524.0000000
                               gendercat              3601351     1.7984204    6476743.00
                               ethnicat               3601351     2.1561878    7765189.00
                               racecat                3601351     5.4258571   19540416.00
                               paycat                 3601351    11.7182707   42201606.00
                               agegroup               3601351     5.1183256   18432887.00
                               dispocat               3601351     1.4027686    5051862.00
                               Alameda                3601351     0.0443561     159742.00
                               Amador                 3601351     0.0014217       5120.00
                               Butte                  3601351     0.0072145      25982.00
                               Calaveras              3601351     0.0014875       5357.00
                               Colusa                 3601351             0             0
                               Contra_Costa           3601351     0.0325239     117130.00
                               El_Dorado              3601351     0.0056257      20260.00
                               Fresno                 3601351     0.0273695      98567.00
                               Glenn                  3601351             0             0
                               Humboldt               3601351     0.0055213      19884.00
                               Imperial               3601351     0.0085257      30704.00
                               Kern                   3601351     0.0226929      81725.00
                               Kings                  3601351     0.0053013      19092.00
                               Lake                   3601351     0.0035464      12772.00
                               Lassen                 3601351     0.0012781       4603.00
                               LosAngeles             3601351     0.2346556     845077.00
                               Madera                 3601351     0.0053746      19356.00
                               Mendocino              3601351     0.0045902      16531.00
                               Marin                  3601351     0.0073050      26308.00
                               Merced                 3601351     0.0082869      29844.00
                               Monterey               3601351     0.0128102      46134.00
                               Napa                   3601351     0.0039952      14388.00
                               Nevada                 3601351     0.0029336      10565.00
                               Orange                 3601351     0.0687403     247558.00
                               Placer                 3601351     0.0080248      28900.00
                               Riverside              3601351     0.0542274     195292.00
                               Sacramento             3601351     0.0386938     139350.00
                               San_Benito             3601351     0.0019470       7012.00
               0    3601351    San_Bernardino         3601351     0.0573476     206529.00
                               San_Diego              3601351     0.0702398     252958.00
                               San_Francisco          3601351     0.0196557      70787.00
                               San_Joaquin            3601351     0.0197834      71247.00
                               SanLuisObispo          3601351     0.0088842      31995.00
                               San_Mateo              3601351     0.0172952      62286.00
                               Santa_Barbara          3601351     0.0067539      24323.00
                               Santa_Clara            3601351     0.0381199     137283.00
                               Santa_Cruz             3601351     0.0058384      21026.00
                               Shasta                 3601351     0.0081172      29233.00
                               Siskiyou               3601351     0.0020576       7410.00
                               Solano                 3601351     0.0123473      44467.00
                               Sonoma                 3601351     0.0131720      47437.00
                               Stanislaus             3601351     0.0197001      70947.00
                               Sutter                 3601351     0.0034420      12396.00
                               Tehama                 3601351     0.0030561      11006.00
                               Trinity                3601351             0             0
                               Tulare                 3601351     0.0169142      60914.00
                               Tuolumne               3601351     0.0023252       8374.00
                               Ventura                3601351     0.0200100      72063.00
                               Yolo                   3601351     0.0049273      17745.00

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                        81

                               Yuba                   3601351    0.0036997       13324.00
                               CountyUnknown          3601351    0.0207850       74854.00
                               Alpine_Inyo_Mariposa   3601351    0.0017374        6257.00
                               Del_Norte_Modoc        3601351    0.0032249       11614.00
                               Colusa_Glenn_Trinity   3601351    0.0020309        7314.00
                               patcocat               3601351   24.0626093    86657902.00

               1     763197    age_yrs                488201     30.6303183   14953752.00
                               agelt1                 763197      0.0217047      16565.00
                               age1to17               763197      0.1299101      99147.00
                               age18to34              763197      0.4004589     305629.00
                               age35to64              763197      0.3698455     282265.00
                               agege65                763197      0.0185051      14123.00
                               uknagecat              763197      0.0594761      45392.00
                               male                   763197      0.4710448     359500.00
                               female                 763197      0.4116709     314186.00
                               unkgen                 763197      0.1172319      89471.00
                               hispanic               763197      0.3176231     242409.00
                               non_hispanic           763197      0.4371571     333637.00
                               hispanic_unk           763197      0.0323639      24700.00
                               hispanic_blnk          763197      0.2128559     162451.00
                               white                  763197      0.4999233     381540.00
                               black                  763197      0.1009883      77074.00
                               native_american        763197      0.0026192       1999.00
                               asian                  763197      0.0153918      11747.00
                               hawaiian               763197      0.0030621       2337.00
                               othrace                763197      0.1750636     133608.00
               1     763197    unkrace                763197      0.0236440      18045.00
                               race_blk               763197      0.1793076     136847.00
                               selfpay                763197      1.0000000     763197.00
                               othnonfed              763197              0             0
                               ppo                    763197              0             0
                               pos                    763197              0             0
                               epo                    763197              0             0
                               carehmo                763197              0             0
                               automed                763197              0             0
                               bluecross              763197              0             0
                               tricare                763197              0             0
                               commercial             763197              0             0
                               disability             763197              0             0
                               othhmo                 763197              0             0
                               careparta              763197              0             0
                               carepartb              763197              0             0
                               medical                763197              0             0
                               othfed                 763197              0             0
                               titleV                 763197              0             0
                               veterans               763197              0             0
                               workcomp               763197              0             0
                               payoth                 763197              0             0
                               payblank               763197              0             0
                               home                   763197      0.9298739     709677.00
                               inpatinpatient_care    763197      0.0098048       7483.00
                               snf                    763197    0.000313156   239.0000000
                               intermediate_care      763197    0.000158544   121.0000000
                               other_type_inst        763197      0.0055058       4202.00
                               home_health            763197    0.000275158   210.0000000
                               lma                    763197      0.0383754      29288.00

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                    82

                               died                   763197      0.0021161       1615.00
                               federal_health         763197    0.000077306    59.0000000
                               home_hospice_care      763197    0.000057652    44.0000000
                               hospital_hospice       763197    0.000015723    12.0000000
                               hospital_swing_bed     763197   5.2411107E-6     4.0000000
                               inpatient_rehab        763197    0.000151992   116.0000000
                               ltc_hospital           763197    0.000079927    61.0000000
                               snf_no_cert            763197   9.1719438E-6     7.0000000
                               psych_hospital         763197      0.0067912       5183.00
                               critical_hospital      763197    0.000107443    82.0000000
                               dispo_other            763197      0.0061072       4661.00
                               dispo_invalid          763197    0.000174267   133.0000000
                               gendercat              763197      1.7634713    1345876.00
                               ethnicat               763197      2.1404526    1633587.00
                               racecat                763197      5.4985829    4196502.00
                               paycat                 763197      1.0000000     763197.00
                               agegroup               763197      4.9953328    3812423.00
                               dispocat               763197      1.4942603    1140415.00
               1     763197    Alameda                763197      0.0347302      26506.00
                               Amador                 763197      0.0011085   846.0000000
                               Butte                  763197      0.0048375       3692.00
                               Calaveras              763197      0.0013404       1023.00
                               Colusa                 763197              0             0
                               Contra_Costa           763197      0.0272459      20794.00
                               El_Dorado              763197      0.0022511       1718.00
                               Fresno                 763197      0.0216012      16486.00
                               Glenn                  763197              0             0
                               Humboldt               763197      0.0053630       4093.00
                               Imperial               763197      0.0045611       3481.00
                               Kern                   763197      0.0243961      18619.00
                               Kings                  763197      0.0032822       2505.00
                               Lake                   763197      0.0028171       2150.00
                               Lassen                 763197    0.000513629   392.0000000
                               LosAngeles             763197      0.2705501     206483.00
                               Madera                 763197      0.0045336       3460.00
                               Mendocino              763197      0.0030202       2305.00
                               Marin                  763197      0.0043894       3350.00
                               Merced                 763197      0.0078761       6011.00
                               Monterey               763197      0.0116942       8925.00
                               Napa                   763197      0.0025564       1951.00
                               Nevada                 763197      0.0021973       1677.00
                               Orange                 763197      0.0449582      34312.00
                               Placer                 763197      0.0052136       3979.00
                               Riverside              763197      0.0673404      51394.00
                               Sacramento             763197      0.0325067      24809.00
                               San_Benito             763197      0.0013273       1013.00
                               San_Bernardino         763197      0.0805310      61461.00
                               San_Diego              763197      0.0642835      49061.00
                               San_Francisco          763197      0.0153853      11742.00
                               San_Joaquin            763197      0.0230203      17569.00
                               SanLuisObispo          763197      0.0066549       5079.00
                               San_Mateo              763197      0.0160968      12285.00
                               Santa_Barbara          763197      0.0250709      19134.00
                               Santa_Clara            763197      0.0260129      19853.00
                               Santa_Cruz             763197      0.0104953       8010.00
                               Shasta                 763197      0.0080713       6160.00
                               Siskiyou               763197      0.0011622   887.0000000

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                             83

                               Solano                   763197       0.0092493         7059.00
                               Sonoma                   763197       0.0097734         7459.00
                               Stanislaus               763197       0.0186662        14246.00
                               Sutter                   763197     0.000394394     301.0000000
                               Tehama                   763197       0.0032665         2493.00
                               Trinity                  763197               0               0
                               Tulare                   763197       0.0080700         6159.00
                               Tuolumne                 763197       0.0011072     845.0000000
                               Ventura                  763197       0.0185103        14127.00
               1     763197    Yolo                     763197       0.0034657         2645.00
                               Yuba                     763197     0.000326259     249.0000000
                               CountyUnknown            763197       0.0535222        40848.00
                               Alpine_Inyo_Mariposa     763197       0.0012277     937.0000000
                               Del_Norte_Modoc          763197       0.0019497         1488.00
                               Colusa_Glenn_Trinity     763197       0.0013797         1053.00
                               patcocat                 763197      24.8109191     18935619.00
    ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

Exercise 5.2-5: Using a PROC Tabulate, identify the diseases presented to the California EDs
when patzip=99999 is a proxy for the homeless. Describe your findings.
/*5. Using a PROC Tabulate identify the diseases presented to the
California*/
/*EDs when patzip=99999 is a proxy for the homeless. Describe your
findings. */

options nolabel nodate nonumber;
proc tabulate data=ed2007 order=freq;
where patzip='99999';
class dx_prin3 payer;
var age_yrs;
tables dx_prin3 all,
(payer all)*(age_yrs*(n*f=6.0 mean*f=3.2)) /rts=30;
format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef.
patco $countyf. serv_q $serv_q. pr_prin2 $proc2df. payer $payerf.
dx_prin3 $diag3df. ec_prin $ecodef.
;
title 'Distribution in Rank order of the Homeless Diagnoses by Payer';
run;
options nolabel nodate nonumber;


Exercise 5.2-4: Partial Output of PROC Tabulate to identify the diseases presented to the
California EDs when patzip=99999 is a proxy for the homeless. Describe your findings
                           Distribution in Rank order of the Homeless Diagnoses by Payer

 „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
 ‚                            ‚                              payer                              ‚
 ‚                            ‡ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ‰
 ‚                            ‚          ‚ Medical- ‚other non-‚          ‚          ‚ Medicare ‚
 ‚                            ‚ selfpay ‚    Cal    ‚ federal ‚other HMO ‚commercial‚ Part A ‚
 ‚                            ‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰
 ‚                            ‚ age_yrs ‚ age_yrs ‚ age_yrs ‚ age_yrs ‚ age_yrs ‚ age_yrs ‚
 ‚                            ‡ƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒ‰


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                         84

 ‚                            ‚      ‚Me-‚      ‚Me-‚      ‚Me-‚      ‚Me-‚      ‚Me-‚      ‚Me-‚
 ‚                            ‚ N    ‚an ‚ N    ‚an ‚ N    ‚an ‚ N    ‚an ‚ N    ‚an ‚ N    ‚an ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚dx_prin3                    ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚(305) Nondependent abuse of ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚drugs                       ‚ 1045‚ 43‚    212‚ 47‚   238‚ 42‚    25‚ 37‚    46‚ 40‚    65‚ 50‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(780) General symptoms      ‚   528‚ 37‚   237‚ 37‚   170‚ 40‚    26‚ 23‚    39‚ 29‚    66‚ 48‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(786) Symptoms involving    ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚respiratory ...             ‚   317‚ 40‚   172‚ 45‚   128‚ 44‚    28‚ 32‚    19‚ 43‚    40‚ 57‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(789) Other symptoms        ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚involving abdome...         ‚   277‚ 37‚   129‚ 38‚   134‚ 41‚    32‚ 34‚    22‚ 32‚    26‚ 54‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(873) Other open wound of   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚head                        ‚   322‚ 34‚    65‚ 32‚   140‚ 38‚    19‚ 22‚    40‚ 40‚    12‚ 45‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(682) Other cellulitis and ‚       ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚abscess                     ‚   344‚ 41‚   110‚ 43‚   156‚ 42‚    17‚ 33‚    27‚ 38‚    28‚ 50‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(298) Other nonorganic      ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚psychoses                   ‚   392‚ 38‚   108‚ 40‚    86‚ 37‚     1‚ 21‚     6‚ 43‚    41‚ 44‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(959) Injury, other and     ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚unspecified                 ‚   222‚ 33‚    50‚ 29‚    62‚ 35‚    21‚ 20‚     6‚ 22‚     9‚ 55‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(724) Other and unspecified ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚disorders...                ‚   225‚ 41‚    84‚ 46‚    71‚ 44‚    16‚ 33‚     7‚ 49‚    21‚ 50‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(784) Symptoms involving    ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚head and neck               ‚   145‚ 37‚    62‚ 38‚    72‚ 40‚    14‚ 36‚    10‚ 54‚     9‚ 54‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(V70) General medical       ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚examination                 ‚   101‚ 39‚    35‚ 41‚    74‚ 38‚    14‚ 36‚    57‚ 43‚     5‚ 61‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(V68) Encounters for        ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚administrative p...         ‚   204‚ 39‚    72‚ 48‚    61‚ 44‚     3‚ 16‚     3‚ 37‚    19‚ 61‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(729) Other disorders of    ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚soft tissues                ‚   180‚ 44‚    89‚ 49‚    59‚ 40‚     3‚ 25‚     9‚ 43‚    42‚ 53‚
 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒŒ
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚(303) Alcohol dependence    ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚syndrome                    ‚   247‚ 46‚    62‚ 49‚    69‚ 40‚     5‚ 49‚    15‚ 47‚    19‚ 50‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(296) Affective psychoses   ‚   245‚ 39‚   110‚ 39‚    48‚ 40‚     3‚ 37‚     7‚ 34‚    37‚ 45‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(847) Sprains and strains of‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚other an...                 ‚   108‚ 34‚    28‚ 35‚    29‚ 42‚    13‚ 31‚    11‚ 35‚    10‚ 40‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(719) Other and unspecified ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚disorder ...                ‚   129‚ 44‚    74‚ 50‚    67‚ 41‚     9‚ 30‚     5‚ 43‚    26‚ 49‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(787) Symptoms involving    ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚digestive sy...             ‚   121‚ 31‚    56‚ 23‚    29‚ 37‚    18‚ 25‚     8‚ 35‚     8‚ 48‚

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                          85

 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(295) Schizophrenic         ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚psychoses                   ‚   127‚ 39‚   163‚ 41‚    23‚ 40‚     1‚ 26‚     4‚ 38‚    48‚ 44‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(311) Depressive disorder, ‚       ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚not elsewh...               ‚   144‚ 40‚    93‚ 43‚    70‚ 39‚     7‚ 37‚     7‚ 36‚    27‚ 48‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(300) Neurotic disorders    ‚   118‚ 36‚    58‚ 44‚    25‚ 40‚    10‚ 38‚    10‚ 36‚    25‚ 46‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(599) Other disorders of    ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚urethra and ...             ‚    88‚ 34‚    30‚ 32‚    13‚ 41‚    11‚ 32‚    14‚ 36‚    10‚ 63‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(920) Contusion of face,    ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚scalp, and n...             ‚   122‚ 34‚    32‚ 27‚    33‚ 39‚     5‚8.8‚    10‚ 28‚     5‚ 55‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(493) Asthma                ‚   108‚ 41‚    65‚ 40‚    34‚ 42‚    11‚ 23‚     8‚ 21‚     7‚ 52‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(465) Acute upper           ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚respiratory infecti...      ‚    70‚ 29‚    79‚ 17‚    17‚ 42‚    13‚ 14‚     5‚ 24‚     5‚ 53‚
 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰
 ‚(V58) Other and unspecified ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚      ‚   ‚
 ‚aftercare                   ‚   180‚ 38‚    37‚ 32‚    24‚ 44‚     9‚ 23‚    26‚ 47‚    16‚ 49‚
 Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒŒ

3. From a Proc Means, using the class statement for selfpay output, prepare a descriptive
statistics narrative of the findings.
4. Using a PROC Tabulate, identify the diseases presented to the California EDs when
patzip=99999 is a proxy for the homeless and describe your findings.


In the last half of 2007, there were 763,197 (17.5%) emergency department (ED) uninsured (self-
pay) visits to California hospitals and 3.6 million ED visits (82.5%) with insurance. The
uninsured were younger, 30.6 years old compared to the insured of 34.2 years. The uninsured
were more males than females (47.1% versus 41.1%) and the insured were more females than
males (50.4% versus 39.7%). The racial mix of the uninsured was white (49.9%), black (10.9%),
and all other (39.7%). The racial mix of the insured was white (53.5%), black (8.4 %), and all
other (37.9%). The payer mix of the insured was 29.6% Medical, 6.6% Bluecross, 4.3%
commercial, 5.0% Medicare HMO, 24.6% other HMO, 12.4 % Medicare, and 20.5% other.
92.9 % of the uninsured went home, 0.98% went to a skilled nursing facility, 3.8% left against
medical advice and 2.3 %had other dispositions. 94.3 % of the insured went home, 1.3% went to
a skilled nursing facility and the remaing 4.4% had other dispositions. Los Angeles EDs had
27.0% (206,483) uninsured, followed by 8% in San Bernardino (61,461), 6.7 % in Riverside
(51,394) and 6.4% in San Diego County (49,061). Los Angeles had 23.4% (845,077), followed
by 7.0% in San Diego (252,958), 6.8 % in Orange (247,558) and 5.7% in San Bernardino County
(206,529).
In summary, 17.5% of emergency department visits were uninsured compared to 82.5 percent
insured. The uninsured compared to the insured were younger, male, less white, and more black.
Fewer went home, more left against medical advice and less went to other facilities. The most
were in Los Angeles, followed by San Bernardino.
Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                         86

Of the 46,368 homeless visits, 23,643 had principal diagnoses treated in the last half of 2007 in
California emergency departments. Their mean age was 39 years old. The top ten diagnoses are:
1. Nondependent abuse of drugs (1,773) with a mean age of 43;
2. General symptoms (1,211) with a mean age of 38;
3. Respiratory symptoms (801) with a mean age of 44;
4. Abdominal symptoms (715) with a mean age of 39;
5. Open wound of the head (693) with a mean age of 35;
6. Cellulites and abscess (769) with a mean age of 41;
7. Other non organic psychosis (684) with a mean age of 39;
8. Injury and other unspecified (417) with mean age of 33;
9. Other unspecified disorders (478) with a mean age of 44 and
10. Symptoms involving the head and neck (349) with a mean age of 40.
In summary, these ten diagnoses contain one-third of the homeless ED visits and reflect exposure
and neglect of this young population, all of which are mostly uninsured.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                             87




             3. Multiple Linear Regression Model of California ED visits
             in with the response variable of Patient Age (age_years)
        osphd03d.sas

Below is the linear regression model (Proc Reg) of the response variable, patient age in years and
the effects of gender, race, ethnicity payer disposition, and county, using 1 million observations.
/*osphd03d.sas*/
options nolabel nodate nonumber;
proc reg data=ed2007 (obs=1000000);
     model age_yrs=male white hispanic selfpay snf LosAngeles;
title 'Linear regression for age of ED patients in California in
2007';
run;

Below is the output of the linear regression.
                  Linear regression for age of ED patients in California in 2007
                                         The REG Procedure
                                           Model: MODEL1
                                   Dependent Variable: age_yrs

                     Number of Observations Read                        1000000
                     Number of Observations Used                         694628
                     Number of Observations with Missing Values          305372

                                        Analysis of Variance
                                               Sum of            Mean
         Source                    DF         Squares          Square    F Value      Pr > F

         Model                     6         44696134        7449356     15642.8      <.0001
         Error                694621        330789063      476.21518
         Corrected Total      694627        375485196

                       Root MSE              21.82235    R-Square       0.1190
                       Dependent Mean        32.99430    Adj R-Sq       0.1190
                       Coeff Var             66.13977

                                          Parameter Estimates
                                       Parameter       Standard
              Variable      DF          Estimate          Error     t Value      Pr > |t|

              Intercept      1          37.28367        0.05568      669.55       <.0001
              male           1          -3.60033        0.05284      -68.14       <.0001
              white          1           4.94754        0.05427       91.17       <.0001
              hispanic       1         -12.38907        0.05810     -213.23       <.0001
              selfpay        1          -1.49705        0.07303      -20.50       <.0001
              snf            1          35.75377        0.51267       69.74       <.0001
              LosAngeles     1          -3.55061        0.06132      -57.91       <.0001




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                               88

As seen above in the PROC REG models, output of visit age (age_yrs) for California emergency
department visits in the last half of 2007 all of the effects are significant at p<.0001. Controlling
for visit gender, race, ethnicity, payer, disposition and county, the findings are as follows:
1. All else being equal, male visits are 3.6 years younger than females. p<.0001
2. All else being equal, white visits are 4.9 years older than non-white. p<.0001
3. All else being equal, hispanic visits are 12 years younger than non-Hispanics. p<.0001
4. All else being equal, self-pay visits are 1.5 years younger than non self-pay. p<.0001
5. All else being equal, skilled nursing facility (snf) disposition visits are 35.7 years older.
   p<.0001
6. All else being equal, visits in Los Angeles are 3.5 years younger than all other counties.
   p<.0001




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                          89




             Exercise 5.3


Using osphd03d.sas, perform the below and interpret the findings:
1. Run the model with 2 million observations and compare the intercept and beta coefficients to
the model with 1 million observations.
2. Run the model with all 4.3 million observations and compare the intercept and beta
coefficients to the two previous models.
Run the model with 2 million observations and compare the intercept and beta coefficients to the
model with 1 million observations.
/*Answer to Exercise 5.3-1 */
/*osphd03d.sas*/
options nolabel nodate nonumber;
proc reg data=ed2007 (obs=2000000);
     model age_yrs=male white hispanic selfpay snf LosAngeles;
title 'Linear regression for age of ED patients in California in
2007';
run;

Proc Reg output for exercise 4.3.
                           Linear regression for age of ED patients in California in 2007

                                          The REG Procedure
                                            Model: MODEL1
                                    Dependent Variable: age_yrs

                     Number of Observations Read                         2000000
                     Number of Observations Used                         1303336
                     Number of Observations with Missing Values           696664



                                         Analysis of Variance

                                               Sum of             Mean
         Source                     DF        Squares           Square    F Value   Pr > F

         Model                     6         88097868       14682978      30334.7   <.0001
         Error                 1.3E6        630852936      484.03200
         Corrected Total       1.3E6        718950804



                      Root MSE               22.00073    R-Square        0.1225
                      Dependent Mean         32.74570    Adj R-Sq        0.1225
                      Coeff Var              67.18661



                                         Parameter Estimates


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                                    90


                                        Parameter         Standard
               Variable        DF        Estimate            Error     t Value      Pr > |t|

               Intercept        1        37.29365          0.04431      841.75        <.0001
               male             1        -3.93503          0.03886     -101.27        <.0001
               white            1         4.70930          0.04001      117.71        <.0001
               hispanic         1       -13.98514          0.04093     -341.73        <.0001
               selfpay          1        -0.89066          0.05157      -17.27        <.0001
               snf              1        35.99326          0.39001       92.29        <.0001
               LosAngeles       1         0.32646          0.03939        8.29          <.0001

                                    1 million observations

                                        Parameter         Standard
               Variable        DF        Estimate            Error     t Value      Pr > |t|

               Intercept        1        37.28367          0.05568      669.55        <.0001
               male             1        -3.60033          0.05284      -68.14        <.0001
               white            1         4.94754          0.05427       91.17        <.0001
               hispanic         1       -12.38907          0.05810     -213.23        <.0001
               selfpay          1        -1.49705          0.07303      -20.50        <.0001
               snf              1        35.75377          0.51267       69.74        <.0001
               LosAngeles       1        -3.55061          0.06132      -57.91        <.0001



The intercepts are almost equal as well as all of the effects with the exception of self-pay and Los
Angeles. Increasing the observations to 2 million, the self-pay visits compared to all non-selfpay visits is
0.89 years younger rather than 1.49 years in the one million-observation model. In addition, patients
from Los Angeles are 0.32 years older rather than 3.5 years younger. When it is not a random sample,
model size equal to the first million observations compared to the second million have slight but
important differences.

Run the model with all 4.36 million observations and compare the coefficients to the two
previous models
/*osphd03d.sas*/
options nolabel nodate nonumber;
proc reg data=ed2007;
     model age_yrs=male white hispanic selfpay snf LosAngeles;
title 'Linear regression for age of ED patients in California in
2007';
run;
quit;
options label;
title;


                             Linear regression for age of ED patients in California in 2007

                                            The REG Procedure
                                              Model: MODEL1
                                      Dependent Variable: age_yrs

                       Number of Observations Read                          4364548


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                            91

                     Number of Observations Used                         2887049
                     Number of Observations with Missing Values          1477499



                                         Analysis of Variance

                                               Sum of             Mean
         Source                    DF         Squares           Square    F Value      Pr > F

         Model                     6        182211742        30368624     61709.6      <.0001
         Error                2.89E6       1420775878       492.12165
         Corrected Total      2.89E6       1602987621



                      Root MSE               22.18382     R-Square       0.1137
                      Dependent Mean         33.59664     Adj R-Sq       0.1137
                      Coeff Var              66.02987

                                        All Observations
                                          Parameter Estimates

                                       Parameter        Standard
              Variable      DF          Estimate           Error     t Value      Pr > |t|

              Intercept      1          36.80474        0.02970      1239.05       <.0001
              male           1          -3.76998        0.02631      -143.28       <.0001
              white          1           5.00609        0.02814       177.87       <.0001
              hispanic       1         -13.43844        0.02848      -471.90       <.0001
              selfpay        1          -1.99993        0.03499       -57.16       <.0001
              snf            1          37.18328        0.24254       153.31       <.0001
              LosAngeles     1           0.52051        0.03214        16.19       <.0001

                                 2 million observations
                                          Parameter Estimates

                                       Parameter        Standard
              Variable      DF          Estimate           Error     t Value      Pr > |t|

              Intercept      1          37.29365        0.04431       841.75       <.0001
              male           1          -3.93503        0.03886      -101.27       <.0001
              white          1           4.70930        0.04001       117.71       <.0001
              hispanic       1         -13.98514        0.04093      -341.73       <.0001
              selfpay        1          -0.89066        0.05157       -17.27       <.0001
              snf            1          35.99326        0.39001        92.29       <.0001
              LosAngeles     1           0.32646        0.03939         8.29         <.0001

                                 1 million observations

                                       Parameter        Standard
              Variable      DF          Estimate           Error     t Value      Pr > |t|

              Intercept      1          37.28367        0.05568       669.55       <.0001
              male           1          -3.60033        0.05284       -68.14       <.0001
              white          1           4.94754        0.05427        91.17       <.0001
              hispanic       1         -12.38907        0.05810      -213.23       <.0001
              selfpay        1          -1.49705        0.07303       -20.50       <.0001
              snf            1          35.75377        0.51267        69.74       <.0001

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                                      92

                LosAngeles       1        -3.55061          0.06132       -57.91        <.0001



All three intercepts are almost equal, as well as all of the effects with the exception of self-pay. Increasing
the observations to 4.6 million, the self-pay ED visit compared to all non-selfpay ED visits are almost 2
years younger rather than 0.89, and 1.49 in the two other models. Overall, the differences between using
the full sample do have small but important differences in a few effects.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                            93




             4. Logistic Regression Model of California Self Pay
             Emergency Department Visits

Below is the logistic regression model of California emergency department visits and the
response variable of self-pay and the effects of age, sex, race and ethnicity.
/*osphd04.sas*/
options nolabel nodate nonumber;
proc logistic data=ed2007 des;
    class race (param=ref ref='R3')    sex   (param=ref ref='F')
           eth (param=ref ref='E2')    dispn (param=ref ref='01')
/**home**/
           patco (param=ref ref='19') /**Los Angeles**/
    ;

     model selfpay=age_yrs sex race eth patco ;
;

;
units   age_yrs=10;
      title 'Logistic Regression for in Selfpay Visits in California in
2007';
run;
quit;
options label;


It should be noted regarding the log below that on my computer this regression took over 14
minutes to run. Therefore we will run in our exercises less than 4.3 million observations and
determine any differences as we had previously done with the PROC Reg model.
                 NOTE: PROC LOGISTIC is modeling the probability that selfpay=1.
NOTE: Convergence criterion (GCONV=1E-8) satisfied.
NOTE: There were 4364548 observations read from the data set WORK.ED2007.
NOTE: PROCEDURE LOGISTIC used (Total process time):
      real time           14:30.68
      cpu time            4:13.45



             Logistic Regression for in Selfpay Visits in California in 2007

                                       The LOGISTIC Procedure

                                        Model Information

                         Data Set                       WORK.ED2007
                         Response Variable              selfpay
                         Number of Response Levels      2
                         Model                          binary logit
                         Optimization Technique         Fisher's scoring



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                 94


                               Number of Observations Read         4364548
                               Number of Observations Used         4364548



                                            Response Profile

                                 Ordered                         Total
                                   Value       selfpay       Frequency

                                        1            1          763197
                                        2            0         3601351

                                 Probability modeled is selfpay=1.



                                       Class Level Information

               Class       Value                     Design Variables

               race        *            1      0      0        0       0     0   0
                           99           0      1      0        0       0     0   0
                           R1           0      0      1        0       0     0   0
                           R2           0      0      0        1       0     0   0
                           R3           0      0      0        0       0     0   0
                           R4           0      0      0        0       1     0   0
                           R5           0      0      0        0       0     1   0
                           R9           0      0      0        0       0     0   1

               sex         *            1      0      0
                           F            0      0      0
                           M            0      1      0
                           U            0      0      1

               eth         *          1      0        0
                           99         0      1        0
                           E1         0      0        1
                           E2         0      0        0
                 Logistic Regression for in Selfpay   Visits in California in 2007

                                       The LOGISTIC Procedure

                                       Class Level Information

               Class       Value                     Design Variables

               agecat5     *            1      0      0        0       0     0
                           0            0      1      0        0       0     0
                           1            0      0      0        0       0     0
                           2            0      0      1        0       0     0
                           3            0      0      0        1       0     0
                           4            0      0      0        0       1     0
                           5            0      0      0        0       0     1



                                       Model Convergence Status



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                            95

                          Convergence criterion (GCONV=1E-8) satisfied.



                                          Model Fit Statistics

                                                                 Intercept
                                                 Intercept             and
                               Criterion              Only      Covariates

                               AIC               4046056.7      3776115.2
                               SC                4046070.0      3776380.9
                               -2 Log L          4046054.7      3776075.2



                               Testing Global Null Hypothesis: BETA=0

                     Test                     Chi-Square         DF     Pr > ChiSq

                     Likelihood Ratio         269979.578         19           <.0001
                     Score                    237839.819         19           <.0001
                     Wald                     199688.328         19           <.0001



                                        Type 3 Analysis of Effects

                                                         Wald
                              Effect        DF     Chi-Square     Pr > ChiSq

                              agecat5        6     166688.946         <.0001
                              sex            3     27391.3169         <.0001
                              race           7      6407.0501         <.0001

                                        Type 3 Analysis of Effects

                                                         Wald
                              Effect        DF     Chi-Square     Pr > ChiSq

                              eth            3     13035.6968         <.0001



                              Analysis of Maximum Likelihood Estimates

                                                    Standard           Wald
             Parameter         DF       Estimate       Error     Chi-Square     Pr > ChiSq

             Intercept          1       -2.4268      0.00939     66832.9306            <.0001
             agecat5     *      1        0.9237       0.0113      6716.7404            <.0001
             agecat5     0      1        1.7952       0.1508       141.7844            <.0001
             agecat5     2      1        0.1137      0.00891       162.8886            <.0001
             agecat5     3      1        1.3528      0.00856     24957.3595            <.0001
             agecat5     4      1        0.8998      0.00858     10992.7961            <.0001
             agecat5     5      1       -1.1664       0.0120      9512.5575            <.0001
             sex         *      1        0.2887      0.00769      1408.7201            <.0001
             sex         M      1        0.4606      0.00279     27334.8644            <.0001
             sex         U      1        1.4484       0.2203        43.2430            <.0001
             race        *      1       -0.3685      0.00992      1379.3116            <.0001
             race        99     1       -0.5190       0.0113      2113.8857            <.0001

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                               96

             race       R1       1        -0.2394       0.0257          86.7720           <.0001
             race       R2       1        -0.6786       0.0108        3973.4762           <.0001
             race       R4       1        -0.2207       0.0236          87.7924           <.0001
             race       R5       1        -0.2808      0.00466        3632.0910           <.0001
             race       R9       1        -0.3163      0.00602        2757.8259           <.0001
             eth        *        1         0.3074      0.00754        1663.5127           <.0001
             eth        99       1         0.0737      0.00919          64.3370           <.0001
             eth        E1       1         0.4137      0.00369       12548.8385           <.0001



                                              Odds Ratio Estimates

                                                    Point            95% Wald
                       Effect                    Estimate        Confidence Limits

                       agecat5   *   vs   1         2.519        2.464        2.575
                       agecat5   0   vs   1         6.021        4.481        8.091
                       agecat5   2   vs   1         1.120        1.101        1.140
                       agecat5   3   vs   1         3.868        3.804        3.934
                       agecat5   4   vs   1         2.459        2.418        2.501
                       agecat5   5   vs   1         0.311        0.304        0.319



                                              Odds Ratio Estimates

                                                    Point            95% Wald
                       Effect                    Estimate        Confidence Limits

                       sex       * vs F             1.335        1.315        1.355
                       sex       M vs F             1.585        1.576        1.594
                       sex       U vs F             4.256        2.764        6.554
                       race      * vs R3            0.692        0.678        0.705
                       race      99 vs R3           0.595        0.582        0.608
                       race      R1 vs R3           0.787        0.748        0.828
                       race      R2 vs R3           0.507        0.497        0.518
                       race      R4 vs R3           0.802        0.766        0.840
                       race      R5 vs R3           0.755        0.748        0.762
                       race      R9 vs R3           0.729        0.720        0.738
                       eth       * vs E2            1.360        1.340        1.380
                       eth       99 vs E2           1.077        1.057        1.096
                       eth       E1 vs E2           1.512        1.502        1.523



                    Association of Predicted Probabilities and Observed Responses

                     Percent Concordant                  66.4     Somers' D       0.356
                     Percent Discordant                  30.8     Gamma           0.367
                     Percent Tied                         2.9     Tau-a           0.103
                     Pairs                       2.7485403E12     c               0.678




As seen above in the proc logistic output of the response variable of selfpay, considering the
effects of visit age group, gender, race, and ethnicity, the findings are as follows:


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                           97

1. All else being equal, those who visit California ED between 18 and 34 years old compared to
   those less than 1 year old are 3.9 times more likely to be self pay (uninsured). p<.0001[CI
   3.804, 3.934]
2. All else being equal, males compared to females who visit California EDs are1.5 times more
   likely to be uninsured. p<.0001[CI 1.576, 1.594]
3. All else being equal, whites compared to blacks who visit California EDs are 21.3 percent
   less likely to be uninsured. p<.0001[CI 0.748, 0.828]
4. All else being equal, Hispanics compared to non-Hispanics who visit California EDs are1.5
   times more likely to be uninsured. p<.0001[CI 1.502 , 1.523]
The partial SAS code from osphd02d.sas is available to interpret findings.
agelt1            =(agecat5='1');
age1to17          =(agecat5='2');
age18to34         =(agecat5='3');
age35to64         =(agecat5='4');
agege65           =(agecat5='5');
uknagecat         =(agecat5='*');

native_american   =(race='R1');
asian             =(race='R2');
black             =(race='R3');
hawaiian          =(race='R4');
white             =(race='R5');
othrace           =(race='R9');
unkrace           =(race='99');
race_blk          =(race='*');

hispanic          =(eth='E1');
non_hispanic      =(eth='E2');
hispanic_unk      =(eth='99');
hispanic_blnk     =(eth='*');




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                          98




               Exercises 5.4


1. Run the selfpay logistic model with 1,000,000 observations and determine if the findings
differ significantly. As shown below, the run time was a little over 1 minute.
2. Change the logistic model of exercise 5.4-1 to consider homeless rather than selfpay.


options label nodate nonumber;
proc logistic data=ed2007 (obs=1000000) des;
    class race (param=ref ref='R3')   sex    (param=ref ref='F')
          eth (param=ref ref='E2') agecat5 (param=ref ref='1')

        ;

        model selfpay=agecat5 sex race eth;
;

      title 'Logistic Regression for in Selfpay Visits in California in
2007';
run;
quit;
options label;




NOTE:   PROC LOGISTIC is modeling the probability that selfpay=1.
NOTE:   Convergence criterion (GCONV=1E-8) satisfied.
NOTE:   There were 1000000 observations read from the data set WORK.ED2007.
NOTE:   PROCEDURE LOGISTIC used (Total process time):
        real time           1:03.67
        cpu time            27.24 seconds




                  Logistic Regression for in Selfpay Visits in California in 2007

                                       The LOGISTIC Procedure

                                        Model Information

                          Data Set                      WORK.ED2007
                          Response Variable             selfpay
                          Number of Response Levels     2
                          Model                         binary logit
                          Optimization Technique        Fisher's scoring




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                 99

                               Number of Observations Read         1000000
                               Number of Observations Used         1000000



                                            Response Profile

                                 Ordered                         Total
                                   Value       selfpay       Frequency

                                        1            1           159030
                                        2            0           840970

                                 Probability modeled is selfpay=1.



                                       Class Level Information

               Class       Value                     Design Variables

               race        *            1      0      0        0       0     0   0
                           99           0      1      0        0       0     0   0
                           R1           0      0      1        0       0     0   0
                           R2           0      0      0        1       0     0   0
                           R3           0      0      0        0       0     0   0
                           R4           0      0      0        0       1     0   0
                           R5           0      0      0        0       0     1   0
                           R9           0      0      0        0       0     0   1

               sex         *            1      0      0
                           F            0      0      0
                           M            0      1      0
                           U            0      0      1

               eth         *            1      0      0
                           99           0      1      0
                           E1           0      0      1
                           E2           0      0      0



               agecat5     *            1      0      0        0       0     0
                           0            0      1      0        0       0     0
                           1            0      0      0        0       0     0
                           2            0      0      1        0       0     0
                           3            0      0      0        1       0     0
                           4            0      0      0        0       1     0
                           5            0      0      0        0       0     1



                                       Model Convergence Status

                         Convergence criterion (GCONV=1E-8) satisfied.



                                        Model Fit Statistics

                                                               Intercept
                                             Intercept               and

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                            100

                               Criterion             Only       Covariates

                               AIC               876117.78      808937.15
                               SC                876129.60      809173.46
                               -2 Log L          876115.78      808897.15



                               Testing Global Null Hypothesis: BETA=0

                     Test                     Chi-Square         DF     Pr > ChiSq

                     Likelihood Ratio         67218.6338         19           <.0001
                     Score                    59387.4263         19           <.0001
                     Wald                     48879.8943         19           <.0001



                                        Type 3 Analysis of Effects

                                                         Wald
                              Effect        DF     Chi-Square     Pr > ChiSq

                              agecat5        6     42061.6983         <.0001
                              sex            3      8010.3725         <.0001
                              race           7      1436.8306         <.0001



                                        Type 3 Analysis of Effects

                                                         Wald
                              Effect        DF     Chi-Square     Pr > ChiSq

                              eth            3      1079.0166         <.0001



                              Analysis of Maximum Likelihood Estimates

                                                    Standard           Wald
             Parameter         DF       Estimate       Error     Chi-Square     Pr > ChiSq

             Intercept          1       -2.7678       0.0211     17160.9522            <.0001
             agecat5     *      1        1.1355       0.0258      1933.6508            <.0001
             agecat5     0      1        0.6094       0.7562         0.6494            0.4203
             agecat5     2      1        0.1507       0.0210        51.5961            <.0001
             agecat5     3      1        1.6198       0.0201      6501.4024            <.0001
             agecat5     4      1        1.0921       0.0202      2936.5548            <.0001
             agecat5     5      1       -1.1878       0.0289      1688.6914            <.0001
             sex         *      1        0.3818       0.0174       484.0206            <.0001
             sex         M      1        0.5417      0.00606      7986.3940            <.0001
             sex         U      1        0.8830       0.5519         2.5603            0.1096
             race        *      1       -0.2982       0.0232       165.5796            <.0001
             race        99     1       -0.4575       0.0254       323.3297            <.0001
             race        R1     1       -0.1989       0.0435        20.9436            <.0001
             race        R2     1       -0.6510       0.0242       723.6139            <.0001
             race        R4     1       -0.1666       0.0672         6.1559            0.0131
             race        R5     1       -0.2507      0.00873       824.5226            <.0001
             race        R9     1       -0.3394       0.0119       807.5155            <.0001
             eth         *      1        0.2573       0.0186       190.5329            <.0001

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                             101

             eth        99      1      0.2770      0.0212       171.1656           <.0001
             eth        E1      1      0.2605     0.00835       974.0387           <.0001



                                       Odds Ratio Estimates

                                              Point             95% Wald
                      Effect               Estimate         Confidence Limits

                      agecat5   * vs 1          3.113       2.959        3.274
                      agecat5   0 vs 1          1.839       0.418        8.098
                      agecat5   2 vs 1          1.163       1.116        1.211
                      agecat5   3 vs 1          5.052       4.857        5.255
                      agecat5   4 vs 1          2.980       2.865        3.100
                      agecat5   5 vs 1          0.305       0.288        0.323
                      sex       * vs F          1.465       1.416        1.516
                      sex       M vs F          1.719       1.699        1.739
                      sex       U vs F          2.418       0.820        7.132
                      race      * vs R3         0.742       0.709        0.777
                      race      99 vs R3        0.633       0.602        0.665
                      race      R1 vs R3        0.820       0.753        0.893
                      race      R2 vs R3        0.522       0.497        0.547
                      race      R4 vs R3        0.847       0.742        0.966
                      race      R5 vs R3        0.778       0.765        0.792
                      race      R9 vs R3        0.712       0.696        0.729
                      eth       * vs E2         1.293       1.247        1.342
                      eth       99 vs E2        1.319       1.266        1.375
                      eth       E1 vs E2        1.298       1.276        1.319



                   Association of Predicted Probabilities and Observed Responses

                    Percent Concordant             68.0      Somers' D     0.390
                    Percent Discordant             29.0      Gamma         0.402
                    Percent Tied                    2.9      Tau-a         0.104
                    Pairs                  133739459100      c             0.695



As seen above in the proc logistic with 1 million visits, the output of the response variable of
selfpay, considering the effects of visit age group, gender, race, and ethnicity, the findings are as
follows:
1. All else being equal, those who visit California ED between 18 and 34 years old compared to
   those less than 1 year old are 5.0 times more likely to be self pay (uninsured). p<.0001[CI
   4.857, 5.255]
2. All else being equal, males compared to females who visit California EDs are1.7 times more
   likely to be uninsured. p<.0001[CI 1.699 , 1.739]
3. All else being equal, whites compared to blacks who visit California EDs are 28 percent
   less likely to be uninsured. p<.0001[CI 0.753, 0.893]
4. All else being equal, Hispanics compared to non-Hispanics who visit California EDs are1.3
   times more likely to be uninsured. p<.0001[CI 1.276, 1.319]

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                          102

There are differences in the values of the effects of logistic models with 4.3 million observations
versus the model with 1-million observations.. However, they do not change the findings in any
significant way concerning the direction of the effects. Those effects that are more likely
continue to be more likely and those less likely remain less likely with only differences in the
odds ratios.
2. Change the logistic model of exercise 5.4-1 to consider homeless rather than selfpay. Again
the 4.6 million visits took 23 minutes with questionable findings.
.
                                                :
PROC LOGISTIC is modeling the probability that homeless=1.
WARNING: Ridging has failed to improve the loglikelihood. You may want to use a different
         ridging technique (RIDGING= option), or switch to using linesearch to reduce the step
         size (RIDGING=NONE), or specify a new set of initial estimates (INEST= option).
WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are based
         on the last maximum likelihood iteration. Validity of the model fit is questionable.
NOTE: There were 4364548 observations read from the data set WORK.ED2007.
NOTE: PROCEDURE LOGISTIC used (Total process time):
      real time           23:19.18
      cpu time            5:40.71



                       Logistic Regression for in Homeless Visits to California EDs in 2007

                                       The LOGISTIC Procedure

                                         Model Information

                          Data Set                        WORK.ED2007
                          Response Variable               homeless
                          Number of Response Levels       2
                          Model                           binary logit
                          Optimization Technique          Fisher's scoring



                              Number of Observations Read        4364548
                              Number of Observations Used        4364548



                                            Response Profile

                                 Ordered                         Total
                                   Value      homeless       Frequency

                                        1             1          46368
                                        2             0        4318180

                                Probability modeled is homeless=1.



                                       Class Level Information

               Class        Value                     Design Variables



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                         103

               race          *              1     0      0         0    0     0      0
                             99             0     1      0         0    0     0      0
                             R1             0     0      1         0    0     0      0
                             R2             0     0      0         1    0     0      0
                             R3             0     0      0         0    0     0      0
                             R4             0     0      0         0    1     0      0
                             R5             0     0      0         0    0     1      0
                             R9             0     0      0         0    0     0      1

               sex           *              1     0      0
                             F              0     0      0
                             M              0     1      0
                             U              0     0      1

               eth           *              1     0      0
                             99             0     1      0
                             E1             0     0      1
                             E2             0     0      0

               agecat5       *              1     0      0         0    0     0
                             0              0     1      0         0    0     0
                             1              0     0      0         0    0     0
                             2              0     0      1         0    0     0
                             3              0     0      0         1    0     0
                             4              0     0      0         0    1     0
                             5              0     0      0         0    0     1



                                       Model Convergence Status

                      Ridging has failed to improve the likelihood function.

WARNING: Ridging has failed to improve the loglikelihood. You may want to use a different
         ridging technique (RIDGING= option), or switch to using linesearch to reduce the step
         size (RIDGING=NONE), or specify a new set of initial estimates (INEST= option).

WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are based
         on the last maximum likelihood iteration. Validity of the model fit is questionable.



                                            Model Fit Statistics

                                                               Intercept
                                                Intercept            and
                                 Criterion           Only     Covariates

                                 AIC            513697.26      498937.36
                                 SC             513710.55      499203.14
                                 -2 Log L       513695.26      498897.36



                                 Testing Global Null Hypothesis: BETA=0

                      Test                      Chi-Square         DF   Pr > ChiSq

                      Likelihood Ratio          14797.9024         19       <.0001
                      Score                     39505.8285         19       <.0001

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                         104

                     Wald                  243467366       19         <.0001
                 WARNING: The validity of the model fit is questionable.

                                        Type 3 Analysis of Effects

                                                         Wald
                              Effect        DF     Chi-Square    Pr > ChiSq

                              agecat5        6      101425783          <.0001
                              sex            3     63393608.4          <.0001
                              race           7     32233931.4          <.0001
                              eth            3     46386687.8          <.0001



                              Analysis of Maximum Likelihood Estimates

                                                   Standard            Wald
             Parameter         DF       Estimate      Error      Chi-Square     Pr > ChiSq

             Intercept          1       -5.2457    0.000097      2925199665        <.0001
             agecat5     *      1       -1.2673    0.000714      3149519.81        <.0001
             agecat5     0      1       59.1960    1.3203E9          0.0000        1.0000
             agecat5     2      1        0.0727    0.000291      62445.0935        <.0001
             agecat5     3      1        0.8342    0.000187      19798648.4        <.0001
             agecat5     4      1        1.1877    0.000134      78301886.1        <.0001
             agecat5     5      1        0.1294    0.000384      113313.412        <.0001
             sex         *      1        0.9567    0.000235      16634980.2        <.0001
             sex         M      1        0.8979    0.000131      46758637.3        <.0001
             sex         U      1       20.4739      6.8995          8.8059        0.0030
             race        *      1       -0.3412    0.000182      3504440.60        <.0001
             race        99     1       -1.0485    0.000437      5768647.87        <.0001
             race        R1     1       -0.0646     0.00155       1741.0541        <.0001
             race        R2     1       -1.0437    0.000844      1528065.56        <.0001
             race        R4     1       -1.0865     0.00253      184309.705        <.0001
             race        R5     1       -0.5595    0.000148      14306875.6        <.0001
             race        R9     1       -0.8255    0.000313      6939869.22        <.0001
             eth         *      1        0.7271    0.000170      18353359.9        <.0001
             eth         99     1        1.6103    0.000304      28029136.3        <.0001
             eth         E1     1        0.0155    0.000240       4199.1113        <.0001



                                          Odds Ratio Estimates

                                                 Point            95% Wald
                      Effect                  Estimate        Confidence Limits

                      agecat5 * vs 1             0.282         0.281       0.282
                      agecat5 0 vs 1          >999.999        <0.001    >999.999

WARNING: The validity of the model fit is questionable.



                                            Odds Ratio Estimates

                                                 Point            95% Wald
                      Effect                  Estimate        Confidence Limits



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                             105

                      agecat5   2 vs 1        1.075        1.075       1.076
                      agecat5   3 vs 1        2.303        2.302       2.304
                      agecat5   4 vs 1        3.280        3.279       3.280
                      agecat5   5 vs 1        1.138        1.137       1.139
                      sex       * vs F        2.603        2.602       2.604
                      sex       M vs F        2.455        2.454       2.455
                      sex       U vs F     >999.999     >999.999    >999.999
                      race      * vs R3       0.711        0.711       0.711
                      race      99 vs R3      0.350        0.350       0.351
                      race      R1 vs R3      0.937        0.935       0.940
                      race      R2 vs R3      0.352        0.352       0.353
                      race      R4 vs R3      0.337        0.336       0.339
                      race      R5 vs R3      0.571        0.571       0.572
                      race      R9 vs R3      0.438        0.438       0.438
                      eth       * vs E2       2.069        2.068       2.070
                      eth       99 vs E2      5.004        5.001       5.007
                      eth       E1 vs E2      1.016        1.015       1.016



                  Association of Predicted Probabilities and Observed Responses

                    Percent Concordant             69.1     Somers' D    0.451
                    Percent Discordant             24.0     Gamma        0.484
                    Percent Tied                    6.9     Tau-a        0.009
                    Pairs                  200225370240     c            0.725

As seen above in the proc logistic with all visits, for the response variable of homeless
considering the effects of visit age group, gender, race, and ethnicity, the findings are as follows:
1. All else being equal, those who visit California ED between 18 and 34 years old compared to
   those less than 1 years old are 2.3 times more likely to be homeless. p<.0001[CI 2.302,
   2.304]
2. All else being equal, males compared to females who visit California EDs are 2.4 times more
   likely to be homeless. p<.0001[CI 2.454, 2.455]
3. All else being equal, whites compared to blacks who visit California EDs are 16.3 percent
   less likely to be homeless. p<.0001[CI 0.935, 0.940]
4. All else being equal, Hispanics compared to non-Hispanics who visit California EDs are1.6
   percent more likely to be homeless. p<.0001[CI 1.015, 1.016]




agelt1           =(agecat5='1');
age1to17         =(agecat5='2');


Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                          106

age18to34         =(agecat5='3');
age35to64         =(agecat5='4');
agege65           =(agecat5='5');
uknagecat         =(agecat5='*');

hispanic          =(eth='E1');
non_hispanic      =(eth='E2');
hispanic_unk      =(eth='99');
hispanic_blnk     =(eth='*');



native_american   =(race='R1');
asian             =(race='R2');
black             =(race='R3');
hawaiian          =(race='R4');
white             =(race='R5');
othrace           =(race='R9');
unkrace           =(race='99');
race_blk          =(race='*');




Change the logistic model of exercise 5.4-1 to consider homeless rather than selfpay. Use one
million visits and see if the differences are signicant. As shown below the time to complete the
analysis was 1 ½ minutes.
                 NOTE: PROC LOGISTIC is modeling the probability that homeless=1.
WARNING: Ridging has failed to improve the loglikelihood. You may want to use a different
         ridging technique (RIDGING= option), or switch to using linesearch to reduce the step
         size (RIDGING=NONE), or specify a new set of initial estimates (INEST= option).
WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are based
         on the last maximum likelihood iteration. Validity of the model fit is questionable.
NOTE: There were 1000000 observations read from the data set WORK.ED2007.
NOTE: PROCEDURE LOGISTIC used (Total process time):
      real time           1:40.92
      cpu time            28.81 se



                      Logistic Regression for in Homeless Visits to California EDs in 2007

                                       The LOGISTIC Procedure

                                        Model Information

                         Data Set                       WORK.ED2007
                         Response Variable              homeless
                         Number of Response Levels      2
                         Model                          binary logit
                         Optimization Technique         Fisher's scoring



                             Number of Observations Read        1000000
                             Number of Observations Used        1000000



                                          Response Profile



Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                         107

                                 Ordered                       Total
                                   Value      homeless     Frequency

                                        1            1             8821
                                        2            0           991179

                                 Probability modeled is homeless=1.



                                       Class Level Information

               Class        Value                    Design Variables

               race         *           1      0      0        0      0   0     0
                            99          0      1      0        0      0   0     0
                            R1          0      0      1        0      0   0     0
                            R2          0      0      0        1      0   0     0
                            R3          0      0      0        0      0   0     0
                            R4          0      0      0        0      1   0     0
                            R5          0      0      0        0      0   1     0
                            R9          0      0      0        0      0   0     1

               sex          *           1      0      0
                            F           0      0      0
                            M           0      1      0
                            U           0      0      1

               eth          *           1      0      0
                            99          0      1      0
                            E1          0      0      1
                            E2          0      0      0

               agecat5      *           1      0      0        0      0   0
                            0           0      1      0        0      0   0
                            1           0      0      0        0      0   0
                            2           0      0      1        0      0   0
                            3           0      0      0        1      0   0
                            4           0      0      0        0      1   0
                            5           0      0      0        0      0   1



                                       Model Convergence Status

                       Ridging has failed to improve the likelihood function.

WARNING: Ridging has failed to improve the loglikelihood. You may want to use a different
         ridging technique (RIDGING= option), or switch to using linesearch to reduce the step
         size (RIDGING=NONE), or specify a new set of initial estimates (INEST= option).

WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are based
         on the last maximum likelihood iteration. Validity of the model fit is questionable.



                                        Model Fit Statistics

                                                            Intercept
                                             Intercept            and

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                            108

                               Criterion             Only       Covariates

                               AIC               101023.56      96987.890
                               SC                101035.37      97224.200
                               -2 Log L          101021.56      96947.890



                               Testing Global Null Hypothesis: BETA=0

                     Test                     Chi-Square         DF     Pr > ChiSq

                     Likelihood Ratio      4073.6687             19           <.0001
                     Score                11113.0234             19           <.0001
                     Wald                 71511547.1             19           <.0001
WARNING: The validity of the model fit is questionable.

                                        Type 3 Analysis of Effects

                                                         Wald
                              Effect        DF     Chi-Square     Pr > ChiSq

                              agecat5        6     29518495.1         <.0001
                              sex            3     15281632.4         <.0001
                              race           7     16124948.4         <.0001
                              eth            3     10587559.6         <.0001



                              Analysis of Maximum Likelihood Estimates

                                                    Standard           Wald
             Parameter         DF       Estimate       Error     Chi-Square     Pr > ChiSq

             Intercept          1       -5.2779     0.000211      626201293            <.0001
             agecat5     *      1       -1.2510      0.00154     655713.269            <.0001
             agecat5     0      1       93.1823     8.867E16         0.0000            1.0000
             agecat5     2      1        0.1193     0.000661     32571.4824            <.0001
             agecat5     3      1        0.9928     0.000409     5899903.85            <.0001
             agecat5     4      1        1.3755     0.000288     22757152.5            <.0001
             agecat5     5      1        0.3497     0.000840     173163.456            <.0001
             sex         *      1        0.9343     0.000475     3871059.31            <.0001
             sex         M      1        0.9747     0.000289     11410577.7            <.0001
             sex         U      1       96.0488     2.689E17         0.0000            1.0000
             race        *      1       -0.6463     0.000366     3114234.89            <.0001
             race        99     1       -0.3799      0.00129     87409.7501            <.0001
             race        R1     1       -0.9221      0.00369     62575.8348            <.0001
             race        R2     1       -1.5110      0.00224     453179.722            <.0001
             race        R4     1       -1.2860      0.00680     35799.9462            <.0001
             race        R5     1       -1.1222     0.000387     8388355.83            <.0001
             race        R9     1       -1.3047     0.000654     3983400.30            <.0001
             eth         *      1        1.1034     0.000346     10196015.4            <.0001
             eth         99     1        0.5126      0.00131     152577.845            <.0001
             eth         E1     1        0.2519     0.000515     238967.375            <.0001



                                          Odds Ratio Estimates

                                                   Point          95% Wald

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                            109

                      Effect               Estimate       Confidence Limits

                      agecat5 * vs 1          0.286        0.285       0.287
                      agecat5 0 vs 1       >999.999       <0.001    >999.999

WARNING: The validity of the model fit is questionable.

                                       Odds Ratio Estimates

                                              Point           95% Wald
                      Effect               Estimate       Confidence Limits

                      agecat5   2 vs 1        1.127        1.125       1.128
                      agecat5   3 vs 1        2.699        2.697       2.701
                      agecat5   4 vs 1        3.957        3.955       3.959
                      agecat5   5 vs 1        1.419        1.416       1.421
                      sex       * vs F        2.545        2.543       2.548
                      sex       M vs F        2.650        2.649       2.652
                      sex       U vs F     >999.999       <0.001    >999.999
                      race      * vs R3       0.524        0.524       0.524
                      race      99 vs R3      0.684        0.682       0.686
                      race      R1 vs R3      0.398        0.395       0.401
                      race      R2 vs R3      0.221        0.220       0.222
                      race      R4 vs R3      0.276        0.273       0.280
                      race      R5 vs R3      0.326        0.325       0.326
                      race      R9 vs R3      0.271        0.271       0.272
                      eth       * vs E2       3.014        3.012       3.016
                      eth       99 vs E2      1.670        1.665       1.674
                      eth       E1 vs E2      1.286        1.285       1.288



                  Association of Predicted Probabilities and Observed Responses

                     Percent Concordant           72.5    Somers' D     0.510
                     Percent Discordant           21.6    Gamma         0.542
                     Percent Tied                  5.9    Tau-a         0.009
                     Pairs                  8743189959    c             0.755

As seen above in the proc logistic with 1 million visits, for the output response variable of
homeless considering the effects of visit age group, gender, race, and ethnicity, the findings are
as follows:
1. All else being equal, those who visit California ED between 18 and 34 years old compared to
   those less than 1 years old are 2.7 times more likely to be homeless. p<.0001[CI 2.697,
   2.701]
2. All else being equal, males compared to females who visit California EDs are 2.6 times more
   likely to be homeless. p<.0001[CI 2.649, 2.652]
3. All else being equal, whites compared to blacks who visit California EDs are 60.2 percent
   less likely to be homeless. p<.0001[CI 0.395, 0.401]
4. All else being equal, Hispanics compared to non-Hispanics who visit California EDs are1.3
   times more likely to be homeless. p<.0001[CI 1.285, 1.288]

Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
Chapter 5-OSPHD Emergency Department                                                          110

In summary, for logistic regression of California ED visits, the differences between 4.3 million
and 1 million visits does not significantly effect the findings of the models of uninsured and
homeless.




Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA

Sta9000

  • 1.
    Baruch College/Mount Sinai School of Medicine Program in Health Care Administration and Policy Health Data Analysis and ® Statistics Using SAS Course Notes STA9000 Fall 2009
  • 2.
    Health Care DataAnalysis and Statistics Using SAS® 2 Health Data Analysis and Statistics Using SAS® Course Notes was developed by Raymond R. Arons. SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. Health Data Analysis and Statistics Using SAS® Course Notes Copyright © 2009 Raymond R. Arons. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, Raymond R. Arons, Teaneck, New Jersey. Acknowledgement: I wish to acknowledge the contribution of Victoria L Franke to this manuscript. She is a published poet, a retired high school English teacher, and a close personal friend. Her generosity of talent and spirit helped me edit this text and provided me with a sounding board for many of the concepts presented. Her dedication, combined with an intense interest in the subject matter, resulted in what I hope to be the quality and accuracy of this manuscript. Prepared date: 21August09. Course Description The course focuses on the applied analysis of public access health care data. The first data set studied is from the National Center for Health Statistics, The National Hospital Discharge Survey from 2006. With the permission of the Department of Health and Human Services, Organ Procurement and Transplantation Network (OPTN), students will have the opportunity to study the nation’s liver transplantation data from 1984 through 2007. From the Office of Statewide Health Planning and Development (OSPHD), students will have the opportunity to study the 2007 California Hospital Emergency Department data. The course will apply SAS best practices in the analysis of these data aimed at producing descriptive statistics, exploratory data analysis (EDA), linear model building, linear model assessment, linear model interpretation, logistic model building, logistic model assessment, and logistic model interpretation. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 3.
    Health Care DataAnalysis and Statistics Using SAS® 3 Table of Contents Chapter 1 –Navigating SAS Screens,Functions,Icons and Libraries Chapter 2-Health Data and SAS Functions Chapter 3-National Hospital Discharge Survey (NHDS Chapter 4-Organ Procurement Transplantation Network OPTN- Liver Transplants Chapter 5- Office of Statewide Health Planning & Development (OSHPD) California Emergency Department Data Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 4.
    Baruch College/Mount Sinai School of Medicine Program in Health Care Administration and Policy Health Data Analysis and ® Statistics Using SAS Course Notes STA9000 Chapter 1 –Navigating SAS Screens,Functions,Icons and Libraries
  • 5.
    Navigating SAS Screens,Functions, Icons, and Libraries - Lecture 1 2 Health Data Analysis and Statistics Using SAS® Course Notes was developed by Raymond R. Arons. SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. Health Data Analysis and Statistics Using SAS® Course Note Copyright © 2009 Raymond R. Arons. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, Raymond R. Arons, Teaneck, New Jersey. Prepared date: 24June09. Course Description The course focuses on the applied analysis of public access health care data. The first data set studied is from the National Center for Health Statistics, The National Hospital Discharge Survey from 2006. With the permission of the Department of Health and Human Services, Organ Procurement and Transplantation Network (OPTN), students will have the opportunity to study the nation’s liver transplantation data from 1984 through 2007. From the Office of Statewide Health Planning and Development (OSPHD), students will have the opportunity to study the 2007 California Hospital Emergency Department data. The course will apply SAS best practices in the analysis of these data aimed at producing descriptive statistics, exploratory data analysis (EDA), linear model building, linear model assessment, linear model interpretation, logistic model building, logistic model assessment, and logistic model interpretation. Prerequisites Before attending this course, your skills should include: • An understanding of statistical methods obtained in your first semester course STA9307, Introduction to Statistics. • Knowledge of clinical coding methods such as the ICD-9-CM diagnosis and procedures along with the Medicare and all payer diagnosis-related grouping system (DRGs). • It would be helpful, but not necessary, if you had previous experience using a statistical program such as SPSS and/or the Excel Statistical Application. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 6.
    Chapter 1 -Navigating SAS Screens, Functions, and Libraries 3 Navigating SAS Screens, Functions, Icons and Libraries Lecture 1 Objectives Learn the housekeeping functions of SAS. How to move around screens, there functions and importance. – editor – log – output Identify the drop down icons and what are there functions. Create SAS libraries Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 7.
    Chapter 1-Navigating SASScreens, Functions, Icons and Libraries 4 Double Click on SAS 9.2 SAS Loading This is the first event that indicates your SAS 9.2 is booting up. It can vary in real time from 6 seconds to 3 minutes depending upon your computer speed and RAM. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 8.
    Chapter 1 -Navigating SAS Screens, Functions, and Libraries 5 SAS Loaded SAS Log Screen SAS Editor Screen This is the first set of screens when you open SAS. The upper screen is the log screen which tells you how your program ran and if there are any errors. It will indicate the data read, and the SAS functions performed along with the duration for each. It is one of the most important screens since it identifies your errors and provides you with suggested tools to fix your code. Always check your log after you run any program. The initial log screen, which is presented above, indicates the time needed to boot-up SAS, information such as site license (City University of New York – T/R, Site 0070007378), and what PC platform you are operating on. You are asked your site name and site license from SAS Tech-Support to confirm you as a CUNY user. They will help on line or over the phone to solve coding or any SAS question. The number of SAS tech support in North America is 919-677-8008. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 9.
    Chapter 1-Navigating SASScreens, Functions, Icons and Libraries 6 Log Screen Editor Screen The Editor Screen is where you write your SAS code. Make sure you are using the Enhanced Editor, which will provide you with prompts if your code is in error by turning red. The colors of black, blue, green and violet tend to be good signs that your coding is OK. . Output Screen Log Screen Editor Screen Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 10.
    Chapter 1 -Navigating SAS Screens, Functions, and Libraries 7 You can view all three screens-Output, Log and Editor- in a horizontal or vertical window. The above is horizontal. This gives you the ability to watch your program execute in the log, and view the output. To select horizontal versus vertical, you select the Window drop-down menu. The above is the vertical screen configuration. Notice the three tabs at the bottom of the SAS screen which reflect the three windows that are open. The highlighted blue above the window indicates you are ready to write some code. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 11.
    Chapter 1-Navigating SASScreens, Functions, Icons and Libraries 8 File Drop Down Menu The above is the file drop-down menu that has a number of functions. They will be discussed and used throughout the course. There are eight (8) drop down, File, Edit, Tools, Run, Solutions, Window and Help. There are 15 icons in the following order: Erase Page, Select Folder for Saving, Save, Print, Print Preview, Cut, Copy, Paste, Undo, Create Library, SAS Explorer, Run, Clear All Screens, Break, and Help ... Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 12.
    Chapter 1 -Navigating SAS Screens, Functions, and Libraries 9 It should be noted that your professor has not used many of these functions. However, this has been a useful exercise to review what I know and what I do not know. 1. Similar to the Word, the File drop down menu includes New Program, Open Program, Close a Screen, Append, Open Object, Save, Save As, Save As Object, Import Data Export Data, Page Setup, Print, Print Setup, Print Preview, Print, Send Mail and a list of the last four (4) SAS programs you used. 2. The Edit drop down menu has Undo Cut, Copy, Paste, Delete, Rename, Select All, Deselect All, Copy Item, and Move Item. 3. The View menu has Large Icons, Small Icons, List Details, Show Tree, Up One Level, Refresh, Reorder Columns, Enhanced Editor, Program Editor, Log, Output, Graph, Results, Explorer, and Contents Only. 4. The Tools menu has Query, Table Editor, Graphics Editor, Image Editor, Text Editor, New Library, New File Shortcut, Customize and Options. Options offer Log, System Keys Color, Fonts, Titles, Footnotes, Preferences, and Change Current Folder. I have used the options – Fonts to make my editor fonts larger for the class to read. 5. Solutions have many functions also that I have yet to learn and they include Analysis, Development and Programming, Reporting, Accessories, ASSIST, Desktop, and EIS/OLAP Application Builder. 6. Windows contains Minimize All Windows, Cascade, Tile Vertically, Tile Horizontally, Resize, Size Docking, Docked, Log, and Editor, which includes Untitled, Explorer, Output, and Result. 7. Lastly, the Help drop down menu offers off-line help. Using this Window, there is a range of SAS help and documentation functions. This includes, Getting Started with SAS, Learning SAS Programming, SAS on the Web and About SAS 9.2 (This allows you to access your site license computer specifications etc.) Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 13.
    Chapter 1-Navigating SASScreens, Functions, Icons and Libraries 10 Creating a SAS Library A SAS Library is similar to a folder in a Windows PC. It allows SAS data sets to be stored and accessed. Two of our data sets are SAS data sets. – OPTN Liver Transplants – California ED Visits The following series of slides will demonstrate how to create libraries for these data sets. Creating a SAS Library –optn.liver continued... Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 14.
    Chapter 1 -Navigating SAS Screens, Functions, and Libraries 11 Creating a SAS Library - optn.liver This is the ICON SAS Explorer which will show you the newly created data set optn.liver. Left click it. continued... Creating a SAS Library –optn.liver continued... Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 15.
    Chapter 1-Navigating SASScreens, Functions, Icons and Libraries 12 Creating a SAS Library –optn.liver This is the file called optn.liver continued... If you left click on the file, you will be able to see your SAS data set optn.liver. Creating a SAS Library –optn.liver Variable name, values and observation Above are the first 17 variables and 28 observations of the SAS data set optn.liver Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 16.
    Chapter 1 -Navigating SAS Screens, Functions, and Libraries 13 Creating a SAS Library –osphd.cal2007 The New Library Wizard again has three necessary entries. They are: 1. Name – This in our case is OSPHD for the 2007 California ED visit data. 2. Check the box enable at start up so it always is available fir each SAS session. 3. Identify the location of the file trough the brows option. In our case, the data is on the C drive in folder DATA9000. 4. When all of the above is completed, left click OK. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 17.
    Chapter 1-Navigating SASScreens, Functions, Icons and Libraries 14 Creating a SAS Library –osphd.cal2007 This is the file called osphd.cal2007 Creating a SAS Library –osphd.cal2007 Variable name, values and observation Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 18.
    Baruch College/Mount Sinai School of Medicine Program in Health Care Administration and Policy Health Data Analysis and ® Statistics Using SAS Course Notes STA9000 Chapter 2-Health Data and SAS Functions
  • 19.
    2 Health Data Analysisand Statistics Using SAS® Course Notes was developed by Raymond R. Arons.SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. Health Data Analysis and Statistics Using SAS® Course Note Copyright © 2009 Raymond R. Arons. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, Raymond R. Arons, Teaneck, New Jersey. Prepared date 15August09
  • 20.
    Chapter 2-Health Dataand SAS Functions 3 Health Data and SAS Functions Lecture 2 The Forms of Raw Data Magnetic Tape Cartridge CD and DVD ROM File Transport (FTP) over the Internet 40-160 MB 10-60 GB ... Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 21.
    Chapter 2 -Health Data and SAS Functions 4 Data and Definitions An observation (OBS) in a string of letters and/or numbers with what is known as a logical record length (LRECL). A variable is located in positions along the continuum of these strings as either individual or a group of numbers and/or characters. Variables with values that are pre-identified by their names are found in SAS data sets. Observations (OBS) reflect the number of strings of data, also known as cases, patients, subjects, and visits. What are Character, Numeric, Continuous and Qualitative Variables? Examples of Character Values are: 01, 022, 001, 0003, E234, V30.1, 00222, 499_broadway, 07666 and t2000. Numeric Values: 1, 230, 12.1, 0, 3245, 6890, 1000000, 200, 20, 2 and 0. Continuous Variables: age 0-100 years, length of stay 1-1000 days, height 50-80 inches, weight 100-350 lbs, temperature 0-110 ºF. Qualitative Variables : race (01, 02, 03, 04, 05, sex (M,F), ethnicity (1, 2), payer (01,02,04,06,07), hospital disposition (01, 02, 03, 04, 05, 20). Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 22.
    Chapter 2-Health Dataand SAS Functions 5 What Does Some Data Look Like? Flat Fixed Length ASCII File OSRA D D D D D P A P P BEAG X X X R I A D R R SXCE 1 2 3 G S Y M 1 2 1234567890123456789012345678901234567 1112447234234338888812703020321303456 2112447234234338888812703020321303456 3223455558312121222222201020145674567 4131122221212123334543003080477745123 5143374551434341212301405090473847778 ------Logical Record Length----(LRECL=37 OBS ASCII Data Set OBS LRECL Most data sets such as NHDS06 can be opened in Notepad or Word and you can see the observations, string of numbers, and logical record length. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 23.
    Chapter 2 -Health Data and SAS Functions 6 SAS Data Set Variables obs SAS has become the standard of data sets such as the OPTN Liver transplant data in which are seen the variable names and their values. They only can be opened in SAS. Binary Data OBS 10000010000111010100000100010010010 20000010000111010100000100010010010 30000010000111010100000100010010010 40000010000111010100000100010010010 50000010000111010100000100010010010 60000010000111010100000100010010010 70010101010101010101000000101010101 LRECL Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 24.
    Chapter 2-Health Dataand SAS Functions 7 SAS Statements to be Covered Data Infile Input Keep Indicator Variables Truth Logic Class Where Procs The Data Step data nhds06; data caid2008; data care2004; data sta9000; data caled2007; Limit data name to 32 characteristics Do not forget semicolon;;;;;;;;;;;;;;;;;;;;; The data step is the beginning of your program. It is like the first bookend on a bookshelf and all that follows are the books that contain the functions, modifications and preparations that you desire prior to beginning your data analysis. The second bookend is the SAS procedures or PROCS which range from basic data housekeeping to complex statistical analysis. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 25.
    Chapter 2 -Health Data and SAS Functions 8 Example INFILE Statements Infile 'C:data9000nhds06.pu.txt‘ lrecl=88; Infile 'C:data90test.txt‘lrecl=250 obs=10; Infile 'C:data9000cal2007 lrecl=999; Infile 'C:data2000osphd.dat‘ lrecl=200; Infile 'C:data3000nhds06.pu.txt‘ lrecl=88; The Infile points to where your raw data set is located. It is like your compass (GPS) to identify the location of your data, name, observation length (LRECL) and the opportunity to select the number of observations you choose to study. Note: quotations are placed from the beginning of the location to the end of the name of the data set. Most errors begin with not correctly identifying the location of your data set. The IF Statement Located within the data statement and in some instances after the input statement. The if statement selects specific observations in your data that meet the selected criteria and ignores all other obs. IF drg=127; IF drg=95 or drg=96; IF drg=121 and age GT 80; IF dx1=‘4101’; IF dx1=‘042’ and age GT 70; IF sex=‘F’ and drg=483; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 26.
    Chapter 2-Health Dataand SAS Functions 9 SAS Program Outline Data Statement – Name data set data=nhds; Infile Statement – Where is C:STA9000NHDS06.PU.TXT; the data located? input @ @1 SVYEAR $2. @3 EWBORN 1. @4 AGEUNITS 1. @5AGE 2. Input Statements white = (race=‘w’); Change variables in data set –i.e., black = (race=‘b’); indicator variables, etc. asian = (race=‘a’); proc means data=nhds; PROC Means - Example var white black asian; SAS analysis of data title ‘mean analysis’; run; The Indicator Variable The indicator variable takes a qualitative measurement such as male (M), female (F), white (W), black (B), death (20), discharges home (1), physician referral (2) , admitted from a clinic (3), transferred from a nursing home (4), etc., and converts it to a quantitative (numeric) value equal to 1 if it is true and 0 if it did not occur. This then allows the SAS PROCS to perform statistical analysis of the data. For example, you cannot get a mean value from five Ms and seven Fs. You can get means from five ones (1) and seven zeros (0). Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 27.
    Chapter 2 -Health Data and SAS Functions 10 Indicator Variables /****ethnic indicator variables ***/ hispanic = (eth='E1'); non_hispanic = (eth='E2'); hispanic_unk = (eth='99'); hispanic_blnk = (eth='*') /****gender indicator variables ***/ male = (sex='M'); female = (sex='F'); othgen = (sex='U'); unkgen = (sex='*'); continued... Indicator Variables /****race indicator variables ***/ native_american = (race='R1'); asian = (race='R2'); black = (race='R3'); hawaiian = (race='R4'); white = (race='R5'); othrace = (race='R9'); unkrace = (race='99'); race_blk = (race='*'); Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 28.
    Chapter 2-Health Dataand SAS Functions 11 Creating New Variables from Old If age=1 then age_group=‘agelt25’; If age=2 then age_group=‘age25_44’; If age=3 then age_group=‘age45_64’; If age=4 then age_group=‘age65_69’; If age=5 then age_group=‘age70_74’; If age=6 then age_group=‘age75_79’; If age=7 then age_group=‘age80_84’; If age=8 then age_group=‘age85_90’; If age=9 then age_group=‘agegt_90’; SAS Print Procedure proc print data=nhds06; title ‘print out all variables and observations’; run; will print all variables and all observations proc print data=nhds06 (obs=1000); title ‘print out all variables and just 1000 observations’; run; will print all variables and only 1000 observations proc print data=nhds06 data=nhds06;; var age sex; will print only age and sex and all observations Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 29.
    Chapter 2 -Health Data and SAS Functions 12 PROC Freq proc freq data=nhds06; title ‘Frequency Distribution of All data in nhds06’; run; Will perform a frequency on all data in input statement. proc freq data=nhds06; tables age sex race; title ‘Frequency Distribution of age sex and race in nhds06’; run; Will do frequency distribution on only age,sex & race. proc freq data=nhds06; tables age*sex*race; title ‘Frequency Distribution of age by sex by race in nhds06’; run; Will perform combined table of age,sex and race Example of a PROC Freq for a range of demographic variables. Cumulative Cumulative agecat5 Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ masked age group 207909 4.76 207909 4.76 0 198 0.00 208107 4.77 Under 1 year 161311 3.70 369418 8.46 1-17 years 908157 20.81 1277575 29.27 18-34 years 1111672 25.47 2389247 54.74 35-64 years 1465023 33.57 3854270 88.31 65 years & over 510278 11.69 4364548 100.00 Sex Cumulative Cumulative sex Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ masked sex 442466 10.14 442466 10.14 female 2130477 48.81 2572943 58.95 male 1791507 41.05 4364450 100.00 unknown sex 98 0.00 4364548 100.00 Ethnicity Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 30.
    Chapter 2-Health Dataand SAS Functions 13 Cumulative Cumulative eth Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ masked ethnic 846250 19.39 846250 19.39 ukn_ethnic 168051 3.85 1014301 23.24 Hispanic 1190871 27.29 2205172 50.52 non_Hispanic 2159376 49.48 4364548 100.00 Race Cumulative Cumulative race Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ masked race 710284 16.27 710284 16.27 unknown race 126835 2.91 837119 19.18 native american 11001 0.25 848120 19.43 asian 115621 2.65 963741 22.08 black 379891 8.70 1343632 30.79 hawaiian 14802 0.34 1358434 31.12 white 2311007 52.95 3669441 84.07 other race 695107 15.93 4364548 100.00 PROC Tabulate SAS code The below example of a proc tabulate allows for tabulating data and simultaneously doing mean values of los within the analysis age_group, and sex. proc tabulate data=nhds06; class age_group male; var los; tables age_group all, (age_group, all*(los*(n*f=5. mean*f=4.1)) /RTS=10; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 31.
    Chapter 2 -Health Data and SAS Functions 14 This is a partial example of as Proc Tabulate of rank order by county deaths. Example of Proc Tabulate Rank order of the County ED Deaths „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ† ‚ ‚ died ‚ ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ 0 ‚ 1 ‚ All ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ age_yrs ‚ age_yrs ‚ age_yrs ‚ ‚ ‡ƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒ‰ ‚ ‚ ‚Me-‚ ‚Me-‚ ‚Me-‚ ‚ ‚ N ‚an ‚ N ‚an ‚ N ‚an ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚patco ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ ‚ ‚ ‚ ‚Los Angeles ‚632660‚ 31‚ 904‚ 62‚633564‚ 31‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚San Diego ‚199414‚ 36‚ 246‚ 64‚199660‚ 36‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Orange ‚174899‚ 34‚ 252‚ 66‚175151‚ 34‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚San Bernardino ‚186261‚ 29‚ 261‚ 59‚186522‚ 29‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Riverside ‚177735‚ 32‚ 252‚ 62‚177987‚ 32‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Alameda ‚121411‚ 35‚ 184‚ 62‚121595‚ 35‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Sacramento ‚ 98329‚ 37‚ 242‚ 60‚ 98571‚ 37‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Santa Clara ‚ 91068‚ 34‚ 126‚ 66‚ 91194‚ 34‚ PROC Means with Indicator Variables proc means data=nhds06; var hispanic non_hispanic hispanic_unk hispanic_blnk male female othgen unkgen native_american asian black hawaiian white othrace unkrace race_blk ; title ‘Analysis of NHDS data’; run; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 32.
    Chapter 2-Health Dataand SAS Functions 15 This is an example of a PROC Means of the homeless in California ED visits. Means of homeless Variable in the Last Half 2007 California EDs 1 46368 age_yrs 23643 39.0247431 922662.00 agelt1 46368 0.0124871 579.0000000 age1to17 46368 0.0972222 4508.00 age18to34 46368 0.2917745 13529.00 age35to64 46368 0.5240252 24298.00 agege65 46368 0.0540675 2507.00 aknagecat 46368 0.0176415 818.0000000 male 46368 0.5776398 26784.00 female 46368 0.2785542 12916.00 unkgen 46368 0.1431159 6636.00 hispanic 46368 0.1674646 7765.00 non_hispanic 46368 0.4510870 20916.00 hispanic_unk 46368 0.0838941 3890.00 hispanic_blnk 46368 0.2975543 13797.00 white 46368 0.4684265 21720.00 black 46368 0.1289683 5980.00 native_american 46368 0.0037957 176.0000000 asian 46368 0.0097481 452.0000000 hawaiian 46368 0.000905797 42.0000000 othrace 46368 0.0896955 4159.00 unkrace 46368 0.0464329 2153.00 race_blk 46368 0.2520273 11686.00 selfpay 46368 0.4831134 22401.00 othnonfed 46368 0.0948283 4397.00 ppo 46368 0.0333420 1546.00 pos 46368 0.0016606 77.0000000 epo 46368 0.000560732 26.0000000 carehmo 46368 0.0087560 406.0000000 PROC Reg SAS Code The below is an example of a multivariate regression analysis. This analysis measures the influence of the effect variables (independent) of age, race, sex and outcome upon a response (dependent) variable length of hospital stay (los). proc reg data=nhds06; model los=age male black death; title ‘Regression analysis of response variable los and demographic effects’; run; quit; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 33.
    Chapter 2 -Health Data and SAS Functions 16 Linear regression for age of ED patients in California in 2007 The REG Procedure Model: MODEL1 Dependent Variable: age_yrs Number of Observations Read 4364548 Number of Observations Used 2887049 Number of Observations with Missing Values 1477499 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 6 182211742 30368624 61709.6 <.0001 Error 2.89E6 1420775878 492.12165 Corrected Total 2.89E6 1602987621 Root MSE 22.18382 R-Square 0.1137 Dependent Mean 33.59664 Adj R-Sq 0.1137 Coeff Var 66.02987 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 36.80474 0.02970 1239.05 <.0001 male 1 -3.76998 0.02631 -143.28 <.0001 white 1 5.00609 0.02814 177.87 <.0001 hispanic 1 -13.43844 0.02848 -471.90 <.0001 selfpay 1 -1.99993 0.03499 -57.16 <.0001 snf 1 37.18328 0.24254 153.31 <.0001 LosAngeles 1 0.52051 0.03214 16.19 <.0001 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 34.
    Chapter 2-Health Dataand SAS Functions 17 PROC LOGIST SAS Code Below is an example of a SAS PROC LOGIST measuring a qualitative response variable death and the influence of effects of age, race, and sex. PROC LOGIST data=nhds06 des; model death=age male black; Title ‘The demographic effects that influence death at discharge’; run; quit; Logistic Regression for in Homeless Visits to California EDs in 2007 The LOGISTIC Procedure Model Information Data Set WORK.ED2007 Response Variable homeless Number of Response Levels 2 Model binary logit Optimization Technique Fisher's scoring Number of Observations Read 4364548 Number of Observations Used 4364548 Type 3 Analysis of Effects Wald Effect DF Chi-Square Pr > ChiSq agecat5 6 101425783 <.0001 sex 3 63393608.4 <.0001 race 7 32233931.4 <.0001 eth 3 46386687.8 <.0001 Analysis of Maximum Likelihood Estimates Standard Wald Parameter DF Estimate Error Chi-Square Pr > ChiSq Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 35.
    Chapter 2 -Health Data and SAS Functions 18 Intercept 1 -5.2457 0.000097 2925199665 <.0001 agecat5 * 1 -1.2673 0.000714 3149519.81 <.0001 agecat5 0 1 59.1960 1.3203E9 0.0000 1.0000 agecat5 2 1 0.0727 0.000291 62445.0935 <.0001 agecat5 3 1 0.8342 0.000187 19798648.4 <.0001 agecat5 4 1 1.1877 0.000134 78301886.1 <.0001 agecat5 5 1 0.1294 0.000384 113313.412 <.0001 sex * 1 0.9567 0.000235 16634980.2 <.0001 sex M 1 0.8979 0.000131 46758637.3 <.0001 sex U 1 20.4739 6.8995 8.8059 0.0030 race * 1 -0.3412 0.000182 3504440.60 <.0001 race 99 1 -1.0485 0.000437 5768647.87 <.0001 race R1 1 -0.0646 0.00155 1741.0541 <.0001 race R2 1 -1.0437 0.000844 1528065.56 <.0001 race R4 1 -1.0865 0.00253 184309.705 <.0001 race R5 1 -0.5595 0.000148 14306875.6 <.0001 race R9 1 -0.8255 0.000313 6939869.22 <.0001 eth * 1 0.7271 0.000170 18353359.9 <.0001 eth 99 1 1.6103 0.000304 28029136.3 <.0001 eth E1 1 0.0155 0.000240 4199.1113 <.0001 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits agecat5 * vs 1 0.282 0.281 0.282 agecat5 0 vs 1 >999.999 <0.001 >999.999 Logistic Regression for in Homeless Visits to California EDs in 2007 The LOGISTIC Procedure WARNING: The validity of the model fit is questionable. Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits agecat5 2 vs 1 1.075 1.075 1.076 agecat5 3 vs 1 2.303 2.302 2.304 agecat5 4 vs 1 3.280 3.279 3.280 agecat5 5 vs 1 1.138 1.137 1.139 sex * vs F 2.603 2.602 2.604 sex M vs F 2.455 2.454 2.455 sex U vs F >999.999 >999.999 >999.999 race * vs R3 0.711 0.711 0.711 race 99 vs R3 0.350 0.350 0.351 race R1 vs R3 0.937 0.935 0.940 race R2 vs R3 0.352 0.352 0.353 race R4 vs R3 0.337 0.336 0.339 race R5 vs R3 0.571 0.571 0.572 race R9 vs R3 0.438 0.438 0.438 eth * vs E2 2.069 2.068 2.070 eth 99 vs E2 5.004 5.001 5.007 eth E1 vs E2 1.016 1.015 1.016 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 36.
    Chapter 2-Health Dataand SAS Functions 19 Association of Predicted Probabilities and Observed Responses Percent Concordant 69.1 Somers' D 0.451 Percent Discordant 24.0 Gamma 0.484 Percent Tied 6.9 Tau-a 0.009 Pairs 200225370240 c 0.725 Some of my SAS Rules Save your work after each minute of coding. The number one error is a missing semicolon;;;;; The number two error is a missing semicolon;;;;; After you submit your work, make it a habit to look at your log for errors. SAS is not case sensitive, but using lower case is a good practice. A little OCD is very helpful to diagnosing your code for errors. Relax and enjoy learning. Your PC will never break. If it does not run, ask for help. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 37.
    Chapter 2 -Health Data and SAS Functions 20 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 38.
    Baruch College/Mount Sinai School of Medicine Program in Health Care Administration and Policy Health Data Analysis and ® Statistics Using SAS Course Notes STA9000 Chapter 3-National Hospital Discharge Survey (NHDS)
  • 39.
    2 Health Data Analysisand Statistics Using SAS® Course Notes was developed by Raymond R. Arons. SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. Health Data Analysis and Statistics Using SAS® Course Note Copyright © 2009 Raymond R. Arons. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, Raymond R. Arons, Teaneck, New Jersey. Prepared date 29June09. TABLE OF CONTENTS
  • 40.
    Lecture 3-NHDS 3 1. National Hospital Discharge Survey Description 4 2. Downloading the NHDS from the NCHS Web Site 10 3. NHDS Sample Data File Documentation 13 4. NHDS Regulations 23 5. The NHDS SAS Input and Labels Statement 25 6. The NHDS Data, Infile, Input, Labels, PROC Contents, and PROC Freq Statements 27 7. SAS Format Statements for NHDS 35 8. Proc Frequency with Formats Statements 43 9. Exercise 3.1 46 10. SAS Code for NHDS Indicator and Truth Logic Variables 47 11. Exercise 3.2 52 12 Multivariate Linear Regression (Proc Reg) Model of Days of Care (DOC) 53 13. Exercise 3.3 55 14. Logistic Regression Model for the Uninsured (self pay) 56 15. Exercise 3.4 61 16. Proc Tabulate to Identify the Dx Differences between the Uninsured and Insured 62 17. Exercise 3.5 64 APPENDEX 1 Exercise Answers 65 Exercise 3.1 65 Exercise 3,2 74 Exercise 3.3 82 Exercise 3.4 86 Exercise 3.5 93 APPENDIX 2 NHDS Published Paper with Multivariate Analysis 99 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 41.
    Lecture 3-NHDS 4 The National Hospital Discharge Survey (NHDS) Lecture 3 Objectives How to Download National Hospital Discharge Survey (NHDS) from the CDCs National Center for Health Statistics (NCHS). Create a file on your C drive to store all data and documentation identified as C:Data9000. Download via FTP 2006 NHDS Data and Documentation. Describe the NHDS public-use data files. Pose the range of potential study questions. Write all of the SAS code to analyze the NHDS data. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 42.
    Lecture 3-NHDS 5 History of NHDS In 1962 the National Center for Health Statistics began exploring the possibilities for surveying hospitals nationally to measure the morbidity and demographics of patients cared for in the nation’s hospitals. A national advisory committee was established and in 1963 the School of Public Health of the University of Pittsburgh demonstrated the feasibility of such a program. In 1964, with the support of the American Hospital Association and the American Medical Association and elements of the US Public Health Service, the first NHDS was initiated. History of NHDS – Data Source The National Hospital Discharge Survey (NHDS) covers discharges from noninstitutional hospitals, excluding Federal, military, and Veterans Administration hospitals, located in the 50 States and the District of Columbia. Only short-stay hospitals with an average length of stay for all patients of less than 30 days are included in the survey. In 2006, the sample consisted of 501 hospitals. Of these hospitals, 23 were found to be out-of-scope (ineligible) because they went out of business or otherwise failed to meet the criteria for the NHDS universe. Of the 478 in-scope (eligible) hospitals, 438 hospitals (92%) responded to the survey. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 43.
    Lecture 3-NHDS 6 History of NHDS NCHS has conducted the NHDS continuously since 1965. The original sample was selected in 1964 from a frame of short-stay hospitals listed in the National Master Facility Inventory (NMFI). In 1988, the NHDS was redesigned to provide geographic sampling comparable to other surveys conducted by the NCHS; to update the sample of hospitals selected into the survey; and to maximize the use of data collected through automated systems. Sample Design Benefits The unique stratified sample design allows researchers for 2006 to study 376,328 hospital discharges to measure the clinical and demographic characteristics of the estimated 6,000 short term hospitals and 34.8 million discharges. For example, in 2006 the estimated number of discharges from short-stay hospitals who were women was 20,864,000. This is 59.9 percent of the estimated 34,854,000 total discharges for that year. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 44.
    Lecture 3-NHDS 7 Example Analysis Questions from NHDS What are the differences in diseases treated by acute- care hospitals for patients with and without insurance? How does breast surgery vary by region, age, race, and marital status? How does radical prostectomies differ by region, age, race, and payer over the past decade? Across the nation, and by hospital ownership, are there significant differences between Medicaid and non- Medicaid patients having interventional cardiac procedures and cardiac surgery? continued... Example Analysis Questions from NHDS How does back surgery vary by region, age, race, and marital status? How has acute myocardial infarction differ by region, age, race, and payer over the past decade? Does low cesarean rates correlate with increase in birth trauma when region, race, age, and payer are considered? Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 45.
    Lecture 3-NHDS 8 NHDS Specifications Data Set Name: NHDS06.PU.TXT Record Length 88 Number of Records 376,328 ASCII Format NHDS Variables SVYEAR = 'Last two digits of survey year' NEWBORN = 'Newborn infant flag' AGEUNITS = 'Units for age' AGE = 'Age in years, months, or days' SEX = 'Patient sex' RACE = 'Patient race' MARSTAT = 'Marital status of patient' DISC_MON = 'Month of discharge' DISCSTAT = 'Status at discharge‘ N DOC = 'Number of days of care' u m b er continued... of Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 46.
    Lecture 3-NHDS 9 NHDS Variables LOSFLAG = 'Zero length of stay flag' REGION = 'Geographic region of hospital' BEDSIZE = 'Bedsize grouping for hospital' OWNER = 'Ownership of hospital' WEIGHT = 'Analysis weight' CENTURY = 'First two digits of survey year' DX1 = 'ICD-9-CM diagnosis code - first' DX2 = 'ICD-9-CM diagnosis code – second' DX3 = 'ICD-9-CM diagnosis code - third' DX4 = 'ICD-9-CM diagnosis code - fourth‘ DX5 = 'ICD-9-CM diagnosis code - fifth' continued... NHDS Variables DX6 = 'ICD-9-CM diagnosis code - sixth' DX7 = 'ICD-9-CM diagnosis code - seventh' PD1 = 'ICD-9-CM procedure code - first' PD2 = 'ICD-9-CM procedure code - second' PD3 = 'ICD-9-CM procedure code - third' PD4 = 'ICD-9-CM procedure code - fourth' ESOP1 = 'Principal expected source of payment' ESOP2 = 'Secondary expected source of payment' DRG = 'Diagnosis-related group' ADM_TYPE = 'Type of admission' ASOURCE = 'Source of admission' Before you download files, create on your C drive a new file called Data9000. This is where to store all of the data and documentation for the course. (C:DATA9000) Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 47.
    Lecture 3-NHDS 10 2. Downloading The NHDS from the NCHS Web Site Go to the Google site and enter NHDS. This will send you to the following URL www.cdc.gov/nchs/about/major/hdashd/nhds.htm. The site contains data for the National Hospital Discharge (NHDS) and Ambulatory Surgery Data (NHAS). We are interested in obtaining the NHDS data and documentations identified as the survey description. The latest year available at printing was 2006. Data Files Documentaion Files Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 48.
    Lecture 3-NHDS 11 Scroll down to the location above that is identified as Public Use Data File and left click on NHDS. The following screen will appear. Survey Documentation Agreement File SAS Input Code This screen above contains the (3) PDF documentation files: (NHDS_2006_Documentation.PDF); the confidentiality agreement file (NHDS06readme.txt); and SAS Input Code. The documentation file will contain the survey description and methods. It also identifies all of the variables, the number of observations in the data set and the location of the variables in each observation. In addition, the length of each observation (LRECL) can be determined in this documentation either in the narrative or from position of the end of the last variable. As shown, the data for years 1996 through 2006 are available for analysis of disease, insurance, and mortality trends. Upon downloading, transfer all three files to C:STA9000 files. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 49.
    Lecture 3-NHDS 12 The name of the NHDS 2006 file when downloaded is NHDS06.PU.TXT. Below are eleven (11) selected pages out of the 71 pages of NHDS_2006_Documentation.PDF containing all of the documentation associated with the survey. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 50.
    Lecture 3-NHDS 13 3. NHDS SAMPLE DATA FILE DOCUMENTATION NHDS is systematic random sample of discharges selected from each sampled hospital. A report on the design and development of the original NHDS has been published (3). In 1988, the NHDS was redesigned to provide geographic sampling comparability with other surveys conducted by the NCHS; to update the sample of hospitals selected into the survey; and to maximize the use of data collected through automated systems. The 1988 hospital sample was drawn from a sampling frame that consisted of hospitals that were listed in the April 1987 SMG Hospital Market Database (2), met the above criteria, and began accepting patients by August 1987. This sampling frame was used until 2003. In 2003 and 2006, the sampling frame was constructed from the “Healthcare Market Index” and the “Hospital Market Profiling Solution”, both formerly known as the SMG Hospital Market Database, and both produced by Verispan, L.L.C. The hospital sample is updated every three years to allow for hospitals that opened later or changed their eligibility status since the previous sample update. Updates were performed in 1991, 1994, 1997, 2000, 2003 and 2006. When the survey was redesigned in 1988, a modified, three-stage design was implemented. Units selected at the first stage of sampling consisted of either hospitals or geographic areas, such as counties, groups of counties, or metropolitan statistical areas in the 50 states and the District of Columbia. Within sampled geographic areas, additional hospitals were selected. Finally at the last stage, discharges were selected within the sampled hospitals using systematic random sampling. These changes in the survey may affect trend data. That is, some of the differences between NHDS statistics based on the 1965-87 sample and statistics based on the sample drawn in 1988 may be due to sampling error rather than actual changes in hospital utilization. Two data collection procedures were used for the survey. The first was a manual system of sample selection and data abstraction, used for approximately 55 percent of the responding hospitals. The second was an automated method, used for approximately 45 percent of the responding hospitals. The automated method involved the purchase of computerized data files from abstracting service organizations, state data systems, or from the hospitals themselves. In the manual system, the sample selection and the transcription of information from the hospital records to abstract forms were performed at the hospitals. Of the hospitals using this system in 2006, about 25 percent had the work performed by their own medical records staff. In the remaining hospitals using the manual system, personnel of the U.S. Bureau of the Census did the work on behalf of NCHS. The completed forms, along with sample selection control sheets, were forwarded to NCHS for editing, and weighting. For the automated system, NCHS purchased files containing machine-readable medical record data from which records were systematically sampled by NCHS. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 51.
    Lecture 3-NHDS 14 3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued) Admission and Source of Admission. The coding of all variables can be found in section III of this document which describes the record layout. Medical Coding and Edits. The medical information that was recorded manually on the sample patient abstracts was coded centrally by NCHS staff. A maximum of seven diagnostic codes was assigned for each sample abstract. In addition, if the medical information included surgical or nonsurgical procedures, a maximum of four codes for these procedures was assigned. The system currently used for coding the diagnoses and procedures on the medical abstract forms as well as on the commercial abstracting services data files is the International Classification of Diseases, 9th Revision, Clinical Modification, or ICD-9-CM (4). NHDS usually presents diagnoses and procedures in the order they are listed on the abstract form or obtained from abstract services; however, there are exceptions. For women discharged after a delivery, a code of V27 from the supplemental classification is entered as the first-listed code, with a code designating either normal or abnormal delivery in the second-listed position. In another exception, a decision was made to reorder some acute myocardial infarction diagnoses. If an acute myocardial infarction is listed with other circulatory diagnoses and is other than the first entry, it is reordered to the first position. If a symptom appears as a first-listed code and a diagnosis appears as a secondary code, the diagnosis replaces the symptom which is moved back. Following conversion of the data on the medical abstract to a computer file and combining it with the automated data files, a final medical edit was accomplished by computer inspection and by a manual review of rejected records. Priority was given to medical information in the editing decision. The methodology for editing the NHDS was revised in the 1996 data year. As before, the updated edit program was designed to make as few changes as possible in the data, while following the same general specifications as the previous edit program,. However, there may be some minor anomalies which would be apparent when examining data over time, performing trend analyses, or examining combinations of variables. Particular features of the updated edit program which may affect certain variables are: When imputation for missing age and sex data is performed, the known distribution of these variables is maintained, according to categories of the First-Listed Diagnosis. Procedure codes are no longer reordered. However, if the length of stay is missing for a discharge, it is imputed based on the first-listed procedure. Principal and additional expected sources of payment are no longer re-ordered, with one exception: Self-Pay is listed as the principal source only if there are no other The Medical Abstract Form (Appendix E) and the automated data contain items relating to the personal characteristics of the patient, including birth date or age, sex, race, and marital status, but not name and address; administrative information, including admission and discharge dates, and discharge status; and medical information, including diagnoses and surgical and nonsurgical procedures. Since 1977, patient zip code, expected source of payment, and dates of surgery have also been collected. (Patient date of birth and zip code are confidential information and are not available to the public). Beginning in the 2001 survey year, two additional items were included in the medical abstract form: Type of Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 52.
    Lecture 3-NHDS 15 3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued) How to Use the Data File. The NHDS records are weighted to allow inflation to national or regional estimates. The weight applied to each record is found in location 21-25. To produce an estimate of the number of discharges, the weights for the desired records must be summed. To produce an estimate for number of days of care, the weight must be multiplied by the days of care (location 13-16) and these products are summed. Average length of stay data can be obtained by dividing the days of care by the number of discharges as calculated above. Appendix D contains weighted and unweighted frequencies for selected variables. These may be used as a cross-check when processing NHDS data. Please note that, beginning in 2003, Chapter 00 – Procedures and Interventions, Not Elsewhere Classified – was added to the list of frequencies for all-listed procedures on page 58. Diagnosis-Related Groups (DRGs). Many users of the NHDS data have expressed an interest in converting the medical data to DRGs. This has been done using DRG Grouper Programs obtained from the Centers for Medicare and Medicaid Services (formerly HCFA). The DRGs and the DRG Grouper Programs were developed outside of the National Center for Health Statistics; any questions about DRGs, other than specific questions about how they relate to NHDS data, should be addressed elsewhere. Questions. Questions concerning NHDS data should be directed to: Centers for Disease Control and Prevention National Center for Health Statistics Division of Health Care Statistics Ambulatory and Hospital Care Statistics Branch 3311 Toledo Road Hyattsville, Maryland 20782 Phone: 301.458.4321 Fax: 301.458.4032 email: NHDS@cdc.gov For more information about the NHDS, visit our website: http://www.cdc.gov/nchs/about/major/hdasd/nhds.htm 3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued) Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 53.
    Lecture 3-NHDS 16 REFERENCES 1 Dennison C, Pokras R. Plan and Operation of the National Hospital Discharge Survey. National Center for Health Statistics. Vital Health Stat 1 (39). 2000. http://www.cdc.gov/nchs/data/series/sr_01/sr01_039.pdf 2 SMG Marketing Group, Inc. Hospital Market Database. Chicago: Healthcare Information Specialists, Chicago, IL. April 1987, April 1991, April 1994, April 1997, April 2000; Verispan, L.L.C. Healthcare Market Index and Hospital Market Profiling Solution, 2003 and 2006. 3 Simmons WR, Schnack GA. Development of the Design of the NCHS Hospital Discharge Survey. National Center for Health Statistics. Vital Health Stat 2(39). 1977. 4 International Classification of Diseases, 9th Revision, Clinical Modification, 6th edition. U.S. Department of Health and Humans Services, National Center for Health Statistics, Health Care Financing Administration. 2004. 5 Office of the Secretary, Department of Health and Human Services: Health Information Policy Council: 1984 Revision of the Uniform Hospital Discharge Data Set. Federal Register, Volume 50, No. 147. July 31, 1985. 6 Bieler GS, Williams RL. Analyzing Survey Data Using SUDAAN Release 7.5. Research Triangle Institute: Research Triangle Park, N.C. 1997. 3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued) Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 54.
    Lecture 3-NHDS 17 II. TECHNICAL DESCRIPTION OF DATA FILE Data Set Name NHDS06.PU.TXT Record Length 88 Number of Records 376,328 III. RECORD LAYOUT: Location and Coding of Data Elements This section provides detailed information for each sampled record on the file, with a description of each item included on the record. Data elements are arranged sequentially according to their physical location on the file. Unless otherwise stated in the Item Description, the data are derived from the abstract form or from automated sources. The SMG Hospital Market Database file, Verispan’s data products, and the hospital interview are alternate sources of data; some other items are computer generated. 3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued) Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 55.
    Lecture 3-NHDS 18 Item Number of Location Item description Code description Number Positions 1 1-2 2 Survey Year 06 2 3 1 Newborn status 1=Newborn 2=Not newborn 3 4 1 Units for age 1=Years 2=Months 3=Days 4 5-6 2 Age in years, If units=years: 00-99* If units=months: 01- months, or days 11 If units=days: 00-28 *Ages 100 and over were recoded to 99 5 7 1 Sex 1=Male 2=Female 6 8 1 Race 1=White 2=Black/African American 3=American Indian/Alaskan Native 4=Asian 5=Native Hawaiian or other Pacific Isldr 6=Other 8=Multiple race indicated 9=Not stated 7 9 1 Marital status 1=Married 2=Single 3=Widowed 4=Divorced 5=Separated 9=Not stated 8 10-11 2 Discharge month 01-12=January to December 9 12 1 Discharge Status 1=Routine/discharged home 2=Left against medical advice 3=Discharged/transferred to short-term facility 4=Discharged/transferred to long- term care institution 5=Alive, disposition not stated 6=Dead 9=Not stated or not reported 10 13-16 4 Days of care Use to calculate number of days of care. Values of zero generated by the computer from admission and discharge dates were changed to one. (Discharges for which dates of admission and discharge are the 3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued) Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 56.
    Lecture 3-NHDS 19 Item Number of Location Item description Code description Number Positions same are identified in Item Number 11) 11 17 1 Length of stay flag 0=Less than 1 day 1=One day or more 12 18 1 Geographic region 1=Northeast 2=Midwest 3=South 4=West 13 19 1 Number of beds, 1=6-99 2=100-199 3=200-299 4=300-499 recode 5=500 and over 14 20 1 Hospital ownership 1=Proprietary 2=Government 3=Nonprofit, including church 15 21-25 5 Analysis weight Use to obtain weighted estimates 16 26-27 2 First two digits of 20 survey year 17 28-32 5 Diagnosis code #1 * 18 33-37 5 Diagnosis code #2 * 19 38-42 5 Diagnosis code #3 * 20 43-47 5 Diagnosis code #4 * 21 48-52 5 Diagnosis code #5 * 22 53-57 5 Diagnosis code #6 * 23 58-62 5 Diagnosis code #7 * 24 63-66 4 Procedure code#1 * 25 67-70 4 Procedure code#2 * 26 71-74 4 Procedure code#3 * 27 75-78 4 Procedure code#4 * 28 79-80 2 Principal expected source of payment 01=Worker’s compensation 02=Medicare 03=Medicaid 04=Other government 05=Blue Cross/Blue Shield 06=HMO/PPO Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 57.
    Lecture 3-NHDS 20 3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued) Item Number of Location Item description Code description Number Positions 07=Other private insurance 08=Self-pay 09=No charge 10=Other 99=Not stated 29 81-82 2 Secondary Same coding as item 28 above, except expected source of Not Stated left blank (not coded to 99) payment 30 83-85 3 Diagnosis-Related Grouper version 23.0 Groups (DRG) 31 86 1 Type of Admission 1 = Emergency 2 = Urgent 3 = Elective 4 = Newborn 9 = Not available 32 87-88 2 Source of 01 = Physician referral 02 = Clinical Admission referral 03 = HMO referral 04 = Transfer from a hospital 05 = Transfer from skilled nursing facility 06 = Transfer from other health facility 07 = Emergency room 08 = Court/law enforcement 09 = Other 99 = Not available *Diagnosis and procedure codes are in compliance with the International Classification of Diseases, 9th Revision, Clinical Modification, (ICD-9-CM). For diagnosis codes, there is an implied decimal between positions 3 and 4. For E-codes, the implied decimal is between the 4th and 5th position. For inapplicable 4th or 5th digits, a dash is inserted. For procedure codes, there is an implied decimal between positions 2 and 3. For inapplicable 3rd or 4th digits, a dash is inserted Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 58.
    Lecture 3-NHDS 21 3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued) APPENDIX A DEFINITION OF TERMS Terms relating to hospitals and hospitalization Hospitals: Short stay hospitals or hospitals whose specialty is general (medical or surgical), or children's general. Hospitals must have 6 beds or more staffed for patients use. Federal hospitals and hospital units of institutions are not included. Type of ownership of hospital: The type of organization that controls and operates the hospital. Hospitals are grouped as follows: Not for Profit: Hospitals operated by a church or another not for profit organization. Government: Hospitals operated by State and local government. Proprietary: Hospitals operated by individuals, partnerships, or corporations for profit. Patient: A person who is formally admitted to the inpatient service of a short-stay hospital for observation, care, diagnosis, or treatment, or by birth. Discharge: The formal release of a patient by a hospital; that is, the termination of a period of hospitalization by death or by disposition to place of residence, nursing home, or another hospital. The terms "discharges" and "patients discharged" are used synonymously. Discharge rate: The ratio of the number of hospital discharges during the year to the number of persons in the civilian population on July 1 of that year. Days of care: The total number of patient days accumulated at time of discharge by patients discharged from short stay hospitals during a year. A stay of less than 1 day (patient admission and discharge on the same day) is counted as 1 day in the summation of total days of care. For patients admitted and discharged on different days, the number of days of care is computed by counting all days from (and including) the date of admission to (but not including) the date of discharge. Rate of days of care: The ratio of the number of patient days accumulated at time of discharge to the number of persons in the civilian population on July 1 of that year. Average length of stay: The total number of days of care accumulated at time of discharge by patients discharged during the year, divided by the number of patients discharged. Discharge diagnoses: One or more diseases or injuries (or some factor that influences health status and contact with health services that is not itself a current illness or injury) listed by the attending physician on the medical record of a patient. In the NHDS, discharge (or final) diagnoses listed on the face sheet (summary sheet) of the medical record are transcribed in the order listed. Each sample discharge is assigned a maximum of seven five-digit codes according to ICD-9-CM (4). Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 59.
    Lecture 3-NHDS 22 3. NHDS SAMPLE DATA FILE DOCUMENTATION (continued) Principal diagnosis: The condition established after study to be chiefly responsible for occasioning the admission of the patient to the hospital for care. First-listed diagnosis: The coded diagnosis identified as the principal diagnosis or listed first on the face sheet of the medical record if the principal diagnosis cannot be identified. The number of first-listed diagnoses is equivalent to the number of discharges. Procedure: One or more surgical or nonsurgical operations, procedures, or special treatments listed by the physician on the medical record. In the NHDS, all terms listed on the face sheet (summary sheet) of the medical record under the caption "operation," "operative procedures," "operations and/or special treatment," and the like are transcribed in the order listed. A maximum of four procedures are coded. Rate of procedures: The ratio of the number of all-listed procedures during a year to the number of persons in the civilian population on July 1 of that year determines the rate of procedures. Demographic terms Age: Refers to the age of the patient on the birthday prior to admission to the hospital inpatient service. Population: Civilian population is the resident population excluding members of the Armed Forces. Geographic regions: Hospitals are classified by location in one of the four geographic regions of the United States corresponding to those used by the U.S. Bureau of the Census: NORTHEAST MIDWEST SOUTH WEST Maine Michigan Delaware Montana New Hampshire Ohio Maryland Idaho Vermont Illinois District of Columbia Wyoming Massachusetts Indiana Virginia Colorado Connecticut Wisconsin West Virginia New Mexico Rhode Island Minnesota North Carolina Arizona New York Iowa South Carolina Utah New Jersey Missouri Georgia Nevada Pennsylvania North Dakota Florida Washington South Dakota Kentucky Oregon Nebraska Tennessee California Kansas Alabama Hawaii Mississippi Alaska Arkansas Louisiana Oklahoma Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 60.
    Lecture 3-NHDS 23 4. NHDS REGULATIONS Below is the NHDS06readme.txt containing the Public Health Laws that govern the use of this data. !WARNING -- DATA USE RESTRICTIONS! READ CAREFULLY BEFORE USING The Public Health Service Act (Section 308(d)) provides that the data collected by the National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention (CDC), may be used only for the purpose of health statistical reporting and analysis. Any effort to determine the identity of any reported case is prohibited by this law. NCHS does all it can to assure that the identity of data subjects cannot be disclosed. All direct identifiers, as well as any characteristics that might lead to identification, are omitted from the dataset. Any intentional identification or disclosure of a person or establishment violates the assurances of confidentiality given to the providers of the information. Therefore, users will: 1. Use the data in this dataset for statistical reporting and analysis only. 2. Make no use of the identity of any person or establishment discovered inadvertently and advise the Director, NCHS, of any such discovery. 3. Not link this dataset with individually identifiable data from other NCHS or non-NCHS datasets. BY USING THESE DATA, YOU SIGNIFY YOUR AGREEMENT TO COMPLY WITH THE ABOVE-STATED STATUTORILY-BASED AGREEMENTS. ************************************************************************* The following is a list of files needed to use the 2006 NHDS: File Name File Description NHDS06.PU.TXT NHDS 2006 ASCII dataset nhds06.pdf NHDS 2006 documentation in Adobe Acrobat PDF format. This file also contains all necessary population spreadsheets (for rate calculations) and standard error tables. *NOTE: You will need Adobe Acrobat Reader software to view the documentation file. The Reader software can be downloaded for free from: http://www.adobe.com/products/acrobat/readstep2.html ----------------------------------------------------------------------- Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 61.
    Lecture 3-NHDS 24 CAUTION - Because the NHDS is a sample survey, the application of weights to the sample data is needed in order to produce national estimates of inpatient hospital utilization statistics. ----------------------------------------------------------------------- For questions concerning NHDS data, please contact: Ambulatory and Hospital Care Statistics Branch Division of Health Care Statistics National Center for Health Statistics Centers for Disease Control and Prevention 3311 Toledo Road Hyattsville, Maryland 20782 Phone: 301.458.4321 Fax: 301.458.4032 Email: NHDS@cdc.gov For more information about the NHDS, visit our website: http://www.cdc.gov/nchs/about/major/hdasd/nhds.htm For email discussions and dissemination of NHDS data, join our Hospital Discharge and Ambulatory Surgery Data listserv (HDAS-DATA). In the body of an email message (leaving the subject line blank), type: subscribe hdas-data Your Name Send this message to: listserv@cdc.gov Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 62.
    Lecture 3-NHDS 25 5. SAS DATA INPUT FILE DATA ANYNAME ; INFILE 'refer to location of NHDS datafile by drive and directory' ; INPUT @ 1 SVYEAR $2. @ 3 NEWBORN 1. @ 4 AGEUNITS 1. @ 5 AGE 2. @ 7 SEX 1. @ 8 RACE 1. @ 9 MARSTAT 1. @ 10 DISC_MON $2. @ 12 DISCSTAT 1. @ 13 DOC 4. @ 17 LOSFLAG 1. @ 18 REGION 1. @ 19 BEDSIZE 1. @ 20 OWNER 1. @ 21 WEIGHT 5. @ 26 CENTURY $2. @ 28 DX1 $5. @ 33 DX2 $5. @ 38 DX3 $5. @ 43 DX4 $5. @ 48 DX5 $5. @ 53 DX6 $5. @ 58 DX7 $5. @ 63 PD1 $4. @ 67 PD2 $4. @ 71 PD3 $4. @ 75 PD4 $4. @ 79 ESOP1 2. @ 81 ESOP2 2. @ 83 DRG $3. @ 86 ADM_TYPE 1. @ 87 ASOURCE 2. ; LABEL SVYEAR = 'Last two digits of survey year' NEWBORN = 'Newborn infant flag' AGEUNITS = 'Units for age' AGE = 'Age in years, months, or days' SEX = 'Patient sex' RACE = 'Patient race' MARSTAT = 'Marital status of patient' DISC_MON = 'Month of discharge' DISCSTAT = 'Status at discharge' DOC = 'Number of days of care' LOSFLAG = 'Zero length of stay flag' REGION = 'Geographic region of hospital' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 63.
    Lecture 3-NHDS 26 BEDSIZE = 'Bedsize grouping for hospital' OWNER = 'Ownership of hospital' WEIGHT = 'Analysis weight' CENTURY = 'First two digits of survey year' DX1 = 'ICD-9-CM diagnosis code - first' DX2 = 'ICD-9-CM diagnosis code - second' DX3 = 'ICD-9-CM diagnosis code - third' DX4 = 'ICD-9-CM diagnosis code - fourth' DX5 = 'ICD-9-CM diagnosis code - fifth' DX6 = 'ICD-9-CM diagnosis code - sixth' DX7 = 'ICD-9-CM diagnosis code - seventh' PD1 = 'ICD-9-CM procedure code - first' PD2 = 'ICD-9-CM procedure code - second' PD3 = 'ICD-9-CM procedure code - third' PD4 = 'ICD-9-CM procedure code - fourth' ESOP1 = 'Principal expected source of payment' ESOP2 = 'Secondary expected source of payment' DRG = 'Diagnosis-related group' ADM_TYPE = 'Type of admission' ASOURCE = 'Source of admission' ; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 64.
    Lecture 3-NHDS 27 6. The NHDS Data, Infile, Input, Labels, PROC Contents, and PROC Freq Statements. nhds02d.sas The program below contains the basic structure for a SAS analysis of a data set. The data is identified along with its location. The input statement presents the variable and its location within each observation. Labels give names to each variable; PROC Contents yields the specifications of your data set, and PROC Freq provides the frequency distributions of each of the variables both unweighted and weighted. /****nhds02d.sas**********/ data nhds2006 ; Infile 'C:DATA9000NHDS06.PU.TXT' LRECL=88; input @ 1 SVYEAR $2. @ 3 NEWBORN 1. @ 4 AGEUNITS 1. @ 5 AGE 2. @ 7 SEX 1. @ 8 RACE 1. @ 9 MARSTAT 1. @ 10 DISC_MON $2. @ 12 DISCSTAT 1. @ 13 DOC 4. @ 17 LOSFLAG 1. @ 18 REGION 1. @ 19 BEDSIZE 1. @ 20 OWNER 1. @ 21 WEIGHT 5. @ 26 CENTURY $2. @ 28 DX1 $5. @ 33 DX2 $5. @ 38 DX3 $5. @ 43 DX4 $5. @ 48 DX5 $5. @ 53 DX6 $5. @ 58 DX7 $5. @ 63 PD1 $4. @ 67 PD2 $4. @ 71 PD3 $4. @ 75 PD4 $4. @ 79 ESOP1 2. @ 81 ESOP2 2. @ 83 DRG $3. @ 86 ADM_TYPE 1. @ 87 ASOURCE 2. ; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 65.
    Lecture 3-NHDS 28 /*****Labels are used to identify input variable names****/ LABEL SVYEAR = 'Last two digits of survey year' NEWBORN = 'Newborn infant flag' AGEUNITS = 'Units for age' AGE = 'Age in years, months, or days' SEX = 'Patient sex' RACE = 'Patient race' MARSTAT = 'Marital status of patient' DISC_MON = 'Month of discharge' DISCSTAT = 'Status at discharge' DOC = 'Number of days of care' LOSFLAG = 'Zero length of stay flag' REGION = 'Geographic region of hospital' BEDSIZE = 'Bedsize grouping for hospital' OWNER = 'Ownership of hospital' WEIGHT = 'Analysis weight' CENTURY = 'First two digits of survey year' DX1 = 'ICD-9-CM diagnosis code - first' DX2 = 'ICD-9-CM diagnosis code - second' DX3 = 'ICD-9-CM diagnosis code - third' DX4 = 'ICD-9-CM diagnosis code - fourth' DX5 = 'ICD-9-CM diagnosis code - fifth' DX6 = 'ICD-9-CM diagnosis code - sixth' DX7 = 'ICD-9-CM diagnosis code - seventh' PD1 = 'ICD-9-CM procedure code - first' PD2 = 'ICD-9-CM procedure code - second' PD3 = 'ICD-9-CM procedure code - third' PD4 = 'ICD-9-CM procedure code - fourth' ESOP1 = 'Principal expected source of payment' ESOP2 = 'Secondary expected source of payment' DRG = 'Diagnosis-related group' ADM_TYPE = 'Type of admission' ASOURCE = 'Source of admission' ; /**********Identify the Variables in the Data Set*******/ proc contents data=nhds2006; run; /**********Frequency Distribution of Selected**********/ proc freq data=nhds2006; tables sex race marstat disc_mon discstat losflag region bedsize owner; title 'frequency distribution of selected variable'; run; /******Weighted Frequency Distribution of Selected*****/ proc freq data=nhds2006; weight weight; /***For all other PROC’s the syntax is freq weight**/ tables sex race marstat disc_mon discstat losflag region bedsize owner; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 66.
    Lecture 3-NHDS 29 title 'frequency distribution of selected variable'; run; Below is the output of the Proc Contents for the 2006 NHDS data set. The SAS System The CONTENTS Procedure Data Set Name WORK.NHDS2006 Observations 376328 Member Type DATA Variables 32 Engine V9 Indexes 0 Created Tuesday, June 30, 2009 12:23:42 PM Observation Length 200 Last Modified Tuesday, June 30, 2009 12:23:42 PM Deleted Observations 0 Protection Compressed NO Data Set Type Sorted NO Label Data Representation WINDOWS_32 Encoding wlatin1 Western (Windows) Engine/Host Dependent Information Data Set Page Size 16384 Number of Data Set Pages 4647 First Data Page 1 Max Obs per Page 81 Obs in First Data Page 57 Number of Data Set Repairs 0 Filename C:DOCUME~1DR0E98~1.RAYLOCALS~1TempSAS Temporary Files_TD5532nhds2006.sas7bdat Release Created 9.0201M0 Host Created XP_PRO Alphabetic List of Variables and Attributes # Variable Type Len Label 31 ADM_TYPE Num 8 Type of admission 4 AGE Num 8 Age in years, months, or days 3 AGEUNITS Num 8 Units for age 32 ASOURCE Num 8 Source of admission 13 BEDSIZE Num 8 Bedsize grouping for hospital 16 CENTURY Char 2 First two digits of survey year 9 DISCSTAT Num 8 Status at discharge 8 DISC_MON Char 2 Month of discharge 10 DOC Num 8 Number of days of care 30 DRG Char 3 Diagnosis-related group 17 DX1 Char 5 ICD-9-CM diagnosis code - first 18 DX2 Char 5 ICD-9-CM diagnosis code - second 19 DX3 Char 5 ICD-9-CM diagnosis code - third 20 DX4 Char 5 ICD-9-CM diagnosis code - fourth 21 DX5 Char 5 ICD-9-CM diagnosis code - fifth 22 DX6 Char 5 ICD-9-CM diagnosis code - sixth 23 DX7 Char 5 ICD-9-CM diagnosis code - seventh Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 67.
    Lecture 3-NHDS 30 28 ESOP1 Num 8 Principal expected source of payment 29 ESOP2 Num 8 Secondary expected source of payment 11 LOSFLAG Num 8 Zero length of stay flag 7 MARSTAT Num 8 Marital status of patient 2 NEWBORN Num 8 Newborn infant flag 14 OWNER Num 8 Ownership of hospital 24 PD1 Char 4 ICD-9-CM procedure code - first 25 PD2 Char 4 ICD-9-CM procedure code - second 26 PD3 Char 4 ICD-9-CM procedure code - third 27 PD4 Char 4 ICD-9-CM procedure code - fourth 6 RACE Num 8 Patient race 12 REGION Num 8 Geographic region of hospital 5 SEX Num 8 Patient sex 1 SVYEAR Char 2 Last two digits of survey year 15 WEIGHT Num 8 Analysis weight Below is the output of the Proc Freq unweighted for the selected variables of 2006 NHDS. Frequency Distribution of Selected Variable The FREQ Procedure Patient sex Cumulative Cumulative SEX Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 154677 41.10 154677 41.10 2 221651 58.90 376328 100.00 Patient race Cumulative Cumulative RACE Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 200368 53.24 200368 53.24 2 51195 13.60 251563 66.85 3 1025 0.27 252588 67.12 4 3018 0.80 255606 67.92 5 405 0.11 256011 68.03 6 15322 4.07 271333 72.10 8 108 0.03 271441 72.13 9 104887 27.87 376328 100.00 Marital status of patient Cumulative Cumulative MARSTAT Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 55046 14.63 55046 14.63 2 78704 20.91 133750 35.54 3 18224 4.84 151974 40.38 4 8622 2.29 160596 42.67 5 1565 0.42 162161 43.09 9 214167 56.91 376328 100.00 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 68.
    Lecture 3-NHDS 31 Month of discharge Cumulative Cumulative DISC_MON Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 01 31343 8.33 31343 8.33 02 30172 8.02 61515 16.35 03 33780 8.98 95295 25.32 04 30732 8.17 126027 33.49 05 31668 8.41 157695 41.90 06 31658 8.41 189353 50.32 07 31537 8.38 220890 58.70 08 32323 8.59 253213 67.29 09 31415 8.35 284628 75.63 10 30798 8.18 315426 83.82 11 29874 7.94 345300 91.76 12 31028 8.24 376328 100.00 Status at discharge Cumulative Cumulative DISCSTAT Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 300393 79.82 300393 79.82 2 3545 0.94 303938 80.76 3 9534 2.53 313472 83.30 4 32007 8.51 345479 91.80 5 20944 5.57 366423 97.37 6 7336 1.95 373759 99.32 9 2569 0.68 376328 100.00 Zero length of stay flag Cumulative Cumulative LOSFLAG Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 0 6360 1.69 6360 1.69 1 369968 98.31 376328 100.00 Geographic region of hospital Cumulative Cumulative REGION Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 90192 23.97 90192 23.97 2 97656 25.95 187848 49.92 3 141839 37.69 329687 87.61 4 46641 12.39 376328 100.00 Bedsize grouping for hospital Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 69.
    Lecture 3-NHDS 32 Cumulative Cumulative BEDSIZE Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 41089 10.92 41089 10.92 2 85716 22.78 126805 33.70 3 82411 21.90 209216 55.59 4 119903 31.86 329119 87.46 5 47209 12.54 376328 100.00 Ownership of hospital Cumulative Cumulative OWNER Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 38869 10.33 38869 10.33 2 32052 8.52 70921 18.85 3 305407 81.15 376328 100.00 Below is the output of the Proc Freq weighted for the selected variables of 2006 NHDS. Weighted Frequency Distribution of Selected NHDS Variable The FREQ Procedure Patient sex Cumulative Cumulative SEX Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 16030906 41.24 16030906 41.24 2 22842871 58.76 38873777 100.00 Patient race Cumulative Cumulative RACE Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 23116012 59.46 23116012 59.46 2 4685938 12.05 27801950 71.52 3 118912 0.31 27920862 71.82 4 649604 1.67 28570466 73.50 5 95043 0.24 28665509 73.74 6 711022 1.83 29376531 75.57 8 33376 0.09 29409907 75.65 9 9463870 24.35 38873777 100.00 Marital status of patient Cumulative Cumulative MARSTAT Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 9336056 24.02 9336056 24.02 2 10931362 28.12 20267418 52.14 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 70.
    Lecture 3-NHDS 33 3 3083076 7.93 23350494 60.07 4 1471056 3.78 24821550 63.85 5 234303 0.60 25055853 64.45 9 13817924 35.55 38873777 100.00 Month of discharge Cumulative Cumulative DISC_MON Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 01 3326380 8.56 3326380 8.56 02 3127993 8.05 6454373 16.60 03 3475747 8.94 9930120 25.54 04 3189227 8.20 13119347 33.75 05 3329115 8.56 16448462 42.31 06 3292765 8.47 19741227 50.78 07 3240989 8.34 22982216 59.12 08 3342033 8.60 26324249 67.72 09 3221755 8.29 29546004 76.00 10 3129742 8.05 32675746 84.06 11 3068077 7.89 35743823 91.95 12 3129954 8.05 38873777 100.00 Status at discharge Cumulative Cumulative DISCSTAT Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 30736926 79.07 30736926 79.07 2 332166 0.85 31069092 79.92 3 1595663 4.10 32664755 84.03 4 3164590 8.14 35829345 92.17 5 1724117 4.44 37553462 96.60 6 743475 1.91 38296937 98.52 9 576840 1.48 38873777 100.00 Zero length of stay flag Cumulative Cumulative LOSFLAG Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 0 755008 1.94 755008 1.94 1 38118769 98.06 38873777 100.00 Geographic region of hospital Cumulative Cumulative REGION Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 7998781 20.58 7998781 20.58 2 8784236 22.60 16783017 43.17 3 14603982 37.57 31386999 80.74 4 7486778 19.26 38873777 100.00 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 71.
    Lecture 3-NHDS 34 Bedsize grouping for hospital Cumulative Cumulative BEDSIZE Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 8727912 22.45 8727912 22.45 2 8171471 21.02 16899383 43.47 3 7475041 19.23 24374424 62.70 4 9141896 23.52 33516320 86.22 5 5357457 13.78 38873777 100.00 Ownership of hospital Cumulative Cumulative OWNER Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 4679522 12.04 4679522 12.04 2 4762338 12.25 9441860 24.29 3 29431917 75.71 38873777 100.00 The number of observations for the unweighted observations is 376,328 versus 38,873,777 when weighted. Note that the name of the variable values is not shown. To obtain this we need to use the PROC Format statements presented below. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 72.
    Lecture 3-NHDS 35 7. SAS FORMATS FOR NHDS nhds01d.sas Below are the SAS codes that create the names associated with the values of each NHDS variable. This code should be executed first in the series of NHDS programs. /*nhds01d.sas*/ proc format; value newbornf 1="Newborn" 2="Not Newborn" ; value ageunitf 1='Years' 2='Months' 3='Days' ; value sexf 1='Male' 2='Female' ; value racef 1='White' 2='Black' 3='Native American' 4='Asian' 5='Native Hawaiian or PI' 6='Other Race' 8='Multiple Race' 9='Race Not Stated' ; value maritialf 1='Married' 2='Single' 3='Widowed' 4='Divorced' 5='Separated' 9='MS Not Stated' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 73.
    Lecture 3-NHDS 36 ; value $dismonthf '01' ='January' '02' ='February' '03' ='March' '04' ='April' '05' ='May' '06' ='June' '07' ='July' '07' ='August' '09' ='September' '10' ='October' '11' ='November' '12' ='December' ; value $disstatf 1="Home" 2="Left Against Medical Advice" 3="Dischaged to Acute" 4="Discharged to LTC" 5="Alive Status not Stated" 6="Diseased" 9="Status not Reported" ; value losflagf 0="less than 1 day" 1="One day or More" ; value regionf 1="Northeast" 2="Midwest" 3="South" 4="West" ; value numbedsf 1="6-99" 2="100-199" 3="200-299" 4="300-499" 5="500 and Over" ; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 74.
    Lecture 3-NHDS 37 value ownerf 1="Proprietary" 2="Governmental" 3="Non-Profit" ; value payer1f 1="Worker's Comp" 2="Medicare" 3="Medicaid" 4="Other Govnt" 5="Blue Cross" 6="HMO/PPO" 7="Other Private" 8="Self Pay" 9="No Charge" 10="Other Ins" 99="Payer Not Stated" ; value payer2f 1="Worker's Comp" 2="Medicare" 3="Medicaid" 4="Other Govnt" 5="Blue Cross" 6="HMO/PPO" 7="Other Private" 8="Self Pay" 9="No Charge" 10="Other Ins" .="Payer Not Stated" ; value admitypef 1="Emergency" 2="Urgent" 3="Elective" 4="New Born" 9="admit NA" ; value adsourcef Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 75.
    Lecture 3-NHDS 38 1="Physican Referral" 2="Clinical Referral" 3="HMO Referral" 4="Acute Transfer" 5="SNF Transfer" 6="Other Tranfer" 7="Emergency Room" 8="Court/Law Enforcement" 9="Source_other" 99="Sourse N/A" ; value $diag3df /***Partial List***/ '001'='(001) Cholera' '002'='(002) Typhoid and paratyphoid fevers' '003'='(003) Other salmonella infections' '004'='(004) Shigellosis' '005'='(005) Other food poisoning (bacterial)' '006'='(006) Amebiasis' '007'='(007) Other protozoal intestinal dise...' '008'='(008) Intestinal infections due to ot...' '009'='(009) Ill-defined intestinal infections' '010'='(010) Primary tuberculous infection' '011'='(011) Pulmonary tuberculosis' '012'='(012) Other respiratory tuberculosis' '013'='(013) Tuberculosis of meninges and ce...' '014'='(014) Tuberculosis of intestine/perit...' '015'='(015) Tuberculosis of bones and joints' '016'='(016) Tuberculosis of genitourinary s...' '017'='(017) Tuberculosis of other organs' '018'='(018) Miliary tuberculosis' '020'='(020) Plague' '021'='(021) Tularemia' '022'='(022) Anthrax' '023'='(023) Brucellosis' '024'='(024) Glanders' '025'='(025) Melioidosis' '026'='(026) Rat-bite fever' '027'='(027) Other zoonotic bacterial diseases' '030'='(030) Leprosy' '031'='(031) Diseases due to other mycobacteria' '032'='(032) Diphtheria' '033'='(033) Whooping cough' '034'='(034) Streptococcal sore throat and s...' '035'='(035) Erysipelas' '036'='(036) Meningococcal infection' '037'='(037) Tetanus' '038'='(038) Septicemia' '039'='(039) Actinomycotic infections' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 76.
    Lecture 3-NHDS 39 '040'='(040) Other bacterial diseases' '041'='(041) Bacterial infec in conditns cla...' '042'='(042) Human immunodeficiency virus in...' '043'='(043) Human immunodeficiency virus in...' '044'='(044) Other human immunodeficiency vi...' '045'='(045) Acute poliomyelitis' '046'='(046) Slow virus infection of central...' '047'='(047) Meningitis due to enterovirus' '048'='(048) Other enterovirus diseases of c...' '049'='(049) Oth non-arthropod-borne viral d...' '050'='(050) Smallpox' '051'='(051) Cowpox and paravaccinia' '052'='(052) Chickenpox' '053'='(053) Herpes zoster' '054'='(054) Herpes simplex' '055'='(055) Measles' '056'='(056) Rubella' '057'='(057) Other viral exanthemata' '060'='(060) Yellow fever' '061'='(061) Dengue' '062'='(062) Mosquito-borne viral encephalitis' '063'='(063) Tick-borne viral encephalitis' '064'='(064) Viral encephalitis transmitted ...' '065'='(065) Arthropod-borne hemorrhagic fever' '066'='(066) Other arthropod-borne viral dis...' '070'='(070) Viral hepatitis' '071'='(071) Rabies' '072'='(072) Mumps' '073'='(073) Ornithosis' '074'='(074) Specific diseases due to Coxsac...' '075'='(075) Infectious mononucleosis' '076'='(076) Trachoma' '077'='(077) Other diseases of conjunctiva d...' '078'='(078) Other diseases due to viruses a...' '079'='(079) Viral infection in conditns cla...' '080'='(080) Louse-borne [epidemic] typhus' '081'='(081) Other typhus' '082'='(082) Tick-borne rickettsioses' '083'='(083) Other rickettsioses' '084'='(084) Malaria' '085'='(085) Leishmaniasis' '086'='(086) Trypanosomiasis' '087'='(087) Relapsing fever' '088'='(088) Other arthropod-borne diseases' '090'='(090) Congenital syphilis' '091'='(091) Early syphilis, symptomatic' '092'='(092) Early syphilis, latent' '093'='(093) Cardiovascular syphilis' '094'='(094) Neurosyphilis' '095'='(095) Other forms of late syphilis, w...' '096'='(096) Late syphilis, latent' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 77.
    Lecture 3-NHDS 40 '097'='(097) Other and unspecified syphilis' '098'='(098) Gonococcal infections' '099'='(099) Other venereal diseases' '100'='(100) Leptospirosis' '101'='(101) Vincent`s angina' '102'='(102) Yaws' '103'='(103) Pinta' '104'='(104) Other spirochetal infection' '110'='(110) Dermatophytosis' '111'='(111) Dermatomycosis, other and unspe...' '112'='(112) Candidiasis' '114'='(114) Coccidioidomycosis' '115'='(115) Histoplasmosis' '116'='(116) Blastomycotic infection' '117'='(117) Other mycoses' '118'='(118) Opportunistic mycoses /* The following format is provided in case you wish to use only the first two columns of the various fields which display Procedures Classification codes from Vol. 3 of the ICD-9-CM, for broader groupings of this item. */ VALUE $PROC2DF '00'='Blank/00:Procedures and interventns, NEC' '01'='01:Incision and excision of skull, br...' '02'='02:Other operations on skull, brain, ...' '03'='03:Operations on spinal cord and spin...' '04'='04:Operations on cranial and peripher...' '05'='05:Operations on sympathetic nerves o...' '06'='06:Operations on thyroid and parathyr...' '07'='07:Operations on other endocrine glands' '08'='08:Operations on eyelids' '09'='09:Operations on lacrimal system' '10'='10:Operations on conjunctiva' '11'='11:Operations on cornea' '12'='12:Operations on iris, ciliary body, ...' '13'='13:Operations on lens' '14'='14:Operations on retina, choroid, vit...' '15'='15:Operations on extraocular muscles' '16'='16:Operations on orbit and eyeball' '18'='18:Operations on external ear' '19'='19:Reconstructive operations on middl...' '20'='20:Other operations on middle and inn...' '21'='21:Operations on nose' '22'='22:Operations on nasal sinuses' '23'='23:Removal and restoration of teeth' '24'='24:Other operations on teeth, gums, a...' '25'='25:Operations on tongue' '26'='26:Operations on salivary glands and ...' '27'='27:Other operations on mouth and face' '28'='28:Operations on tonsils and adenoids' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 78.
    Lecture 3-NHDS 41 '29'='29:Operations on pharynx' '30'='30:Excision of larynx' '31'='31:Other operations on larynx and tra...' '32'='32:Excision of lung and bronchus' '33'='33:Other operations on lung and bronchus' '34'='34:Operations on chest wall, pleura, ...' '35'='35:Operations on valves and septa of ...' '36'='36:Operations on vessels of heart' '37'='37:Other operations on heart and peri...' '38'='38:Incision, excision, and occlusion ...' '39'='39:Other operations on vessels' '40'='40:Operations on lymphatic system' '41'='41:Operations on bone marrow and spleen' '42'='42:Operations on esophagus' '43'='43:Incision and excision of stomach' '44'='44:Other operations on stomach' '45'='45:Incision, excision, and anastomosi...' '46'='46:Other operations on intestine' '47'='47:Operations on appendix' '48'='48:Operations on rectum, rectosigmoid...' '49'='49:Operations on anus' '50'='50:Operations on liver' '51'='51:Operations on gallbladder and bili...' '52'='52:Operations on pancreas' '53'='53:Repair of hernia' '54'='54:Other operations on abdominal region' '55'='55:Operations on kidney' '56'='56:Operations on ureter' '57'='57:Operations on urinary bladder' '58'='58:Operations on urethra' '59'='59:Other operations on urinary tract' '60'='60:Operations on prostate and seminal...' '61'='61:Operations on scrotum and tunica v...' '62'='62:Operations on testes' '63'='63:Operations on spermatic cord, epid...' '64'='64:Operations on penis' '65'='65:Operations on ovary' '66'='66:Operations on fallopian tubes' '67'='67:Operations on cervix' '68'='68:Other incision and excision of uterus' '69'='69:Other operations on uterus and sup...' '70'='70:Operations on vagina and cul-de-sac' '71'='71:Operations on vulva and perineum' '72'='72:Forceps, vacuum, and breech delivery' '73'='73:Other procedures inducing or assis...' '74'='74:Cesarean section and removal of fetus' '75'='75:Other obstetric operations' '76'='76:Operations on facial bones and joints' '77'='77:Incision, excision, and division o...' '78'='78:Other operations on bones, except ...' '79'='79:Reduction of fracture and dislocation' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 79.
    Lecture 3-NHDS 42 '80'='80:Incision and excision of joint str...' '81'='81:Repair and plastic operations on j...' '82'='82:Operations on muscle, tendon, and ...' '83'='83:Operations on muscle, tendon, fasc...' '84'='84:Other procedures on musculoskeleta...' '85'='85:Operations on the breast' '86'='86:Operations on skin and subcutaneou...' '87'='87:Diagnostic radiology' '88'='88:Other diagnostic radiology and rel...' '89'='89:Interview, evaluation, consultatio...' '90'='90:Microscopic examination I' '91'='91:Microscopic examination II' '92'='92:Nuclear medicine' '93'='93:Physical therapy/respiratory thera...' '94'='94:Procedures related to the psyche' '95'='95:Ophthalmologic and otologic diagno...' '96'='96:Nonoperative intubation and irriga...' '97'='97:Replacement and removal of therape...' '98'='98:Nonoperative removal of foreign body' '99'='99:Other nonoperative procedures' ; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 80.
    Lecture 3-NHDS 43 8. Proc Frequency with Format Statements Below is the weighted Proc Frequency SAS code. proc freq data=nhds2006; weight weight; tables sex race marstat disc_mon discstat losflag region bedsize owner; format sex sexf. race racef. marstat marstatf. disc_mon $dismonthf. discstat discstatf. losflag losflagf. region regionf. bedsize bedsizef. owner ownerf.; title 'Weighted Frequency Distribution with Formats for Selected Variable'; run; Below is the weighted Proc Frequency SAS output. Weighted Frequency Distribution with Formats for Selected Variable The FREQ Procedure Patient sex Cumulative Cumulative SEX Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Male 16030906 41.24 16030906 41.24 Female 22842871 58.76 38873777 100.00 Patient race Cumulative Cumulative RACE Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ White 23116012 59.46 23116012 59.46 Black 4685938 12.05 27801950 71.52 Native American 118912 0.31 27920862 71.82 Asian 649604 1.67 28570466 73.50 Native Hawaiian or PI 95043 0.24 28665509 73.74 Other Race 711022 1.83 29376531 75.57 Multiple Race 33376 0.09 29409907 75.65 Race Not Stated 9463870 24.35 38873777 100.00 Marital status of patient Cumulative Cumulative MARSTAT Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Married 9336056 24.02 9336056 24.02 Single 10931362 28.12 20267418 52.14 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 81.
    Lecture 3-NHDS 44 Widowed 3083076 7.93 23350494 60.07 Divorced 1471056 3.78 24821550 63.85 Separated 234303 0.60 25055853 64.45 MS Not Stated 13817924 35.55 38873777 100.00 Month of discharge Cumulative Cumulative DISC_MON Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ January 3326380 8.56 3326380 8.56 February 3127993 8.05 6454373 16.60 March 3475747 8.94 9930120 25.54 April 3189227 8.20 13119347 33.75 May 3329115 8.56 16448462 42.31 June 3292765 8.47 19741227 50.78 July 3240989 8.34 22982216 59.12 August 3342033 8.60 26324249 67.72 September 3221755 8.29 29546004 76.00 October 3129742 8.05 32675746 84.06 November 3068077 7.89 35743823 91.95 December 3129954 8.05 38873777 100.00 Status at discharge Cumulative Cumulative DISCSTAT Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Home 30736926 79.07 30736926 79.07 Left Against Medical Advice 332166 0.85 31069092 79.92 Dischaged to Acute 1595663 4.10 32664755 84.03 Discharged to LTC 3164590 8.14 35829345 92.17 Alive Status not Stated 1724117 4.44 37553462 96.60 Diseased 743475 1.91 38296937 98.52 Status not Reported 576840 1.48 38873777 100.00 Zero length of stay flag Cumulative Cumulative LOSFLAG Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ less than 1 day 755008 1.94 755008 1.94 One day or More 38118769 98.06 38873777 100.00 Geographic region of hospital Cumulative Cumulative REGION Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Northeast 7998781 20.58 7998781 20.58 Midwest 8784236 22.60 16783017 43.17 South 14603982 37.57 31386999 80.74 West 7486778 19.26 38873777 100.00 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 82.
    Lecture 3-NHDS 45 Bedsize grouping for hospital Cumulative Cumulative BEDSIZE Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 6-99 8727912 22.45 8727912 22.45 100-199 8171471 21.02 16899383 43.47 200-299 7475041 19.23 24374424 62.70 300-499 9141896 23.52 33516320 86.22 500 and Over 5357457 13.78 38873777 100.00 Ownership of hospital Cumulative Cumulative OWNER Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Proprietary 4679522 12.04 4679522 12.04 Governmental 4762338 12.25 9441860 24.29 Non-Profit 29431917 75.71 38873777 100.00 Below is the log associated with the above output. 5344 proc freq data=nhds2006; 5345 weight weight; 5346 tables sex race marstat disc_mon discstat 5347 losflag region bedsize owner; 5348 format sex sexf. race racef. marstat marstatf. disc_mon $dismonthf. 5349 discstat discstatf. losflag losflagf. region regionf. 5350 bedsize bedsizef. owner ownerf.; 5351 title 'Weighted Frequency Distribution with 5352 Formats for Selected Variable'; 5353 run; NOTE: There were 376328 observations read from the data set WORK.NHDS2006. NOTE: PROCEDURE FREQ used (Total process time): real time 0.40 seconds cpu time 0.40 second Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 83.
    Lecture 3-NHDS 46 9. Exercises 3.1 1. Prepare and run weighted and formatted PROC FREQ for variables ESOP1, ADM_TYPE, and ADM_SOURCE. 2. Add a variable in the input code for DX13 to read $3 (first 3 characters of the principal diagnosis) and produce the frequency distribution for PROC FREQ and a weighted and formatted output. 3. Add a variable in the input code for PD12 to read $2 (first 2 characters of the principal procedure) and produce the procedure distribution using PROC FREQ and a weighted and formatted output. 4. What are the top 5 most frequent procedures for NHDS 2006? 5. What are the top 5 most frequent diagnoses for NHDS 2006? 6. Write the format statements for the Medicare DRGs which are found in C:DATA9000DRG Medicare FY07. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 84.
    Lecture 3-NHDS 47 10. SAS Code for NHDS Indicator and Truth Logic Variables nhds03d1.sas Below is the SAS code that creates indicator and truth logic variables. /****nhds03d.sas**********/ data nhds06; set work.nhds2006; /*************************************************/ /*Indicator variables were previously identified */ /*as dummy variables equal to 1 or 0 when they */ /*existed or did not exist in an observation. */ /*They are used in statistical analysis of data. */ /*************************************************/ /****Indicator Variable for Gender*****/ male = (sex=1); female = (sex=2); /******************************************************/ /*Truth Logic is used to create a continuous variable */ /*that corresponds to the values (1-3, 1-5, etc.)*/ /*assigned to a variable in an observation and */ /*is used in regression and logistic analysis. */ /******************************************************/ /*****Truth Logic for Gender*************/ gendercat= 1*(sex=1) + 2*(sex=2); /****Indicator Variable for Race*****/ white = (race=1); black = (race=2); nativeam = (race=3); asian = (race=4); hawaiianpi = (race=5); othrace = (race=6); multirace = (race=8); racenotstat = (race=9); ; /*****Truth Logic For Race*************/ racecat = 1*(race=1) + 2*(race=2) + 3*(race=3)+ 4*(race=4) + 5*(race=5) + 6*(race=6)+ 7*(race=8) + 8*(race=9); Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 85.
    Lecture 3-NHDS 48 /****Indicator Variable for Marital Status*****/ married = (marstat=1); single = (marstat=2); widowed = (marstat=3); divorced = (marstat=4); separated = (marstat=5); msnotstat = (marstat=9); /*****Truth Logic For Marital Status************/ marstatcat= 1*(marstat=1) + 2*(marstat=2) + 3*(marstat=3)+ 4*(marstat=4) + 5*(marstat=5) + 6*(marstat=9); /****Indicator Variable for Discharge Status*****/ home = (discstat=1); dislma = (discstat=2); disacute = (discstat=3); disltc = (discstat=4); alivens = (discstat=5); disceased = (discstat=6); disstatna = (discstat=9); /*****Truth Logic For Marital Status************/ discstatcat= 1*(discstat=1) + 2*(discstat=2) + 3*(discstat=3) + 4*(discstat=4) + 5*(discstat=5) + 6*(discstat=6) + 7*(discstat=9); /****Indicator Variable for Region*****/ northeast = (region=1); midwest = (region=2); south = (region=3); west = (region=4); /*****Truth Logic For Region************/ regioncat= 1*(region=1) + 2*(region=2) + 3*(region=3) + 4*(region=4); /****Indicator Variable for Ownership*****/ private = (owner=1); government = (owner=2); nonprofit = (owner=3); Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 86.
    Lecture 3-NHDS 49 /*****Truth Logic For Ownership************/ ownercat= 1*(owner=1) + 2*(owner=2) + 3*(owner=3); /****Indicator Variable for Payer*****/ workercomp = (esop1=1); medicare = (esop1=2); medicaid = (esop1=3); othergvmt = (esop1=4); bluecross = (esop1=5); hmoppo = (esop1=6); othprivate = (esop1=7); selfpay = (esop1=8); nocharge = (esop1=9); othinsure = (esop1=10); paynotstated = (esop1=99); /*****Truth Logic For Payer1*************/ payercat = 1*(esop1=1) + 2*(esop1=2) + 3*(esop1=3)+ 4*(esop1=4) + 5*(esop1=5) + 6*(esop1=6)+ 7*(esop1=7) + 8*(esop1=8) + 9*(esop1=9)+ 10*(esop1=10) +11*(esop1=99); /****Indicator Variable for Admit Source*****/ docreferal = (asource=1); clinreferal = (asource=2); hmoreferal = (asource=3); hospreferal = (asource=4); snftransfer = (asource=5); othtransfer = (asource=6); edsource = (asource=7); legalsource = (asource=8); othsource = (asource=9); sourcena = (asource=99); /*****Truth Logic for Admit Source*************/ sourcecat = 1*(asource=1) + 2*(asource=2) + 3*(asource=3)+ 4*(asource=4) + 5*(asource=5) + 6*(asource=6)+ 7*(asource=7) + 8*(asource=8) + 9*(asource=9)+ 10*(asource=99); Below is the PROC MEANS code for the unweighted NHDS06 indicator and truth logic variables. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 87.
    Lecture 3-NHDS 50 proc means n mean sum min max data=nhds06; var male female gendercat white black nativeam asian hawaiianpi othrace multirace racenotstat racecat married single widowed divorced separated msnotstat home dislma disacute disltc alivens disceased disstatna discstatcat northeast midwest south west regioncat private government nonprofit ownercat workercomp medicare medicaid othergvmt bluecross hmoppo othprivate selfpay nocharge othinsure paynotstated payercat docreferal clinreferal hmoreferal hospreferal snftransfer othtransfer edsource legalsource othsource sourcena sourcecat ; title 'Means Procedure for NHDS2006 Variables Unweighted'; run; Below is the output from the above PROC Means. The MEANS Procedure Variable N Mean Sum Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ male 376328 0.4110165 154677.00 0 1.0000000 female 376328 0.5889835 221651.00 0 1.0000000 gendercat 376328 1.5889835 597979.00 1.0000000 2.0000000 white 376328 0.5324292 200368.00 0 1.0000000 black 376328 0.1360382 51195.00 0 1.0000000 nativeam 376328 0.0027237 1025.00 0 1.0000000 asian 376328 0.0080196 3018.00 0 1.0000000 hawaiianpi 376328 0.0010762 405.0000000 0 1.0000000 othrace 376328 0.0407145 15322.00 0 1.0000000 multirace 376328 0.000286984 108.0000000 0 1.0000000 racenotstat 376328 0.2787117 104887.00 0 1.0000000 racecat 376328 3.3261251 1251714.00 1.0000000 8.0000000 married 376328 0.1462713 55046.00 0 1.0000000 single 376328 0.2091367 78704.00 0 1.0000000 widowed 376328 0.0484258 18224.00 0 1.0000000 divorced 376328 0.0229109 8622.00 0 1.0000000 separated 376328 0.0041586 1565.00 0 1.0000000 msnotstat 376328 0.5690966 214167.00 0 1.0000000 home 376328 0.7982212 300393.00 0 1.0000000 dislma 376328 0.0094200 3545.00 0 1.0000000 disacute 376328 0.0253343 9534.00 0 1.0000000 disltc 376328 0.0850508 32007.00 0 1.0000000 alivens 376328 0.0556536 20944.00 0 1.0000000 disceased 376328 0.0194936 7336.00 0 1.0000000 disstatna 376328 0.0068265 2569.00 0 1.0000000 discstatcat 376328 1.6762824 630832.00 1.0000000 7.0000000 northeast 376328 0.2396633 90192.00 0 1.0000000 midwest 376328 0.2594970 97656.00 0 1.0000000 south 376328 0.3769026 141839.00 0 1.0000000 west 376328 0.1239371 46641.00 0 1.0000000 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 88.
    Lecture 3-NHDS 51 regioncat 376328 2.3851135 897585.00 1.0000000 4.0000000 private 376328 0.1032849 38869.00 0 1.0000000 government 376328 0.0851704 32052.00 0 1.0000000 nonprofit 376328 0.8115447 305407.00 0 1.0000000 ownercat 376328 2.7082598 1019194.00 1.0000000 3.0000000 workercomp 376328 0.0039487 1486.00 0 1.0000000 medicare 376328 0.3477950 130885.00 0 1.0000000 medicaid 376328 0.1831408 68921.00 0 1.0000000 othergvmt 376328 0.0116202 4373.00 0 1.0000000 bluecross 376328 0.1028172 38693.00 0 1.0000000 hmoppo 376328 0.1666950 62732.00 0 1.0000000 othprivate 376328 0.0922759 34726.00 0 1.0000000 selfpay 376328 0.0422716 15908.00 0 1.0000000 nocharge 376328 0.0054607 2055.00 0 1.0000000 othinsure 376328 0.0317569 11951.00 0 1.0000000 paynotstated 376328 0.0122181 4598.00 0 1.0000000 payercat 376328 4.2949156 1616297.00 1.0000000 11.0000000 docreferal 376328 0.3001743 112964.00 0 1.0000000 clinreferal 376328 0.0135547 5101.00 0 1.0000000 hmoreferal 376328 0.0045997 1731.00 0 1.0000000 hospreferal 376328 0.0285070 10728.00 0 1.0000000 snftransfer 376328 0.0048335 1819.00 0 1.0000000 othtransfer 376328 0.0065050 2448.00 0 1.0000000 edsource 376328 0.4169288 156902.00 0 1.0000000 legalsource 376328 0.0019850 747.0000000 0 1.0000000 othsource 376328 0.1151256 43325.00 0 1.0000000 sourcena 376328 0.1077863 40563.00 0 1.0000000 sourcecat 376328 5.5666839 2094899.00 1.0000000 10.0000000 A method to validate your indicator variables consists of confirming that each has a minimum value of 0 and a maximum value of 1. If this does not exist, check your code. For truth logic variables, the minimum is usually 1 and the maximum equals the total number of values assigned to the variable. Again, if this does not occur, check your logic code. For example, paynotstated has a minimum of 1 and a maximum of 0 while payercat has a minimum of 1 and a maximum of 10 that corresponds to the number of payer categories. The N=376,328 is the total observation in the data set and also reflects the completeness of the data for each variable. In the above case, there are no missing values in any observation. The mean value is the percentage of each variable within a category. For payer, the percentage of Medicare patients in the sample is 34.8%. The sum column of 130,885 equals the number of Medicare observation sampled in the NHDS survey in 2006. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 89.
    Lecture 3-NHDS 52 11. Exercises 3.2 1. Using nhds03d, write the indicator and truth logic code for the variables admitype, bedsize, dismonth, and los flag. 2. Submit a weighted version of the nhds03d Prod Means with these variables plus days of care (DOC) and age. 3. Using the above output and weighted means. Present a narrative of the presentage distribution of admitype, bedsize, dismonth, and losflag. 4. Using nhds03d insert the [class selfpay] into the proc mean. The output will yield the differences between the selfpay (uninsured) and non-selfpay (insured). Prepare a narrative that compares the demographic differences between the uninsured and insured populations. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 90.
    Lecture 3-NHDS 53 12. Multiple Linear Regression Model of Days of Care nhds04d.sas Below is the linear regression model (Proc Reg) of days of care and the effects of gender, race, marital status, payer, disposition and region. The NHDS was not designed for multivariate analysis and is principally used for descriptive statistics. However, this demonstration yields reasonable findings and creates templates for use with other data sets which are designed for multivariate analysis with a multi-stage probability sample design. Nevertheless, it should be noted that a substantial number of studies are published yearly using multivariate analysis of NHDS of the unweighted annual sample. Appendix 2 presents a sample of these studies. /***nhds04d.sas***/ Proc Reg data=nhds06; model doc=male white married medicare disceased south; run; title 'Linear regression of days of care as the dependent variable and the selected effects’ quit; Below is the output of the linear regression. The REG Procedure Model: MODEL1 Dependent Variable: DOC Number of days of care Number of Observations Read 376328 Number of Observations Used 376328 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 6 390901 65150 1428.16 <.0001 Error 376321 17167112 45.61827 Corrected Total 376327 17558013 Root MSE 6.75413 R-Square 0.0223 Dependent Mean 4.71399 Adj R-Sq 0.0222 Coeff Var 143.27828 Parameter Estimates Parameter Standard Variable Label DF Estimate Error t Value Pr > |t| Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 91.
    Lecture 3-NHDS 54 Intercept Intercept 1 3.82799 0.02146 178.41 <.0001 male 1 0.53717 0.02239 23.99 <.0001 white 1 -0.05574 0.02248 -2.48 0.0132 married 1 -0.52875 0.03218 -16.43 <.0001 medicare 1 1.55716 0.02325 66.98 <.0001 disceased 1 3.84237 0.07999 48.04 <.0001 south 1 0.41328 0.02312 17.88 <.0001 As seen above in the PROC REG output of discharges in 2006 across the nation, the model of days of care (DOC) , all of the effects are significant at p<.01. Controlling for sex, race, marital status, payer, disposition and region, the findings are as follows: 1. Males will stay 0.5 days longer than females. p<.0001 2. Whites stay 0.05 days less than non-whites. p<.0001 3. Those married stay 0.5 fewer days than those not married. p<.0001 4. Medicare payers stay 1.6 days longer than non-Medicare discharges. p<.0001 5. Those who die compared to those discharged alive have 3.8 additional days of care before death. p<.0001 6. Those living in the South compared to other national regions have 0.41 additional days of care. p<.0001 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 92.
    Lecture 3-NHDS 55 13. Exercises 3.3 1. Run the model with the freq weight statement after PROC REG and determine if the findings are significantly different. 2. Add to the model the additional effects of hospital ownership and source of admission using the indicator variables of private and snftransfer and interpret these two effects. 3. Write the regression equation of this first model using the intercept and effect coefficients, and using the following format: DOC = β0 + β1male+ β2white + β3married + β4Medicare + β5diseased + β6south +ε Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 93.
    Lecture 3-NHDS 56 14. A Logistic Regression Model for the Uninsured (selfpay). nhds05d.sas Below is the logistic regression model (proc logistic) of the uninsured and the effects of age gender, race, admission type and region. As previously discussed, NHDS was not designed for multivariate analysis and is principally used for descriptive statistics. However, this demonstration yields reasonable findings and creates templates for use with other data sets which are designed for multivariate analysis. Nevertheless, it should be noted that a substantial number of studies are published yearly using multivariate analysis of NHDS of the unweighted annual sample. Appendix 2 presents a sample of these studies. /*nhds05d.sas*/ options nolabel nodate nonumber; proc logistic data=nhds06 des; class gendercat (param=ref ref='2') /*female**/ racecat (param=ref ref='1') /*white**/ admitcat (param=ref ref='3') /*elective*/ regioncat (param=ref ref='2'); /*midwest*/ model selfpay=age gendercat racecat admitcat regioncat; ; units age=10; title 'Logistic Regression for NHDS Selfpay (uninsured)'; run; quit; options label; title; Logistic Regression for NHDS Selfpay (uninsured) The LOGISTIC Procedure Model Information Data Set WORK.NHDS06 Response Variable selfpay Number of Response Levels 2 Model binary logit Optimization Technique Fisher's scoring Number of Observations Read 376328 Number of Observations Used 376328 Response Profile Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 94.
    Lecture 3-NHDS 57 Ordered Total Value selfpay Frequency 1 1 15908 2 0 360420 Probability modeled is selfpay=1. Class Level Information Class Value Design Variables gendercat 1 1 2 0 racecat 1 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 3 0 1 0 0 0 0 0 4 0 0 1 0 0 0 0 5 0 0 0 1 0 0 0 6 0 0 0 0 1 0 0 7 0 0 0 0 0 1 0 8 0 0 0 0 0 0 1 admitcat 1 1 0 0 0 2 0 1 0 0 3 0 0 0 0 4 0 0 1 0 5 0 0 0 1 regioncat 1 1 0 0 2 0 0 0 3 0 1 0 4 0 0 1 Logistic Regression for NHDS Selfpay (uninsured) The LOGISTIC Procedure Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 131790.20 123843.34 SC 131801.04 124027.59 -2 Log L 131788.20 123809.34 Testing Global Null Hypothesis: BETA=0 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 95.
    Lecture 3-NHDS 58 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 7978.8568 16 <.0001 Score 8272.5095 16 <.0001 Wald 7829.0388 16 <.0001 Type 3 Analysis of Effects Wald Effect DF Chi-Square Pr > ChiSq AGE 1 4518.7861 <.0001 gendercat 1 662.1638 <.0001 racecat 7 378.8640 <.0001 admitcat 4 3360.3676 <.0001 regioncat 3 466.3526 <.0001 Analysis of Maximum Likelihood Estimates Standard Wald Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 -3.0982 0.0353 7701.4191 <.0001 AGE 1 -0.0240 0.000357 4518.7861 <.0001 gendercat 1 1 0.4287 0.0167 662.1638 <.0001 racecat 2 1 0.2042 0.0233 76.7092 <.0001 racecat 3 1 0.7448 0.1139 42.7874 <.0001 racecat 4 1 0.1118 0.0968 1.3341 0.2481 racecat 5 1 0.0760 0.2444 0.0967 0.7558 racecat 6 1 0.2805 0.0370 57.3473 <.0001 racecat 7 1 1.2076 0.3236 13.9272 0.0002 Logistic Regression for NHDS Selfpay (uninsured) The LOGISTIC Procedure Analysis of Maximum Likelihood Estimates Standard Wald Parameter DF Estimate Error Chi-Square Pr > ChiSq racecat 8 1 0.3655 0.0208 308.1565 <.0001 admitcat 1 1 0.8955 0.0253 1248.2156 <.0001 admitcat 2 1 0.1894 0.0312 36.7482 <.0001 admitcat 4 1 -0.7057 0.0372 360.5407 <.0001 admitcat 5 1 0.4933 0.0416 140.3279 <.0001 regioncat 1 1 0.0155 0.0272 0.3221 0.5703 regioncat 3 1 0.3876 0.0230 282.7929 <.0001 regioncat 4 1 0.1302 0.0311 17.5216 <.0001 Odds Ratio Estimates Point 95% Wald Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 96.
    Lecture 3-NHDS 59 Effect Estimate Confidence Limits AGE 0.976 0.976 0.977 gendercat 1 vs 2 1.535 1.486 1.586 racecat 2 vs 1 1.227 1.172 1.284 racecat 3 vs 1 2.106 1.685 2.632 racecat 4 vs 1 1.118 0.925 1.352 racecat 5 vs 1 1.079 0.668 1.742 racecat 6 vs 1 1.324 1.231 1.423 racecat 7 vs 1 3.346 1.774 6.308 racecat 8 vs 1 1.441 1.384 1.501 admitcat 1 vs 3 2.449 2.330 2.573 admitcat 2 vs 3 1.209 1.137 1.285 admitcat 4 vs 3 0.494 0.459 0.531 admitcat 5 vs 3 1.638 1.509 1.777 regioncat 1 vs 2 1.016 0.963 1.071 regioncat 3 vs 2 1.473 1.408 1.542 regioncat 4 vs 2 1.139 1.072 1.211 Association of Predicted Probabilities and Observed Responses Percent Concordant 70.6 Somers' D 0.432 Percent Discordant 27.4 Gamma 0.441 Percent Tied 2.0 Tau-a 0.035 Pairs 5733561360 c 0.716 Logistic Regression for NHDS Selfpay (uninsured) The LOGISTIC Procedure Odds Ratios Effect Unit Estimate AGE 10.0000 0.786 As seen above in the proc logistic output of discharges in 2006 across the nation, the model of days of care uninsured (selfpay), all of the effects are significant at p<.0001. Controlling for age, gender, race, admit type, payer, and region, the findings are as follows: 1. All else being equal, males are 1.535 times more likely to be uninsured than females, p<.0001[CI 1.486, 1.586]. 2. All else being equal, blacks compared to whites are 1.227 times more likely to be uninsured, p<.0001[CI 1.172 , 1.284]. 3. All else being equal, multiple races compared to whites are 3.346 times more likely to be uninsured, p<.0001[CI 1.774, 6.308]. 4. All else being equal, Native Americans compared to whites were 2.106 times more likely to be uninsured, p<.0001[CI 1.685, 2.632]. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 97.
    Lecture 3-NHDS 60 5. All else being equal, emergencies compared to electives were 2.449 times more likely to be uninsured, p<.0001[CI 2.330, 2.573]. 6. All else being equal, newborn compared to electives were 50.6 percent less likely to be uninsured, p<.0001[CI 0.459 , 0.531]. 7. All else being equal, those from the South compared to the Midwest were 1.473 times more likely to be uninsured, p<.0001[CI 1.408, 1.542]. 8. All else being equal, those from the West compared to the Midwest were 1.139 times more likely to be uninsured, p<.0001[CI 1.072, 1.221]. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 98.
    Lecture 3-NHDS 61 15. Exercises 3.4 1. Add to the logistic model the effects of marital status (msnotstat), hospital ownership (ownercat), admission source (asource), discharge disposition (discstatcat), and days of care (DOC) to the first model. 2. In a narrative, describe the contribution of these additional effects upon the outcome variable. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 99.
    Lecture 3-NHDS 62 16. Proc Tabulate to Identify the Differences of the Principal Diagnosis of the Uninsured (self pay) and Insured. nhdso3d The Proc Tabulate below, found in nhds03d, will produce a table comparing the uninsured (self pay) and insured, the principal diagnoses, and days of care. options nolabel nodate nonumber; proc tabulate data=nhds06 order=freq; /* formchar=' '; */ freq weight; class selfpay dx13; var doc; tables dx13 all, (selfpay all)*(doc*(n*f=8.0 mean*f=3.2)) /rts=50; format dx13 $diag3df.; run; title 'Distribution in Rank order of the Selfpay Diagnosis'; Partial output of Proc Tabulate Distribution in Rank order of the Selfpay Diagnosis „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ† ‚ ‚ selfpay ‚ ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ 0 ‚ 1 ‚ All ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ DOC ‚ DOC ‚ DOC ‚ ‚ ‡ƒƒƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒƒƒ…ƒƒƒ‰ ‚ ‚ ‚Me-‚ ‚Me-‚ ‚Me-‚ ‚ ‚ N ‚an ‚ N ‚an ‚ N ‚an ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚dx13 ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ ‚ ‚ ‚ ‚(V27) Outcome of delivery ‚ 3971889‚2.6‚ 155602‚2.4‚ 4127491‚2.6‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(V30) Singleton ‚ 3718260‚3.2‚ 184180‚2.6‚ 3902440‚3.2‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(428) Heart failure ‚ 1078964‚5.2‚ 27442‚3.8‚ 1106406‚5.1‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(486) Pneumonia, organism unspecified ‚ 1024185‚4.9‚ 28995‚3.5‚ 1053180‚4.9‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(414) Other forms of chronic ischemic... ‚ 942554‚3.2‚ 36606‚3.2‚ 979160‚3.2‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(296) Affective psychoses ‚ 915191‚7.3‚ 55940‚5.5‚ 971131‚7.2‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(427) Cardiac dysrhythmias ‚ 756333‚3.4‚ 15192‚2.6‚ 771525‚3.4‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(715) Osteoarthrosis and allied disor... ‚ 748890‚3.8‚ 4426‚3.5‚ 753316‚3.8‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(276) Disorders of fluid, electrolyte... ‚ 701855‚3.5‚ 21792‚2.8‚ 723647‚3.5‚ ‚(410) Acute myocardial infarction ‚ 618843‚5.5‚ 27807‚3.9‚ 646650‚5.4‚ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 100.
    Lecture 3-NHDS 63 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(250) Diabetes mellitus ‚ 533206‚4.8‚ 50927‚3.8‚ 584133‚4.7‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(682) Other cellulitis and abscess ‚ 501709‚4.5‚ 52639‚3.8‚ 554348‚4.5‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(038) Septicemia ‚ 515467‚8.6‚ 14967‚9.4‚ 530434‚8.7‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(996) Complications peculiar to certa... ‚ 515933‚6.2‚ 6609‚5.3‚ 522542‚6.2‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(599) Other disorders of urethra and ... ‚ 515112‚4.6‚ 6658‚3.5‚ 521770‚4.6‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(491) Chronic bronchitis ‚ 495774‚4.7‚ 16889‚3.7‚ 512663‚4.7‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(V57) Care involving use of rehabilit... ‚ 470596‚ 13‚ 6475‚ 18‚ 477071‚ 13‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(493) Asthma ‚ 414525‚3.2‚ 29044‚2.8‚ 443569‚3.2‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(434) Occlusion of cerebral arteries ‚ 368478‚5.4‚ 20163‚4.3‚ 388641‚5.4‚ Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ ‚ ‚ ‚(518) Other diseases of lung ‚ 354158‚8.7‚ 11618‚7.4‚ 365776‚8.7‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(574) Cholelithiasis ‚ 308150‚3.9‚ 27210‚3.2‚ 335360‚3.8‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(295) Schizophrenic psychoses ‚ 319453‚ 12‚ 13647‚7.7‚ 333100‚ 12‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(820) Fracture of neck of femur ‚ 323278‚6.1‚ 6551‚6.8‚ 329829‚6.2‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(722) Intervertebral disc disorders ‚ 316081‚3.1‚ 7727‚2.8‚ 323808‚3.1‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(560) Intestinal obstruction without ... ‚ 313044‚6.2‚ 9717‚4.4‚ 322761‚6.2‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(584) Acute renal failure ‚ 305059‚6.6‚ 10275‚4.3‚ 315334‚6.6‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(562) Diverticula of intestine ‚ 302204‚4.8‚ 12237‚4.4‚ 314441‚4.8‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(540) Acute appendicitis ‚ 270725‚3.2‚ 28807‚3.2‚ 299532‚3.2‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(401) Essential hypertension ‚ 269301‚2.3‚ 24027‚1.9‚ 293328‚2.2‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(577) Diseases of pancreas ‚ 240159‚5.7‚ 32723‚4.4‚ 272882‚5.5‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(998) Other complications of procedur... ‚ 236957‚6.1‚ 9409‚5.8‚ 246366‚6.1‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(530) Diseases of esophagus ‚ 206088‚3.5‚ 11484‚2.5‚ 217572‚3.4‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(558) Other noninfective gastroenteri... ‚ 205865‚3.1‚ 11678‚2.3‚ 217543‚3.1‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(466) Acute bronchitis and bronchiolitis ‚ 208706‚3.2‚ 8140‚2.4‚ 216846‚3.2‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(218) Uterine leiomyoma ‚ 201650‚2.4‚ 8331‚3.0‚ 209981‚2.4‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚(435) Transient cerebral ischemia ‚ 182669‚3.0‚ 4635‚3.2‚ 187304‚3.0‚ All ‚37060872‚4.7‚ 1812905‚3.8‚38873777‚4.6‚ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 101.
    Lecture 3-NHDS 64 17. Exercises 3.5 Using the Proc Tabulate above, substitute the principal procedure (pr21) and var age to produce a table comparing the uninsured (self pay) and insured, the principal procedure and corresponding mean age. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 102.
    Lecture 3-NHDS 65 APPENDIX 1: Exercise Answers Exercises 3.1 Question 3.1-1 1. Prepare and run weighted and formatted PROC FREQ for variables ESOP1, ADM_TYPE, and ADM_SOURCE. Answer 3.1-1 The below Proc Freq is the code for question 1 proc freq data=nhds2006; weight weight; tables esop1 adm_type asource; format esop1 payer1f. adm_type admitypef. asource adsourcef. ; title1 'Weighted Frequency Distribution with'; title2 'Formats for Selected NHDS Variables'; run; Exercises 3.1 Output for the above PROC Freq Weighted Frequency Distribution with Formats for Selected NHDS Variables The FREQ Procedure Principal expected source of payment Cumulative Cumulative ESOP1 Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Worker's Comp 157957 0.41 157957 0.41 Medicare 13523750 34.79 13681707 35.20 Medicaid 7526704 19.36 21208411 54.56 Other Govnt 616773 1.59 21825184 56.14 Blue Cross 3770005 9.70 25595189 65.84 HMO/PPO 5802453 14.93 31397642 80.77 Other Private 3733869 9.61 35131511 90.37 Self Pay 1812905 4.66 36944416 95.04 No Charge 179347 0.46 37123763 95.50 Other Ins 1125661 2.90 38249424 98.39 Payer Not Stated 624353 1.61 38873777 100.00 Type of admission Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 103.
    Lecture 3-NHDS 66 Cumulative Cumulative ADM_TYPE Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Emergency 14781383 38.02 14781383 38.02 Urgent 8499636 21.86 23281019 59.89 Elective 8382888 21.56 31663907 81.45 New Born 4019881 10.34 35683788 91.79 admit NA 3189989 8.21 38873777 100.00 Source of admission Cumulative Cumulative ASOURCE Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Physican Referral 12728421 32.74 12728421 32.74 Clinical Referral 861246 2.22 13589667 34.96 HMO Referral 169737 0.44 13759404 35.40 Acute Transfer 1069107 2.75 14828511 38.15 SNF Transfer 218427 0.56 15046938 38.71 Other Tranfer 210381 0.54 15257319 39.25 Emergency Room 14921494 38.38 30178813 77.63 Court/Law Enforcement 102001 0.26 30280814 77.90 Source_other 4531547 11.66 34812361 89.55 Sourse N/A 4061416 10.45 38873777 100.00 Exercises 3.1 (continued) Question 3.1-2 2. Add a variable in the input code for DX13 to read $3 (first 3 characters of the principal diagnosis) in nhds02d and produce the frequency distribution for PROC FREQ and a weighted and formatted output. Answer 3.1-2 The updated nhds02d that contains the new variable dx13 data nhds2006 ; Infile 'C:DATA9000NHDS06.PU.TXT' LRECL=88; input @ 1 svyear $2. @ 3 newborn 1. @ 4 ageunits 1. @ 5 age 2. @ 7 sex 1. @ 8 race 1. @ 9 marstat 1. @ 10 disc_mon $2. @ 12 discstat 1. @ 13 doc 4. @ 17 losflag 1. @ 18 region 1. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 104.
    Lecture 3-NHDS 67 @ 19 bedsize 1. @ 20 owner 1. @ 21 weight 5. @ 26 century $2. @ 28 dx1 $5. @ 28 dx13 $3. The proc freq code used in nhds02d used to obtain principal diagnoses distribution of NHDS. proc freq data=nhds2006; weight weight; tables dx13; format dx13 $diag3df. ; title1 'Weighted Frequency Distribution with'; title2 'Formats for NHDS Principal Diagnosis'; run; Partial output of above principal diagnoses distribution of NHDS Weighted Frequency Distribution with Formats for NHDS Principal Diagnosis The FREQ Procedure Cumulative Cumulative dx13 Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ (002) Typhoid and paratyphoid fevers 357 0.00 357 0.00 (003) Other salmonella infections 6705 0.02 7062 0.02 (004) Shigellosis 1010 0.00 8072 0.02 (005) Other food poisoning (bacterial) 3617 0.01 11689 0.03 (006) Amebiasis 708 0.00 12397 0.03 (007) Other protozoal intestinal dise... 818 0.00 13215 0.03 (008) Intestinal infections due to ot... 186110 0.48 199325 0.51 (009) Ill-defined intestinal infections 21050 0.05 220375 0.57 (010) Primary tuberculous infection 119 0.00 220494 0.57 (011) Pulmonary tuberculosis 7703 0.02 228197 0.59 (013) Tuberculosis of meninges and ce... 63 0.00 228260 0.59 (015) Tuberculosis of bones and joints 827 0.00 229087 0.59 (017) Tuberculosis of other organs 979 0.00 230066 0.59 (018) Miliary tuberculosis 41 0.00 230107 0.59 (023) Brucellosis 133 0.00 230240 0.59 (027) Other zoonotic bacterial diseases 89 0.00 230329 0.59 (031) Diseases due to other mycobacteria 1344 0.00 231673 0.60 (033) Whooping cough 3168 0.01 234841 0.60 (034) Streptococcal sore throat and s... 9920 0.03 244761 0.63 (035) Erysipelas 2894 0.01 247655 0.64 (036) Meningococcal infection 1019 0.00 248674 0.64 (037) Tetanus 14 0.00 248688 0.64 (038) Septicemia 530434 1.36 779122 2.00 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 105.
    Lecture 3-NHDS 68 Exercises 3.1 (continued) Question 3.1-3 3. Add a variable in the input code for PD12 to read $2 (first 2 characters of the principal procedure) and produce the procedure distribution using PROC FREQ and a weighted and formatted output. Answer 3.1-3 The partial nhds02d that contains the new variable principal procedure code (pdx12) with two characters /****nhds02d.sas**********/ data nhds2006 ; Infile 'C:DATA9000NHDS06.PU.TXT' LRECL=88; input @ 1 svyear $2. @ 3 newborn 1. @ 4 ageunits 1. @ 5 age 2. @ 7 sex 1. @ 8 race 1. @ 9 marstat 1. @ 10 disc_mon $2. @ 12 discstat 1. @ 13 doc 4. @ 17 losflag 1. @ 18 region 1. @ 19 bedsize 1. @ 20 owner 1. @ 21 weight 5. @ 26 century $2. @ 28 dx1 $5. @ 28 dx13 $3. @ 33 DX2 $5. @ 38 DX3 $5. @ 43 DX4 $5. @ 48 DX5 $5. @ 53 DX6 $5. @ 58 DX7 $5. @ 63 PD1 $4. @ 63 pdx2 $2. The proc freq code, used in nhds02d, used to obtain principal procedure distribution of NHDS. proc freq data=nhds2006; weight weight; tables pd12; format pd12 $proc2df. ; title1 'Weighted Frequency Distribution with'; title2 'Formats for NHDS Principal Procedure'; run; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 106.
    Lecture 3-NHDS 69 Exercises 3.1 (continued) Output of proc freq code, used in nhds02d, used to obtain principal procedure distribution of NHDS Weighted Frequency Distribution with Formats for NHDS Principal Procedure The FREQ Procedure ICD-9-CM procedure code - 2 position Cumulative Cumulative pd12 Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Blank/00:Procedures and interventns, NEC 750131 3.13 750131 3.13 01:Incision and excision of skull, br... 108128 0.45 858259 3.58 02:Other operations on skull, brain, ... 63580 0.27 921839 3.84 03:Operations on spinal cord and spin... 415543 1.73 1337382 5.58 04:Operations on cranial and peripher... 15619 0.07 1353001 5.64 05:Operations on sympathetic nerves o... 841 0.00 1353842 5.64 06:Operations on thyroid and parathyr... 64094 0.27 1417936 5.91 07:Operations on other endocrine glands 14458 0.06 1432394 5.97 08:Operations on eyelids 17617 0.07 1450011 6.05 09:Operations on lacrimal system 1240 0.01 1451251 6.05 10:Operations on conjunctiva 256 0.00 1451507 6.05 11:Operations on cornea 852 0.00 1452359 6.06 12:Operations on iris, ciliary body, ... 1162 0.00 1453521 6.06 13:Operations on lens 3525 0.01 1457046 6.08 14:Operations on retina, choroid, vit... 8387 0.03 1465433 6.11 15:Operations on extraocular muscles 901 0.00 1466334 6.11 16:Operations on orbit and eyeball 4285 0.02 1470619 6.13 18:Operations on external ear 12618 0.05 1483237 6.18 19:Reconstructive operations on middl... 354 0.00 1483591 6.19 20:Other operations on middle and inn... 10286 0.04 1493877 6.23 21:Operations on nose 39267 0.16 1533144 6.39 22:Operations on nasal sinuses 8745 0.04 1541889 6.43 23:Removal and restoration of teeth 5846 0.02 1547735 6.45 24:Other operations on teeth, gums, a... 3566 0.01 1551301 6.47 25:Operations on tongue 9460 0.04 1560761 6.51 26:Operations on salivary glands and ... 7813 0.03 1568574 6.54 27:Other operations on mouth and face 41362 0.17 1609936 6.71 28:Operations on tonsils and adenoids 32508 0.14 1642444 6.85 29:Operations on pharynx 6601 0.03 1649045 6.88 30:Excision of larynx 6894 0.03 1655939 6.90 31:Other operations on larynx and tra... 92709 0.39 1748648 7.29 32:Excision of lung and bronchus 70556 0.29 1819204 7.59 33:Other operations on lung and bronchus 156952 0.65 1976156 8.24 34:Operations on chest wall, pleura, ... 241419 1.01 2217575 9.25 35:Operations on valves and septa of ... 119009 0.50 2336584 9.74 36:Operations on vessels of heart 271042 1.13 2607626 10.87 37:Other operations on heart and peri... 868062 3.62 3475688 14.49 38:Incision, excision, and occlusion ... 818977 3.41 4294665 17.91 39:Other operations on vessels 619691 2.58 4914356 20.49 40:Operations on lymphatic system 41724 0.17 4956080 20.66 41:Operations on bone marrow and spleen 67897 0.28 5023977 20.95 42:Operations on esophagus 50015 0.21 5073992 21.16 43:Incision and excision of stomach 125793 0.52 5199785 21.68 44:Other operations on stomach 206256 0.86 5406041 22.54 45:Incision, excision, and anastomosi... 1278566 5.33 6684607 27.87 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 107.
    Lecture 3-NHDS 70 46:Other operations on intestine 84498 0.35 6769105 28.22 47:Operations on appendix 315299 1.31 7084404 29.54 48:Operations on rectum, rectosigmoid... 82768 0.35 7167172 29.88 49:Operations on anus 29066 0.12 7196238 30.01 50:Operations on liver 55959 0.23 7252197 30.24 51:Operations on gallbladder and bili... 445406 1.86 7697603 32.10 52:Operations on pancreas 24454 0.10 7722057 32.20 53:Repair of hernia 139507 0.58 7861564 32.78 54:Other operations on abdominal region 302987 1.26 8164551 34.04 55:Operations on kidney 144371 0.60 8308922 34.64 56:Operations on ureter 57733 0.24 8366655 34.89 57:Operations on urinary bladder 155450 0.65 8522105 35.53 58:Operations on urethra 11696 0.05 8533801 35.58 59:Other operations on urinary tract 87477 0.36 8621278 35.95 60:Operations on prostate and seminal... 165092 0.69 8786370 36.64 61:Operations on scrotum and tunica v... 6498 0.03 8792868 36.66 62:Operations on testes 7291 0.03 8800159 36.69 63:Operations on spermatic cord, epid... 1348 0.01 8801507 36.70 64:Operations on penis 1145843 4.78 9947350 41.48 65:Operations on ovary 97301 0.41 10044651 41.88 66:Operations on fallopian tubes 114660 0.48 10159311 42.36 67:Operations on cervix 14019 0.06 10173330 42.42 68:Other incision and excision of uterus 592406 2.47 10765736 44.89 69:Other operations on uterus and sup... 43649 0.18 10809385 45.07 70:Operations on vagina and cul-de-sac 75770 0.32 10885155 45.39 71:Operations on vulva and perineum 20373 0.08 10905528 45.47 72:Forceps, vacuum, and breech delivery 212179 0.88 11117707 46.36 73:Other procedures inducing or assis... 1597333 6.66 12715040 53.02 74:Cesarean section and removal of fetus 1292562 5.39 14007602 58.41 75:Other obstetric operations 938482 3.91 14946084 62.32 76:Operations on facial bones and joints 38324 0.16 14984408 62.48 77:Incision, excision, and division o... 77579 0.32 15061987 62.80 78:Other operations on bones, except ... 93376 0.39 15155363 63.19 79:Reduction of fracture and dislocation 559179 2.33 15714542 65.52 80:Incision and excision of joint str... 167779 0.70 15882321 66.22 81:Repair and plastic operations on j... 1350214 5.63 17232535 71.85 82:Operations on muscle, tendon, and ... 12153 0.05 17244688 71.90 83:Operations on muscle, tendon, fasc... 120425 0.50 17365113 72.40 84:Other procedures on musculoskeleta... 111220 0.46 17476333 72.87 85:Operations on the breast 97026 0.40 17573359 73.27 86:Operations on skin and subcutaneou... 761241 3.17 18334600 76.45 87:Diagnostic radiology 283951 1.18 18618551 77.63 88:Other diagnostic radiology and rel... 736008 3.07 19354559 80.70 89:Interview, evaluation, consultatio... 291331 1.21 19645890 81.91 90:Microscopic examination I 9886 0.04 19655776 81.96 91:Microscopic examination II 1993 0.01 19657769 81.96 92:Nuclear medicine 74211 0.31 19731980 82.27 93:Physical therapy/respiratory thera... 705245 2.94 20437225 85.21 94:Procedures related to the psyche 498209 2.08 20935434 87.29 95:Ophthalmologic and otologic diagno... 157521 0.66 21092955 87.95 96:Nonoperative intubation and irriga... 667657 2.78 21760612 90.73 97:Replacement and removal of therape... 38220 0.16 21798832 90.89 98:Nonoperative removal of foreign body 12924 0.05 21811756 90.95 99:Other nonoperative procedures 2171673 9.05 23983429 100.00 Frequency Missing = 14890348 Exercises 3.1 (continued) Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 108.
    Lecture 3-NHDS 71 Question 3.1-4 4. Name the top five 2006 NHDS procedure codes along with their volumes. Answer 3.1-4 First Two I9 codes and Procedure Name and Number of Discharges 45:Incision, excision, and anastomosi.. 1,278,566 73:Other procedures inducing or assis.. 1,597,333 74:Cesarean section and removal of fetus 1.292,562 81: Repair and plastic operations on j... 1,350.214 64:Operations on penis 1,145,843 Question 3.1-5 5. Name the top five 2006 NHDS I9 diagnoses codes along with their volumes. Answer 3.1-5 First Three I9 codes and Diagnosis Name Discharges (296) Affective psychoses 971, 131 428) Heart failure 1,106,406 (486) Pneumonia, organism unspecified 1,053,180 (V27) Outcome of delivery 4,127,491 (V30) Singleton (New Born) 3,902,440 Exercises 3.1 (continued) Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 109.
    Lecture 3-NHDS 72 Question 3.1-6 6.Write the format statements for the first 100 Medicare DRGs which are found in C:DATA9000DRG Medicare FY07. Answer 3.1-6 Format statement for the first 100 Medicare DRG value drgf 1 = "(1) CRANIOTOMY AGE >17 W CC" 2 = "(2) CRANIOTOMY AGE >17 W/O CC" 3 = "(3) CRANIOTOMY AGE 0-17" 4 = "(4) NO LONGER VALID" 5 = "(5) NO LONGER VALID" 6 = "(6) CARPAL TUNNEL RELEASE" 7 = "(7) PERIPH & CRANIAL NERVE & OTHER NERV SYST PROC W CC" 8 = "(8) PERIPH & CRANIAL NERVE & OTHER NERV SYST PROC W/O CC" 9 = "(9) SPINAL DISORDERS & INJURIES" 10 = "(10) NERVOUS SYSTEM NEOPLASMS W CC" 11 = "(11) NERVOUS SYSTEM NEOPLASMS W/O CC" 12 = "(12) DEGENERATIVE NERVOUS SYSTEM DISORDERS" 13 = "(13) MULTIPLE SCLEROSIS & CEREBELLAR ATAXIA" 14 = "(14) INTRACRANIAL HEMORRHAGE OR CEREBRAL INFARCTION" 15 = "(15) NONSPECIFIC CVA & PRECEREBRAL OCCLUSION W/O INFARCT" 16 = "(16) NONSPECIFIC CEREBROVASCULAR DISORDERS W CC" 17 = "(17) NONSPECIFIC CEREBROVASCULAR DISORDERS W/O CC" 18 = "(18) CRANIAL & PERIPHERAL NERVE DISORDERS W CC" 19 = "(19) CRANIAL & PERIPHERAL NERVE DISORDERS W/O CC" 20 = "(20) NERVOUS SYSTEM INFECTION EXCEPT VIRAL MENINGITIS" 21 = "(21) VIRAL MENINGITIS" 22 = "(22) HYPERTENSIVE ENCEPHALOPATHY" 23 = "(23) NONTRAUMATIC STUPOR & COMA" 24 = "(24) SEIZURE & HEADACHE AGE >17 W CC" 25 = "(25) SEIZURE & HEADACHE AGE >17 W/O CC" 26 = "(26) SEIZURE & HEADACHE AGE 0-17" 27 = "(27) TRAUMATIC STUPOR & COMA, COMA >1 HR" 28 = "(28) TRAUMATIC STUPOR & COMA, COMA <1 HR AGE >17 W CC" 29 = "(29) TRAUMATIC STUPOR & COMA, COMA <1 HR AGE >17 W/O CC" 30 = "(30) TRAUMATIC STUPOR & COMA, COMA <1 HR AGE 0-17" 31 = "(31) CONCUSSION AGE >17 W CC" 32 = "(32) CONCUSSION AGE >17 W/O CC" 33 = "(33) CONCUSSION AGE 0-17" 34 = "(34) OTHER DISORDERS OF NERVOUS SYSTEM W CC" 35 = "(35) OTHER DISORDERS OF NERVOUS SYSTEM W/O CC" 36 = "(36) RETINAL PROCEDURES" 37 = "(37) ORBITAL PROCEDURES" 38 = "(38) PRIMARY IRIS PROCEDURES" 39 = "(39) LENS PROCEDURES WITH OR WITHOUT VITRECTOMY" 40 = "(40) EXTRAOCULAR PROCEDURES EXCEPT ORBIT AGE >17" 41 = "(41) EXTRAOCULAR PROCEDURES EXCEPT ORBIT AGE 0-17" 42 = "(42) INTRAOCULAR PROCEDURES EXCEPT RETINA, IRIS & LENS" Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 110.
    Lecture 3-NHDS 73 43 = "(43) HYPHEMA" 44 = "(44) ACUTE MAJOR EYE INFECTIONS" 45 = "(45) NEUROLOGICAL EYE DISORDERS" 46 = "(46) OTHER DISORDERS OF THE EYE AGE >17 W CC" 47 = "(47) OTHER DISORDERS OF THE EYE AGE >17 W/O CC" 48 = "(48) OTHER DISORDERS OF THE EYE AGE 0-17" 49 = "(49) MAJOR HEAD & NECK PROCEDURES" 50 = "(50) SIALOADENECTOMY" 51 = "(51) SALIVARY GLAND PROCEDURES EXCEPT SIALOADENECTOMY" 52 = "(52) CLEFT LIP & PALATE REPAIR" 53 = "(53) SINUS & MASTOID PROCEDURES AGE >17" 54 = "(54) SINUS & MASTOID PROCEDURES AGE 0-17" 55 = "(55) MISCELLANEOUS EAR, NOSE, MOUTH & THROAT PROCEDURES" 56 = "(56) RHINOPLASTY" 57 = "(57) T&A PROC, EXCEPT TONSILLECTOMY &/OR ADEN AGE >17" 58 = "(58) T&A PROC, EXCEPT TONSILLECTOMY &/OR ADENO AGE 0-17" 59 = "(59) TONSILLECTOMY &/OR ADENOIDECTOMY ONLY, AGE >17" 60 = "(60) TONSILLECTOMY &/OR ADENOIDECTOMY ONLY, AGE 0-17" 61 = "(61) MYRINGOTOMY W TUBE INSERTION AGE >17" 62 = "(62) MYRINGOTOMY W TUBE INSERTION AGE 0-17" 63 = "(63) OTHER EAR, NOSE, MOUTH & THROAT O.R. PROCEDURES" 64 = "(64) EAR, NOSE, MOUTH & THROAT MALIGNANCY" 65 = "(65) DYSEQUILIBRIUM" 66 = "(66) EPISTAXIS" 67 = "(67) EPIGLOTTITIS" 68 = "(68) OTITIS MEDIA & URI AGE >17 W CC" 69 = "(69) OTITIS MEDIA & URI AGE >17 W/O CC" 70 = "(70) OTITIS MEDIA & URI AGE 0-17" 71 = "(71) LARYNGOTRACHEITIS" 72 = "(72) NASAL TRAUMA & DEFORMITY" 73 = "(73) OTHER EAR, NOSE, MOUTH & THROAT DIAGNOSES AGE >17" 74 = "(74) OTHER EAR, NOSE, MOUTH & THROAT DIAGNOSES AGE 0-17" 75 = " 75) MAJOR CHEST PROCEDURES" 76 = "(76) OTHER RESP SYSTEM O.R. PROCEDURES W CC" 77 = "(77) OTHER RESP SYSTEM O.R. PROCEDURES W/O CC" 78 = "(78) PULMONARY EMBOLISM" 79 = "(79) RESPIRATORY INFECTIONS & INFLAMMATIONS AGE >17 W CC" 80 = "(80) RESPIRATORY INFECTIONS & INFLAMMATIONS AGE >17 W/O CC" 81 = "(81) RESPIRATORY INFECTIONS & INFLAMMATIONS AGE 0-17" 82 = "(82) RESPIRATORY NEOPLASMS" 83 = "(83) MAJOR CHEST TRAUMA W CC " 84 = "(84) MAJOR CHEST TRAUMA W/O CC" 85 = "(85) PLEURAL EFFUSION W CC" 86 = "(86) PLEURAL EFFUSION W/O CC" Exercises 3.1 (continued) 87 = "(87) PULMONARY EDEMA & RESPIRATORY FAILURE" 88 = "(88) CHRONIC OBSTRUCTIVE PULMONARY DISEASE" 89 = "(89) SIMPLE PNEUMONIA & PLEURISY AGE >17 W CC" Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 111.
    Lecture 3-NHDS 74 90 = "(90) SIMPLE PNEUMONIA & PLEURISY AGE >17 W/O CC" 91 = "(91) SIMPLE PNEUMONIA & PLEURISY AGE 0-17" 92 = "(92) INTERSTITIAL LUNG DISEASE W CC" 93 = "(93) INTERSTITIAL LUNG DISEASE W/O CC" 94 = "(94) PNEUMOTHORAX W CC" 95 = "(95) PNEUMOTHORAX W/O CC" 96 = "(96) BRONCHITIS & ASTHMA AGE >17 W CC" 97 = "(97) BRONCHITIS & ASTHMA AGE >17 W/O CC" 98 = "(98) BRONCHITIS & ASTHMA AGE 0-17" 99 = "(99) RESPIRATORY SIGNS & SYMPTOMS W CC" 100 = "(100) RESPIRATORY SIGNS & SYMPTOMS W/O CC" Exercises 3.2 Question 3.2-1 1. Write the indicator and truth logic code for the variables: admitype, bedsize, dismonth and losflag and include the data and set statement from nhds03d. Answer 3.2-1 The code below is the answer to question 1. data nhds06; set work.nhds2006; /****************Answers to questions 3.2**************/ /***********Indicator Variables for Admit Type******/ emergency = (adm_type=1); urgent = (adm_type=2); elective = (adm_type=3); new_born = (adm_type=4); admit_na = (adm_type=9); /***********Truth Logic for for Admit Type******/ admitcat= 1*(adm_type=1) + 2*(adm_type=2) + 3*(adm_type=3)+ 4*(adm_type=4) + 5*(adm_type=9); /***********Indicator Variables for Bedsize******/ beds6_99 = (bedsize=1); Exercises 3.2 continued) beds100_199 = (bedsize=2); beds200_299 = (bedsize=3); beds300_499 = (bedsize=4); Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 112.
    Lecture 3-NHDS 75 beds500plus = (bedsize=5); /***********Truth Logic for Bedsize******/ bedcat = 1*(bedsize=1) + 2*(bedsize=2) + 3*(bedsize=3) + 4*(bedsize=4) + 5*(bedsize=5); /***********Indicator Variables for Discharge Month******/ January = (disc_mon='01'); February = (disc_mon='02'); March = (disc_mon='03'); April = (disc_mon='04'); May = (disc_mon='05'); June = (disc_mon='06'); July = (disc_mon='07'); August = (disc_mon='08'); September = (disc_mon='09'); October = (disc_mon='10'); November = (disc_mon='11'); December = (disc_mon='12'); /***********Truth Logic for Discharge Month******/ monthcat = 1*(disc_mon='01')+ 2*(disc_mon='02') +3*(disc_mon='03') + 4*(disc_mon='04')+ 5*(disc_mon='05') +6*(disc_mon='06') + 7*(disc_mon='07')+ 8*(disc_mon='08') +9*(disc_mon='09') + 10*(disc_mon='10')+ 11*(disc_mon='11') +12*(disc_mon='12'); /***********Indicator Variables for Los Flag******/ ltoneday = (losflag =0); geoneday = (losflag =1); /***********Truth Logic for LOS Flag******/ losflagcat=1*(losflag =0)+ 2*(losflag=1); proc means n mean sum min max data=nhds06; weight weight; var Exercises 3.2 (continued) emergency urgent elective new_born admit_na admitcat beds6_99 beds100_199 beds200_299 beds300_499 beds500plus bedcat january february march april may june Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 113.
    Lecture 3-NHDS 76 july august september october november december monthcat ltoneday geoneday doc age; ; run; title 'Proc Means of Additional NHDS Variables'; Question 3.2-2 2. Using the above code, submit a weighted version of the above Proc Means with these additional variables plus days of care (DOC) and age. Answer 3.2-2 Below is the PROC Means Output that answers question 2. Proc Means of Additional NHDS Variables The MEANS Procedure Variable N Mean Sum Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ emergency 38873777 0.3802405 14781383.00 0 1.0000000 urgent 38873777 0.2186470 8499636.00 0 1.0000000 elective 38873777 0.2156438 8382888.00 0 1.0000000 new_born 38873777 0.1034086 4019881.00 0 1.0000000 admit_na 38873777 0.0820602 3189989.00 0 1.0000000 admitcat 38873777 2.2884009 88958788.00 1.0000000 5.0000000 beds6_99 38873777 0.2245193 8727912.00 0 1.0000000 beds100_199 38873777 0.2102052 8171471.00 0 1.0000000 beds200_299 38873777 0.1922901 7475041.00 0 1.0000000 beds300_499 38873777 0.2351687 9141896.00 0 1.0000000 beds500plus 38873777 0.1378167 5357457.00 0 1.0000000 bedcat 38873777 2.8515584 110850846 1.0000000 5.0000000 January 38873777 0.0855687 3326380.00 0 1.0000000 February 38873777 0.0804654 3127993.00 0 1.0000000 March 38873777 0.0894111 3475747.00 0 1.0000000 April 38873777 0.0820406 3189227.00 0 1.0000000 May 38873777 0.0856391 3329115.00 0 1.0000000 June 38873777 0.0847040 3292765.00 0 1.0000000 July 38873777 0.0833721 3240989.00 0 1.0000000 August 38873777 0.0859714 3342033.00 0 1.0000000 September 38873777 0.0828773 3221755.00 0 1.0000000 October 38873777 0.0805104 3129742.00 0 1.0000000 November 38873777 0.0789241 3068077.00 0 1.0000000 December 38873777 0.0805158 3129954.00 0 1.0000000 monthcat 38873777 6.4360450 250193377 1.0000000 12.0000000 ltoneday 38873777 0.0194220 755008.00 0 1.0000000 geoneday 38873777 0.9805780 38118769.00 0 1.0000000 DOC 38873777 4.6309689 180023252 1.0000000 381.0000000 AGE 38873777 47.2108638 1835264591 0 99.0000000 losflagcat 38873777 1.9805780 76992546.00 1.0000000 2.0000000 Exercises 3.2 (continued) Question 3.2-3 3. Using the above, present a narrative of the descriptive statistics associated of this proc mean output. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 114.
    Lecture 3-NHDS 77 Answer 3.2-3 When weighted, there were 38.9 million discharges in the 2006 NHDS. The mean days of care were 4.63 days with a range of 1 to 381 days. The mean age was 47.2 with a range of 0 to 99 years. Admitting type indicated 38.0% were from the emergency department, 21.9% were urgent, 21.5% were elective, 10.3% were newborns and 8.2% were not reported. The distribution of hospital bed size across the nation were: 22.4 percent for 6 to 99 beds, 21.0% for 100 to 199 beds, 19.2% for 200 to 299 beds, 23.5% for 300 to 499 beds and lastly 13.8 percent for 500 or more beds. The 2006 monthly discharge distribution from January through October ranged from a low of 8.0% in October to a high of 8.9% in March 2006. The lowest month was November 2006 with 7.8%. The length of stay flag indicated that 1.9% of the 2006 discharges were less than 1 day and 98.0% were one day or more. Question 3.2-4 4. Using nhds03d, insert the [class selfpay] into the proc mean. The output will yield the differences between the selfpay (uninsured) and non-selfpay (insured). Prepare a narrative that compares the demographic differences between the uninsured and insured populations. Answer 3.2-4 Below is the PROC Means code added to nhds03d that answers question 3.2- 4. proc means n mean sum min max data=nhds06; freq weight; class selfpay; var doc age male female gendercat white black nativeam asian hawaiianpi othrace multirace racenotstat racecat married single widowed divorced separated msnotstat home dislma disacute disltc alivens disceased disstatna discstatcat northeast midwest south west regioncat private government nonprofit ownercat workercomp medicare medicaid othergvmt bluecross hmoppo othprivate selfpay nocharge othinsure paynotstated payercat docreferal clinreferal hmoreferal hospreferal snftransfer othtransfer edsource legalsource othsource sourcena sourcecat emergency urgent elective new_born admit_na admitcat ; run; Exercises 3.2 (continued) Below is the PROC Means output that assists in completing question 3.2- 4. Proc Means Comparing Insured to Uninsured Variables The MEANS Procedure Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 115.
    Lecture 3-NHDS 78 selfpay N Obs Variable N Mean Sum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 0 37060872 AGE 37060872 47.7673372 1770299170 DOC 37060872 4.6694280 173053072 male 37060872 0.4078268 15114418.00 female 37060872 0.5921732 21946454.00 gendercat 37060872 1.5921732 59007326.00 white 37060872 0.5993990 22214248.00 black 37060872 0.1178947 4369280.00 nativeam 37060872 0.0029098 107840.00 asian 37060872 0.0167593 621114.00 hawaiianpi 37060872 0.0024822 91993.00 othrace 37060872 0.0178340 660943.00 multirace 37060872 0.000812879 30126.00 racenotstat 37060872 0.2419082 8965328.00 racecat 37060872 2.9713255 110119913 married 37060872 0.2421331 8973663.00 single 37060872 0.2760046 10228970.00 widowed 37060872 0.0821900 3046033.00 divorced 37060872 0.0369322 1368741.00 separated 37060872 0.0058082 215258.00 msnotstat 37060872 0.3569319 13228207.00 home 37060872 0.7856002 29115030.00 dislma 37060872 0.0077943 288862.00 disacute 37060872 0.0416858 1544911.00 disltc 37060872 0.0846993 3139029.00 alivens 37060872 0.0455597 1688483.00 disceased 37060872 0.0193410 716793.00 disstatna 37060872 0.0153198 567764.00 discstatcat 37060872 1.7161259 63601124.00 northeast 37060872 0.2077585 7699713.00 midwest 37060872 0.2275832 8434432.00 south 37060872 0.3705125 13731515.00 west 37060872 0.1941458 7195212.00 regioncat 37060872 2.5510455 94543970.00 private 37060872 0.1223865 4535750.00 government 37060872 0.1166868 4324516.00 nonprofit 37060872 0.7609267 28200606.00 ownercat 37060872 2.6385402 97786600.00 workercomp 37060872 0.0042621 157957.00 medicare 37060872 0.3649064 13523750.00 medicaid 37060872 0.2030903 7526704.00 othergvmt 37060872 0.0166422 616773.00 bluecross 37060872 0.1017247 3770005.00 hmoppo 37060872 0.1565655 5802453.00 othprivate 37060872 0.1007496 3733869.00 selfpay 37060872 0 0 nocharge 37060872 0.0048393 179347.00 othinsure 37060872 0.0303733 1125661.00 paynotstated 37060872 0.0168467 624353.00 0 37060872 payercat 37060872 4.0957780 151793103 docreferal 37060872 0.3337514 12369117.00 clinreferal 37060872 0.0220258 816297.00 hmoreferal 37060872 0.0042765 158491.00 hospreferal 37060872 0.0278450 1031960.00 snftransfer 37060872 0.0057882 214516.00 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 116.
    Lecture 3-NHDS 79 othtransfer 37060872 0.0055308 204977.00 edsource 37060872 0.3770255 13972892.00 legalsource 37060872 0.0026930 99806.00 othsource 37060872 0.1167582 4327160.00 sourcena 37060872 0.1043056 3865656.00 sourcecat 37060872 5.3187404 197117158 emergency 37060872 0.3738683 13855887.00 urgent 37060872 0.2210097 8190813.00 elective 37060872 0.2198195 8146704.00 new_born 37060872 0.1034431 3833692.00 admit_na 37060872 0.0818593 3033776.00 admitcat 37060872 2.2984152 85181273.00 1 1812905 AGE 1812905 35.8349836 64965421.00 DOC 1812905 3.8447574 6970180.00 male 1812905 0.5055356 916488.00 female 1812905 0.4944644 896417.00 gendercat 1812905 1.4944644 2709322.00 white 1812905 0.4974138 901764.00 black 1812905 0.1746688 316658.00 nativeam 1812905 0.0061073 11072.00 asian 1812905 0.0157151 28490.00 hawaiianpi 1812905 0.0016824 3050.00 othrace 1812905 0.0276236 50079.00 multirace 1812905 0.0017927 3250.00 racenotstat 1812905 0.2749962 498542.00 racecat 1812905 3.3146061 6009066.00 married 1812905 0.1998963 362393.00 single 1812905 0.3874400 702392.00 widowed 1812905 0.0204330 37043.00 divorced 1812905 0.0564370 102315.00 separated 1812905 0.0105052 19045.00 msnotstat 1812905 0.3252884 589717.00 home 1812905 0.8946393 1621896.00 dislma 1812905 0.0238865 43304.00 disacute 1812905 0.0279948 50752.00 disltc 1812905 0.0140995 25561.00 alivens 1812905 0.0196557 35634.00 disceased 1812905 0.0147178 26682.00 disstatna 1812905 0.0050063 9076.00 discstatcat 1812905 1.3044247 2364798.00 northeast 1812905 0.1649662 299068.00 midwest 1812905 0.1929522 349804.00 south 1812905 0.4812536 872467.00 west 1812905 0.1608281 291566.00 regioncat 1812905 2.6379435 4782341.00 private 1812905 0.0793048 143772.00 government 1812905 0.2415030 437822.00 nonprofit 1812905 0.6791922 1231311.00 ownercat 1812905 2.5998875 4713349.00 workercomp 1812905 0 0 medicare 1812905 0 0 medicaid 1812905 0 0 othergvmt 1812905 0 0 bluecross 1812905 0 0 hmoppo 1812905 0 0 othprivate 1812905 0 0 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 117.
    Lecture 3-NHDS 80 selfpay 1812905 1.0000000 1812905.00 nocharge 1812905 0 0 othinsure 1812905 0 0 paynotstated 1812905 0 0 payercat 1812905 8.0000000 14503240.00 docreferal 1812905 0.1981924 359304.00 clinreferal 1812905 0.0247939 44949.00 hmoreferal 1812905 0.0062033 11246.00 hospreferal 1812905 0.0204903 37147.00 snftransfer 1812905 0.0021573 3911.00 othtransfer 1812905 0.0029809 5404.00 edsource 1812905 0.5232497 948602.00 legalsource 1812905 0.0012108 2195.00 othsource 1812905 0.1127400 204387.00 sourcena 1812905 0.1079814 195760.00 sourcecat 1812905 6.1439314 11138364.00 emergency 1812905 0.5105044 925496.00 urgent 1812905 0.1703470 308823.00 elective 1812905 0.1302793 236184.00 new_born 1812905 0.1027020 186189.00 admit_na 1812905 0.0861672 156213.00 admitcat 1812905 2.0836806 3777515.00 From the above, prepare a descriptive statistic narrative that compares the demographic differences between the uninsured and insured populations. In the nation in 2006, the NHDS indicated there were 1.8 million uninsured (selfpay) discharges compared to 37.1 million discharges with insurance (non-selfpay). The uninsured were younger, with a mean age of 35.8, compared to 47.7 years for the insured. The uninsured included more males than females (50.5% versus 49.4%) which was the reverse for those insured (40.7% versus 59.2%). They also had fewer days of care, (3.8 versus 4.7 days ). Regarding the uninsured, fewer were whites (49.7% versus 59.9%), and more blacks (17.5% versus 11.8% ). Less were married (19.9% versus 24.2%) and more single (38.7% versus 27.6%). More were discharges home (89.4% versus 78.6%) and less were discharges to a skilled nursing facility (1.4% versus 8.5%) or dead on discharge (1.5% versus 1.9%). Less were from the Northeast (16.5% versus 20.8%), Midwest (19.3% versus 22.7%) , and West (16.0% versus 19.4%) while more were from the South (48.1% versus 37.0%). More were treated in government hospitals (24% versus 11.6%) and less were treated in nonprofit (67.9% versus76.1%) and private hospitals (7.9% versus 12.2%). Less were referred by physicians (19.8% versus 33.4%) and more than half came through the emergency department (52.3% versus 37.7%). More were emergent (51.0% versus 37.3%), less were urgent (17.0% versus Exercises 3.2 (continued) 22.1%) less were elective (13.0% versus 21.9%) and lastly newborns were equal (10.2% versus 10.3%). Hospital Discharge Survey: 2006 (Press Release) Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 118.
    Lecture 3-NHDS 81 In 2006, there were an estimated 34.9 million hospital discharges. This number does not include newborn infants. Fifty-eight percent of all discharges were hospitalized 3 days or less. The rate of coronary hospitalizations for coronary atherosclerosis for all age groups, especially those aged 65 years and over, has declined since 2002. http://nchspressroom.wordpress.com/2008/08/01/hospital-discharge-survey-2006/ Exercise 3.3 Question 3.3-1 1. Run the model with the freq weight statement after PROC REG and determine if the findings are significantly different. Answer 3.3-1 The code below produces the answer to question 1 /***nhds04d***/ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 119.
    Lecture 3-NHDS 82 Proc Reg data=nhds06; freq weight; model doc=male white married medicare disceased south; run; title 'Linear regression of days of care as the dependent variable and the effects of sex, race, martial status diseased and region' quit; PROC REG Output The REG Procedure (UNWEIGHTED) Model: MODEL1 Dependent Variable: DOC Number of days of care Number of Observations Read 376328 Number of Observations Used 376328 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 6 390901 65150 1428.16 <.0001 Error 376321 17167112 45.61827 Corrected Total 376327 17558013 Root MSE 6.75413 R-Square 0.0223 Dependent Mean 4.71399 Adj R-Sq 0.0222 Coeff Var 143.27828 Parameter Estimates Parameter Standard Variable Label DF Estimate Error t Value Pr > |t| Intercept Intercept 1 3.82799 0.02146 178.41 <.0001 male 1 0.53717 0.02239 23.99 <.0001 white 1 -0.05574 0.02248 -2.48 0.0132 Exercise 3.3 (continued) married 1 -0.52875 0.03218 -16.43 <.0001 medicare 1 1.55716 0.02325 66.98 <.0001 disceased 1 3.84237 0.07999 48.04 <.0001 south 1 0.41328 0.02312 17.88 <.0001 The REG Procedure (WEIGHTED) Model: MODEL1 Dependent Variable: DOC Number of days of care Number of Observations Read 376328 Number of Observations Used 376328 Sum of Frequencies Read 38873777 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 120.
    Lecture 3-NHDS 83 Sum of Frequencies Used 38873777 Frequency: WEIGHT Analysis weight Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 6 33795032 5632505 124977 <.0001 Error 3.89E7 1751981138 45.06846 Corrected Total 3.89E7 1785776170 Root MSE 6.71331 R-Square 0.0189 Dependent Mean 4.63097 Adj R-Sq 0.0189 Coeff Var 144.96545 Parameter Estimates Parameter Standard Variable Label DF Estimate Error t Value Pr > |t| Intercept Intercept 1 3.88208 0.00218 1781.93 <.0001 male 1 0.55769 0.00219 254.71 <.0001 white 1 -0.13288 0.00224 -59.24 <.0001 married 1 -0.44510 0.00259 -171.68 <.0001 medicare 1 1.46303 0.00228 642.47 <.0001 disceased 1 3.24600 0.00789 411.18 <.0001 south 1 0.35608 0.00225 158.19 <.0001 Answer 3.3 - 1 1. When comparing both unweighted and weighted DOC models, the intercept is slightly higher, and four out of six coefficients are slightly lower. Overall, these differences were not substantial and in all cases, the effects remained significant. The coefficient of determination R2 was less in the weighted model. Exercise 3.3 (continued) Question 3.3 - 2 2. Add to the model the additional effects of hospital ownership and source of admission using the indicator variables of private and snftransfer, and interpret these two effects. Answer 3.3-Number 2 The model below includes the two effects of ownership and source of admission. Proc Reg data=nhds06; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 121.
    Lecture 3-NHDS 84 freq weight; model doc=male white married medicare disceased south private snftransfer ; run; title 'Linear regression of doc as the dependent and with Added Effects'; quit; Proc REG Output with additional effects. The REG Procedure Model: MODEL1 Dependent Variable: DOC Number of days of care Number of Observations Read 376328 Number of Observations Used 376328 Sum of Frequencies Read 38873777 Sum of Frequencies Used 38873777 Frequency: WEIGHT Analysis weight Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 8 34833079 4354135 96668.8 <.0001 Error 3.89E7 1750943091 45.04176 Corrected Total 3.89E7 1785776170 Root MSE 6.71132 R-Square 0.0195 Dependent Mean 4.63097 Adj R-Sq 0.0195 Coeff Var 144.92251 Exercise 3.3 (continued) Parameter Estimates Parameter Standard Variable Label DF Estimate Error t Value Pr > |t| Intercept Intercept 1 3.86940 0.00218 1775.28 <.0001 male 1 0.56261 0.00219 256.98 <.0001 white 1 -0.15352 0.00225 -68.11 <.0001 married 1 -0.44955 0.00259 -173.37 <.0001 medicare 1 1.45204 0.00228 636.29 <.0001 disceased 1 3.20176 0.00790 405.34 <.0001 south 1 0.30039 0.00234 128.57 <.0001 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 122.
    Lecture 3-NHDS 85 private 1 0.33262 0.00347 95.85 <.0001 snftransfer 1 1.69864 0.01445 117.56 <.0001 Answer 3.3 -2 From the above PROC REG output, controlling for sex, race, marital status, payer, disposition and region, the findings are as follows; 1. Private ownership compared to non-private results in 0.33 days of additional care. P<.0001 2. Patients transferred from skilled nursing facilities compared to all other admission sources have 1.7 additional days of care. P<.0001 Question 3.3-3 3. Write the regression equation of this first model using the intercept and effect coefficients and using the following format: DOC = β0 + β1male+ β2white + β3married + β4Medicare + β5diseased + β6south +ε Answer 3.3 Number 3 DOC = 3.82799 + 0.53717*male -0.05574*white -0.52875*married + 1.55716* Medicare + 3.84237*disceased + 0.41328*south +Question 3.4-1 Exercise 3.4 Exercise 3.4-1 1. Add to the logistic model the effects of marital status (msnotstat), hospital ownership (ownercat), admission source (asource) discharge disposition (discstatcat), and days of care (DOC) to the first model. Answer 3.4-1 The model below adds the effects of maritial status, disposition, ownership and source of admission. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 123.
    Lecture 3-NHDS 86 options nolabel nodate nonumber; proc logistic data=nhds06 des; class gendercat (param=ref ref='2') /*female**/ racecat (param=ref ref='1') /*white**/ admitcat (param=ref ref='3') /*elctive*/ regioncat (param=ref ref='2') /*midwest*/ discstatcat (param=ref ref='5') /*disposition-SNF*/ ownercat (param=ref ref='1') /*hospital ownership-private*/ marstatcat (param=ref ref='4') /*maritial status -divorced*/ sourcecat (param=ref ref='2') /*admission source-clinic*/ ; model selfpay=age doc gendercat racecat marstatcat admitcat regioncat sourcecat discstatcat ownercat ; units age=10 doc=1; title 'Added Effects to Logistic Regression for NHDS Selfpay (uninsured)'; run; quit; options label; title; Proc Logistic Output with additional four effects. Added Effects to Logistic Regression for NHDS Selfpay (uninsured) The LOGISTIC Procedure Model Information Data Set WORK.NHDS06 Response Variable selfpay Number of Response Levels 2 Model binary logit Optimization Technique Fisher's scoring Number of Observations Read 376328 Number of Observations Used 376328 Response Profile Ordered Total Value selfpay Frequency 1 1 15908 2 0 360420 Probability modeled is selfpay=1. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 124.
    Lecture 3-NHDS 87 Class Level Information Class Value Design Variables gendercat 1 1 2 0 racecat 1 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 3 0 1 0 0 0 0 0 4 0 0 1 0 0 0 0 5 0 0 0 1 0 0 0 6 0 0 0 0 1 0 0 7 0 0 0 0 0 1 0 8 0 0 0 0 0 0 1 admitcat 1 1 0 0 0 2 0 1 0 0 3 0 0 0 0 4 0 0 1 0 5 0 0 0 1 regioncat 1 1 0 0 2 0 0 0 3 0 1 0 4 0 0 1 Added Effects to Logistic Regression for NHDS Selfpay (uninsured) The LOGISTIC Procedure Class Level Information Class Value Design Variables discstatcat 1 1 0 0 0 0 0 2 0 1 0 0 0 0 3 0 0 1 0 0 0 4 0 0 0 1 0 0 5 0 0 0 0 0 0 6 0 0 0 0 1 0 7 0 0 0 0 0 1 ownercat 1 0 0 2 1 0 3 0 1 marstatcat 1 1 0 0 0 0 2 0 1 0 0 0 3 0 0 1 0 0 4 0 0 0 0 0 5 0 0 0 1 0 6 0 0 0 0 1 sourcecat 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 4 0 0 1 0 0 0 0 0 0 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 125.
    Lecture 3-NHDS 88 5 0 0 0 1 0 0 0 0 0 6 0 0 0 0 1 0 0 0 0 7 0 0 0 0 0 1 0 0 0 8 0 0 0 0 0 0 1 0 0 9 0 0 0 0 0 0 0 1 0 10 0 0 0 0 0 0 0 0 1 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 131790.20 120070.38 SC 131801.04 120503.91 -2 Log L 131788.20 119990.38 Added Effects to Logistic Regression for NHDS Selfpay (uninsured) The LOGISTIC Procedure Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 11797.8231 39 <.0001 Score 12161.9462 39 <.0001 Wald 10542.9534 39 <.0001 Type 3 Analysis of Effects Wald Effect DF Chi-Square Pr > ChiSq AGE 1 2171.0882 <.0001 DOC 1 71.8449 <.0001 gendercat 1 504.9573 <.0001 racecat 7 518.2272 <.0001 marstatcat 5 568.4548 <.0001 admitcat 4 246.7438 <.0001 regioncat 3 454.6374 <.0001 sourcecat 9 571.4626 <.0001 discstatcat 6 910.6489 <.0001 ownercat 2 1382.8221 <.0001 Analysis of Maximum Likelihood Estimates Standard Wald Parameter DF Estimate Error Chi-Square Pr > ChiSq Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 126.
    Lecture 3-NHDS 89 Intercept 1 -3.1460 0.1066 870.7149 <.0001 AGE 1 -0.0195 0.000419 2171.0882 <.0001 DOC 1 -0.0145 0.00171 71.8449 <.0001 gendercat 1 1 0.3809 0.0169 504.9573 <.0001 racecat 2 1 0.1034 0.0238 18.9090 <.0001 racecat 3 1 0.6091 0.1154 27.8421 <.0001 racecat 4 1 0.1332 0.0977 1.8604 0.1726 racecat 5 1 0.0454 0.2468 0.0339 0.8539 racecat 6 1 0.3374 0.0378 79.5576 <.0001 racecat 7 1 1.2308 0.3271 14.1601 0.0002 racecat 8 1 0.4595 0.0214 460.0285 <.0001 marstatcat 1 1 -0.6913 0.0510 183.4291 <.0001 marstatcat 2 1 -0.3266 0.0501 42.4854 <.0001 marstatcat 3 1 -1.2620 0.0865 212.6395 <.0001 marstatcat 5 1 0.1756 0.1012 3.0151 0.0825 marstatcat 6 1 -0.7135 0.0477 223.3982 <.0001 admitcat 1 1 0.4003 0.0341 138.0887 <.0001 admitcat 2 1 0.0346 0.0324 1.1434 0.2849 admitcat 4 1 -0.5028 0.1181 18.1113 <.0001 admitcat 5 1 0.0567 0.0471 1.4501 0.2285 regioncat 1 1 0.0249 0.0279 0.7956 0.3724 regioncat 3 1 0.4124 0.0247 279.8162 <.0001 regioncat 4 1 0.0850 0.0321 7.0097 0.0081 sourcecat 1 1 -0.3904 0.0700 31.1472 <.0001 sourcecat 3 1 0.4527 0.1120 16.3323 <.0001 sourcecat 4 1 -0.0541 0.0856 0.3995 0.5273 sourcecat 5 1 -0.4951 0.3007 2.7109 0.0997 sourcecat 6 1 -0.0318 0.1394 0.0519 0.8197 sourcecat 7 1 0.3107 0.0702 19.5796 <.0001 sourcecat 8 1 -1.3142 0.3000 19.1864 <.0001 sourcecat 9 1 -0.6493 0.1297 25.0451 <.0001 sourcecat 10 1 0.0950 0.0723 1.7267 0.1888 discstatcat 1 1 0.5885 0.0519 128.3456 <.0001 discstatcat 2 1 1.5070 0.0709 452.0134 <.0001 discstatcat 3 1 0.3682 0.0765 23.1889 <.0001 discstatcat 4 1 -0.8618 0.0868 98.4910 <.0001 discstatcat 6 1 0.4747 0.0855 30.8496 <.0001 discstatcat 7 1 -0.0345 0.1272 0.0735 0.7863 ownercat 2 1 1.0423 0.0364 821.5382 <.0001 ownercat 3 1 0.2144 0.0313 46.9432 <.0001 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits AGE 0.981 0.980 0.981 DOC 0.986 0.982 0.989 gendercat 1 vs 2 1.464 1.416 1.513 racecat 2 vs 1 1.109 1.058 1.162 racecat 3 vs 1 1.839 1.466 2.306 racecat 4 vs 1 1.143 0.943 1.384 racecat 5 vs 1 1.046 0.645 1.698 racecat 6 vs 1 1.401 1.301 1.509 racecat 7 vs 1 3.424 1.804 6.501 racecat 8 vs 1 1.583 1.518 1.651 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 127.
    Lecture 3-NHDS 90 marstatcat 1 vs 4 0.501 0.453 0.554 marstatcat 2 vs 4 0.721 0.654 0.796 marstatcat 3 vs 4 0.283 0.239 0.335 marstatcat 5 vs 4 1.192 0.978 1.453 marstatcat 6 vs 4 0.490 0.446 0.538 admitcat 1 vs 3 1.492 1.396 1.595 admitcat 2 vs 3 1.035 0.972 1.103 admitcat 4 vs 3 0.605 0.480 0.762 admitcat 5 vs 3 1.058 0.965 1.161 regioncat 1 vs 2 1.025 0.971 1.083 regioncat 3 vs 2 1.510 1.439 1.585 regioncat 4 vs 2 1.089 1.022 1.159 sourcecat 1 vs 2 0.677 0.590 0.776 sourcecat 3 vs 2 1.572 1.263 1.959 sourcecat 4 vs 2 0.947 0.801 1.120 sourcecat 5 vs 2 0.610 0.338 1.099 sourcecat 6 vs 2 0.969 0.737 1.273 sourcecat 7 vs 2 1.364 1.189 1.566 sourcecat 8 vs 2 0.269 0.149 0.484 sourcecat 9 vs 2 0.522 0.405 0.674 sourcecat 10 vs 2 1.100 0.954 1.267 discstatcat 1 vs 5 1.801 1.627 1.994 discstatcat 2 vs 5 4.513 3.928 5.186 discstatcat 3 vs 5 1.445 1.244 1.679 discstatcat 4 vs 5 0.422 0.356 0.501 discstatcat 6 vs 5 1.608 1.360 1.901 discstatcat 7 vs 5 0.966 0.753 1.240 ownercat 2 vs 1 2.836 2.641 3.045 ownercat 3 vs 1 1.239 1.165 1.318 Association of Predicted Probabilities and Observed Responses Percent Concordant 73.6 Somers' D 0.487 Percent Discordant 24.9 Gamma 0.495 Percent Tied 1.5 Tau-a 0.039 Pairs 5733561360 c 0.744 Odds Ratios Effect Unit Estimate AGE 10.0000 0.823 DOC 1.0000 0.986 Exercise 3.4 (continued) 2. In a narrative, describe the contribution of these additional effects upon the outcome variable. As seen above in the proc logistic model output with the five additional effects, all of the effects were significant with the following findings: Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 128.
    Lecture 3-NHDS 91 1. All else being equal, males are 1.464 times more likely to be uninsured than females, p<.0001[CI 1.416, 1.5131]. These odds are slightly lower in the expanded model (1.464 versus 1.535). 2. All else being equal, blacks compared to whites are 1.109 times more likely to be uninsured, p<.0001[CI 1.058, 1.162]. These odds are slightly lower in the expanded model (1.227 versus 1.109). 3. All else being equal, multiple races compared to whites are 3.424 times more likely to be uninsured, p<.0001[CI 1.804, 6.501]. These odds are slightly higher in the expanded model (3.424 versus 3.346). 4. All else being equal, Native Americans compared to whites were 1.839 times more likely to be uninsured, p<.0001[CI 1.466, 2.306]. These odds are slightly lower in the expanded model (1.839 versus 2.106). 5. All else being equal, emergencies compared to electives were 1.492 times more likely to be uninsured, p<.0001[CI 1.396, 1.595]. These odds are significantly lower in the expanded model (1.492 versus 2.449). 6. All else being equal, newborns compared to electives were 39.5 percent less likely to be uninsured, p<.0001[CI 0.480 , 0.762]. These odds are slightly lower in the expanded model (0.605 versus 0.506). 7. All else being equal, those from the South compared to the Midwest were 1.510 times more likely to be uninsured, p<.0001[CI 1.439, 1.585]. These odds are slightly higher in the expanded model (1.510 versus 1.473). 8. All else being equal, those from the West compared to the Midwest were 1.089 times more likely to be uninsured, p<.0001[CI 1.022, 1.159]. These odds are slightly lower in the expanded model (1.089 versus 1.139). 9. All else being equal, those who are married compared to those divorced were 49.9 percent less likely to be uninsured, p<.0001[CI 0.501, 0.554]. 10. All else being equal, those who are widowed compared to those divorced were 27.9 percent less likely to be uninsured, p<.0001[CI 0.239, 0.335]. 11. All else being equal, those who are single compared to those divorced were 49.9 percent less likely to be uninsured, p<.0001[CI 0.453, 0.554]. 12. All else being equal, those who enter the hospital through the emergency department compared to a clinic referral are 1.36 times more likely to be uninsured, p<.0001[CI 1.189, 1.566]. 13. All else being equal, those who enter the hospital by physician compared to a clinic referral are 32.3 percent less likely to be uninsured, p<.0001[CI 0.590, 0.776]. 14. All else being equal, those who enter the hospital through the legal system compared to a clinic referral are 73.1 percent less likely to be uninsured, p<.0001[CI 0.590, 0.776]. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 129.
    Lecture 3-NHDS 92 15. All else being equal, those who left the hospital against medical advice compared to those alive without discharge status were 4.5 times more likely to be uninsured, p<.0001[CI 3.982, 5.186]. 16. All else being equal, those who are discharged dead compared to those alive without discharge status were 1.6 times more likely to be uninsured, p<.0001[CI 1.360, 1.901]. 17. All else being equal, those who are discharged to a long term care facility compared to those alive without discharge status were 67.8 percent less likely to be uninsured, p<.0001[CI 0.356, 0.501]. 18. All else being equal, those who are discharged home compared to those alive without discharge status were 1.8 times more likely to be uninsured, p<.0001[CI 1.627, 1.994]. 19. All else being equal, those who are discharged from a governmental hospital compared to for- profit hospital were 2.8 times more likely to be uninsured, p<.0001[CI 2.641, 3.045]. 20. All else being equal, those who are discharged from a not-for-profit hospital compared to a for-profit hospital were 1.24 times more likely to be uninsured, p<.0001[CI 1.165, 1.318]. 21. For every decade of age, a patient is 17.7 percent less likely to be uninsured, p<.0001. 22. For ever additional day of care, a patient is 1.4 percent less likely to be uninsured, p<.0001. Exercise 3.5 Using the Proc Tabulate above substitute the principal procedure (pr21) and var age to produce a table comparing the uninsured (self pay) and insured, the principal procedure, and corresponding mean age. The code below will produce the rank order distribution of procedures associated with the selfpay (1) and non-selfpay (0) population. options nolabel nodate nonumber; proc tabulate data=nhds06 order=freq; /* formchar=' '; */ freq weight; class selfpay pd12; var age; tables pd12 all, (selfpay all)*(age*(n*f=8.0 mean*f=3.2)) /rts=50; format pd12 $proc2df.; run; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 130.
    Lecture 3-NHDS 93 title 'Distribution in Rank order of the Selfpay Procedure'; Output of Proc Tabulate showing the rank order distribution of procedures associated with the selfpay (1) and non-selfpay (0) population. Distribution in Rank order of the Selfpay Procedure „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ† ‚ ‚ selfpay ‚ ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ 0 ‚ 1 ‚ All ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ AGE ‚ AGE ‚ AGE ‚ ‚ ‡ƒƒƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒƒƒ…ƒƒƒ‰ ‚ ‚ ‚Me-‚ ‚Me-‚ ‚Me-‚ ‚ ‚ N ‚an ‚ N ‚an ‚ N ‚an ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚pd12 ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ ‚ ‚ ‚ ‚99:Other nonoperative procedures ‚ 2070497‚ 36‚ 101176‚ 22‚ 2171673‚ 36‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚73:Other procedures inducing or assis... ‚ 1530492‚ 27‚ 66841‚ 27‚ 1597333‚ 27‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚81:Repair and plastic operations on j... ‚ 1336131‚ 64‚ 14083‚ 49‚ 1350214‚ 64‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚74:Cesarean section and removal of fetus ‚ 1252479‚ 29‚ 40083‚ 28‚ 1292562‚ 29‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚45:Incision, excision, and anastomosi... ‚ 1230025‚ 65‚ 48541‚ 45‚ 1278566‚ 64‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚64:Operations on penis ‚ 1103692‚.64‚ 42151‚.67‚ 1145843‚.64‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚75:Other obstetric operations ‚ 903994‚ 27‚ 34488‚ 26‚ 938482‚ 27‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚37:Other operations on heart and peri... ‚ 834035‚ 65‚ 34027‚ 50‚ 868062‚ 64‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚38:Incision, excision, and occlusion ... ‚ 790064‚ 60‚ 28913‚ 42‚ 818977‚ 59‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚86:Operations on skin and subcutaneou... ‚ 704522‚ 47‚ 56719‚ 38‚ 761241‚ 47‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚Blank/00:Procedures and interventns, NEC ‚ 721001‚ 66‚ 29130‚ 53‚ 750131‚ 65‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚88:Other diagnostic radiology and rel... ‚ 687087‚ 59‚ 48921‚ 45‚ 736008‚ 58‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚93:Physical therapy/respiratory thera... ‚ 685791‚ 58‚ 19454‚ 37‚ 705245‚ 57‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚96:Nonoperative intubation and irriga... ‚ 630843‚ 51‚ 36814‚ 38‚ 667657‚ 50‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚39:Other operations on vessels ‚ 608045‚ 63‚ 11646‚ 42‚ 619691‚ 62‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚68:Other incision and excision of uterus ‚ 575106‚ 46‚ 17300‚ 44‚ 592406‚ 46‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚79:Reduction of fracture and dislocation ‚ 522517‚ 58‚ 36662‚ 39‚ 559179‚ 57‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚94:Procedures related to the psyche ‚ 443144‚ 40‚ 55065‚ 38‚ 498209‚ 40‚ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 131.
    Lecture 3-NHDS 94 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚51:Operations on gallbladder and bili... ‚ 411028‚ 54‚ 34378‚ 42‚ 445406‚ 53‚ Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ ‚03:Operations on spinal cord and spin... ‚ 399301‚ 42‚ 16242‚ 37‚ 415543‚ 42‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚47:Operations on appendix ‚ 286785‚ 31‚ 28514‚ 30‚ 315299‚ 31‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚54:Other operations on abdominal region ‚ 283608‚ 52‚ 19379‚ 41‚ 302987‚ 52‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚89:Interview, evaluation, consultatio... ‚ 272446‚ 54‚ 18885‚ 49‚ 291331‚ 53‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚87:Diagnostic radiology ‚ 257469‚ 58‚ 26482‚ 45‚ 283951‚ 57‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚36:Operations on vessels of heart ‚ 264174‚ 65‚ 6868‚ 54‚ 271042‚ 65‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚34:Operations on chest wall, pleura, ... ‚ 224149‚ 62‚ 17270‚ 41‚ 241419‚ 61‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚72:Forceps, vacuum, and breech delivery ‚ 200739‚ 26‚ 11440‚ 28‚ 212179‚ 27‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚44:Other operations on stomach ‚ 194872‚ 51‚ 11384‚ 52‚ 206256‚ 51‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚80:Incision and excision of joint str... ‚ 162147‚ 53‚ 5632‚ 40‚ 167779‚ 52‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚60:Operations on prostate and seminal... ‚ 162856‚ 69‚ 2236‚ 58‚ 165092‚ 68‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚95:Ophthalmologic and otologic diagno... ‚ 149094‚.35‚ 8427‚.29‚ 157521‚.35‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚33:Other operations on lung and bronchus ‚ 150780‚ 60‚ 6172‚ 41‚ 156952‚ 60‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚57:Operations on urinary bladder ‚ 150825‚ 71‚ 4625‚ 52‚ 155450‚ 71‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚55:Operations on kidney ‚ 137542‚ 53‚ 6829‚ 41‚ 144371‚ 52‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚53:Repair of hernia ‚ 135019‚ 56‚ 4488‚ 50‚ 139507‚ 55‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚43:Incision and excision of stomach ‚ 124603‚ 59‚ 1190‚ 50‚ 125793‚ 59‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚83:Operations on muscle, tendon, fasc... ‚ 112733‚ 51‚ 7692‚ 36‚ 120425‚ 50‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚35:Operations on valves and septa of ... ‚ 116690‚ 55‚ 2319‚ 51‚ 119009‚ 55‚ Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒŒ ‚66:Operations on fallopian tubes ‚ 106087‚ 29‚ 8573‚ 34‚ 114660‚ 29‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚84:Other procedures on musculoskeleta... ‚ 106932‚ 63‚ 4288‚ 50‚ 111220‚ 63‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚01:Incision and excision of skull, br... ‚ 103852‚ 52‚ 4276‚ 37‚ 108128‚ 52‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚65:Operations on ovary ‚ 88645‚ 43‚ 8656‚ 35‚ 97301‚ 42‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚85:Operations on the breast ‚ 95105‚ 55‚ 1921‚ 41‚ 97026‚ 55‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚78:Other operations on bones, except ... ‚ 88667‚ 51‚ 4709‚ 51‚ 93376‚ 51‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚31:Other operations on larynx and tra... ‚ 87235‚ 54‚ 5474‚ 49‚ 92709‚ 54‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚59:Other operations on urinary tract ‚ 82846‚ 56‚ 4631‚ 44‚ 87477‚ 56‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 132.
    Lecture 3-NHDS 95 ‚46:Other operations on intestine ‚ 80751‚ 55‚ 3747‚ 34‚ 84498‚ 54‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚48:Operations on rectum, rectosigmoid... ‚ 76688‚ 60‚ 6080‚ 44‚ 82768‚ 59‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚77:Incision, excision, and division o... ‚ 75099‚ 54‚ 2480‚ 36‚ 77579‚ 53‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚70:Operations on vagina and cul-de-sac ‚ 74468‚ 61‚ 1302‚ 46‚ 75770‚ 61‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚92:Nuclear medicine ‚ 72788‚ 61‚ 1423‚ 50‚ 74211‚ 61‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚32:Excision of lung and bronchus ‚ 68886‚ 62‚ 1670‚ 45‚ 70556‚ 62‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚41:Operations on bone marrow and spleen ‚ 64837‚ 52‚ 3060‚ 41‚ 67897‚ 51‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚06:Operations on thyroid and parathyr... ‚ 61306‚ 52‚ 2788‚ 44‚ 64094‚ 52‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚02:Other operations on skull, brain, ... ‚ 60960‚ 41‚ 2620‚ 50‚ 63580‚ 41‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚56:Operations on ureter ‚ 54484‚ 49‚ 3249‚ 37‚ 57733‚ 48‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚50:Operations on liver ‚ 51995‚ 55‚ 3964‚ 41‚ 55959‚ 54‚ Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒŒ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ ‚ ‚ ‚ ‚42:Operations on esophagus ‚ 47398‚ 60‚ 2617‚ 44‚ 50015‚ 59‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚69:Other operations on uterus and sup... ‚ 39942‚ 34‚ 3707‚ 28‚ 43649‚ 33‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚40:Operations on lymphatic system ‚ 38119‚ 53‚ 3605‚ 51‚ 41724‚ 53‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚27:Other operations on mouth and face ‚ 37741‚ 29‚ 3621‚ 31‚ 41362‚ 29‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚21:Operations on nose ‚ 38265‚ 55‚ 1002‚ 46‚ 39267‚ 54‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚76:Operations on facial bones and joints ‚ 32867‚ 33‚ 5457‚ 33‚ 38324‚ 33‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚97:Replacement and removal of therape... ‚ 37135‚ 56‚ 1085‚ 36‚ 38220‚ 55‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚28:Operations on tonsils and adenoids ‚ 30024‚ 21‚ 2484‚ 21‚ 32508‚ 21‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚49:Operations on anus ‚ 26654‚ 47‚ 2412‚ 33‚ 29066‚ 46‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚52:Operations on pancreas ‚ 22760‚ 58‚ 1694‚ 44‚ 24454‚ 57‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚71:Operations on vulva and perineum ‚ 18759‚ 43‚ 1614‚ 27‚ 20373‚ 42‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚08:Operations on eyelids ‚ 16025‚ 46‚ 1592‚ 24‚ 17617‚ 44‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚04:Operations on cranial and peripher... ‚ 14983‚ 54‚ 636‚ 38‚ 15619‚ 54‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚07:Operations on other endocrine glands ‚ 13308‚ 47‚ 1150‚ 42‚ 14458‚ 46‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚67:Operations on cervix ‚ 12830‚ 38‚ 1189‚ 43‚ 14019‚ 39‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚98:Nonoperative removal of foreign body ‚ 12206‚ 46‚ 718‚ 26‚ 12924‚ 45‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚18:Operations on external ear ‚ 12096‚ 28‚ 522‚ 39‚ 12618‚ 28‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 133.
    Lecture 3-NHDS 96 ‚82:Operations on muscle, tendon, and ... ‚ 11268‚ 42‚ 885‚ 32‚ 12153‚ 41‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚58:Operations on urethra ‚ 11127‚ 61‚ 569‚ 54‚ 11696‚ 61‚ Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒŒ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ ‚ ‚ ‚ ‚20:Other operations on middle and inn... ‚ 10105‚ 28‚ 181‚1.5‚ 10286‚ 28‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚90:Microscopic examination I ‚ 9886‚ 25‚ .‚ .‚ 9886‚ 25‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚25:Operations on tongue ‚ 9460‚ 37‚ .‚ .‚ 9460‚ 37‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚22:Operations on nasal sinuses ‚ 8637‚ 43‚ 108‚ 23‚ 8745‚ 42‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚14:Operations on retina, choroid, vit... ‚ 8369‚ 55‚ 18‚ 66‚ 8387‚ 55‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚26:Operations on salivary glands and ... ‚ 7576‚ 55‚ 237‚ 60‚ 7813‚ 55‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚62:Operations on testes ‚ 6313‚ 36‚ 978‚ 39‚ 7291‚ 37‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚30:Excision of larynx ‚ 6839‚ 47‚ 55‚ 49‚ 6894‚ 47‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚29:Operations on pharynx ‚ 6559‚ 47‚ 42‚2.0‚ 6601‚ 47‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚61:Operations on scrotum and tunica v... ‚ 6240‚ 47‚ 258‚ 40‚ 6498‚ 47‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚23:Removal and restoration of teeth ‚ 5562‚ 28‚ 284‚ 36‚ 5846‚ 29‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚16:Operations on orbit and eyeball ‚ 4154‚ 41‚ 131‚ 20‚ 4285‚ 40‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚24:Other operations on teeth, gums, a... ‚ 3566‚ 48‚ .‚ .‚ 3566‚ 48‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚13:Operations on lens ‚ 3525‚ 62‚ .‚ .‚ 3525‚ 62‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚91:Microscopic examination II ‚ 1760‚ 27‚ 233‚ 41‚ 1993‚ 28‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚63:Operations on spermatic cord, epid... ‚ 1348‚ 39‚ .‚ .‚ 1348‚ 39‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚09:Operations on lacrimal system ‚ 730‚ 26‚ 510‚ 40‚ 1240‚ 32‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚12:Operations on iris, ciliary body, ... ‚ 1162‚ 55‚ .‚ .‚ 1162‚ 55‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚15:Operations on extraocular muscles ‚ 901‚ 52‚ .‚ .‚ 901‚ 52‚ ‚11:Operations on cornea ‚ 779‚ 34‚ 73‚ 48‚ 852‚ 35‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚05:Operations on sympathetic nerves o... ‚ 841‚ 49‚ .‚ .‚ 841‚ 49‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚19:Reconstructive operations on middl... ‚ 354‚ 50‚ .‚ .‚ 354‚ 50‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚10:Operations on conjunctiva ‚ 228‚ 66‚ 28‚ 54‚ 256‚ 65‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒ‰ ‚All ‚22906357‚ 47‚ 1077072‚ 36‚23983429‚ 46‚ Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒ‹ƒƒƒŒ The table above shows there were 22.9 million procedures performed on the nation’s 37.0 million patients discharged from hospitals in 2006. This equals 648 procedures per 1000 discharges. For the uninsured, there were 1.07 million procedures performed which equals 590 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 134.
    Lecture 3-NHDS 97 per 1000, which is not significantly different. However, reviewing the ranking of the top 10 procedures below, there are differences. Seven out of the ten procedures exist for both groupings. However, 81: Repair & plastic Joint Operations, 37: Other operations on heart, and 38: Incision, excision vessels are not found in the top ten uninsured. The uninsured have in the top 10, 96: Non-operative intubations, 94: Procedures related to psych, and 88: Other diagnostic radiology, which ranks for the insured 14th, 18th and 12th, respectively. Rank Insured Discharges Uninsured Discharges 1 99: Nonoperative Procedures 2,070,497 99: Nonoperative Procedures 101,176 2 73: Assisting or Inducing delivery 1,530,492 73: Assisting or Inducing delivery 66,841 3 81:Repair & plastic Joint Operations 1,336,131 86:Skin and subcutaneous tissue 56,719 4 74:Cesarean section fetus remove 1,252,479 94:Procedures related to psych 55,065 5 45:Incision, excision of intestines 1,230,025 88:Other diagnostic radiology 48,921 6 64:Operations on penis 1,103,692 45:Incision, excision of intestines 48,541 7 75:Other obstetric operations 903,994 64:Operations on penis 42,151 8 37: Other operations on heart 834,035 74:Cesarean section & fetus rem 40,083 9 38:Incision,excision vessels 790,064 96: Nonoperative intubation’s 36,814 10 86:Skin and subcutaneous tissue 704,522 75:Other obstetric operations 34.448 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 135.
    Lecture 3-NHDS 98 APPENDIX 2: NHDS Published Papers Applying Multivariate Analysis 1. S. Tahir, L. Price, P. Shah, F. Welt, Eighteen Year (1985–2002) Analysis of Incidence, Mortality, and Cardiac Procedure Outcomes of Acute Myocardial Infarction in Patients ≥ 65 Years of AgeThe American Journal of Cardiology, Volume 101, Issue 7, Pages 930-936 The National Hospital Discharge Survey (NHDS), a nationally representative sample of acute care hospitals in the United States, was used for analysis. …..A multivariate logistic regression model was developed to identify predictors of mortality in these patients. The logit of propensity score was used as an adjuster for reducing the bias of nonrandom assignment of cardiovascular procedures…… Multivariate analysis suggests that a lack of the use of procedures in these patients may at least partially explain their higher mortality. 2. Edward H. Livingston, MD; Joshua Langert, BA, The Impact of Age and Medicare Status on Bariatric Surgical Outcomes, Arch Surg. 2006;141:1115-1120 We assessed 25 428 bariatric procedures with logistic regression, finding that age (odds ratio, 1.04; 95% confidence interval, 1.02-1.07), male sex (odds ratio, 2.45; 95% confidence interval, 1.48-4.03), electrolyte disorders (odds ratio, 13.91; 95% confidence interval, 8.29-23.33), and congestive heart failure (odds ratio, 4.96; 95% confidence interval, 2.52-9.77) were independent risk factors for bariatric surgery mortality. Adverse outcomes increased as a function of age in a nearly linear fashion, with a steep increase after the age of 65 years. Most Medicare patients undergoing these operations were younger than 65 years and had a much greater disease burden than non-Medicare patients. 3. Jutta M. Joesch, Ginger L. Gossman, Koray Tanfer Primary Cesarean Deliveries Prior to Labor in the United States, 1979-2004: Discussion, Maternal and Child Health Journal. 2008;12(3):323-331. Analyses were conducted with 1979-2004 National Hospital Discharge Survey (NHDS) public use files. The NHDS public use data do not include direct identifiers. The study protocol was therefore exempt from institutional review board approval……. We used logistic regression with pooled 1979-2004 data to describe how the odds of delivering by primary cesarean prior to labor changed between 1979 and 2004. We estimated 5 different logistic regression models…….. We used Wald tests to determine which of the five models provides the best fit for describing the odds of delivering by primary cesarean prior to labor over time. Based on these tests, the model with a cubic time trend was the preferred model. We refer to this model as the "unadjusted" model in the remainder of the text……. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 136.
    Baruch College/Mount Sinai School of Medicine Program in Health Care Administration and Policy Health Data Analysis and ® Statistics Using SAS Course Notes STA9000 Lecture 4-Organ Procurement Transplantation Network OPTN- Liver Transplants
  • 137.
    2 Health Data Analysisand Statistics Using SAS® Course Notes was developed by Raymond R. Arons. SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. Health Data Analysis and Statistics Using SAS® Course Note Copyright © 2009 Raymond R. Arons. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, Raymond R. Arons, Teaneck, New Jersey. Prepared date 29July09. TABLE OF CONTENTS
  • 138.
    Lecture 4-OPTN LiverTransplants 3 Organ Procurement Transplantation Network Description 4 Objectives of Chapter 4 Section – 1 The Federal and Non-Profit Agencies Associated with the U.S. Liver Transplantation 5 Budget Breakdown FY 2010 12 Section 2 - Liver Transplantation Figures Published In the 2007 Annual Report of the Organ Procurement and Transplantation Network (OPTN) 16 Section 3 – OTPN/UNOS Liver Transplantation Data Tables from 2007 Annual Report 26 Section 4 – OTPN/UNOS Liver Transplantation Public Use Data Set Variables 40 Demonstration 1: OPTN/UNOS Liver Data, PROC Format, Labels, PROC Contents, and PROC Freq Statements 46 Exercise 4.1 65 Demonstration 2: SAS Code for OPTN/UNOS Liver Indicator and Truth Logic Variables 78 Exercise 4.2 85 Demonstration 3: Multiple Linear Regression Model on OPTN Liver Transplant Patient Survival Time in Days (PTIME) 93 Exercise 4.3 95 Demonstration 4: Logistic Regression Model of Liver Transplant Patient Death. 99 Exercise 4.4 103 Demonstration 5: Survival Analysis of Liver Transplants Using Kaplan-Meier Methods 115 Exercise 4.5 119 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 139.
    Lecture 4-OPTN LiverTransplants 4 Organ Procurement Transplantation Network OPTN- Liver Transplants Data Lecture 4 Objectives Provide an overview of U.S Organ Transplantation System from the Health and Human Services, Organ Procurement and Transplantation Network (OPTN), through United Network Organ System (UNOS) to Liver Transplants and estimated annual costs. Review the available descriptive data that is provided in the annual 2007 OPTN reports. Review the variables and their definitions that exist on the OPTN Liver transplantation data files. Identify the additional information that can be obtained from the raw data. Propose a range of potential study questions. Write SAS code to analyze the OPTN data. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 140.
    Lecture 4-OPTN LiverTransplants 5 Section – 1: The Federal and Non- Profit Agencies Associated with U.S. Liver Transplantation The U.S. Transplantation System Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 141.
    Lecture 4-OPTN LiverTransplants 6 Health Resources and Service Administration (HRSA) The Health Resources and Services Administration (HRSA), an agency of the U.S. Department of Health and Human Services, is the primary Federal agency for improving access to health care services for people who are uninsured, isolated or medically vulnerable. Comprising six bureaus and 13 offices, HRSA provides leadership and financial support to health care providers in every state and U.S. territory. HRSA grantees provide health care to uninsured people, people living with HIV/AIDS, and pregnant women, mothers and children. They train health professionals and improve systems of care in rural communities. continued... Health Resources and Service Administration (HRSA) HRSA oversees organ, bone marrow and cord blood donation. It supports programs that prepare against bioterrorism, compensate individuals harmed by vaccination, and maintains databases that protect against health care malpractice and health care waste, fraud and abuse. Since 1943 the agencies that were HRSA precursors have worked to improve the health of needy people. HRSA was created in 1982, when the Health Resources Administration and the Health Services Administration continued... Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 142.
    Lecture 4-OPTN LiverTransplants 7 HRSA Organ Transplantation Legislation Authorizing Legislation: Sections 371 - 378 of the Public Health Service Act, (P.L. 98-507 and P.L. 108-216), as amended. The National Organ Transplant Act of 1984 (NOTA), as amended, provides the authorities for the Program. The primary purpose of the Program is to extend and enhance the lives of individuals with end-stage organ failure for whom an organ transplant is the most appropriate therapeutic treatment. The Program works towards achieving this goal by providing for a national system, the Organ Procurement and Transplantation Network (OPTN), to allocate and distribute donor organs to individuals waiting for an organ transplant. OPTN Program Description and Accomplishments The allocation of organs is guided by organ allocation policies developed by the OPTN with analytic support provided by the Scientific Registry of Transplant Recipients (SRTR). In addition to the efficient and effective allocation of donor organs through the OPTN, the Program also supports efforts to increase the supply of donor organs made available for transplantation. Ideally, an organ would be available for every transplant candidate at the time the procedure would provide maximum benefit to the patient. Unfortunately, the demand for organ transplantation greatly exceeds the available supply of organs from deceased and living donors combined (see Figure 1). continued... Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 143.
    Lecture 4-OPTN LiverTransplants 8 OPTN Program Description and Accomplishments This trend is anticipated to continue, unless there is a major breakthrough in transplantation technology that will obviate the need for donor organs or the incidence of end-stage organ failure in the U.S. dramatically declines. This supply and demand imbalance is vividly evidenced by the 94,000 patients who were waiting for an organ transplant at the end of 2006. This number continues to increase as almost 98,000 patients were waiting for an organ transplant as of January 2008. Tragically, 6,700 individuals died, approximately 18 per day, in 2006 while waiting for a donor organ. continued... OPTN Program Description and Accomplishments The below graph shows trends from 1993 to 2006 in the number of patients on the transplant waitlist, the number of transplants performed from deceased donors only, and the number of transplants from living as well as deceased donors. The number of patients on the transplant waitlist has grown steadily from about 30,000 in 1993 to over 94,000 in 2006. While the number of transplants performed has also grown over this time period, it has not grown as rapidly as the waitlist, leading to what is characterized on the graph as an “organ gap”. continued... Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 144.
    Lecture 4-OPTN LiverTransplants 9 OPTN Program Description and Accomplishments United Network for Organ Sharing A Virginia nonstock, not-for-profit corporation. The articles of incorporation establish the legal standing of the corporation (as in effect November 13, 1998). The name of the corporation is: United Network for Organ Sharing. Article II - Purpose and Powers (a) To establish a national Organ Procurement and Transplantation Network under the Public Health Service Act, in order to improve the effectiveness of the nation's renal and extrarenal organ procurement, distribution, and transplantation systems by increasing the availability of, and access to, donor organs for patients with end-stage organ failure; to develop, implement, and maintain quality assurance activities; and to systematically gather and analyze data and regularly publish the results of the national experience in organ procurement and preservation, tissue typing, and clinical organ transplantation. The Corporation is organized exclusively for charitable, educational, and scientific purposes related to organ procurement and transplantation. continued... Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 145.
    Lecture 4-OPTN LiverTransplants 10 United Network for Organ Sharing (b) To have all the powers provided for in Section 13.1-826, Code of Virginia 1950, as amended, as at any time amended; provided, however, – (1) all of the assets, earnings and income of the Corporation shall be used exclusively for the purposes set forth above, including the payment of proper expenses incidental thereto, and – (2) no part of the net earnings of the Corporation shall inure to the benefit of or be distributable to its members, directors, officers, or other private persons, except that the Corporation shall be authorized and empowered to pay reasonable compensation for services rendered and to make payments and distributions in furtherance of the purposes set forth above, and continued... United Network for Organ Sharing – (3) no substantial part of the activities of the Corporation shall consist of carrying on propaganda, or otherwise attempting to influence legislation, nor shall it in any manner or to any extent participate in, or intervene in (including the publishing or distributing of statements), any political campaign on behalf of any candidate for public office; nor shall the Corporation engage in any activities that are unlawful under applicable federal, state or local laws, and – (4) the Corporation shall not operate for the purposes of carrying on a trade or business for profit. continued... Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 146.
    Lecture 4-OPTN LiverTransplants 11 United Network for Organ Sharing c) The Corporation shall neither have nor exercise any power, nor shall it engage directly or indirectly in any activity, that would invalidate its status as a corporation which is exempt from federal income taxation as any organization described in IRC Section 501(c)(3) or invalidate its status as a corporation, contributions to which are deductible under IRC Section 170(c)(2). United Network for Organ Sharing UNOS staff prepared preliminary OPTN financial statements for the period October 1, 2006, through September 30, 2007. OPTN expenditures were $177,000 less than the budget of $26,711,000. In addition to this budget variance, the OPTN expects to recover costs of $127,000 for peer review activities from two OPTN members. In following current practices, the $127,000 will be credited to the OPTN contract upon receipt from the member The 2008 budget exceeds the estimated OPTN contract expenditures in the OPTN contract UNOS signed with HRSA in 2005. http://www.unos.org/articles.asp Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 147.
    Lecture 4-OPTN LiverTransplants 12 United Network for Organ Sharing The Board approved modifications to 3.6.4.5 (Liver Candidates with Exceptional Cases), which will provide standardized criteria and MELD/PELD scores for six diagnoses. The Board specified that candidates meeting the exceptional case criteria are eligible for additional MELD/PELD exception points. Unless the applicable RRB has a pre-existing agreement regarding point assignment for these diagnoses, an initial MELD score of 22/PELD score of 28 shall be assigned. For candidates with Primary Hyperoxaluria meeting the criteria in 3.6.4.5.5, an initial MELD score of 28/PELD score of 41 shall be assigned http://www.unos.org/SharedContentDocuments/Executive_Summary_-_June_2009.pdf FY 2010 Budget HHS -$879 Billion Health Resources & Services Administration - $7.25 Billion OTPN- $60 million UNOS-$30 million (est.) http://www.hhs.gov/asrt/ob/docbudget/2010budgetinbrief.pdf Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 148.
    Lecture 4-OPTN LiverTransplants 13 Organ Procurement and Transplantation Network Supporting Transplantation: The FY 2010 Budget continues support for activities in organ, bone marrow, and cord blood stem cell transplantation through a combined investment of $60 million. Through a national system, the Organ Transplantation program allocates and distributes donor organs to individuals waiting for an organ transplant and supports efforts to increase the supply of donor organs. Similarly, the C.W. “Bill” Young Cell Transplantation Program provides support to patients who need a potentially life- saving marrow or cord blood transplant. In FY 2007 these programs helped to facilitate the donation of over 27,877 organs, and in FY 2008 increased the number of potential ethic and racial minority bone marrow donors to over 2 million. The Budget request also includes $12 million for the National Cord Blood Inventory program which will be used to support the collection and purchase of approximately 8,500 new cord blood units. Estimated U.S. Average 2008 First-Year Billed Charges Per Transplant 30 Days 180 Days Pre- Hospital Physician Post- Immuno- transplan Procureme Transplant During transplant suppressant Transplant t nt Admission Transplant Admission s Total Heart Only $34,200 $94,300 $486,400 $50,800 $99,700 $22,300 $787,700 Single Lung $7,500 $53,600 $256,600 $27,900 $84,300 $20,500 $450,400 Only Double Lung $20,700 $96,500 $344,700 $59,300 $113,800 $22,800 $657,800 Only Heart-Lung $49,100 $151,900 $682,500 $73,000 $143,300 $24,700 $1,123,800 Liver Only $21,200 $73,600 $286,100 $44,100 $77,800 $20,600 $523,400 Kidney Only $16,700 $67,500 $92,700 $17,500 $47,400 $17,200 $259,000 Pancreas $16,500 $68,400 $93,400 $16,300 $58,700 $22,200 $275,200 Only Intestine Only $48,400 $77,200 $743,800 $100,600 $124,300 $27,500 $1,121,800 http://www.transplantliving.org/beforethetransplant/finance/costs.aspx http://www.milliman.com/expertise/healthcare/publications/rr/pdfs/2008-us-organ-tisse-RR4-1-08.pdf Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 149.
    Lecture 4-OPTN LiverTransplants 14 Estimated U.S. 2008 First-Year Total Charges Per Transplant Estimated 2008 Transplantation Costs Transplant N Costs Total Heart Only 2247 $787,700 $1,769,961,900 Single Lung Only 802 $450,400 $361,220,800 Double Lung Only 764 $657,800 $502,559,200 Heart-Lung 31 $1,123,800 $34,837,800 Liver-Only 6550 $523,400 $3,428,270,000 Kidney-Only 17447 $259,000 $4,518,773,000 Pancreas Only 399 $275,200 $109,804,800 Intestine Only 70 $1,121,800 $78,526,000 Grand Total $10,803,953,500 http://www.milliman.com/expertise/healthcare/publications/rr/pdfs/2008-us-organ-tisse-RR4-1-08.pdf 2008 Estimated Liver Transplantation Costs Livers - $3.4 Billion All Transplants - $10.8 Billion http://www.milliman.com/expertise/healthcare/publications/rr/pdfs/2008-us-organ-tisse-RR4-1-08.pdf Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 150.
    Lecture 4-OPTN LiverTransplants 15 Section 2 - Liver Transplantation Figures Published In the 2007 Annual Report of the Organ Procurement and Transplantation Network (OPTN). Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 151.
    Lecture 4-OPTN LiverTransplants 16 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 152.
    Lecture 4-OPTN LiverTransplants 17 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 153.
    Lecture 4-OPTN LiverTransplants 18 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 154.
    Lecture 4-OPTN LiverTransplants 19 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 155.
    Lecture 4-OPTN LiverTransplants 20 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 156.
    Lecture 4-OPTN LiverTransplants 21 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 157.
    Lecture 4-OPTN LiverTransplants 22 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 158.
    Lecture 4-OPTN LiverTransplants 23 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 159.
    Lecture 4-OPTN LiverTransplants 24 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 160.
    Lecture 4-OPTN LiverTransplants 25 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 161.
    Lecture 4-OPTN LiverTransplants 26 Section 3 - Liver Transplantation Data Tables Published in the 2007 Annual Report of the Organ Procurement and Transplantation Network (OPTN). Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 162.
    Lecture 4-OPTN LiverTransplants 27 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 163.
    Lecture 4-OPTN LiverTransplants 28 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 164.
    Lecture 4-OPTN LiverTransplants 29 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 165.
    Lecture 4-OPTN LiverTransplants 30 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 166.
    Lecture 4-OPTN LiverTransplants 31 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 167.
    Lecture 4-OPTN LiverTransplants 32 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 168.
    Lecture 4-OPTN LiverTransplants 33 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 169.
    Lecture 4-OPTN LiverTransplants 34 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 170.
    Lecture 4-OPTN LiverTransplants 35 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 171.
    Lecture 4-OPTN LiverTransplants 36 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 172.
    Lecture 4-OPTN LiverTransplants 37 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 173.
    Lecture 4-OPTN LiverTransplants 38 Section 4 – OTPN/UNOS Liver Transplantation Public Use Data Set Variables Introduction to liver blood test An initial step in detecting liver damage is a simple blood test to determine the presence of certain liver enzymes in the blood. Under normal circumstances, these enzymes reside within the cells of the liver. But when the liver is injured for any reason, these enzymes are spilled into the blood stream. Enzymes are proteins that are present throughout the body, each with a unique function. Enzymes help to speed up (catalyze) routine and necessary chemical reactions in the body. Among the most sensitive and widely used of these liver enzymes are the aminotransferases. They include aspartate aminotransferase (AST or SGOT) and alanine aminotransferase (ALT or SGPT). These enzymes are normally contained within liver cells. If the liver is injured, the liver cells spill the enzymes into blood, raising the enzyme levels in the blood and signaling the liver damage. The MELD score The MELD/PELD Calculator provided on this Web site uses the specific formulas approved by the OPTN/UNOS Board of Directors and allocation of livers by the OPTN match system. The MELD/PELD calculator collects data elements used in both the MELD and PELD score calculations. Please note the following: Serum Creatinine (mg/dl)* ,Bilirubin (mg/dl), INR *For patients who have had dialysis twice within the last week, or 24 hours of CVVHD, the creatinine value will be automatically set to 4 mg/dl. The PELD score calculation uses: Albumin (g/dl) , Bilirubin (mg/dl) and INR. INR, Growth failure (based on gender, height and weight) Age at listing http//www.unos.org/resources/MeldPeldCalculator asp?index=97 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 174.
    Lecture 4-OPTN LiverTransplants 39 Functions of the Liver The liver is one of the largest and most complex organs in the body. It weighs approximately 1,500-1,800 grams (or about three to four pounds) and is made up of a spongy mass of wedge-shaped lobes. The liver has numerous functions that are necessary for life. The liver helps process carbohydrates, fats, and proteins, and stores vitamins. It processes nutrients absorbed from food in the intestines and turns them into materials that the body needs for life. For example, it makes the factors that the blood needs for clotting. It also secretes bile to help digest fats, and breaks down toxic substances in the blood such as drugs and alcohol. Liver Transplant Procedures A liver transplant may involve the whole liver, a reduced liver, or a liver segment. Most transplants involve the whole organ but segmental transplants have been performed with increasing frequency in recent years. This would allow two liver recipients to be transplanted from one cadaveric donor or to allow for living donor liver donation. A reduced liver transplant may result if the donor liver is too large for the recipient. Introduction to liver blood test An initial step in detecting liver damage is a simple blood test to determine the presence of certain liver enzymes in the blood. Under normal circumstances, these enzymes reside within the cells of the liver. But when the liver is injured for any reason, these enzymes are spilled into the blood stream. Enzymes are proteins that are present throughout the body, each with a unique function. Enzymes help to speed up (catalyze) routine and necessary chemical reactions in the body. Among the most sensitive and widely used of these liver enzymes are the aminotransferases. They include aspartate aminotransferase (AST or SGOT) and alanine aminotransferase (ALT or SGPT). These enzymes are normally contained within liver cells. If the liver is injured, the liver cells spill the enzymes into blood, raising the enzyme levels in the blood and signaling the liver damage. http//www.unos.org/resources/MeldPeldCalculator asp?index=97 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 175.
    Lecture 4-OPTN LiverTransplants 40 OPTN/UNOS Public Use Liver Data Set Specifications Data Set Name UNOS.LIVER Number of Records 88,636 Number of Variables-27 SAS data set Creatinine: A chemical waste molecule that is generated from muscle metabolism. Creatinine is produced from creatine, a molecule of major importance for energy production in muscles. Approximately 2% of the body's creatine is converted to creatinine every day. Creatinine is transported through the bloodstream to the kidneys. The kidneys filter out most of the creatinine and dispose of it in the urine. Although it is a waste, creatinine serves a vital diagnostic function Total Bilirubin (TBIL) Bilirubin is a breakdown product of heme (a part of haemoglobin in red blood cells). The liver is responsible for clearing this, excreting it out throughbile into the instestine. Problems with the liver or blockage of the drainage of bile will cause increased levels of bilirubin, as will increased haemolysis of red cells. INR The liver is responsible for the production of coagulation factors. The INR measures the speed of a particular pathway of coagulation, comparing it to normal. If the INR is increased, it means it is taking longer than usual for blood to clot. The INR will only be increased if the liver is so damaged that synthesis of vitamin K-dependent coagulation factors has been impaired: it is not a sensitive measure of liver function. It is very important to normalize the INR before operating on people with liver problems, (usually by transfusion with blood plasma containing the deficient factors), as they could bleed excessively. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 176.
    Lecture 4-OPTN LiverTransplants 41 OPTN/UNOS Public Use Data Variables cod = 'Cause of death' diag = 'Diagnosis at transplantation' px_stat = 'Patient status pre-transplant' end_stat = 'Patient status post-transplant' hgt_cm_trr = 'Patient height (cm)at transplant' wgt_kg_trr = 'Patient weight (kg)at transplant' sgpt_tx = 'Blood (Serum) Glutamic- Oxaloacetic Transaminase (SGOT) Test‘ px_stat = 'Current status of the patient' continued... Development of the MELD/PELD Allocation System Today, the model for end-stage liver disease (MELD)/pediatric end-stage liver disease (PELD) model is the disease severity scoring system used to determine the allocation of donor livers in the US (see "MELD and PELD Equations for Disease Severity"). In response to the US government's Final Rule Mandate, which clearly stated that waiting time must be de-emphasized as a major determinant of organ allocation, the UNOS Liver and Intestinal Transplantation Committee decided to further assess the Mayo end-stage liver disease model -- later renamed as the model for end-stage liver disease -- as a potential basis for liver allocation. MELD, which was developed to assess short-term prognosis of patients undergoing transjugular intrahepatic portal systemic shunt procedures, was based on three simple biochemical variables -- serum creatinine, serum bilirubin, and the international normalized ratio of prothrombin time (INR) In addition, the etiology of liver disease was initially used in this model. The advantage of MELD is that it relies on objective and standardized laboratory tests that are readily available and reproducible throughout the world. None of the parameters in the model are subjective or have political overtones, such as age, gender, race, or transplant center. Evaluation and validation of MELD on the basis of both retrospective and prospective data was encouraging. The most recent and important study to validate MELD was its application to the national UNOS waiting list. This study confirmed that the MELD score, determined at the time of listing for liver transplantation, accurately estimates liver disease severity and predicts the 3-month mortality rate among patients with chronic liver disease, and could be applied for the allocation of donor livers. The conclusion was that MELD could be applied to allocation of donor livers on the basis of disease severity. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 177.
    Lecture 4-OPTN LiverTransplants 42 OPTN/UNOS Public Use Data Variables abo = 'Blood type of patient' gender = 'Gender of patient' tx_date = 'Transplant date' prev_tx = 'Previous transplant' end_stat = 'Status at transplant ' hgt_cm_don = 'Donor height(cm)at harvesting‘ wgt_kg_don = Donor weight (kg) at harvesting continued... The PELD committee developed a similar disease severity scoring system to meet the characteristics of children with chronic liver disease. As serum creatinine levels are not predictive of early mortality in the pediatric population, other variables had to be included. Using multivariate analysis, significant clinical factors incorporated into the PELD score included serum bilirubin levels, international ratio of prothrombin time, serum albumin levels, age <1 year, and growth failure defined as height or weight more than two standard deviations below the normal for age and gender. It was recognized that the MELD and PELD scores would not serve all liver transplant candidates equally well, and the most important exceptions included patients with HCC. It was noted that patients with HCC often had very low MELD or PELD scores, and thus would be disadvantaged by the new system. Therefore, it was proposed that an estimate of risk for tumor progression beyond stage 2 disease, rather than risk of death, was necessary to incorporate patients with HCC into the MELD/PELD allocation system. By recording the risk of tumor progression beyond stage 2 disease with the risk of death as defined by the MELD score in patients with chronic liver disease, a priority score could potentially be assigned to patients with HCC. Initially, and somewhat arbitrarily, the allocation policy estimated the risk of tumor progression beyond stage 2 disease or mortality at 15%, corresponding to a MELD score of 24 for patients meeting stage 1 HCC criteria. A risk of 30%, a MELD score of 29, was estimated for patients with stage 2 HCC disease. A regional review board has been appointed to review urgent cases, and those in which patients are exempted from or disadvantaged by the MELD/PELD allocation system, such as patients with primary familial amyloidosis, polycystic liver disease, and hepatopulmonary syndrome. It is at the discretion of this regional review board that additional MELD points can be given to patients for whom the risk of dying is considered to be above and beyond that estimated by the MELD/PELD system. Such cases are considered on an individual basis Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 178.
    Lecture 4-OPTN LiverTransplants 43 OPTN/UNOS Public Use Data Variables age_don = 'Donor age' ethcat_don = 'Donor ethnicity' don_ty = 'Donor source' gender_don = 'Donor gender' abo_don = 'Doner blood type' creat_tx = 'Patient creatinine at transplant‘ tbili_tx = 'Patient billirubin at transplant' ethcat = 'Patient ethnicity' N u m b er continued... of MELD and PELD Equations for Disease Severity MELDa = (0.957 x log[creatinine mg/dl]) + (0.378 x log[bilirubin mg/dl]) + (1.12 x log[INR]) + 0.643 x 10 PELD = (0.436 x ageb) - (0.687 x log[albumin g/dl]) + (0.480 x log[bilirubin mg/dl]) + (1.857 x log[INR]) + (0.0667 x growth failurec) x 10 aCapped at 40 points.bAge <1 year = 1 MELD point; age >1 year = 0 MELD points.cGrowth failure = 1 MELD point; no growth failure = 0 MELD points. INR, international normalized ratio of prothrombin time. Russell H Wiesner, Mayo Clinic Transplant Center, Rochester, MN ,Patient Selection in an Era of Donor Liver Shortage: US Policy: Sidebar: MELD and PELD Equations for Disease Severity http://www.medscape.com/viewarticle/497528_3 Pre-MELD/PELD Liver Allocation Policy Criteria Sickest First and Waiting Time Liver allocation was initially based on a patient's level of care. Patients requiring continuous care in the intensive care unit (ICU) -- including patients with acute esophageal variceal bleeding not responding to endoscopic therapy, patients who developed hepatorenal syndrome, and patients with intractable ascites or portosystemic encephalopathy -- received first priority. Patients requiring continuous hospitalization were the next priority for allocation, followed by patients cared for at home. As the waiting list grew, however, waiting time became the major factor in determining who received a donor liver. This allocation system led to the establishment of many makeshift ICUs specifically for patients waiting for liver transplantation, and many patients were added to the waiting list years before they actually needed a liver transplant, so Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 179.
    Lecture 4-OPTN LiverTransplants 44 they would be at the top of the list by the time they required a transplant. This led to numerous turned down offers for deceased donor livers OPTN/UNOS Public Use Data Variables px_stat_date = 'Date patient graft status was identified' grf_stat = 'Status of liver graft' age = ‘Patient age at transplant' diag = 'Diagnosis at transplant' cold_isch = 'Duration of cold ischemia- preserved donor liver’ gtime = 'Graph survival time in days' ptime = 'Patient survival time in days' continued... The Child-Turcotte-Pugh Scoring System In 1996, the Child-Turcotte-Pugh (CTP) scoring system was adopted as the measure of liver disease severity to prioritize liver allocation, and a separate 'Status 1' category was created for patients with fulminant hepatic failure, primary nonfunction of the liver, hepatic artery thrombosis diagnosed within 7 days of transplantion, or decompensated Wilson's Disease. These candidates were given the highest priority and this remains unchanged. Patients with chronic liver disease were grouped into three categories: status 2a (CTP ≥ 10, admission to the ICU, and estimated <7 days to survive); status 2b (CTP ≥ 10 or a CTP ≥ 7 in patients with one or more major complications of portal hypertension, and patients with stage 1 and 2 hepatocellular carcinoma [HCC]); and status 3 (CTP score of ≥ 7), the minimal listing criteria. The CTP score was considered a shortcoming of the overall allocation system because it was never evaluated for the prediction of mortality over time in patients with chronic liver disease. Furthermore, the CTP score had two variables that were subjective in nature, namely ascites and encephalopathy, which could easily be overestimated. Ultimately, the CTP score failed to prioritize numerous patients waiting for deceased donor livers on the basis of disease severity. Waiting Time In 2000, the waiting list for liver transplantation grew to 20,000 patients, leading to longer waiting times and more patient deaths on the waiting list. Waiting time became the dominant factor for determining deceased donor liver allocation. This became less acceptable when two studies documented that time spent on the waiting list was not associated with an increased death rate. Waiting time was also perceived Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 180.
    Lecture 4-OPTN LiverTransplants 45 as a shortcoming of the allocation system,[6] because it did not reflect the medical need for liver transplantation and was used arbitrarily to determine who received a donor organ. Ultimately waiting time also contributed to the failure of the allocation system because it did not prioritize patients waiting for deceased donor livers. Russell H Wiesner, Mayo Clinic Transplant Center, Rochester, MN Patient Selection in an Era of Donor Liver Shortage: US Policy: Pre-MELD/PELD Liver Allocation Policy Criteria. http://www.medscape.com/viewarticle/497528_8 Example Analysis of Liver Transplant Data What are the predictors of surviving a liver transplantation considering the effects of gender, race, age, blood type, status pre-transplant, principal diagnosis and donor type? All else being equal, have the odds of receiving a liver transplant improved between blacks and whites? How does the MELD/PELD scoring system affect the likelihood of surviving a liver transplant when principal diagnosis categories and other clinical and demographic factors are considered? How do liver transplant survival rates vary across clinical and demographic effects? Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 181.
    Lecture 4-OPTN LiverTransplants 46 1. OPTN/UNOS Liver Data, PROC Format, Labels, PROC Contents, and PROC Freq Statements. unos01d.sas The program below contains the basic structure for a SAS analysis of the UNOS Liver data set. PROC Format gives names to variable values, PROC Contents yields the specifications of your data set, and PROC Freq provides the frequency distributions of each of the variables /*unos01d.sas*/ Proc format; Value li_cod /**Causes of Death of Liver Transplant Recipients**/ 998 = '998 Unknown' 999 = '999 Other Specify' 4246='4246 Cardiovascular - Arterial Embolism ' 4247='4247 Cardiovascular - Pulmonary Embolism' 4600='4600 Graft Failure:Primary ' 4601='4601 Graft Failure:Vascular Thrombosis ' 4602='4602 Graft Failure:Biliary Tract Complication ' 4603='4603 Graft Failure:Hepatitis ' 4604='4604 Graft Failure:Recurrent (Non-Hepatitis)' 4605='4605 Graft Failure:Rejection ' 4606='4606 Graft Failure:Infection (Non-Hepatitis) ' 4610='4610 Graft Failure:Other Specify' 4615='4615 Graft Vs. Host Disease' 4620='4620 Cardio: Arrythmia ' 4621='4621 Cardio: Arterial Or Pulmonary Embolism' 4622='4622 Cardio: Hyperkalemic Arrest ' 4623='4623 Cardio: Congestive Failure (Chf)' 4624='4624 Cardio: Myocardial Infarction ' 4625='4625 Cardio: Other Specify ' 4626='4626 Cardiac Arrest ' 4630='4630 Cerebrovascular: Embolic Stroke' 4631='4631 Cerebrovascular: Hemorrhagic Stroke' 4635='4635 Cerebrovascular: Other Specify' 4640='4640 Pulm Insuff Or Edema (Exc Pneumonia) (Ards)' 4645='4645 Respiratory Failure: Other Specify Cause ' 4650='4650 Renal Failure' 4660='4660 Multiple Organ System Failure' 4700='4700 Hemorrhage: Lower Gastrointestinal' 4701='4701 Hemorrhage: Neurological (Brain)' 4702='4702 Hemorrhage: Variceal ' 4703='4703 Hemorrhage: Disseminated Intravascular..(Dic)' 4705='4705 Hemorrhage: Other Specify ' 4706='4706 Hemorrhage ' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 182.
    Lecture 4-OPTN LiverTransplants 47 4800='4800 Inf: Bacterial Peritonitis' 4801='4801 Inf: Pneumonia Legionella Pneumocystosis' 4802='4802 Inf: Generalized Sepsis' 4803='4803 Inf: Fungal Aspergillus Cryptococcal' 4804='4804 Inf: Mixed Other Specify' 4805='4805 Inf: Opportunistic' 4806='4806 Inf: Viral' 4810='4810 Inf: Other Specify' 4811='4811 Infection' 4850='4850 Malignancy: Primary Other Specify' 4851='4851 Malignancy: Metastatic Other Specify' 4855='4855 Malignancy: Other Specify' 4856='4856 Malignancy' 4860='4860 Post-Tx Lymphoproliferative Disorder' 4900='4900 Operative: Other Specify' 4910='4910 Brain Dead:Never Recovered From Surgery' 4920='4920 Suicide:Attempted Suicide - Died Later' 4930='4930 Trauma: Motor Vehicle' 4935='4935 Trauma: Other Specify' 4940='4940 Diabetes Mellitus' 4941='4941 Fluid/Electrolyte Disorder' 4942='4942 Acid/Base Disorder' 4945='4945 Acute Pancreatitis' 4950='4950 Aids' 4951='4951 Immunosuppressive Drug Related - Hematologic' 4952='4952 Immunosuppressive Drug Related - Non-Hematologic' 4953='4953 Non-Immuno Drug Related - Hematologic' 4954='4954 Non-Immuno Drug Related - Non-Hematolo.....Drug' ; Value li_dgn /***Primary diagnosis at Transplantation**/ 999 ='999 Other Specify ' 4100='4100 Ahn: Drug Other Specify ' 4101='4101 Ahn: Type A ' 4102='4102 Ahn: Type B- Hbsag+ ' 4103='4103 Ahn: Non A- Non B ' 4104='4104 Ahn: Type C ' 4105='4105 Ahn: Type D ' 4106='4106 Ahn: Type B And C ' 4107='4107 Ahn: Type B And D ' 4108='4108 Ahn: Etiology Unknown ' 4110='4110 Ahn: Other, Specify (E.G.Acute Viral Infection..' 4200='4200 Cirrhosis: Drug/Indust Exposure Other Specify' 4201='4201 Cirrhosis: Type A ' 4202='4202 Cirrhosis: Type B- Hbsag+ ' 4203='4203 Cirrhosis: Type Non A, Non B ' 4204='4204 Cirrhosis: Type C ' 4102='4102 Ahn: Type B- Hbsag+ ' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 183.
    Lecture 4-OPTN LiverTransplants 48 4103='4103 Ahn: Non A- Non B ' 4104='4104 Ahn: Type C ' 4105='4105 Ahn: Type D ' 4106='4106 Ahn: Type B And C ' 4107='4107 Ahn: Type B And D ' 4108='4108 Ahn: Etiology Unknown ' 4110='4110 Ahn: Other, Specify (E.G.Acute Viral Infection..' 4200='4200 Cirrhosis: Drug/Indust Exposure Other Specify' 4201='4201 Cirrhosis: Type A ' 4202='4202 Cirrhosis: Type B- Hbsag+ ' 4203='4203 Cirrhosis: Type Non A, Non B ' 4204='4204 Cirrhosis: Type C ' 4205='4205 Cirrhosis: Type D ' 4206='4206 Cirrhosis: Type B And C ' 4207='4207 Cirrhosis: Type B And D ' 4208='4208 Cirrhosis: Cryptogenic- Idiopathic ' 4209='4209 Cirrhosis: Chronic Active Hepatitis:........' 4210='4210 Cirrhosis: Other, Specify (E.G., Histiocy...' 4212='4212 Cirrhosis: Autoimmune' 4213='4213 Cirrhosis: Cryptogenic (Idiopathic)' 4214='4214 Cirrhosis: Fatty Liver (Nash)' 4215='4215 Alcoholic Cirrhosis' 4216='4216 Alcoholic Cirrhosis With Hepatitis C' 4217='4217 Acute Alcoholic Hepatitis ' 4220='4220 Primary Biliary Cirrhosis (Pbc)' 4230='4230 Sec Biliary Cirrhosis: Carolis Disease' 4231='4231 Sec Biliary Cirrhosis: Choledochol Cyst' 4235='4235 Sec Biliary Cirrhosis: Other Specify' 4240='4240 Psc: Crohns Disease' 4241='4241 Psc: Ulcerative Colitis' 4242='4242 Psc: No Bowel Disease' 4245='4245 Psc: Other Specify' 4250='4250 Familial Cholestasis: Bylers Disease' 4255='4255 Familial Cholestasis: Other Specify' 4260='4260 Choles Liver Disease: Other Specify' 4264='4264 Neonatal Cholestatic Liver Disease' 4265='4265 Neonatal Hepatitis Other Specify' 4270='4270 Biliary Atresia: Extrahepatic' 4271='4271 Biliary Hypoplasia: Nonsyndromic Paucity....' 4272='4272 Biliary Hypoplasia: Alagille’s Syndrome.....' 4275='4275 Biliary Atresia Or Hypoplasia: Other,Specify' 4280='4280 Congenital Hepatic Fibrosis' 4285='4285 Cystic Fibrosis' 4290='4290 Budd-Chiari Syndrome' 4300='4300 Metdis: Alpha-1-Antitrypsin Defic A-1-A' 4301='4301 Metdis: Wilsons Disease' 4302='4302 Metdis: Hemochromatosis - Hemosiderosis' 4303='4303 Metdis: Glyc Stor Dis Type I (Gsd-I)' 4304='4304 Metdis: Glyc Stor Dis Type Ii (Gsd-Iv)' 4305='4305 Metdis: Hyperlipidemia-Ii- Homozgyous Hy' 4306='4306 Metdis: Tyrosinemia' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 184.
    Lecture 4-OPTN LiverTransplants 49 4307='4307 Metdis: Primary Oxalosis/Oxaluria- Hyper' 4308='4308 Metdis: Maple Syrup Urine Disease' 4315='4315 Metdis: Other Specify' 4400='4400 Plm: Hepatoma - Hepatocellular Carcinoma' 4401='4401 Plm: Hepatoma (Hcc) And Cirrhosis' 4402='4402 Plm: Fibrolamellar (Fl-Hc)' 4403='4403 Plm: Cholangiocarcinoma (Ch-Ca)' 4404='4404 Plm: Hepatoblastoma (Hbl)' 4405='4405 Plm: Hemangioendothelioma-Hemangiosarcom ' 4410='4410 Plm: Other Specify ' 4420='4420 Bile Duct Cancer (Cholangioma-Biliary Tr' 4430='4430 Secondary Hepatic Malignancy Other Specify' 4450='4450 Benign Tumor: Hepatic Adenoma ' 4451='4451 Benign Tumor: Polycystic Liver Disease' 4455='4455 Benign Tumor: Other Specify' 4500='4500 Tpn/Hyperalimentation Ind Liver Disease' 4510='4510 Graft Vs. Host Dis Sec To Non-Li Tx' 4520='4520 Trauma Other Specify' 4592='4592 Hepatitis B: Chronic Or Acute' 4593='4593 Hepatitis C: Chronic Or Actue' 4597='4597 Na: Non-Hd Followups Only' ; value status /***Transplantation Status on UNOS National List****/ 1010 = '1010 HL: Status 1A' 1020 = '1020 HL: Status 1B' 1030 = '1030 HL: Status 2' 1090 = '1090 HL: Old Status 1' 1999 = '1999 HL: Temporarily Inactive ' 2010 = '2010 HR: Status 1A ' 2020 = '2020 HR: Status 1B ' 2030 = '2030 HR: Status 2 ' 2090 = '2090 HR: Old Status 1' 2999 = '2999 HR: Temporarily inactive' 3010 = '3010 IN: Status 1' 3020 = '3020 IN: Non-urgent' 3999 = '3999 IN: Temporarily Inactive' 4010 = '4010 KI: Active (1)' 4050 = '4050 KI: Active - Medically urgent (5)' 4060 = '4060 KI: Active - Critical Status (6)' 4099 = '4099 KI: Temporarily Inactive (7)' 4999 = '4999 KI: Old Temporarily inactive (7)' 5010 = '5010 KP: Active' 5099 = '5099 KP: Temporarily Inactive ' 5999 = '5999 KP: Old Temporarily Inactive' 6002 = '6002 LI: Old status 2' 6004 = '6004 LI: Old status 4' 6010 = '6010 LI: Status 1' 6011 = '6011 LI: Status 1A' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 185.
    Lecture 4-OPTN LiverTransplants 50 6012 = '6012 LI: Status 1B' 6020 = '6020 LI: Status 2A' 6025 = '6025 LI: Region 7 Calculated 25' 6029 = '6029 LI: Region 8 Lab Score 29' 6030 = '6030LI: Status 2B' 6040 = '6040LI: Status 3 ' 6050 = '6050LI: MELD/PELD' 6101 = '6101LI: MELD/PELD -99' 6102 = '6102LI: MELD/PELD -98' 6103 = '6103LI: MELD/PELD -97' 6104 = '6104LI: MELD/PELD -96' 6105 = '6105LI: MELD/PELD -95' 6106 = '6106LI: MELD/PELD -94' 6107 = '6107LI: MELD/PELD -93' 6108 = '6108LI: MELD/PELD -92' 6109 = '6109LI: MELD/PELD -91' 6110 = '6110LI: MELD/PELD -90' 6111 = '6111LI: MELD/PELD -89' 6112 = '6112LI: MELD/PELD -88' 6113 = '6113LI: MELD/PELD -87' 6114 = '6114LI: MELD/PELD -86' 6115 = '6115LI: MELD/PELD -85' 6116 = '6116LI: MELD/PELD -84' 6117 = '6117LI: MELD/PELD -83' 6118 = '6118LI: MELD/PELD -82' 6119 = '6119LI: MELD/PELD -81' 6120 = '6120LI: MELD/PELD -80' 6121 = '6121LI: MELD/PELD -79' 6122 = '6122LI: MELD/PELD -78' 6123 = '6123LI: MELD/PELD -77' 6124 = '6124LI: MELD/PELD -76' 6125 = '6125LI: MELD/PELD -75' 6126 = '6126LI: MELD/PELD -74' 6127 = '6127LI: MELD/PELD -73' 6128 = '6128LI: MELD/PELD -72' 6129 = '6129LI: MELD/PELD -71' 6130 = '6130LI: MELD/PELD -70' 6131 = '6131LI: MELD/PELD -69' 6132 = '6132LI: MELD/PELD -68' 6133 = '6133LI: MELD/PELD -67' 6134 = '6134LI: MELD/PELD -66' 6135 = '6135LI: MELD/PELD -65' 6136 = '6136LI: MELD/PELD -64' 6137 = '6137LI: MELD/PELD -63' 6138 = '6138LI: MELD/PELD -62' 6139 = '6139LI: MELD/PELD -61' 6140 = '6140LI: MELD/PELD -60' 6141 = '6141LI: MELD/PELD -59' 6142 = '6142LI: MELD/PELD -58' 6143 = '6143LI: MELD/PELD -57' 6144 = '6144LI: MELD/PELD -56' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 186.
    Lecture 4-OPTN LiverTransplants 51 6145 = '6145LI: MELD/PELD -55' 6146 = '6146LI: MELD/PELD -54' 6147 = '6147LI: MELD/PELD -53' 6148 = '6148LI: MELD/PELD -52' 6149 = '6149LI: MELD/PELD -51' 6150 = '6150LI: MELD/PELD -50' 6151 = '6151LI: MELD/PELD -49' 6152 = '6152LI: MELD/PELD -48' 6153 = '6153LI: MELD/PELD -47' 6154 = '6154LI: MELD/PELD -46' 6155 = '6155LI: MELD/PELD -45' 6156 = '6156LI: MELD/PELD -44' 6157 = '6157LI: MELD/PELD -43' 6158 = '6158LI: MELD/PELD -42' 6159 = '6159LI: MELD/PELD -41' 6160 = '6160LI: MELD/PELD -40' 6161 = '6161LI: MELD/PELD -39' 6162 = '6162LI: MELD/PELD -38' 6163 = '6163LI: MELD/PELD -37' 6164 = '6164LI: MELD/PELD -36' 6165 = '6165LI: MELD/PELD -35' 6166 = '6166LI: MELD/PELD -34' 6167 = '6167LI: MELD/PELD -33' 6168 = '6168LI: MELD/PELD -32' 6169 = '6169LI: MELD/PELD -31' 6170 = '6170LI: MELD/PELD -30' 6171 = '6171LI: MELD/PELD -29' 6172 = '6172LI: MELD/PELD -28' 6173 = '6173LI: MELD/PELD -27' 6174 = '6174LI: MELD/PELD -26' 6175 = '6175LI: MELD/PELD -25' 6176 = '6176LI: MELD/PELD -24' 6177 = '6177LI: MELD/PELD -23' 6178 = '6178LI: MELD/PELD -22' 6179 = '6179LI: MELD/PELD -21' 6180 = '6180LI: MELD/PELD -20' 6181 = '6181LI: MELD/PELD -19' 6182 = '6182LI: MELD/PELD -18' 6183 = '6183LI: MELD/PELD -17' 6184 = '6184LI: MELD/PELD -16' 6185 = '6185LI: MELD/PELD -15' 6186 = '6186LI: MELD/PELD -14' 6187 = '6187LI: MELD/PELD -13' 6188 = '6188LI: MELD/PELD -12' 6189 = '6189LI: MELD/PELD -11' 6190 = '6190LI: MELD/PELD -10' 6191 = '6191LI: MELD/PELD -9' 6192 = '6192LI: MELD/PELD -8' 6193 = '6193LI: MELD/PELD -7' 6194 = '6194LI: MELD/PELD -6' 6195 = '6195LI: MELD/PELD -5' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 187.
    Lecture 4-OPTN LiverTransplants 52 6196 = '6196LI: MELD/PELD -4' 6197 = '6197LI: MELD/PELD -3' 6198 = '6198LI: MELD/PELD -2' 6199 = '6199LI: MELD/PELD -1' 6200 = '6200LI: MELD/PELD 0' 6201 = '6201LI: MELD/PELD 1' 6202 = '6202LI: MELD/PELD 2' 6203 = '6203LI: MELD/PELD 3' 6204 = '6204LI: MELD/PELD 4' 6205 = '6205LI: MELD/PELD 5' 6206 = '6206LI: MELD/PELD 6' 6207 = '6207LI: MELD/PELD 7' 6208 = '6208LI: MELD/PELD 8' 6209 = '6209LI: MELD/PELD 9' 6210 = '6210LI: MELD/PELD 10' 6211 = '6211LI: MELD/PELD 11' 6212 = '6212LI: MELD/PELD 12' 6213 = '6213LI: MELD/PELD 13' 6214 = '6214LI: MELD/PELD 14' 6215 = '6215LI: MELD/PELD 15' 6216 = '6216LI: MELD/PELD 16' 6217 = '6217LI: MELD/PELD 17' 6218 = '6218LI: MELD/PELD 18' 6219 = '6219LI: MELD/PELD 19' 6220 = '6220LI: MELD/PELD 20' 6221 = '6221LI: MELD/PELD 21' 6222 = '6222LI: MELD/PELD 22' 6223 = '6223LI: MELD/PELD 23' 6224 = '6224LI: MELD/PELD 24' 6225 = '6225LI: MELD/PELD 25' 6226 = '6226LI: MELD/PELD 26' 6227 = '6227LI: MELD/PELD 27' 6228 = '6228LI: MELD/PELD 28' 6229 = '6229LI: MELD/PELD 29' 6230 = '6230LI: MELD/PELD 30' 6232 = '6232LI: MELD/PELD 32' 6233 = '6233LI: MELD/PELD 33' 6234 = '6234LI: MELD/PELD 34' 6235 = '6235LI: MELD/PELD 35' 6231 = '6231LI: MELD/PELD 31' 6236 = '6236LI: MELD/PELD 36' 6237 = '6237LI: MELD/PELD 37' 6238 = '6238LI: MELD/PELD 38' 6239 = '6239LI: MELD/PELD 39' 6240 = '6240LI: MELD/PELD 40' 6241 = '6241LI: MELD/PELD 41' 6242 = '6242LI: MELD/PELD 42' 6243 = '6243LI: MELD/PELD 43' 6244 = '6244LI: MELD/PELD 44' 6245 = '6245LI: MELD/PELD 45' 6246 = '6246LI: MELD/PELD 46' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 188.
    Lecture 4-OPTN LiverTransplants 53 6247 = '6247LI: MELD/PELD 47' 6248 = '6248LI: MELD/PELD 48' 6249 = '6249LI: MELD/PELD 49' 6250 = '6250LI: MELD/PELD 50' 6251 = '6251LI: MELD/PELD 51' 6252 = '6252LI: MELD/PELD 52' 6253 = '6253LI: MELD/PELD 53' 6254 = '6254LI: MELD/PELD 54' 6255 = '6255LI: MELD/PELD 55' 6256 = '6256LI: MELD/PELD 56' 6257 = '6257LI: MELD/PELD 57' 6258 = '6258LI: MELD/PELD 58' 6259 = '6259LI: MELD/PELD 59' 6260 = '6260LI: MELD/PELD 60' 6261 = '6261LI: MELD/PELD 61' 6262 = '6262LI: MELD/PELD 62' 6263 = '6263LI: MELD/PELD 63' 6264 = '6264LI: MELD/PELD 64' 6265 = '6265LI: MELD/PELD 65' 6266 = '6266LI: MELD/PELD 66' 6267 = '6267LI: MELD/PELD 67' 6268 = '6268LI: MELD/PELD 68' 6269 = '6269LI: MELD/PELD 69' 6270 = '6270LI: MELD/PELD 70' 6271 = '6271LI: MELD/PELD 71' 6272 = '6272LI: MELD/PELD 72' 6273 = '6273LI: MELD/PELD 73' 6274 = '6274LI: MELD/PELD 74' 6275 = '6275LI: MELD/PELD 75' 6276 = '6276LI: MELD/PELD 76' 6277 = '6277LI: MELD/PELD 77' 6278 = '6278LI: MELD/PELD 78' 6279 = '6279LI: MELD/PELD 79' 6280 = '6280LI: MELD/PELD 80' 6281 = '6281LI: MELD/PELD 81' 6282 = '6282LI: MELD/PELD 82' 6283 = '6283LI: MELD/PELD 83' 6284 = '6284LI: MELD/PELD 84' 6285 = '6285LI: MELD/PELD 85' 6286 = '6286LI: MELD/PELD 86' 6287 = '6287LI: MELD/PELD 87' 6288 = '6288LI: MELD/PELD 88' 6289 = '6289LI: MELD/PELD 89' 6290 = '6290LI: MELD/PELD 90' 6291 = '6291LI: MELD/PELD 91' 6292 = '6292LI: MELD/PELD 92' 6293 = '6293LI: MELD/PELD 93' 6294 = '6294LI: MELD/PELD 94' 6295 = '6295LI: MELD/PELD 95' 6296 = '6296LI: MELD/PELD 96' 6297 = '6297LI: MELD/PELD 97' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 189.
    Lecture 4-OPTN LiverTransplants 54 6298 = '6298LI: MELD/PELD 98' 6299 = '6299LI: MELD/PELD 99' 6999 = '6999LI: Temporarily Inactive' 7010 = '7010LU: Active' 7999 = '7999LU: Temporarily Inactive' 8010 = '8010PA: Active' 8099 = '8099PA: Temporarily Inactive' 8999 = '8999PA: Old Temporarily Inactive' 9010 = '9010PI: Status 1' 9020 = '9020PI: Status 2' 9030 = '9030PI: Active' 9099 = '9099PI: Temporarily Inactive' 9999 = '9999PI: Old Temporarily Inactive' ; value $pxstat 'A' = 'A Living' 'D' = 'D Dead' 'L' = 'L Lost to Follow up' 'N' = 'N Not Seen' 'R' = 'R Retransplanted' ; value $graph_stat '.' = 'Not reported' 'N' = 'N Failed' 'U' = 'U Unknown' 'Y' = 'Y Functioning' ; value ethcat 1 = '1 White' 2 = '2 Black' 4 = '4 Hispanic' 5 = '5 Asian' 6 = '6 Amer Ind/Alaska Native' 7 = '7 Native Hawaiian/other Pacific Islander' 9 = '9 Multiracial' 998 = '998 Unknown' ; value $don_type 'C' = 'Deceased Donor' 'F' = 'Foreign Donor' 'L' = 'Living Donor' ; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 190.
    Lecture 4-OPTN LiverTransplants 55 value $prev_tx 'Y' = 'Yes Previous transplant' 'N' = 'No Previous transplant' ; value $abotype 'A' = 'Type A' 'A1' = 'Type A1' 'A1B' = 'Type A1B' 'A2' = 'Type A2' 'A2B' = 'Type A2B' 'AB' = 'Type AB' 'B' = 'Type B' 'O' = 'Type O' 'UNK' = 'Type UNK' ; value $gender 'M' = 'Male' 'F' = 'Female' ; data liver; label cod = 'Cause of death' diag = 'Diagnosis at transplantation' px_stat = 'Patient stautus pre-transplant' end_stat = 'Patient status post-transplant' hgt_cm_trr = 'Patient height (cm)at transplant' wgt_kg_trr = 'Patient weight (kg)at transplant' sgpt_tx = 'Blood(Serum)Glutamic-Oxaloacetic Transaminase(SGOT)Test' px_stat = 'Current status of the patient' abo = 'Blood type of patient' gender = 'Gender of patient' tx_date = 'Transplant date' prev_tx = 'Previous transplant' end_stat = 'Status at transplant ' hgt_cm_don = 'Donor height(cm)at harvesting' wgt_kg_don = 'Donor weight(kg)at harvesting' age_don = 'Donor age' ethcat_don = 'Donor ethnicity' don_ty = 'Donor source ' gender_don = 'Donor gender' abo_don = 'Donor blood type' creat_tx = 'Patient creatinine at transplant' tbili_tx = 'Patient billirubin at transplant' ethcat = 'Patient ethnicity' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 191.
    Lecture 4-OPTN LiverTransplants 56 px_stat_date = 'Date patient graft status was identified' grf_stat = 'Status of liver graft' age = 'Patient age at transplant' diag = 'Diagnosis at transplant' cold_isch = 'Duration of cold ischemia-preserved donor liver' ; set unos.liver; options label nodate nonumber; proc contents data=liver varnum; run; options label nodate nonumber; proc freq data=liver ; tables gender gender_don cod diag end_stat grf_stat px_stat ethcat ethcat_don px_stat don_ty abo abo_don ; format cod li_cod. diag li_dgn. grf_stat $graph_stat. ethcat ethcat. ethcat_don ethcat. px_stat $pxstat. end_stat status. don_ty $don_type. abo $abotype. abo_don $abotype. gender $gender. gender_don $gender. ; run; options label nodate nonumber; Below is the output of the Proc Contents for the Liver Transplantation data set. The SAS System The CONTENTS Procedure Data Set Name WORK.LIVER Observations 88636 Member Type DATA Variables 27 Engine V9 Indexes 0 Created Sunday, July 19, 2009 06:51:21 PM Observation Length 160 Last Modified Sunday, July 19, 2009 06:51:21 PM Deleted Observations 0 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 192.
    Lecture 4-OPTN LiverTransplants 57 Protection Compressed NO Data Set Type Sorted NO Label Data Representation WINDOWS_32 Encoding wlatin1 Western (Windows) Engine/Host Dependent Information Data Set Page Size 16384 Number of Data Set Pages 870 First Data Page 1 Max Obs per Page 102 Obs in First Data Page 75 Number of Data Set Repairs 0 Filename C:DOCUME~1DR0E98~1.RAYLOCALS~1TempSAS Temporary Files_TD3752liver.sas7bdat Release Created 9.0201M0 Host Created XP_PRO The SAS System The CONTENTS Procedure Variables in Creation Order # Variable Type Len Format Informat Label 1 cod Num 8 6. 6. Cause of death 2 diag Num 8 Diagnosis at transplant 3 px_stat Char 1 $1. $1. Current status of the patient 4 end_stat Num 8 6. Status at transplant 5 hgt_cm_trr Num 8 9.4 9.4 Patient height (cm)at transplant 6 wgt_kg_trr Num 8 9.4 9.4 Patient weight (kg)at transplant 7 sgpt_tx Num 8 10.2 10.2 Blood(Serum)Glutamic-Oxaloacetic Transaminase(SGOT)Test 8 abo Char 3 $3. $3. Blood type of patient 9 gender Char 1 $1. $1. Gender of patient 10 tx_date Num 8 MMDDYY10. Transplant date 11 prev_tx Char 1 Previous transplant 12 hgt_cm_don Num 8 8. 9.4 Doners height(cm)at harvesting 13 wgt_kg_don Num 8 9.4 9.4 Doners weight(kg)at harvesting 14 age_don Num 8 Doners age 15 ethcat_don Num 8 Doners ethnicity 16 don_ty Char 3 $3. $3. Doner source 17 gender_don Char 1 $1. $1. Doners gender 18 abo_don Char 3 $3. $3. Doners blood type 19 creat_tx Num 8 9.4 9.4 Patients Creatinine at transplant 20 tbili_tx Num 8 9.4 9.4 Patient billirubin at transplant 21 ethcat Num 8 Patints ethnicity 22 px_stat_ Num 8 MMDDYY10. Date patient graft status was identified date 23 grf_stat Char 1 Status of liver graft 24 age Num 8 patient age at transplant 25 cold_isch Num 8 Duration of cold ischemia-preserved donor liver 26 GTIME Num 5 Graph survival time in days 27 PTIME Num 5 Patient survival time in days Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 193.
    Lecture 4-OPTN LiverTransplants 58 Below is the partial output of the Proc Freq for the selected variables of the UNOS Liver Transplants with and without the cumulative frequencies. The SAS System The FREQ Procedure Gender of patient Cumulative Cumulative gender Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Female 34629 39.07 34629 39.07 Male 54007 60.93 88636 100.00 Doners gender gender_ Cumulative Cumulative don Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Female 35486 40.04 35486 40.04 Male 53134 59.96 88620 100.00 Frequency Missing = 16 The SAS System The FREQ Procedure Cause of death cod Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 998 Unknown 2936 11.52 999 Other Specify 2163 8.49 4246 Cardiovascular - Arterial Embolism 7 0.03 4247 Cardiovascular - Pulmonary Embolism 43 0.17 4600 Graft Failure:Primary 685 2.69 4601 Graft Failure:Vascular Thrombosis 277 1.09 4602 Graft Failure:Biliary Tract Complication 66 0.26 4603 Graft Failure:Hepatitis 1205 4.73 4604 Graft Failure:Recurrent (Non-Hepatitis) 336 1.32 4605 Graft Failure:Rejection 515 2.02 4606 Graft Failure:Infection (Non-Hepatitis) 105 0.41 4610 Graft Failure:Other Specify 296 1.16 4615 Graft Vs. Host Disease 90 0.35 4620 Cardio: Arrythmia 204 0.80 4621 Cardio: Arterial Or Pulmonary Embolism 103 0.40 4622 Cardio: Hyperkalemic Arrest 169 0.66 4623 Cardio: Congestive Failure (Chf) 248 0.97 4624 Cardio: Myocardial Infarction 726 2.85 4625 Cardio: Other Specify 449 1.76 4626 Cardiac Arrest 838 3.29 4630 Cerebrovascular: Embolic Stroke 105 0.41 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 194.
    Lecture 4-OPTN LiverTransplants 59 4631 Cerebrovascular: Hemorrhagic Stroke 293 1.15 4635 Cerebrovascular: Other Specify 364 1.43 4640 Pulm Insuff Or Edema (Exc Pneumonia) (Ards) 319 1.25 4645 Respiratory Failure: Other Specify Cause 540 2.12 4650 Renal Failure 516 2.03 4660 Multiple Organ System Failure 2225 8.73 4700 Hemorrhage: Lower Gastrointestinal 276 1.08 4701 Hemorrhage: Neurological (Brain) 301 1.18 4702 Hemorrhage: Variceal 59 0.23 4703 Hemorrhage: Disseminated Intravascular..(Dic) 6 0.02 4705 Hemorrhage: Other Specify 295 1.16 4706 Hemorrhage 129 0.51 4800 Inf: Bacterial Peritonitis 221 0.87 4801 Inf: Pneumonia Legionella Pneumocystosis 331 1.30 4802 Inf: Generalized Sepsis 3179 12.48 4803 Inf: Fungal Aspergillus Cryptococcal 432 1.70 4804 Inf: Mixed Other Specify 89 0.35 4805 Inf: Opportunistic 38 0.15 4806 Inf: Viral 204 0.80 4810 Inf: Other Specify 334 1.31 4811 Infection 233 0.91 4850 Malignancy: Primary Other Specify 590 2.32 4851 Malignancy: Metastatic Other Specify 1176 4.62 4855 Malignancy: Other Specify 382 1.50 4856 Malignancy 365 1.43 4860 Post-Tx Lymphoproliferative Disorder 267 1.05 4900 Operative: Other Specify 351 1.38 4910 Brain Dead:Never Recovered From Surgery 99 0.39 4920 Suicide:Attempted Suicide - Died Later 62 0.24 4930 Trauma: Motor Vehicle 92 0.36 4935 Trauma: Other Specify 42 0.16 4940 Diabetes Mellitus 21 0.08 4941 Fluid/Electrolyte Disorder 6 0.02 4942 Acid/Base Disorder 1 0.00 4945 Acute Pancreatitis 67 0.26 4950 Aids 1 0.00 4953 Non-Immuno Drug Related - Hematologic 2 0.01 4954 Non-Immuno Drug Related - Non-Hematolo.....Drug 2 0.01 Diagnosis at transplant diag Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 999 Other Specify 3440 3.89 4100 Ahn: Drug Other Specify 784 0.89 4101 Ahn: Type A 187 0.21 4102 Ahn: Type B- Hbsag+ 785 0.89 4104 Ahn: Type C 1321 1.49 4105 Ahn: Type D 5 0.01 4106 Ahn: Type B And C 80 0.09 4107 Ahn: Type B And D 10 0.01 4108 Ahn: Etiology Unknown 2355 2.66 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 195.
    Lecture 4-OPTN LiverTransplants 60 4110 Ahn: Other, Specify (E.G.Acute Viral Infection.. 1122 1.27 4200 Cirrhosis: Drug/Indust Exposure Other Specify 149 0.17 4201 Cirrhosis: Type A 47 0.05 4202 Cirrhosis: Type B- Hbsag+ 2914 3.29 4204 Cirrhosis: Type C 18998 21.46 4205 Cirrhosis: Type D 23 0.03 4206 Cirrhosis: Type B And C 510 0.58 4207 Cirrhosis: Type B And D 47 0.05 4208 Cirrhosis: Cryptogenic- Idiopathic 2979 3.37 4209 Cirrhosis: Chronic Active Hepatitis:........ 175 0.20 4210 Cirrhosis: Other, Specify (E.G., Histiocy... 1073 1.21 4212 Cirrhosis: Autoimmune 3110 3.51 4213 Cirrhosis: Cryptogenic (Idiopathic) 4517 5.10 4214 Cirrhosis: Fatty Liver (Nash) 960 1.08 4215 Alcoholic Cirrhosis 10623 12.00 4216 Alcoholic Cirrhosis With Hepatitis C 4350 4.91 4217 Acute Alcoholic Hepatitis 68 0.08 4220 Primary Biliary Cirrhosis (Pbc) 4696 5.30 4230 Sec Biliary Cirrhosis: Carolis Disease 118 0.13 4231 Sec Biliary Cirrhosis: Choledochol Cyst 61 0.07 4235 Sec Biliary Cirrhosis: Other Specify 261 0.29 4240 Psc: Crohns Disease 725 0.82 4241 Psc: Ulcerative Colitis 2137 2.41 4242 Psc: No Bowel Disease 1495 1.69 4245 Psc: Other Specify 1176 1.33 4250 Familial Cholestasis: Bylers Disease 74 0.08 4255 Familial Cholestasis: Other Specify 115 0.13 4260 Choles Liver Disease: Other Specify 241 0.27 4264 Neonatal Cholestatic Liver Disease 12 0.01 4265 Neonatal Hepatitis Other Specify 219 0.25 4270 Biliary Atresia: Extrahepatic 3098 3.50 4271 Biliary Hypoplasia: Nonsyndromic Paucity.... 119 0.13 4272 Biliary Hypoplasia: Alagille’s Syndrome..... 381 0.43 4275 Biliary Atresia Or Hypoplasia: Other,Specify 1125 1.27 4280 Congenital Hepatic Fibrosis 199 0.22 4285 Cystic Fibrosis 252 0.28 4290 Budd-Chiari Syndrome 558 0.63 4300 Metdis: Alpha-1-Antitrypsin Defic A-1-A 1470 1.66 4301 Metdis: Wilsons Disease 549 0.62 4302 Metdis: Hemochromatosis - Hemosiderosis 615 0.69 4303 Metdis: Glyc Stor Dis Type I (Gsd-I) 62 0.07 4304 Metdis: Glyc Stor Dis Type Ii (Gsd-Iv) 33 0.04 4305 Metdis: Hyperlipidemia-Ii- Homozgyous Hy 10 0.01 4306 Metdis: Tyrosinemia 124 0.14 4307 Metdis: Primary Oxalosis/Oxaluria- Hyper 195 0.22 4308 Metdis: Maple Syrup Urine Disease 38 0.04 4315 Metdis: Other Specify 573 0.65 4400 Plm: Hepatoma - Hepatocellular Carcinoma 1644 1.86 4401 Plm: Hepatoma (Hcc) And Cirrhosis 3061 3.46 4402 Plm: Fibrolamellar (Fl-Hc) 44 0.05 4403 Plm: Cholangiocarcinoma (Ch-Ca) 276 0.31 4404 Plm: Hepatoblastoma (Hbl) 269 0.30 4405 Plm: Hemangioendothelioma-Hemangiosarcom 136 0.15 4410 Plm: Other Specify 190 0.21 4420 Bile Duct Cancer (Cholangioma-Biliary Tr 45 0.05 4430 Secondary Hepatic Malignancy Other Specify 138 0.16 4450 Benign Tumor: Hepatic Adenoma 40 0.05 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 196.
    Lecture 4-OPTN LiverTransplants 61 4451 Benign Tumor: Polycystic Liver Disease 293 0.33 4455 Benign Tumor: Other Specify 53 0.06 4500 Tpn/Hyperalimentation Ind Liver Disease 800 0.90 4510 Graft Vs. Host Dis Sec To Non-Li Tx 90 0.10 4520 Trauma Other Specify 71 0.08 4593 Hepatitis C: Chronic Or Actue 8 0.01 Status at transplant Cumulative Cumulative end_stat Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 4010 KI: Active (1) 1 0.00 1 0.00 6002 LI: Old status 2 7483 8.55 7484 8.56 6004 LI: Old status 4 1433 1.64 8917 10.19 6010 LI: Status 1 11115 12.71 20032 22.90 6011 LI: Status 1A 927 1.06 20959 23.96 6012 LI: Status 1B 142 0.16 21101 24.12 6020 LI: Status 2A 4199 4.80 25300 28.92 6030LI: Status 2B 11786 13.47 37086 42.39 6040LI: Status 3 15177 17.35 52263 59.74 6189LI: MELD/PELD -11 1 0.00 52264 59.74 6190LI: MELD/PELD -10 9 0.01 52273 59.75 6191LI: MELD/PELD -9 11 0.01 52284 59.77 6192LI: MELD/PELD -8 13 0.01 52297 59.78 6193LI: MELD/PELD -7 11 0.01 52308 59.79 6194LI: MELD/PELD -6 14 0.02 52322 59.81 6195LI: MELD/PELD -5 11 0.01 52333 59.82 6196LI: MELD/PELD -4 14 0.02 52347 59.84 6197LI: MELD/PELD -3 25 0.03 52372 59.87 6198LI: MELD/PELD -2 21 0.02 52393 59.89 6199LI: MELD/PELD -1 23 0.03 52416 59.92 6200LI: MELD/PELD 0 21 0.02 52437 59.94 6201LI: MELD/PELD 1 30 0.03 52467 59.98 6202LI: MELD/PELD 2 34 0.04 52501 60.01 6203LI: MELD/PELD 3 22 0.03 52523 60.04 6204LI: MELD/PELD 4 28 0.03 52551 60.07 6205LI: MELD/PELD 5 28 0.03 52579 60.10 6206LI: MELD/PELD 6 278 0.32 52857 60.42 6207LI: MELD/PELD 7 200 0.23 53057 60.65 6208LI: MELD/PELD 8 217 0.25 53274 60.90 6209LI: MELD/PELD 9 284 0.32 53558 61.22 6210LI: MELD/PELD 10 457 0.52 54015 61.75 6211LI: MELD/PELD 11 396 0.45 54411 62.20 6212LI: MELD/PELD 12 505 0.58 54916 62.78 6213LI: MELD/PELD 13 594 0.68 55510 63.45 6214LI: MELD/PELD 14 710 0.81 56220 64.27 6215LI: MELD/PELD 15 1129 1.29 57349 65.56 6216LI: MELD/PELD 16 1212 1.39 58561 66.94 6217LI: MELD/PELD 17 1274 1.46 59835 68.40 6218LI: MELD/PELD 18 1532 1.75 61367 70.15 6219LI: MELD/PELD 19 933 1.07 62300 71.22 6220LI: MELD/PELD 20 1325 1.51 63625 72.73 6221LI: MELD/PELD 21 1045 1.19 64670 73.93 6222LI: MELD/PELD 22 3355 3.84 68025 77.76 6223LI: MELD/PELD 23 1263 1.44 69288 79.20 6224LI: MELD/PELD 24 3011 3.44 72299 82.65 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 197.
    Lecture 4-OPTN LiverTransplants 62 6225LI: MELD/PELD 25 1621 1.85 73920 84.50 6226LI: MELD/PELD 26 767 0.88 74687 85.38 6227LI: MELD/PELD 27 716 0.82 75403 86.19 6228LI: MELD/PELD 28 1144 1.31 76547 87.50 6229LI: MELD/PELD 29 1691 1.93 78238 89.44 6230LI: MELD/PELD 30 1014 1.16 79252 90.59 6231LI: MELD/PELD 31 733 0.84 79985 91.43 6232LI: MELD/PELD 32 633 0.72 80618 92.16 6233LI: MELD/PELD 33 499 0.57 81117 92.73 6234LI: MELD/PELD 34 455 0.52 81572 93.25 6235LI: MELD/PELD 35 462 0.53 82034 93.77 6236LI: MELD/PELD 36 389 0.44 82423 94.22 6237LI: MELD/PELD 37 343 0.39 82766 94.61 6238LI: MELD/PELD 38 316 0.36 83082 94.97 6239LI: MELD/PELD 39 313 0.36 83395 95.33 6240LI: MELD/PELD 40 1760 2.01 85155 97.34 6241LI: MELD/PELD 41 27 0.03 85182 97.37 6242LI: MELD/PELD 42 5 0.01 85187 97.38 6243LI: MELD/PELD 43 12 0.01 85199 97.39 6244LI: MELD/PELD 44 16 0.02 85215 97.41 6245LI: MELD/PELD 45 19 0.02 85234 97.43 6246LI: MELD/PELD 46 18 0.02 85252 97.45 6247LI: MELD/PELD 47 4 0.00 85256 97.46 6248LI: MELD/PELD 48 9 0.01 85265 97.47 6249LI: MELD/PELD 49 2 0.00 85267 97.47 6250LI: MELD/PELD 50 6 0.01 85273 97.48 6251LI: MELD/PELD 51 2 0.00 85275 97.48 6252LI: MELD/PELD 52 3 0.00 85278 97.48 6253LI: MELD/PELD 53 1 0.00 85279 97.48 6255LI: MELD/PELD 55 4 0.00 85283 97.49 6256LI: MELD/PELD 56 2 0.00 85285 97.49 6258LI: MELD/PELD 58 1 0.00 85286 97.49 6260LI: MELD/PELD 60 1 0.00 85287 97.49 6261LI: MELD/PELD 61 1 0.00 85288 97.49 6263LI: MELD/PELD 63 1 0.00 85289 97.50 6264LI: MELD/PELD 64 1 0.00 85290 97.50 6265LI: MELD/PELD 65 1 0.00 85291 97.50 6266LI: MELD/PELD 66 1 0.00 85292 97.50 6267LI: MELD/PELD 67 1 0.00 85293 97.50 6269LI: MELD/PELD 69 1 0.00 85294 97.50 6299LI: MELD/PELD 99 1 0.00 85295 97.50 6999LI: Temporarily Inactive 2185 2.50 87480 100.00 Frequency Missing = 1156 Status of liver graft Cumulative Cumulative grf_stat Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ N Failed 17030 21.06 17030 21.06 U Unknown 709 0.88 17739 21.94 Y Functioning 63129 78.06 80868 100.00 Frequency Missing = 7768 Current status of the patient Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 198.
    Lecture 4-OPTN LiverTransplants 63 Cumulative Cumulative px_stat Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ A Living 46128 52.53 46128 52.53 D dead 25470 29.00 71598 81.53 L Lost to Follow up 7565 8.61 79163 90.14 R Retransplanted 8658 9.86 87821 100.00 Frequency Missing = 815 Patints ethnicity Cumulative Cumulative ethcat Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 White 66103 74.58 66103 74.58 2 Black 7882 8.89 73985 83.47 4 Hispanic 10315 11.64 84300 95.11 5 Asian 3272 3.69 87572 98.80 6 Amer Ind/Alaska Native 462 0.52 88034 99.32 7 Native Hawaiian/other Pacific Islander 152 0.17 88186 99.49 9 Multiracial 363 0.41 88549 99.90 998 Unknown 87 0.10 88636 100.00 Doners ethnicity Cumulative Cumulative ethcat_don Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 1 White 65430 73.82 65430 73.82 2 Black 11012 12.42 76442 86.24 4 Hispanic 9500 10.72 85942 96.96 5 Asian 1576 1.78 87518 98.74 6 Amer Ind/Alaska Native 268 0.30 87786 99.04 7 Native Hawaiian/other Pacific Islander 186 0.21 87972 99.25 9 Multiracial 422 0.48 88394 99.73 998 Unknown 242 0.27 88636 100.00 Current status of the patient Cumulative Cumulative px_stat Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ A Living 46128 52.53 46128 52.53 D dead 25470 29.00 71598 81.53 L Lost to Follow up 7565 8.61 79163 90.14 R Retransplanted 8658 9.86 87821 100.00 Frequency Missing = 815 Doner source Cumulative Cumulative don_ty Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 199.
    Lecture 4-OPTN LiverTransplants 64 Deceased Donor 84910 95.80 84910 95.80 Foreign Donor 196 0.22 85106 96.02 Living Donor 3530 3.98 88636 100.00 Blood type of patient Cumulative Cumulative abo Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Type A 34339 38.74 34339 38.74 Type A1 225 0.25 34564 39.00 Type A1B 12 0.01 34576 39.01 Type A2 46 0.05 34622 39.06 Type A2B 12 0.01 34634 39.07 Type AB 4226 4.77 38860 43.84 Type B 11286 12.73 50146 56.58 Type O 38488 43.42 88634 100.00 Type UNK 2 0.00 88636 100.00 Doners blood type Cumulative Cumulative abo_don Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Type A 17119 19.32 17119 19.32 Type A1 14527 16.39 31646 35.71 Type A1B 270 0.30 31916 36.02 Type A2 1145 1.29 33061 37.31 Type A2B 81 0.09 33142 37.40 Type AB 2184 2.46 35326 39.87 Type B 9546 10.77 44872 50.64 Type O 43718 49.34 88590 99.98 Type UNK 20 0.02 88610 100.00 Frequency Missing = 26 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 200.
    Lecture 4-OPTN LiverTransplants 65 Exercises 4.1 Using UNOS01d.sas, write the SAS code to produce the following: 1. PROC FREQ of blood type of donor by recipient. 2. PROC FREQ of principal diagnosis in rank order by race. 3. PROC FREQ of status transplant in rank order by race. 4. PROC FREQ of cause of death by race. 5. PROC FREQ of race by patient status. 6. PROC FREQ of donor gender by patient gender. Below is SAS code for exercise 4.1-1. options label nodate nonumber; proc freq data=liver; tables abo*abo_don; format cod li_cod. diag li_dgn. grf_stat $graph_stat. ethcat ethcat. ethcat_don ethcat. px_stat $pxstat. end_stat status. don_ty $don_type. abo $abotype. abo_don $abotype. gender $gender. gender_don $gender. ; title 'Blood type of donor by recipient'; run; Below is the PROC FREQ output for exercise 4.1-1. Blood type of donor by recipient The FREQ Procedure Table of abo by abo_don abo(Blood type of patient) abo_don(Doners blood type) Frequency‚ Percent ‚ Row Pct ‚ Col Pct ‚Type A ‚Type A1 ‚Type A1B‚Type A2 ‚Type A2B‚Type AB ‚Type B ‚Type O ‚Type UNK‚ Total ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Type A ‚ 16072 ‚ 13759 ‚ 0 ‚ 877 ‚ 0 ‚ 49 ‚ 66 ‚ 3492 ‚ 8 ‚ 34323 ‚ 18.14 ‚ 15.53 ‚ 0.00 ‚ 0.99 ‚ 0.00 ‚ 0.06 ‚ 0.07 ‚ 3.94 ‚ 0.01 ‚ 38.73 ‚ 46.83 ‚ 40.09 ‚ 0.00 ‚ 2.56 ‚ 0.00 ‚ 0.14 ‚ 0.19 ‚ 10.17 ‚ 0.02 ‚ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 201.
    Lecture 4-OPTN LiverTransplants 66 ‚ 93.88 ‚ 94.71 ‚ 0.00 ‚ 76.59 ‚ 0.00 ‚ 2.24 ‚ 0.69 ‚ 7.99 ‚ 40.00 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Type A1 ‚ 126 ‚ 74 ‚ 0 ‚ 16 ‚ 0 ‚ 0 ‚ 0 ‚ 9 ‚ 0 ‚ 225 ‚ 0.14 ‚ 0.08 ‚ 0.00 ‚ 0.02 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.01 ‚ 0.00 ‚ 0.25 ‚ 56.00 ‚ 32.89 ‚ 0.00 ‚ 7.11 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 4.00 ‚ 0.00 ‚ ‚ 0.74 ‚ 0.51 ‚ 0.00 ‚ 1.40 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.02 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ abo(Blood type of patient) abo_don(Doners blood type) Frequency‚ Percent ‚ Row Pct ‚ Col Pct ‚Type A ‚Type A1 ‚Type A1B‚Type A2 ‚Type A2B‚Type AB ‚Type B ‚Type O ‚Type UNK‚ Total Type A1B ‚ 2 ‚ 0 ‚ 2 ‚ 1 ‚ 0 ‚ 4 ‚ 2 ‚ 1 ‚ 0 ‚ 12 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.01 ‚ 16.67 ‚ 0.00 ‚ 16.67 ‚ 8.33 ‚ 0.00 ‚ 33.33 ‚ 16.67 ‚ 8.33 ‚ 0.00 ‚ ‚ 0.01 ‚ 0.00 ‚ 0.74 ‚ 0.09 ‚ 0.00 ‚ 0.18 ‚ 0.02 ‚ 0.00 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Type A2 ‚ 25 ‚ 17 ‚ 0 ‚ 2 ‚ 0 ‚ 0 ‚ 0 ‚ 2 ‚ 0 ‚ 46 ‚ 0.03 ‚ 0.02 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.05 ‚ 54.35 ‚ 36.96 ‚ 0.00 ‚ 4.35 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 4.35 ‚ 0.00 ‚ ‚ 0.15 ‚ 0.12 ‚ 0.00 ‚ 0.17 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Type A2B ‚ 3 ‚ 1 ‚ 2 ‚ 0 ‚ 1 ‚ 2 ‚ 1 ‚ 2 ‚ 0 ‚ 12 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.01 ‚ 25.00 ‚ 8.33 ‚ 16.67 ‚ 0.00 ‚ 8.33 ‚ 16.67 ‚ 8.33 ‚ 16.67 ‚ 0.00 ‚ ‚ 0.02 ‚ 0.01 ‚ 0.74 ‚ 0.00 ‚ 1.23 ‚ 0.09 ‚ 0.01 ‚ 0.00 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Type AB ‚ 478 ‚ 373 ‚ 262 ‚ 24 ‚ 79 ‚ 2046 ‚ 690 ‚ 271 ‚ 3 ‚ 4226 ‚ 0.54 ‚ 0.42 ‚ 0.30 ‚ 0.03 ‚ 0.09 ‚ 2.31 ‚ 0.78 ‚ 0.31 ‚ 0.00 ‚ 4.77 ‚ 11.31 ‚ 8.83 ‚ 6.20 ‚ 0.57 ‚ 1.87 ‚ 48.41 ‚ 16.33 ‚ 6.41 ‚ 0.07 ‚ ‚ 2.79 ‚ 2.57 ‚ 97.04 ‚ 2.10 ‚ 97.53 ‚ 93.68 ‚ 7.23 ‚ 0.62 ‚ 15.00 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Type B ‚ 68 ‚ 45 ‚ 2 ‚ 7 ‚ 1 ‚ 33 ‚ 8670 ‚ 2457 ‚ 2 ‚ 11285 ‚ 0.08 ‚ 0.05 ‚ 0.00 ‚ 0.01 ‚ 0.00 ‚ 0.04 ‚ 9.78 ‚ 2.77 ‚ 0.00 ‚ 12.74 ‚ 0.60 ‚ 0.40 ‚ 0.02 ‚ 0.06 ‚ 0.01 ‚ 0.29 ‚ 76.83 ‚ 21.77 ‚ 0.02 ‚ ‚ 0.40 ‚ 0.31 ‚ 0.74 ‚ 0.61 ‚ 1.23 ‚ 1.51 ‚ 90.82 ‚ 5.62 ‚ 10.00 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Type O ‚ 344 ‚ 258 ‚ 2 ‚ 218 ‚ 0 ‚ 50 ‚ 117 ‚ 37483 ‚ 7 ‚ 38479 ‚ 0.39 ‚ 0.29 ‚ 0.00 ‚ 0.25 ‚ 0.00 ‚ 0.06 ‚ 0.13 ‚ 42.30 ‚ 0.01 ‚ 43.43 ‚ 0.89 ‚ 0.67 ‚ 0.01 ‚ 0.57 ‚ 0.00 ‚ 0.13 ‚ 0.30 ‚ 97.41 ‚ 0.02 ‚ ‚ 2.01 ‚ 1.78 ‚ 0.74 ‚ 19.04 ‚ 0.00 ‚ 2.29 ‚ 1.23 ‚ 85.74 ‚ 35.00 ‚ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 202.
    Lecture 4-OPTN LiverTransplants 67 ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Type UNK ‚ 1 ‚ 0 ‚ 0 ‚ 0 ‚ 0 ‚ 0 ‚ 0 ‚ 1 ‚ 0 ‚ 2 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 50.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 50.00 ‚ 0.00 ‚ ‚ 0.01 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 17119 14527 270 1145 81 2184 9546 43718 20 88610 19.32 16.39 0.30 1.29 0.09 2.46 10.77 49.34 0.02 100.00 Frequency Missing = 26 Below is SAS code for exercise 4.1-2. options label nodate nonumber; proc freq data=liver order=freq; tables diag*ethcat; format cod li_cod. diag li_dgn. grf_stat $graph_stat. ethcat ethcat. ethcat_don ethcat. px_stat $pxstat. end_stat status. don_ty $don_type. abo $abotype. abo_don $abotype. gender $gender. gender_don $gender. ; title 'Principal diagnosis in rank order by race'; run; Below is the partial PROC FREQ output for exercise 4.1-2. Principal Diagnosis by Race The FREQ Procedure Table of diag by ethcat diag(Diagnosis at transplant) ethcat(Patints ethnicity) Frequency ‚ Percent ‚ Row Pct ‚ Col Pct ‚1 White ‚4 Hispan‚2 Black ‚5 Asian ‚6 Amer I‚9 Multir‚7 Native‚998 Unkn‚ Total ‚ ‚ic ‚ ‚ ‚nd/Alask‚acial ‚ Hawaiia‚own ‚ ‚ ‚ ‚ ‚ ‚a Native‚ ‚n/other ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚Pacific ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚Islander‚ ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4204 Cirrhosis: ‚ 14115 ‚ 2611 ‚ 1572 ‚ 535 ‚ 64 ‚ 71 ‚ 24 ‚ 6 ‚ 18998 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 203.
    Lecture 4-OPTN LiverTransplants 68 Type C ‚ 15.95 ‚ 2.95 ‚ 1.78 ‚ 0.60 ‚ 0.07 ‚ 0.08 ‚ 0.03 ‚ 0.01 ‚ 21.46 ‚ 74.30 ‚ 13.74 ‚ 8.27 ‚ 2.82 ‚ 0.34 ‚ 0.37 ‚ 0.13 ‚ 0.03 ‚ ‚ 21.38 ‚ 25.35 ‚ 19.96 ‚ 16.40 ‚ 13.85 ‚ 19.56 ‚ 15.79 ‚ 6.98 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4215 Alcoholic C ‚ 8949 ‚ 1102 ‚ 380 ‚ 81 ‚ 76 ‚ 16 ‚ 6 ‚ 13 ‚ 10623 irrhosis ‚ 10.11 ‚ 1.24 ‚ 0.43 ‚ 0.09 ‚ 0.09 ‚ 0.02 ‚ 0.01 ‚ 0.01 ‚ 12.00 ‚ 84.24 ‚ 10.37 ‚ 3.58 ‚ 0.76 ‚ 0.72 ‚ 0.15 ‚ 0.06 ‚ 0.12 ‚ ‚ 13.56 ‚ 10.70 ‚ 4.82 ‚ 2.48 ‚ 16.45 ‚ 4.41 ‚ 3.95 ‚ 15.12 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4220 Primary Bil ‚ 3896 ‚ 475 ‚ 192 ‚ 68 ‚ 33 ‚ 17 ‚ 7 ‚ 8 ‚ 4696 iary Cirrhosis ( ‚ 4.40 ‚ 0.54 ‚ 0.22 ‚ 0.08 ‚ 0.04 ‚ 0.02 ‚ 0.01 ‚ 0.01 ‚ 5.30 Pbc) ‚ 82.96 ‚ 10.11 ‚ 4.09 ‚ 1.45 ‚ 0.70 ‚ 0.36 ‚ 0.15 ‚ 0.17 ‚ ‚ 5.90 ‚ 4.61 ‚ 2.44 ‚ 2.08 ‚ 7.14 ‚ 4.68 ‚ 4.61 ‚ 9.30 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4213 Cirrhosis: ‚ 3578 ‚ 558 ‚ 260 ‚ 90 ‚ 16 ‚ 6 ‚ 4 ‚ 5 ‚ 4517 Cryptogenic (Idi ‚ 4.04 ‚ 0.63 ‚ 0.29 ‚ 0.10 ‚ 0.02 ‚ 0.01 ‚ 0.00 ‚ 0.01 ‚ 5.10 opathic) ‚ 79.21 ‚ 12.35 ‚ 5.76 ‚ 1.99 ‚ 0.35 ‚ 0.13 ‚ 0.09 ‚ 0.11 ‚ ‚ 5.42 ‚ 5.42 ‚ 3.30 ‚ 2.76 ‚ 3.46 ‚ 1.65 ‚ 2.63 ‚ 5.81 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4216 Alcoholic C ‚ 3346 ‚ 583 ‚ 341 ‚ 31 ‚ 32 ‚ 14 ‚ 3 ‚ 0 ‚ 4350 irrhosis With He ‚ 3.78 ‚ 0.66 ‚ 0.39 ‚ 0.04 ‚ 0.04 ‚ 0.02 ‚ 0.00 ‚ 0.00 ‚ 4.91 patitis C ‚ 76.92 ‚ 13.40 ‚ 7.84 ‚ 0.71 ‚ 0.74 ‚ 0.32 ‚ 0.07 ‚ 0.00 ‚ ‚ 5.07 ‚ 5.66 ‚ 4.33 ‚ 0.95 ‚ 6.93 ‚ 3.86 ‚ 1.97 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 999 Other Speci ‚ 2380 ‚ 432 ‚ 427 ‚ 155 ‚ 13 ‚ 25 ‚ 8 ‚ 0 ‚ 3440 fy ‚ 2.69 ‚ 0.49 ‚ 0.48 ‚ 0.18 ‚ 0.01 ‚ 0.03 ‚ 0.01 ‚ 0.00 ‚ 3.89 ‚ 69.19 ‚ 12.56 ‚ 12.41 ‚ 4.51 ‚ 0.38 ‚ 0.73 ‚ 0.23 ‚ 0.00 ‚ ‚ 3.61 ‚ 4.19 ‚ 5.42 ‚ 4.75 ‚ 2.81 ‚ 6.89 ‚ 5.26 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4212 Cirrhosis: ‚ 2087 ‚ 390 ‚ 546 ‚ 49 ‚ 20 ‚ 11 ‚ 6 ‚ 1 ‚ 3110 Autoimmune ‚ 2.36 ‚ 0.44 ‚ 0.62 ‚ 0.06 ‚ 0.02 ‚ 0.01 ‚ 0.01 ‚ 0.00 ‚ 3.51 ‚ 67.11 ‚ 12.54 ‚ 17.56 ‚ 1.58 ‚ 0.64 ‚ 0.35 ‚ 0.19 ‚ 0.03 ‚ ‚ 3.16 ‚ 3.79 ‚ 6.93 ‚ 1.50 ‚ 4.33 ‚ 3.03 ‚ 3.95 ‚ 1.16 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4270 Biliary Atr ‚ 1703 ‚ 500 ‚ 640 ‚ 158 ‚ 23 ‚ 54 ‚ 17 ‚ 3 ‚ 3098 esia: Extrahepat ‚ 1.92 ‚ 0.56 ‚ 0.72 ‚ 0.18 ‚ 0.03 ‚ 0.06 ‚ 0.02 ‚ 0.00 ‚ 3.50 ic ‚ 54.97 ‚ 16.14 ‚ 20.66 ‚ 5.10 ‚ 0.74 ‚ 1.74 ‚ 0.55 ‚ 0.10 ‚ ‚ 2.58 ‚ 4.85 ‚ 8.13 ‚ 4.84 ‚ 4.98 ‚ 14.88 ‚ 11.18 ‚ 3.49 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4401 Plm: Hepato ‚ 2020 ‚ 498 ‚ 214 ‚ 284 ‚ 21 ‚ 16 ‚ 4 ‚ 4 ‚ 3061 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 204.
    Lecture 4-OPTN LiverTransplants 69 ma (Hcc) And Cir ‚ 2.28 ‚ 0.56 ‚ 0.24 ‚ 0.32 ‚ 0.02 ‚ 0.02 ‚ 0.00 ‚ 0.00 ‚ 3.46 rhosis ‚ 65.99 ‚ 16.27 ‚ 6.99 ‚ 9.28 ‚ 0.69 ‚ 0.52 ‚ 0.13 ‚ 0.13 ‚ ‚ 3.06 ‚ 4.83 ‚ 2.72 ‚ 8.70 ‚ 4.55 ‚ 4.41 ‚ 2.63 ‚ 4.65 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4208 Cirrhosis: ‚ 2354 ‚ 358 ‚ 169 ‚ 54 ‚ 22 ‚ 13 ‚ 4 ‚ 5 ‚ 2979 Cryptogenic- Idi ‚ 2.66 ‚ 0.40 ‚ 0.19 ‚ 0.06 ‚ 0.02 ‚ 0.01 ‚ 0.00 ‚ 0.01 ‚ 3.37 opathic ‚ 79.02 ‚ 12.02 ‚ 5.67 ‚ 1.81 ‚ 0.74 ‚ 0.44 ‚ 0.13 ‚ 0.17 ‚ ‚ 3.57 ‚ 3.48 ‚ 2.15 ‚ 1.65 ‚ 4.76 ‚ 3.58 ‚ 2.63 ‚ 5.81 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4202 Cirrhosis: ‚ 1661 ‚ 175 ‚ 209 ‚ 816 ‚ 9 ‚ 14 ‚ 23 ‚ 7 ‚ 2914 Type B- Hbsag+ ‚ 1.88 ‚ 0.20 ‚ 0.24 ‚ 0.92 ‚ 0.01 ‚ 0.02 ‚ 0.03 ‚ 0.01 ‚ 3.29 ‚ 57.00 ‚ 6.01 ‚ 7.17 ‚ 28.00 ‚ 0.31 ‚ 0.48 ‚ 0.79 ‚ 0.24 ‚ ‚ 2.52 ‚ 1.70 ‚ 2.65 ‚ 25.01 ‚ 1.95 ‚ 3.86 ‚ 15.13 ‚ 8.14 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4108 Ahn: Etiolo ‚ 1464 ‚ 390 ‚ 391 ‚ 69 ‚ 17 ‚ 17 ‚ 4 ‚ 3 ‚ 2355 gy Unknown ‚ 1.65 ‚ 0.44 ‚ 0.44 ‚ 0.08 ‚ 0.02 ‚ 0.02 ‚ 0.00 ‚ 0.00 ‚ 2.66 ‚ 62.17 ‚ 16.56 ‚ 16.60 ‚ 2.93 ‚ 0.72 ‚ 0.72 ‚ 0.17 ‚ 0.13 ‚ ‚ 2.22 ‚ 3.79 ‚ 4.96 ‚ 2.11 ‚ 3.68 ‚ 4.68 ‚ 2.63 ‚ 3.49 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 66019 10300 7876 3263 462 363 152 86 88521 74.58 11.64 8.90 3.69 0.52 0.41 0.17 0.10 100.00 Below is SAS code for exercise 4.1-3. options label nodate nonumber; proc freq data=liver order=freq; tables end_stat*ethcat; format cod li_cod. diag li_dgn. grf_stat $graph_stat. ethcat ethcat. ethcat_don ethcat. px_stat $pxstat. end_stat status. don_ty $don_type. abo $abotype. abo_don $abotype. gender $gender. gender_don $gender. ; title 'Status at transplant in rank order(order=freq) by race'; run; Below is the partial PROC FREQ output for exercise 4.1-3. Status at transplant in rank order(order=freq) by race Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 205.
    Lecture 4-OPTN LiverTransplants 70 The FREQ Procedure Table of end_stat by ethcat end_stat(Status at transplant) ethcat(Patints ethnicity) Frequency ‚ Percent ‚ Row Pct ‚ Col Pct ‚1 White ‚4 Hispan‚2 Black ‚5 Asian ‚6 Amer I‚9 Multir‚7 Native‚998 Unkn‚ Total ‚ ‚ic ‚ ‚ ‚nd/Alask‚acial ‚ Hawaiia‚own ‚ ‚ ‚ ‚ ‚ ‚a Native‚ ‚n/other ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚Pacific ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚Islander‚ ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 6040LI: Status 3 ‚ 12022 ‚ 1463 ‚ 1067 ‚ 441 ‚ 88 ‚ 46 ‚ 25 ‚ 25 ‚ 15177 ‚ 13.74 ‚ 1.67 ‚ 1.22 ‚ 0.50 ‚ 0.10 ‚ 0.05 ‚ 0.03 ‚ 0.03 ‚ 17.35 ‚ 79.21 ‚ 9.64 ‚ 7.03 ‚ 2.91 ‚ 0.58 ‚ 0.30 ‚ 0.16 ‚ 0.16 ‚ ‚ 18.43 ‚ 14.34 ‚ 13.71 ‚ 13.64 ‚ 19.34 ‚ 12.85 ‚ 16.67 ‚ 30.12 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 6030LI: Status 2 ‚ 9101 ‚ 1269 ‚ 942 ‚ 351 ‚ 55 ‚ 36 ‚ 32 ‚ 0 ‚ 11786 B ‚ 10.40 ‚ 1.45 ‚ 1.08 ‚ 0.40 ‚ 0.06 ‚ 0.04 ‚ 0.04 ‚ 0.00 ‚ 13.47 ‚ 77.22 ‚ 10.77 ‚ 7.99 ‚ 2.98 ‚ 0.47 ‚ 0.31 ‚ 0.27 ‚ 0.00 ‚ ‚ 13.96 ‚ 12.44 ‚ 12.10 ‚ 10.86 ‚ 12.09 ‚ 10.06 ‚ 21.33 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 6010 LI: Status ‚ 7652 ‚ 1434 ‚ 1377 ‚ 473 ‚ 67 ‚ 63 ‚ 29 ‚ 20 ‚ 11115 1 ‚ 8.75 ‚ 1.64 ‚ 1.57 ‚ 0.54 ‚ 0.08 ‚ 0.07 ‚ 0.03 ‚ 0.02 ‚ 12.71 ‚ 68.84 ‚ 12.90 ‚ 12.39 ‚ 4.26 ‚ 0.60 ‚ 0.57 ‚ 0.26 ‚ 0.18 ‚ ‚ 11.73 ‚ 14.05 ‚ 17.69 ‚ 14.63 ‚ 14.73 ‚ 17.60 ‚ 19.33 ‚ 24.10 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 6002 LI: Old sta ‚ 5816 ‚ 721 ‚ 617 ‚ 229 ‚ 40 ‚ 34 ‚ 6 ‚ 20 ‚ 7483 tus 2 ‚ 6.65 ‚ 0.82 ‚ 0.71 ‚ 0.26 ‚ 0.05 ‚ 0.04 ‚ 0.01 ‚ 0.02 ‚ 8.55 ‚ 77.72 ‚ 9.64 ‚ 8.25 ‚ 3.06 ‚ 0.53 ‚ 0.45 ‚ 0.08 ‚ 0.27 ‚ ‚ 8.92 ‚ 7.07 ‚ 7.93 ‚ 7.09 ‚ 8.79 ‚ 9.50 ‚ 4.00 ‚ 24.10 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 6020 LI: Status ‚ 3084 ‚ 610 ‚ 297 ‚ 162 ‚ 27 ‚ 11 ‚ 8 ‚ 0 ‚ 4199 2A ‚ 3.53 ‚ 0.70 ‚ 0.34 ‚ 0.19 ‚ 0.03 ‚ 0.01 ‚ 0.01 ‚ 0.00 ‚ 4.80 ‚ 73.45 ‚ 14.53 ‚ 7.07 ‚ 3.86 ‚ 0.64 ‚ 0.26 ‚ 0.19 ‚ 0.00 ‚ end_stat(Status at transplant) ethcat(Patints ethnicity) Frequency ‚ Percent ‚ Row Pct ‚ Col Pct ‚1 White ‚4 Hispan‚2 Black ‚5 Asian ‚6 Amer I‚9 Multir‚7 Native‚998 Unkn‚ Total Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 206.
    Lecture 4-OPTN LiverTransplants 71 ‚ ‚ic ‚ ‚ ‚nd/Alask‚acial ‚ Hawaiia‚own ‚ ‚ ‚ ‚ ‚ ‚a Native‚ ‚n/other ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚Pacific ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚Islander‚ ‚ ‚ 4.73 ‚ 5.98 ‚ 3.82 ‚ 5.01 ‚ 5.93 ‚ 3.07 ‚ 5.33 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 6222LI: MELD/PEL ‚ 2491 ‚ 348 ‚ 305 ‚ 190 ‚ 10 ‚ 6 ‚ 5 ‚ 0 ‚ 3355 D 22 ‚ 2.85 ‚ 0.40 ‚ 0.35 ‚ 0.22 ‚ 0.01 ‚ 0.01 ‚ 0.01 ‚ 0.00 ‚ 3.84 ‚ 74.25 ‚ 10.37 ‚ 9.09 ‚ 5.66 ‚ 0.30 ‚ 0.18 ‚ 0.15 ‚ 0.00 ‚ ‚ 3.82 ‚ 3.41 ‚ 3.92 ‚ 5.88 ‚ 2.20 ‚ 1.68 ‚ 3.33 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 6224LI: MELD/PEL ‚ 2205 ‚ 335 ‚ 302 ‚ 138 ‚ 11 ‚ 15 ‚ 5 ‚ 0 ‚ 3011 D 24 ‚ 2.52 ‚ 0.38 ‚ 0.35 ‚ 0.16 ‚ 0.01 ‚ 0.02 ‚ 0.01 ‚ 0.00 ‚ 3.44 ‚ 73.23 ‚ 11.13 ‚ 10.03 ‚ 4.58 ‚ 0.37 ‚ 0.50 ‚ 0.17 ‚ 0.00 ‚ ‚ 3.38 ‚ 3.28 ‚ 3.88 ‚ 4.27 ‚ 2.42 ‚ 4.19 ‚ 3.33 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 6999LI: Temporar ‚ 1682 ‚ 199 ‚ 188 ‚ 72 ‚ 20 ‚ 7 ‚ 0 ‚ 17 ‚ 2185 ily Inactive ‚ 1.92 ‚ 0.23 ‚ 0.21 ‚ 0.08 ‚ 0.02 ‚ 0.01 ‚ 0.00 ‚ 0.02 ‚ 2.50 ‚ 76.98 ‚ 9.11 ‚ 8.60 ‚ 3.30 ‚ 0.92 ‚ 0.32 ‚ 0.00 ‚ 0.78 ‚ ‚ 2.58 ‚ 1.95 ‚ 2.42 ‚ 2.23 ‚ 4.40 ‚ 1.96 ‚ 0.00 ‚ 20.48 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 6240LI: MELD/PEL ‚ 1090 ‚ 342 ‚ 202 ‚ 102 ‚ 13 ‚ 8 ‚ 3 ‚ 0 ‚ 1760 D 40 ‚ 1.25 ‚ 0.39 ‚ 0.23 ‚ 0.12 ‚ 0.01 ‚ 0.01 ‚ 0.00 ‚ 0.00 ‚ 2.01 ‚ 61.93 ‚ 19.43 ‚ 11.48 ‚ 5.80 ‚ 0.74 ‚ 0.45 ‚ 0.17 ‚ 0.00 ‚ ‚ 1.67 ‚ 3.35 ‚ 2.60 ‚ 3.16 ‚ 2.86 ‚ 2.23 ‚ 2.00 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 6229LI: MELD/PEL ‚ 1168 ‚ 233 ‚ 148 ‚ 122 ‚ 6 ‚ 12 ‚ 2 ‚ 0 ‚ 1691 D 29 ‚ 1.34 ‚ 0.27 ‚ 0.17 ‚ 0.14 ‚ 0.01 ‚ 0.01 ‚ 0.00 ‚ 0.00 ‚ 1.93 ‚ 69.07 ‚ 13.78 ‚ 8.75 ‚ 7.21 ‚ 0.35 ‚ 0.71 ‚ 0.12 ‚ 0.00 ‚ ‚ 1.79 ‚ 2.28 ‚ 1.90 ‚ 3.77 ‚ 1.32 ‚ 3.35 ‚ 1.33 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 6225LI: MELD/PEL ‚ 1094 ‚ 245 ‚ 139 ‚ 123 ‚ 13 ‚ 6 ‚ 1 ‚ 0 ‚ 1621 D 25 ‚ 1.25 ‚ 0.28 ‚ 0.16 ‚ 0.14 ‚ 0.01 ‚ 0.01 ‚ 0.00 ‚ 0.00 ‚ 1.85 ‚ 67.49 ‚ 15.11 ‚ 8.57 ‚ 7.59 ‚ 0.80 ‚ 0.37 ‚ 0.06 ‚ 0.00 ‚ ‚ 1.68 ‚ 2.40 ‚ 1.79 ‚ 3.81 ‚ 2.86 ‚ 1.68 ‚ 0.67 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 6218LI: MELD/PEL ‚ 1208 ‚ 173 ‚ 105 ‚ 27 ‚ 10 ‚ 7 ‚ 2 ‚ 0 ‚ 1532 D 18 ‚ 1.38 ‚ 0.20 ‚ 0.12 ‚ 0.03 ‚ 0.01 ‚ 0.01 ‚ 0.00 ‚ 0.00 ‚ 1.75 ‚ 78.85 ‚ 11.29 ‚ 6.85 ‚ 1.76 ‚ 0.65 ‚ 0.46 ‚ 0.13 ‚ 0.00 ‚ ‚ 1.85 ‚ 1.70 ‚ 1.35 ‚ 0.84 ‚ 2.20 ‚ 1.96 ‚ 1.33 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 65216 10203 7783 3232 455 358 150 83 87480 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 207.
    Lecture 4-OPTN LiverTransplants 72 74.55 11.66 8.90 3.69 0.52 0.41 0.17 0.09 100.00 Below is SAS code for exercise 4.1-4. options label nodate nonumber; proc freq data=liver order=freq; tables cod*ethcat; format cod li_cod. diag li_dgn. grf_stat $graph_stat. ethcat ethcat. ethcat_don ethcat. px_stat $pxstat. end_stat status. don_ty $don_type. abo $abotype. abo_don $abotype. gender $gender. gender_don $gender. ; title 'Cause of death in rank order(order=freq) by race'; run; Below is the partial PROC FREQ output for exercise 4.1-4. Cause of death in rank order(order=freq) by race The FREQ Procedure Table of cod by ethcat cod(Cause of death) ethcat(Patints ethnicity) Frequency ‚ Percent ‚ Row Pct ‚ Col Pct ‚1 White ‚4 Hispan‚2 Black ‚5 Asian ‚6 Amer I‚9 Multir‚7 Native‚998 Unkn‚ Total ‚ ‚ic ‚ ‚ ‚nd/Alask‚acial ‚ Hawaiia‚own ‚ ‚ ‚ ‚ ‚ ‚a Native‚ ‚n/other ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚Pacific ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚Islander‚ ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4802 Inf: Gener ‚ 2437 ‚ 297 ‚ 323 ‚ 77 ‚ 22 ‚ 7 ‚ 5 ‚ 11 ‚ 3179 alized Sepsis ‚ 9.57 ‚ 1.17 ‚ 1.27 ‚ 0.30 ‚ 0.09 ‚ 0.03 ‚ 0.02 ‚ 0.04 ‚ 12.48 ‚ 76.66 ‚ 9.34 ‚ 10.16 ‚ 2.42 ‚ 0.69 ‚ 0.22 ‚ 0.16 ‚ 0.35 ‚ ‚ 12.52 ‚ 12.02 ‚ 13.40 ‚ 9.60 ‚ 14.47 ‚ 8.05 ‚ 10.64 ‚ 31.43 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 998 Unknown ‚ 2244 ‚ 327 ‚ 253 ‚ 85 ‚ 11 ‚ 11 ‚ 4 ‚ 1 ‚ 2936 ‚ 8.81 ‚ 1.28 ‚ 0.99 ‚ 0.33 ‚ 0.04 ‚ 0.04 ‚ 0.02 ‚ 0.00 ‚ 11.52 ‚ 76.43 ‚ 11.14 ‚ 8.62 ‚ 2.90 ‚ 0.37 ‚ 0.37 ‚ 0.14 ‚ 0.03 ‚ ‚ 11.52 ‚ 13.23 ‚ 10.50 ‚ 10.60 ‚ 7.24 ‚ 12.64 ‚ 8.51 ‚ 2.86 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4660 Multiple O ‚ 1639 ‚ 217 ‚ 265 ‚ 71 ‚ 15 ‚ 10 ‚ 7 ‚ 1 ‚ 2225 rgan System Fail ‚ 6.43 ‚ 0.85 ‚ 1.04 ‚ 0.28 ‚ 0.06 ‚ 0.04 ‚ 0.03 ‚ 0.00 ‚ 8.73 ure ‚ 73.66 ‚ 9.75 ‚ 11.91 ‚ 3.19 ‚ 0.67 ‚ 0.45 ‚ 0.31 ‚ 0.04 ‚ ‚ 8.42 ‚ 8.78 ‚ 11.00 ‚ 8.85 ‚ 9.87 ‚ 11.49 ‚ 14.89 ‚ 2.86 ‚ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 208.
    Lecture 4-OPTN LiverTransplants 73 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 999 Other Specif ‚ 1583 ‚ 244 ‚ 233 ‚ 71 ‚ 16 ‚ 9 ‚ 6 ‚ 1 ‚ 2163 y ‚ 6.21 ‚ 0.96 ‚ 0.91 ‚ 0.28 ‚ 0.06 ‚ 0.04 ‚ 0.02 ‚ 0.00 ‚ 8.49 ‚ 73.19 ‚ 11.28 ‚ 10.77 ‚ 3.28 ‚ 0.74 ‚ 0.42 ‚ 0.28 ‚ 0.05 ‚ ‚ 8.13 ‚ 9.87 ‚ 9.67 ‚ 8.85 ‚ 10.53 ‚ 10.34 ‚ 12.77 ‚ 2.86 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4603 Graft Fail ‚ 864 ‚ 150 ‚ 127 ‚ 52 ‚ 5 ‚ 4 ‚ 1 ‚ 2 ‚ 1205 ure:Hepatitis ‚ 3.39 ‚ 0.59 ‚ 0.50 ‚ 0.20 ‚ 0.02 ‚ 0.02 ‚ 0.00 ‚ 0.01 ‚ 4.73 ‚ 71.70 ‚ 12.45 ‚ 10.54 ‚ 4.32 ‚ 0.41 ‚ 0.33 ‚ 0.08 ‚ 0.17 ‚ ‚ 4.44 ‚ 6.07 ‚ 5.27 ‚ 6.48 ‚ 3.29 ‚ 4.60 ‚ 2.13 ‚ 5.71 ‚ cod(Cause of death) ethcat(Patints ethnicity) Frequency ‚ Percent ‚ Row Pct ‚ Col Pct ‚1 White ‚4 Hispan‚2 Black ‚5 Asian ‚6 Amer I‚9 Multir‚7 Native‚998 Unkn‚ Total ‚ ‚ic ‚ ‚ ‚nd/Alask‚acial ‚ Hawaiia‚own ‚ ‚ ‚ ‚ ‚ ‚a Native‚ ‚n/other ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚Pacific ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚Islander‚ ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4851 Malignancy ‚ 958 ‚ 100 ‚ 55 ‚ 54 ‚ 6 ‚ 0 ‚ 1 ‚ 2 ‚ 1176 : Metastatic Oth ‚ 3.76 ‚ 0.39 ‚ 0.22 ‚ 0.21 ‚ 0.02 ‚ 0.00 ‚ 0.00 ‚ 0.01 ‚ 4.62 er Specify ‚ 81.46 ‚ 8.50 ‚ 4.68 ‚ 4.59 ‚ 0.51 ‚ 0.00 ‚ 0.09 ‚ 0.17 ‚ ‚ 4.92 ‚ 4.05 ‚ 2.28 ‚ 6.73 ‚ 3.95 ‚ 0.00 ‚ 2.13 ‚ 5.71 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4626 Cardiac Ar ‚ 618 ‚ 93 ‚ 91 ‚ 29 ‚ 1 ‚ 4 ‚ 2 ‚ 0 ‚ 838 rest ‚ 2.43 ‚ 0.37 ‚ 0.36 ‚ 0.11 ‚ 0.00 ‚ 0.02 ‚ 0.01 ‚ 0.00 ‚ 3.29 ‚ 73.75 ‚ 11.10 ‚ 10.86 ‚ 3.46 ‚ 0.12 ‚ 0.48 ‚ 0.24 ‚ 0.00 ‚ ‚ 3.17 ‚ 3.76 ‚ 3.78 ‚ 3.62 ‚ 0.66 ‚ 4.60 ‚ 4.26 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4624 Cardio: My ‚ 606 ‚ 64 ‚ 35 ‚ 13 ‚ 3 ‚ 4 ‚ 0 ‚ 1 ‚ 726 ocardial Infarct ‚ 2.38 ‚ 0.25 ‚ 0.14 ‚ 0.05 ‚ 0.01 ‚ 0.02 ‚ 0.00 ‚ 0.00 ‚ 2.85 ion ‚ 83.47 ‚ 8.82 ‚ 4.82 ‚ 1.79 ‚ 0.41 ‚ 0.55 ‚ 0.00 ‚ 0.14 ‚ ‚ 3.11 ‚ 2.59 ‚ 1.45 ‚ 1.62 ‚ 1.97 ‚ 4.60 ‚ 0.00 ‚ 2.86 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4600 Graft Fail ‚ 486 ‚ 71 ‚ 89 ‚ 28 ‚ 4 ‚ 4 ‚ 1 ‚ 2 ‚ 685 ure:Primary ‚ 1.91 ‚ 0.28 ‚ 0.35 ‚ 0.11 ‚ 0.02 ‚ 0.02 ‚ 0.00 ‚ 0.01 ‚ 2.69 ‚ 70.95 ‚ 10.36 ‚ 12.99 ‚ 4.09 ‚ 0.58 ‚ 0.58 ‚ 0.15 ‚ 0.29 ‚ ‚ 2.50 ‚ 2.87 ‚ 3.69 ‚ 3.49 ‚ 2.63 ‚ 4.60 ‚ 2.13 ‚ 5.71 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4850 Malignancy ‚ 499 ‚ 33 ‚ 32 ‚ 18 ‚ 5 ‚ 0 ‚ 2 ‚ 1 ‚ 590 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 209.
    Lecture 4-OPTN LiverTransplants 74 : Primary Other ‚ 1.96 ‚ 0.13 ‚ 0.13 ‚ 0.07 ‚ 0.02 ‚ 0.00 ‚ 0.01 ‚ 0.00 ‚ 2.32 Specify ‚ 84.58 ‚ 5.59 ‚ 5.42 ‚ 3.05 ‚ 0.85 ‚ 0.00 ‚ 0.34 ‚ 0.17 ‚ ‚ 2.56 ‚ 1.34 ‚ 1.33 ‚ 2.24 ‚ 3.29 ‚ 0.00 ‚ 4.26 ‚ 2.86 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4645 Respirator ‚ 429 ‚ 49 ‚ 43 ‚ 14 ‚ 2 ‚ 2 ‚ 0 ‚ 1 ‚ 540 y Failure: Other ‚ 1.68 ‚ 0.19 ‚ 0.17 ‚ 0.05 ‚ 0.01 ‚ 0.01 ‚ 0.00 ‚ 0.00 ‚ 2.12 Specify Cause ‚ 79.44 ‚ 9.07 ‚ 7.96 ‚ 2.59 ‚ 0.37 ‚ 0.37 ‚ 0.00 ‚ 0.19 ‚ ‚ 2.20 ‚ 1.98 ‚ 1.78 ‚ 1.75 ‚ 1.32 ‚ 2.30 ‚ 0.00 ‚ 2.86 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4650 Renal Fail ‚ 418 ‚ 40 ‚ 43 ‚ 9 ‚ 3 ‚ 1 ‚ 1 ‚ 1 ‚ 516 ure ‚ 1.64 ‚ 0.16 ‚ 0.17 ‚ 0.04 ‚ 0.01 ‚ 0.00 ‚ 0.00 ‚ 0.00 ‚ 2.03 ‚ 81.01 ‚ 7.75 ‚ 8.33 ‚ 1.74 ‚ 0.58 ‚ 0.19 ‚ 0.19 ‚ 0.19 ‚ ‚ 2.15 ‚ 1.62 ‚ 1.78 ‚ 1.12 ‚ 1.97 ‚ 1.15 ‚ 2.13 ‚ 2.86 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 19472 2471 2410 802 152 87 47 35 25476 76.43 9.70 9.46 3.15 0.60 0.34 0.18 0.14 100.00 Below is SAS code for exercise 4.1-5. options label nodate nonumber; proc freq data=liver order=freq; tables ethcat*px_stat; format cod li_cod. diag li_dgn. grf_stat $graph_stat. ethcat ethcat. ethcat_don ethcat. px_stat $pxstat. end_stat status. don_ty $don_type. abo $abotype. abo_don $abotype. gender $gender. gender_don $gender. ; title 'Race by patient status in rank order(order=freq)'; run; Below is the partial PROC FREQ output for exercise 4.1-5. Race by patient status in rank order(order=freq) The FREQ Procedure Table of ethcat by px_stat Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 210.
    Lecture 4-OPTN LiverTransplants 75 ethcat(Patints ethnicity) px_stat(Current status of the patient) Frequency ‚ Percent ‚ Row Pct ‚ Col Pct ‚A Living‚Dead ‚R Retran‚L Lost t‚ Total ‚ ‚ ‚splanted‚o Follow‚ ‚ ‚ ‚ ‚ up ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 1 White ‚ 34249 ‚ 19472 ‚ 6367 ‚ 5448 ‚ 65536 ‚ 39.00 ‚ 22.17 ‚ 7.25 ‚ 6.20 ‚ 74.62 ‚ 52.26 ‚ 29.71 ‚ 9.72 ‚ 8.31 ‚ ‚ 74.25 ‚ 76.45 ‚ 73.54 ‚ 72.02 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 4 Hispanic ‚ 5575 ‚ 2467 ‚ 982 ‚ 1164 ‚ 10188 ‚ 6.35 ‚ 2.81 ‚ 1.12 ‚ 1.33 ‚ 11.60 ‚ 54.72 ‚ 24.21 ‚ 9.64 ‚ 11.43 ‚ ‚ 12.09 ‚ 9.69 ‚ 11.34 ‚ 15.39 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 2 Black ‚ 3917 ‚ 2411 ‚ 949 ‚ 533 ‚ 7810 ‚ 4.46 ‚ 2.75 ‚ 1.08 ‚ 0.61 ‚ 8.89 ‚ 50.15 ‚ 30.87 ‚ 12.15 ‚ 6.82 ‚ ‚ 8.49 ‚ 9.47 ‚ 10.96 ‚ 7.05 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 5 Asian ‚ 1868 ‚ 801 ‚ 247 ‚ 315 ‚ 3231 ‚ 2.13 ‚ 0.91 ‚ 0.28 ‚ 0.36 ‚ 3.68 ‚ 57.81 ‚ 24.79 ‚ 7.64 ‚ 9.75 ‚ ‚ 4.05 ‚ 3.14 ‚ 2.85 ‚ 4.16 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 46128 25470 8658 7565 87821 52.53 29.00 9.86 8.61 100.00 (Continued) Race by patient status in rank order(order=freq) The FREQ Procedure Table of ethcat by px_stat ethcat(Patints ethnicity) px_stat(Current status of the patient) Frequency ‚ Percent ‚ Row Pct ‚ Col Pct ‚A Living‚Dead ‚R Retran‚L Lost t‚ Total ‚ ‚ ‚splanted‚o Follow‚ ‚ ‚ ‚ ‚ up ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 6 Amer Ind/Alask ‚ 224 ‚ 151 ‚ 47 ‚ 37 ‚ 459 a Native ‚ 0.26 ‚ 0.17 ‚ 0.05 ‚ 0.04 ‚ 0.52 ‚ 48.80 ‚ 32.90 ‚ 10.24 ‚ 8.06 ‚ ‚ 0.49 ‚ 0.59 ‚ 0.54 ‚ 0.49 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 211.
    Lecture 4-OPTN LiverTransplants 76 9 Multiracial ‚ 198 ‚ 87 ‚ 47 ‚ 28 ‚ 360 ‚ 0.23 ‚ 0.10 ‚ 0.05 ‚ 0.03 ‚ 0.41 ‚ 55.00 ‚ 24.17 ‚ 13.06 ‚ 7.78 ‚ ‚ 0.43 ‚ 0.34 ‚ 0.54 ‚ 0.37 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 7 Native Hawaiia ‚ 80 ‚ 46 ‚ 10 ‚ 14 ‚ 150 n/other Pacific ‚ 0.09 ‚ 0.05 ‚ 0.01 ‚ 0.02 ‚ 0.17 Islander ‚ 53.33 ‚ 30.67 ‚ 6.67 ‚ 9.33 ‚ ‚ 0.17 ‚ 0.18 ‚ 0.12 ‚ 0.19 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 998 Unknown ‚ 17 ‚ 35 ‚ 9 ‚ 26 ‚ 87 ‚ 0.02 ‚ 0.04 ‚ 0.01 ‚ 0.03 ‚ 0.10 ‚ 19.54 ‚ 40.23 ‚ 10.34 ‚ 29.89 ‚ ‚ 0.04 ‚ 0.14 ‚ 0.10 ‚ 0.34 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 46128 25470 8658 7565 87821 52.53 29.00 9.86 8.61 100.00 Frequency Missing = 815 Below is SAS code for exercise 4.1-6. proc freq data=liver; tables gender*gender_don; format cod li_cod. diag li_dgn. grf_stat $graph_stat. ethcat ethcat. ethcat_don ethcat. px_stat $pxstat. end_stat status. don_ty $don_type. abo $abotype. abo_don $abotype. gender $gender. gender_don $gender. ; title 'patient gender by donor gender)'; run; Below is PROC FREQ output for exercise 4.1-6. patient gender by doner gender) The FREQ Procedure Table of gender by gender_don gender(Gender of patient) gender_don(Doners gender) Frequency‚ Percent ‚ Row Pct ‚ Col Pct ‚Female ‚Male ‚ Total ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Female ‚ 16150 ‚ 18469 ‚ 34619 ‚ 18.22 ‚ 20.84 ‚ 39.06 ‚ 46.65 ‚ 53.35 ‚ ‚ 45.51 ‚ 34.76 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Male ‚ 19336 ‚ 34665 ‚ 54001 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 212.
    Lecture 4-OPTN LiverTransplants 77 ‚ 21.82 ‚ 39.12 ‚ 60.94 ‚ 35.81 ‚ 64.19 ‚ ‚ 54.49 ‚ 65.24 ‚ ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 35486 53134 88620 40.04 59.96 100.00 Frequency Missing = 16 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 213.
    Lecture 4-OPTN LiverTransplants 78 2. SAS Code for OPTN/UNOS Liver Indicator and Truth Logic Variables unos02d1.sas /****unos02d.sas**********/ data liver; set unos.liver; /*************************************************/ /*Indicator variables were previously identified */ /*as dummy variables equal to 1 or 0 when they */ /*existed or did not exist in an observation. */ /*They are used in statistical analysis of data. */ /*************************************************/ /****Indicator Variable for Gender*****/ male = (gender='M'); female = (gender='F'); /******************************************************/ /*Truth Logic is used to create a continuous variable */ /*that corresponds to the values (1-3, 1-5, etc.) */ /*assigned to a variable in an observation and */ /*is used in regression and logistic analysis. */ /******************************************************/ /*****Truth Logic for Patient Gender*************/ patgendercat= 1*(gender='M') + 2*(gender='F'); /****Indicator variable for donor gender*****/ maledon = (gender_don='M'); femaledon = (gender_don='F'); /*****Truth Logic for donor gender*************/ dongendercat= 1*(gender_don='M') + 2*(gender_don='F'); /****Indicator Variable for Race*****/ white = (ethcat=1); black = (ethcat=2); hispanic = (ethcat=4); Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 214.
    Lecture 4-OPTN LiverTransplants 79 asian = (ethcat=5); ameralaska = (ethcat=6); hawaiianpi = (ethcat=7); multirace = (ethcat=9); raceunknown = (ethcat=998); /*****Truth Logic For Race*************/ racecat = 1*(ethcat=1) + 2*(ethcat=2) + 3*(ethcat=4)+ 4*(ethcat=5) + 5*(ethcat=6) + 6*(ethcat=7)+ 7*(ethcat=9) + 8*(ethcat=998); /*****Truth Logic For Donor Race*************/ racecat = 1*(ethcat_don=1) + 2*(ethcat_don=2) + 3*(ethcat_don=4)+ 4*(ethcat_don=5) + 5*(ethcat_don=6) + 6*(ethcat_don=7)+ 7*(ethcat_don=9) + 8*(ethcat_don=998); /****Indicator Variable for Donor Race*****/ donwhite = (ethcat_don=1); donblack = (ethcat_don=2); donhispanic = (ethcat_don=4); donasian = (ethcat_don=5); donameralaska = (ethcat_don=6); donhawaiianpi = (ethcat_don=7); donmultirace = (ethcat_don=9); donraceunknown = (ethcat_don=998); /*****Truth Logic For Patient Race*************/ donracecat = 1*(ethcat_don=1) + 2*(ethcat_don=2) + 3*(ethcat_don=4)+ 4*(ethcat_don=5) + 5*(ethcat_don=6) + 6*(ethcat_don=7)+ 7*(ethcat_don=9) + 8*(ethcat_don=998); /****Indicator Variable for Patient Status*****/ living = (px_stat='A'); deceased = (px_stat='D'); lostfollowup = (px_stat='L'); notseen = (px_stat='N'); retrans = (px_stat='R'); /*****Truth Logic For Patient Status************/ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 215.
    Lecture 4-OPTN LiverTransplants 80 patstatcat= 1*(px_stat='A') + 2*(px_stat='D') + 3*(px_stat='L')+ 4*(px_stat='N') + 5*(px_stat='R'); /****Indicator Variable for Doner Blood Type*****/ donA =(abo_don='A'); donA1 =(abo_don='A1'); donA1B =(abo_don='A1B'); donA2 =(abo_don='A2'); donA2B =(abo_don='A2B'); donAB =(abo_don='AB'); donB =(abo_don='B'); donO =(abo_don='O'); donunk =(abo_don='UNK'); /*****Truth Logic For Doner Blood Type************/ abodoncat= 1*(abo_don='A') + 2*(abo_don='A1') + 3*(abo_don='A1B') + 4*(abo_don='A2') + 5*(abo_don='A2B') + 6*(abo_don='AB') + 7*(abo_don='B') + 8*(abo_don='O') + 9*(abo_don='UNK'); /****Indicator Variable for Patient Blood Type*****/ patA = (abo='A'); patA1 = (abo='A1'); patA1B = (abo='A1B'); patA2 = (abo='A2'); patA2B = (abo='A2B'); patAB = (abo='AB'); patB = (abo='B'); patO = (abo='O'); patunk = (abo='UNK'); /*****Truth Logic For Patient Blood Type************/ abopatcat = 1*(abo='A') + 2*(abo='A1') + 3*(abo='A1B') + 4*(abo='A2') + 5*(abo='A2B') + 6*(abo='AB') + 7*(abo='B') + 8*(abo='O') + 9*(abo='UNK'); /****Indicator Variable for Graph Status*****/ graftnoreport = grf_stat='.'; graftfailed = grf_stat='N'; graftunknown = grf_stat='U'; graftworking = grf_stat='Y'; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 216.
    Lecture 4-OPTN LiverTransplants 81 /*****Truth Logic For Patient Graph Status ************/ graftcat = 1*(grf_stat='.') + 2*(grf_stat='N') + 3*(grf_stat='U') + 4*(grf_stat='Y'); /****Indicator Variable for Donor Type*****/ deceased_donor = (don_ty='C'); foreign_donor = (don_ty='F'); living_donor = (don_ty='L'); /*****Truth Logic For Patient Graph Status ************/ dontypecat = 1*(don_ty='C') + 2*(don_ty='F') +3*(don_ty='L'); /****Indicator Variable for Previous Transplant*****/ yes_previous = (prev_tx='Y'); no_previous = (prev_tx='N'); /*****Truth Logic For Patient Graph Status ************/ previoustxcat= 1*(prev_tx='Y') + 2*(prev_tx='N'); /****Indicator Variable for Age Groupings*****/ agelt1 = (age < 1); age1_5 = (1=<age<=5); age6_10 = ( 6=<age<=10); age11_17 = (11=<age<=17); age18_34 = (18=<age<=34); age35_49 = (35=<age<=49); age50_64 = (50=<age<=64); agegt65 = (age >65); /*****Truth Logic for Patient Age Gouping ************/ agecat = 1*(age < 1) + 2*(1=<age<=5) + 3*(6=<age<=10) + 4*(11=<age<=17)+ 5*(18=<age<=34) + 6*(35=<age<=49) + 7*(50=<age<=64)+ 8*(age >=65); options nolabel nodate nonumber; proc means n mean sum min max data=liver; var male female patgendercat maledon femaledon dongendercat white black hispanic asian ameralaska hawaiianpi multirace raceunknown Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 217.
    Lecture 4-OPTN LiverTransplants 82 racecat donwhite donblack donhispanic donasian donameralaska donhawaiianpi donmultirace donraceunknown donracecat living deceased lostfollowup notseen retrans patstatcat donA donA1 donA1B donA2 donA2B donAB donB donO donunk abodoncat patA patA1 patA1B patA2 patA2B patAB patB patO patunk abopatcat graftnoreport graftfailed graftunknown graftworking graftcat deceased_donor foreign_donor living_donor dontypecat yes_previous no_previous previoustxcat agelt1 age1_5 age6_10 age11_17 age18_34 age35_49 age50_64 agegt65 agecat ; run; title 'Proc Means for Liver Tx Indicators and Truth Logic Variables'; options nolabel nodate nonumber; Below is the output from the above PROC Means. Proc Means for Liver Tx Indicators and Truth Logic Variables The MEANS Procedure Variable N Mean Sum Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ male 88636 0.6093122 54007.00 0 1.0000000 female 88636 0.3906878 34629.00 0 1.0000000 patgendercat 88636 1.3906878 123265.00 1.0000000 2.0000000 maledon 88636 0.5994630 53134.00 0 1.0000000 femaledon 88636 0.4003565 35486.00 0 1.0000000 dongendercat 88636 1.4001760 124106.00 0 2.0000000 white 88636 0.7457805 66103.00 0 1.0000000 black 88636 0.0889255 7882.00 0 1.0000000 hispanic 88636 0.1163748 10315.00 0 1.0000000 asian 88636 0.0369150 3272.00 0 1.0000000 ameralaska 88636 0.0052123 462.0000000 0 1.0000000 hawaiianpi 88636 0.0017149 152.0000000 0 1.0000000 multirace 88636 0.0040954 363.0000000 0 1.0000000 raceunknown 88636 0.000981542 87.0000000 0 1.0000000 racecat 88636 1.4622050 129604.00 1.0000000 8.0000000 donwhite 88636 0.7381876 65430.00 0 1.0000000 donblack 88636 0.1242385 11012.00 0 1.0000000 donhispanic 88636 0.1071799 9500.00 0 1.0000000 donasian 88636 0.0177806 1576.00 0 1.0000000 donameralaska 88636 0.0030236 268.0000000 0 1.0000000 donhawaiianpi 88636 0.0020985 186.0000000 0 1.0000000 donmultirace 88636 0.0047610 422.0000000 0 1.0000000 donraceunknown 88636 0.0027303 242.0000000 0 1.0000000 donracecat 88636 1.4622050 129604.00 1.0000000 8.0000000 living 88636 0.5204206 46128.00 0 1.0000000 deceased 88636 0.2873550 25470.00 0 1.0000000 lostfollowup 88636 0.0853491 7565.00 0 1.0000000 notseen 88636 0 0 0 0 retrans 88636 0.0976804 8658.00 0 1.0000000 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 218.
    Lecture 4-OPTN LiverTransplants 83 patstatcat 88636 1.8395799 163053.00 0 5.0000000 donA 88636 0.1931382 17119.00 0 1.0000000 donA1 88636 0.1638950 14527.00 0 1.0000000 donA1B 88636 0.0030462 270.0000000 0 1.0000000 donA2 88636 0.0129180 1145.00 0 1.0000000 donA2B 88636 0.000913850 81.0000000 0 1.0000000 donAB 88636 0.0246401 2184.00 0 1.0000000 donB 88636 0.1076989 9546.00 0 1.0000000 donO 88636 0.4932307 43718.00 0 1.0000000 donunk 88636 0.000225642 20.0000000 0 1.0000000 abodoncat 88636 5.4359177 481818.00 0 9.0000000 patA 88636 0.3874159 34339.00 0 1.0000000 patA1 88636 0.0025385 225.0000000 0 1.0000000 patA1B 88636 0.000135385 12.0000000 0 1.0000000 patA2 88636 0.000518976 46.0000000 0 1.0000000 patA2B 88636 0.000135385 12.0000000 0 1.0000000 patAB 88636 0.0476781 4226.00 0 1.0000000 patB 88636 0.1273298 11286.00 0 1.0000000 patO 88636 0.4342254 38488.00 0 1.0000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Proc Means for Liver Tx Indicators and Truth Logic Variables The MEANS Procedure Variable N Mean Sum Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ patunk 88636 0.000022564 2.0000000 0 1.0000000 abopatcat 88636 5.0470351 447349.00 1.0000000 9.0000000 graftnoreport 88636 0 0 0 0 graftfailed 88636 0.1921341 17030.00 0 1.0000000 graftunknown 88636 0.0079990 709.0000000 0 1.0000000 graftworking 88636 0.7122275 63129.00 0 1.0000000 graftcat 88636 3.2571754 288703.00 0 4.0000000 deceased_donor 88636 0.9579629 84910.00 0 1.0000000 foreign_donor 88636 0.0022113 196.0000000 0 1.0000000 living_donor 88636 0.0398258 3530.00 0 1.0000000 dontypecat 88636 1.0818629 95892.00 1.0000000 3.0000000 yes_previous 88636 0.1145810 10156.00 0 1.0000000 no_previous 88636 0.8854190 78480.00 0 1.0000000 previoustxcat 88636 1.8854190 167116.00 1.0000000 2.0000000 agelt1 88636 0.0346360 3070.00 0 1.0000000 age1_5 88636 0.0457715 4057.00 0 1.0000000 age6_10 88636 0.0170698 1513.00 0 1.0000000 age11_17 88636 0.0256216 2271.00 0 1.0000000 age18_34 88636 0.0753418 6678.00 0 1.0000000 age35_49 88636 0.3057900 27104.00 0 1.0000000 age50_64 88636 0.4248387 37656.00 0 1.0000000 agegt65 88636 0.0548874 4865.00 0 1.0000000 agecat 88636 6.0326391 534709.00 1.0000000 8.0000000 The method to validate your indicator variables consists of confirming that each has a minimum value of zero and a maximum value of one. If this does not exist, check your code. For truth logic variables, the minimum is usually 1 and the maximum equals the total number of values assigned to the variable. Again, if this does not occur, check your logic code. For example, previous transplant (yes_previous) has a minimum of 0 and a maximum of 1 while agecat has a minimum of 1 and a maximum of 8 that corresponds to the number of age categories. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 219.
    Lecture 4-OPTN LiverTransplants 84 The N=88,636 is the total observation of liver transplants in the data set and for each variable reflects the completeness of the data. In the above case with the exception of patient status= notseen and graft status= noreport, there are no missing values in any observation. The mean value is the percentage of each variable within a category. For those age50_64, they were 42.4 percent of the liver transplants or 37,656 between 1987 and 2008. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 220.
    Lecture 4-OPTN LiverTransplants 85 Exercises 4.2 1. Using unos02d, write the indicator and truth logic code for the donor age grouping using the same ranges for patient age. 2. Using unos02d, write the indicator and truth logic code for the end status using Meld/Peld scores of (-11 to -1), (0 to 10), (11 to 20), (21 to 30), (31 to 40), (41 to 50) and (51 to 99). 3. Using unos02d, write the indicator and truth logic code for the end status using Status Scores of 1, 1A, 1B, 2A, 2B, and 3. 4. Using unos02d, write the indicator and truth logic code for Cold Ischemic time with the ranges of 0-5, 6-10, 11-16, 16-20, and 21. 5. Insert into a separate proc means the above variables plus all of the continuous variables such as patient height, weight, age, donor height, weight, age, patient sgot, creatinine, graft and patient survival time. 6. Convert days to years for graft and patient survival time and produce year from transplant date. 7. From the proc means output, prepare a descriptive statistics narrative of the findings. Below is SAS code for exercise 4.2-1 to 5 data liver; set unos.liver; /****Indicator Variable for Donor Age Groupings*****/ donagelt1 = (age_don < 1); donage1_5 = (1=<age_don<=5); donage6_10 = ( 6=<age_don<=10); donage11_17 = (11=<age_don<=17); donage18_34 = (18=<age_don<=34); donage35_49 = (35=<age_don<=49); donage50_64 = (50=<age_don<=64); donagegt65 = (age_don >65); /*****Truth Logic for Patient Age Gouping ************/ donoragecat = 1*(age_don < 1) + 2*(1=<age_don<=5) + 3*(6=<age_don<=10) + 4*(11=<age_don<=17)+ 5*(18=<age_don<=34) + 6*(35=<age_don<=49)+ 7*(50=<age_don<=64)+ 8*(age_don >=65); Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 221.
    Lecture 4-OPTN LiverTransplants 86 /*Answers to exercise 4.2-2*/ /*2. Using unos02d, write the indicator and truth logic code for the /*end status using Meld/Peld scores of (-11 to -1), (0 to 10), (11 to 20), (21 to 30), (31 to 40), (41 to 50) and (51 to 99).*/ /****Indicator Variable for Meld/Peld Status Groupings*****/ meld_peld_neg11_neg1 = (6189=<end_stat<=6199); meld_peld_pos0_10 = (6200=<end_stat<=6210); meld_peld_pos11_20 = (6211=<end_stat<=6220); meld_peld_pos21_30 = (6221=<end_stat<=6230); meld_peld_pos31_40 = (6231=<end_stat<=6240); meld_peld_pos41_50 = (6241=<end_stat<=6250); meld_peld_pos51_99 = (6251=<end_stat<=6299); /*****Truth Logic for Patient Meldpelcat ************/ meldpelcat = 1*(6189=<end_stat<=6199) + 2*(6200=<end_stat<=6210) + 3*(6211=<end_stat<=6220) + 4*(6221=<end_stat<=6230) + 5*(6231=<end_stat<=6240) + 6*(6241=<end_stat<=6250) + 7*(6251=<end_stat<=6299); /*Answers to exercise 4.2-3*/ /*3. Using unos02d, write the indicator and truth logic code for the end status */ /*using Status Scores of 1, 1A, 1B, 2A, 2B, and 3.*/ /****Indicator Variable for Non-Meld/Peld Status Groupings*****/ statold2 = (end_stat=6002); statold4 = (end_stat=6004); statscore1 = (end_stat=6010); statscore1A = (end_stat=6011); statscore1B = (end_stat=6012); statscore2A = (end_stat=6020); statscore2B = (end_stat=6030); statscore3 = (end_stat=6040); /*****Truth Logic for Patient Non-Meld/Peld Status Groupings****/ oldstatuscat = 1*(end_stat=6002) + 2*(end_stat=6004) + 3*(end_stat=6010) + 4*(end_stat=6011)+ 5*(end_stat=6012) + 6*(end_stat=6020)+ 7*(end_stat=6030) + 8*(end_stat=6040); Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 222.
    Lecture 4-OPTN LiverTransplants 87 /*4. Using unos02d, write the indicator and truth logic code for Cold Ischemic time in hours the with the ranges of 0-5, 6-10, 11-16, 16-20, and 21+. */ /****Indicator Variable for Liver Cold Ischemic in Hours Prior to Transplant***/ cold0_5 = (0=<cold_isch<=5); cold6_10 = (6=<cold_isch<=10); cold11_16 = (11=<cold_isch<=16); cold17_20 = (17=<cold_isch<=20); coldGE21 = (cold_isch>=21); /****Truth Logic Variable for Liver Cold Ischemic in Hours Prior to Transplant***/ cold_ischcat = 1*(0=<cold_isch<=5) + 2*(6=<cold_isch<=10) + 3*(11=<cold_isch<=16) + 4*(17=<cold_isch<=20)+ 5*(cold_isch>=21); ; /*5. Insert into a separate proc means the above variables plus all of the continuous variables, such as patient height, weight, age, donor height weight, age, patient sgot, creatinine, graft survival time, and patient survival time.*/ options nolabel nodate nonumber; proc means n mean sum min max data=liver; var donagelt1 donage1_5 donage6_10 donage11_17 donage18_34 donage35_49 donage50_64 donagegt65 donoragecat meld_peld_neg11_neg1 meld_peld_pos0_10 meld_peld_pos11_20 meld_peld_pos21_30 meld_peld_pos31_40 meld_peld_pos41_50 meld_peld_pos51_99 meldpelcat statold2 statold4 statscore1 statscore1A statscore1B statscore2A statscore2B statscore3 oldstatuscat cold0_5 cold6_10 cold11_16 cold17_20 coldGE21 cold_ischcat hgt_cm_trr wgt_kg_trr hgt_cm_don wgt_kg_don sgpt_tx age_don creat_tx tbili_tx age gtime ptime ; run; title 'Proc Means for Additional Liver Tx Indicators, Truth Logic Variables and' ' all Continious Variables'; options nolabel nodate nonumber Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 223.
    Lecture 4-OPTN LiverTransplants 88 Below is the output for exercise 4.2-1 to 5 Proc Means for All and Additional Liver Tx Indicators, Truth Logic Variables and all Continuous Variables Variable N Mean Sum Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ male 88636 0.6093122 54007.00 0 1.0000000 female 88636 0.3906878 34629.00 0 1.0000000 patgendercat 88636 1.3906878 123265.00 1.0000000 2.0000000 maledon 88636 0.5994630 53134.00 0 1.0000000 femaledon 88636 0.4003565 35486.00 0 1.0000000 dongendercat 88636 1.4001760 124106.00 0 2.0000000 white 88636 0.7457805 66103.00 0 1.0000000 black 88636 0.0889255 7882.00 0 1.0000000 hispanic 88636 0.1163748 10315.00 0 1.0000000 asian 88636 0.0369150 3272.00 0 1.0000000 ameralaska 88636 0.0052123 462.0000000 0 1.0000000 hawaiianpi 88636 0.0017149 152.0000000 0 1.0000000 multirace 88636 0.0040954 363.0000000 0 1.0000000 raceunknown 88636 0.000981542 87.0000000 0 1.0000000 racecat 88636 1.4932872 132359.00 1.0000000 8.0000000 living 88636 0.5204206 46128.00 0 1.0000000 deceased 88636 0.2873550 25470.00 0 1.0000000 lostfollowup 88636 0.0853491 7565.00 0 1.0000000 notseen 88636 0 0 0 0 retrans 88636 0.0976804 8658.00 0 1.0000000 patstatcat 88636 1.8395799 163053.00 0 5.0000000 donA 88636 0.1931382 17119.00 0 1.0000000 donA1 88636 0.1638950 14527.00 0 1.0000000 donA1B 88636 0.0030462 270.0000000 0 1.0000000 donA2 88636 0.0129180 1145.00 0 1.0000000 donA2B 88636 0.000913850 81.0000000 0 1.0000000 donAB 88636 0.0246401 2184.00 0 1.0000000 donB 88636 0.1076989 9546.00 0 1.0000000 donO 88636 0.4932307 43718.00 0 1.0000000 donunk 88636 0.000225642 20.0000000 0 1.0000000 abodoncat 88636 5.4359177 481818.00 0 9.0000000 patA 88636 0.3874159 34339.00 0 1.0000000 patA1 88636 0.0025385 225.0000000 0 1.0000000 patA1B 88636 0.000135385 12.0000000 0 1.0000000 patA2 88636 0.000518976 46.0000000 0 1.0000000 patA2B 88636 0.000135385 12.0000000 0 1.0000000 patAB 88636 0.0476781 4226.00 0 1.0000000 patB 88636 0.1273298 11286.00 0 1.0000000 patO 88636 0.4342254 38488.00 0 1.0000000 patunk 88636 0.000022564 2.0000000 0 1.0000000 abopatcat 88636 5.0470351 447349.00 1.0000000 9.0000000 graftnoreport 88636 0 0 0 0 graftfailed 88636 0.1921341 17030.00 0 1.0000000 graftunknown 88636 0.0079990 709.0000000 0 1.0000000 graftworking 88636 0.7122275 63129.00 0 1.0000000 graftcat 88636 3.2571754 288703.00 0 4.0000000 deceased_donor 88636 0.9579629 84910.00 0 1.0000000 foreign_donor 88636 0.0022113 196.0000000 0 1.0000000 living_donor 88636 0.0398258 3530.00 0 1.0000000 dontypecat 88636 1.0818629 95892.00 1.0000000 3.0000000 yes_previous 88636 0.1145810 10156.00 0 1.0000000 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 224.
    Lecture 4-OPTN LiverTransplants 89 no_previous 88636 0.8854190 78480.00 0 1.0000000 previoustxcat 88636 1.8854190 167116.00 1.0000000 2.0000000 agelt1 88636 0.0346360 3070.00 0 1.0000000 age1_5 88636 0.0457715 4057.00 0 1.0000000 age6_10 88636 0.0170698 1513.00 0 1.0000000 age11_17 88636 0.0256216 2271.00 0 1.0000000 age18_34 88636 0.0753418 6678.00 0 1.0000000 age35_49 88636 0.3057900 27104.00 0 1.0000000 age50_64 88636 0.4248387 37656.00 0 1.0000000 agegt65 88636 0.0548874 4865.00 0 1.0000000 agecat 88636 6.0326391 534709.00 1.0000000 8.0000000 donagelt1 88636 0.0165734 1469.00 0 1.0000000 donage1_5 88636 0.0369150 3272.00 0 1.0000000 donage6_10 88636 0.0282729 2506.00 0 1.0000000 donage11_17 88636 0.1119184 9920.00 0 1.0000000 donage18_34 88636 0.3227808 28610.00 0 1.0000000 donage35_49 88636 0.2437948 21609.00 0 1.0000000 donage50_64 88636 0.1797802 15935.00 0 1.0000000 donagegt65 88636 0.0530484 4702.00 0 1.0000000 donoragecat 88636 5.4377454 481980.00 1.0000000 8.0000000 meld_peld_neg11_neg1 88636 0.0017262 153.0000000 0 1.0000000 meld_peld_pos0_10 88636 0.0180401 1599.00 0 1.0000000 meld_peld_pos11_20 88636 0.1084210 9610.00 0 1.0000000 meld_peld_pos21_30 88636 0.1763053 15627.00 0 1.0000000 meld_peld_pos31_40 88636 0.0665982 5903.00 0 1.0000000 meld_peld_pos41_50 88636 0.0013313 118.0000000 0 1.0000000 meld_peld_pos51_99 88636 0.000248206 22.0000000 0 1.0000000 meldpelcat 88636 1.4110068 125066.00 0 7.0000000 statold2 88636 0.0844239 7483.00 0 1.0000000 statold4 88636 0.0161672 1433.00 0 1.0000000 statscore1 88636 0.1254005 11115.00 0 1.0000000 statscore1A 88636 0.0104585 927.0000000 0 1.0000000 statscore1B 88636 0.0016021 142.0000000 0 1.0000000 statscore2A 88636 0.0473735 4199.00 0 1.0000000 statscore2B 88636 0.1329708 11786.00 0 1.0000000 statscore3 88636 0.1712284 15177.00 0 1.0000000 oldstatuscat 88636 3.1276682 277224.00 0 8.0000000 cold0_5 88636 0.1622591 14382.00 0 1.0000000 cold6_10 88636 0.4278059 37919.00 0 1.0000000 cold11_16 88636 0.1670089 14803.00 0 1.0000000 cold17_20 88636 0.0196196 1739.00 0 1.0000000 coldGE21 88636 0.0167652 1486.00 0 1.0000000 cold_ischcat 88636 1.5973758 141585.00 0 4.0000000 HGT_CM_TRR 79064 163.4329425 12921662.16 4.0000000 225.0000000 WGT_KG_TRR 82104 73.4018192 6026582.97 1.3608000 200.0000000 HGT_CM_DON 75411 165.2848126 12464293.00 1.0000000 251.0000000 WGT_KG_DON 81778 71.0079675 5806889.57 0.4535924 453.1387776 SGPT_TX 59219 224.2110228 13277552.56 0.1000000 20000.00 AGE_DON 88552 34.6171967 3065422.00 0 120.0000000 CREAT_TX 87490 1.3690477 119777.98 0 21.0000000 TBILI_TX 86426 8.5326685 737444.41 0 118.9000000 AGE 88636 44.6404621 3956752.00 0 87.0000000 GTIME 87773 1547.89 135862846 0 7327.00 PTIME 87773 1547.84 135858253 0 7327.00 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 225.
    Lecture 4-OPTN LiverTransplants 90 Below is SAS code for exercise 4.2-6. /*6. Convert days to years for graft and patient survival time and produce year from transplant date.*/ data liver; set unos.liver; gtimeyrs=gtime/365.25; ptimeyrs=ptime/365.25; txyear=year(tx_date); options nolabel nodate nonumber; proc means n mean sum min max data=liver; var gtimeyrs ptimeyrs txyear; run; run; title 'Proc Means for Additional Liver Years,patent and graft survival time'; options nolabel nodate nonumber; Below is SAS output for exercise 4.3-6. The MEANS Procedure Variable N Mean Sum Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ gtimeyrs 87773 4.2378886 371972.20 0 20.0602327 ptimeyrs 87773 4.2377454 371959.62 0 20.0602327 txyear 88636 1999.34 177213242 1987.00 2008.00 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 7. From the proc means output, prepare a descriptive statistics narrative of the findings. Descriptive Statistics Summary Between 1987 and the first few months of 2008, over this 22 year period, there were 88,636 liver transplantations performed in the U.S. The demographics above indicated that Male transplant patients were 60.9%, female transplant patients were 39.0%. Male donors contributed 59.9% of the organs while female donors 40%. White patients comprised 74.5%, blacks 8.9%, Hispanics 11.6% and the remaining 5% spread across Asian, Native American and Hawaiian, Pacific Islander and multiple races. White donors equaled 73.8%, blacks 12.4%, Hispanics 10.7%, and the remaining 3.1% divided across Asian, Native American and Hawaiian, Pacific Islander and multiple races. Over this 22-year period, of the 88,636 transplants, 52.0% were living, 28.7% died and 8.5% were lost for follow-up. Of the transplantations, 9.7% were re-transplanted. The donor and patient blood were as follows: For patients, 43.4% Type O, 38.7% Type A, 16.4% Type A1, 12.7% Type B, 4.7% Type AB and the remaining 0.5% distributed among type A1, Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 226.
    Lecture 4-OPTN LiverTransplants 91 A1B, A2, and A2B. For donors, 49.3% type O, 19.3% type A, 16.3% type A1, 10.7% Type B and the remaining 4.4% distributed among type, A1B, A2, and A2B. For further explanation of blood types see http://en.wikipeda.org/wki/ABO_blood_group_system. When follow-up was performed at various times post transplant, 19.2 percent of the liver transplant grafts had failed, 71.2 were working and 9.6% of the graph status was unknown. Deceased donors equaled 95.8%, living donors 3.9% and foreign donors 0.2%. Previous transplantation occurred in 10,156 patients or 11.4%. Selected patient age groupings in rank order were 42.4% from 50 to 64 years, 30.5% from 35 to 49 years 11.1% from11 to 17, 8.1% from 0 to 10, 7.5% from 18 to 34 and 5.4% greater to or equal to 65. Selected donor age groups in rank order were 32.2% from 18 to 34 years, 24,4% from 35 to 49 years 17.9% from 50 to 64, and 5.3% greater to or equal to 65. The Meld/Peld liver disease severity score used beginning in 2002 to determine the likelihood of death of the patient prior to transplant in rank order was 17.6%, 21 to 30; 10.8%, 11 to 20; 6.6% 31 to 40. Prior to 2002 the status of the transplant patient measuring severity in rank order was 17.1%, Score 3; 13.3%, Score 2B; 12.5%, Score 1; 8.8%, Old Status; 2 4.7%, Score 2A. The Meld/Peld and all of the status scores are mutually exclusive and should add up to 100%. The time the liver is preserved cold after it is harvested from a donor is known as cold ischemic time. The cold ischemic time in rank order for the transplantation patients as 42.8% from 6 to 10 hours, 16.7% from 11 to 16 hours, 16.2% from 0 to 5 hours, 1.9% from 17 to 20 hours and 1.6% greater than or equal to 21 hours. The mean height of the patient was 163.4 cm or 5.4 feet.. The mean height of the donor was 165.3 cm or 5.5 feet. The low mean height of the donor and patient is attributed to the number of youngsters who are both patients and donors. The mean weight of the patient prior to transplantation was 73.4 kg (161 lbs.) and the donor mean weight equaled 71.0 kg. (156.5lbs.). The mean age of the donor was 34.6 years compared to the patient at 44.6. The mean transplant patient blood(serum)glutamic-oxaloacetic transaminase(SGOT) test was 224.21. The NIH normal adult range 10 to 34 IU/L. The mean transplant patients Creatinine was 1.36 mg/l with a range of 0 to 21mg/l. The NIH normal ranges are 0.8 to 1.4 mg/l. The mean transplant patient’s Bilirubin was 8.53 with a range of 0 to 18. The NIH normal high ranges for male are 0.3 to 1.9 mg/dl. www.nlm.nih.gov/midlineplus.ency/003479.htm#normal Lastly the mean time before liver graft failing was 1,547 days (4.2 years) with a range of 0 to 7,327 days (20 years). The mean patient survival time was 1547 (4.2 years) days with a range of 0 to 7,327 days (20 years). This does not reflect the improved survival rates that have occurred since 1987 , which will be measured in a later section. However, the sum of years of life for these 88,636 patients over this 22-year period is 371,972 years. In summary of the 88,636 liver transplantations performed between 1987 and 2008, 52.0% were remained alive. More transplants were males from male donors. Recipients and donors were more likely to be white. Type O was the dominant blood type for both patients and donors. The largest age groups for patients were 50 to 64 years and for donors 18 to 34 years. The most likely Meld/Peld disease severity score was 21 to 30 and the older severity score prior to 2002 was Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 227.
    Lecture 4-OPTN LiverTransplants 92 Score 3. Six to 10 hours was the more common cold ischemic time. The mean height and weight of patients was 5.4 feet and 161 pounds, respectively. The mean height and weight of donors was 5.5 feet and 156 pounds, respectively. The clinical chemistry markers indicated the mean SGOT was 224.2 IU/L, bilirubin was 8.53mg/dl, and creatinine was 1.36mg/l. Lastly, over this 22-year period, the mean number of years before graft and patient death was 4.2 years. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 228.
    Lecture 4-OPTN LiverTransplants 93 3. Multiple Linear Regression Model on OPTN Liver Transplant Patient Survival Time in Days (PTIME) unos03d.sas Below is the linear regression model (Proc Reg) of the patient survival time in days of care and the effects of age, gender, race, transplant year, donor source, donor age, Meld/Peld and older severity score, and cold ischemic time. /****unos03d.sas**********/ /*Below is the linear regression model (Proc Reg) of the patient */ /*survival time in days of care and the effects of age, gender, */ /*race, transplant year, donor source, donor age, donor race */ /*Meld/Peld and older severity score, and cold ischemic time*/ options nolabel nodate nonumber; Proc Reg data=liver; model ptime=age age_don white donwhite male maledon txyearcat deceased_donor meld_peld_pos21_30 statscore3 cold6_10; run; title 'linear regression model of the patient survival time in days'; options nolabel nodate nonumber; Below is the output of the linear regression. linear regression model of the patient survival time in days The REG Procedure Model: MODEL1 Dependent Variable: PTIME Number of Observations Read 88636 Number of Observations Used 87689 Number of Observations with Missing Values 947 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 11 60031556770 5457414252 2946.15 <.0001 Error 87677 1.624117E11 1852386 Corrected Total 87688 2.224432E11 Root MSE 1361.02395 R-Square 0.2699 Dependent Mean 1546.83826 Adj R-Sq 0.2698 Coeff Var 87.98748 Parameter Estimates Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 229.
    Lecture 4-OPTN LiverTransplants 94 Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 3244.98436 31.49376 103.04 <.0001 AGE 1 0.11743 0.28768 0.41 0.6831 AGE_DON 1 -5.79403 0.28321 -20.46 <.0001 white 1 93.62677 10.82212 8.65 <.0001 donwhite 1 109.95161 10.67399 10.30 <.0001 male 1 -65.45225 9.59968 -6.82 <.0001 maledon 1 32.34375 9.63490 3.36 0.0008 txyearcat 1 -126.55629 1.05015 -120.51 <.0001 deceased_donor 1 -21.46791 23.84214 -0.90 0.3679 meld_peld_pos21_30 1 -150.27926 13.86360 -10.84 <.0001 statscore3 1 381.04028 13.21076 28.84 <.0001 cold6_10 1 59.61080 9.46631 6.30 <.0001 As seen above in the PROC REG models output of patient survival time in days (ptime) for liver transplants from 1987-2008, with the exception of patient age and donor type, all of the effects are significant at p<.0001. Controlling for donor and patient age, donor and patient race, donor and patient gender, year of transplant, type of donor, severity scores and cold ischemic time the following are the findings: 1. All else being equal, as the age of the donor increases by one year the patient will lose 5.7 days of life. p<.0001 2. All else being equal, white patients will have 93 more days of life compared to non-whites. p<.0001 3. All else being equal, those obtaining white donor livers will have 109 more days of life compared to those obtaining non-whites donor livers. p<.0001 4. All else being equal, male liver recipients will have 65 fewer days of life than females. p<.0001 5. All else being equal, patients receiving male donor hearts will have 32 more days of life compared to those receiving female donor hearts. p<.001 6. All else being equal, for every year increase in age, a liver recipient will loose 126 days of life. p<.0001 7. All else being equal, a patient with a meld/peld score of 21 to 30 compared to all other scores will have 150 fewer days of life. p<.0001 8. All else being equal, those with older severity scores of three (3) will have 381 additional days of life. p<.0001 9. All else being equal, those with cold ischemic times of 6-20 hours compared to longer or shorter times will have 59.6 additional days of life . p<.0001 10. The coefficient of determination R-Square is 0.2699, which indicates that 73.1 percent of patient survival time is explained by other effects not included in the model. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 230.
    Lecture 4-OPTN LiverTransplants 95 Exercise 4.3 Using unos03d.sas, perform the exercises below and interpret the findings: 1. Remove patient age and donor type from the model to improve parsimony (simplicity) and compare it to original model. 2. Substitute patient liver graft failure for patent survival time in the model. 3. Create a model with only patient height and weight and other clinical chemistry measurement. /*Answer to Exercise 4.3 */ options nolabel nodate nonumber; Proc Reg data=liver; model ptime=age_don white donwhite male maledon txyearcat meld_peld_pos21_30 statscore3 cold6_10; run; title 'linear regression with age and donor type removed from' ' model of the patient survival time in days'; Proc Reg output for exercise 4.3. Linear regression model of the patient survival time in days The REG Procedure Model: MODEL1 Dependent Variable: PTIME Number of Observations Read 88636 Number of Observations Used 87689 Number of Observations with Missing Values 947 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 9 60029892715 6669988079 3600.80 <.0001 Error 87679 1.624133E11 1852363 Corrected Total 87688 2.224432E11 Root MSE 1361.01539 R-Square 0.2699 Dependent Mean 1546.83826 Adj R-Sq 0.2698 Coeff Var 87.98692 Parameter Estimates Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 231.
    Lecture 4-OPTN LiverTransplants 96 Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 3226.07993 20.81544 154.98 <.0001 AGE_DON 1 -5.75274 0.26082 -22.06 <.0001 white 1 94.35660 10.71380 8.81 <.0001 donwhite 1 110.17522 10.67101 10.32 <.0001 male 1 -65.52955 9.59093 -6.83 <.0001 maledon 1 32.32149 9.59802 3.37 0.0008 txyearcat 1 -126.39437 1.03600 -122.00 <.0001 meld_peld_pos21_30 1 -151.03028 13.74371 -10.99 <.0001 statscore3 1 381.71376 13.18509 28.95 <.0001 cold6_10 1 58.12153 9.31513 6.24 <.0001 Comparing the first model with the effects of age and donor type, there is no significant differences observed between this model with of age and donor type removed. /*Answer to Exercise 4.3 */ options nolabel nodate nonumber; Proc Reg data=liver; model gtime=age_don white donwhite male maledon txyearcat meld_peld_pos21_30 statscore3 cold6_10; run; title 'linear regression model of the graph survival time' Proc Reg output for exercise 4.3. linear regression model of the graph survival time' The REG Procedure Model: MODEL1 Dependent Variable: GTIME Number of Observations Read 88636 Number of Observations Used 87689 Number of Observations with Missing Values 947 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 9 60025383060 6669487007 3600.70 <.0001 Error 87679 1.624054E11 1852273 Corrected Total 87688 2.224308E11 Root MSE 1360.98236 R-Square 0.2699 Dependent Mean 1546.89064 Adj R-Sq 0.2698 Coeff Var 87.98181 Parameter Estimates Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 232.
    Lecture 4-OPTN LiverTransplants 97 Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 3226.12595 20.81493 154.99 <.0001 AGE_DON 1 -5.75297 0.26082 -22.06 <.0001 white 1 94.33729 10.71354 8.81 <.0001 donwhite 1 110.16816 10.67075 10.32 <.0001 male 1 -65.49751 9.59069 -6.83 <.0001 maledon 1 32.26677 9.59779 3.36 0.0008 txyearcat 1 -126.38813 1.03597 -122.00 <.0001 meld_peld_pos21_30 1 -151.09602 13.74337 -10.99 <.0001 statscore3 1 381.67376 13.18477 28.95 <.0001 cold6_10 1 58.08216 9.31490 6.24 <.0001 There appears to be no difference between the model of graph survival time and patient survival time. A look at the raw OPTN/UNOS data (unos.liver) shows these values are the same for each observation. 3. Create a model with only patient height and weight and other clinical chemistry measurement. /*Answer to Exercise 4.3 */ options label nodate nonumber; Proc Reg data=liver; model ptime=sgpt_tx creat_tx tbili_tx hgt_cm_trr wgt_kg_trr hgt_cm_don wgt_kg_don ; options nolabel nodate nonumber; title 'linear regression model of graph survival time with height weight and chemistry'; run; Proc Reg Output for exercise 4.3 linear regression model of graph survival time with height weight and chemistry The REG Procedure Model: MODEL1 Dependent Variable: PTIME Number of Observations Read 88636 Number of Observations Used 42249 Number of Observations with Missing Values 46387 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 7 1278220766 182602967 110.98 <.0001 Error 42241 69501466235 1645356 Corrected Total 42248 70779687001 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 233.
    Lecture 4-OPTN LiverTransplants 98 Root MSE 1282.71416 R-Square 0.0181 Dependent Mean 1280.69237 Adj R-Sq 0.0179 Coeff Var 100.15787 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 1369.28647 53.28463 25.70 <.0001 SGPT_TX 1 -0.00145 0.00903 -0.16 0.8721 CREAT_TX 1 -74.76085 5.04766 -14.81 <.0001 TBILI_TX 1 -2.87170 0.60351 -4.76 <.0001 HGT_CM_TRR 1 2.05532 0.39878 5.15 <.0001 WGT_KG_TRR 1 -3.48845 0.36902 -9.45 <.0001 HGT_CM_DON 1 2.11001 0.41087 5.14 <.0001 WGT_KG_DON 1 -5.33215 0.38082 -14.00 <.0001 1. All else being equal, SGPT values of the patient before transplant alone are not significant predictors of patient survival time in days.. p=.8721. 2. All else being equal, every unit increase in creatinine level before transplant will result in 74.7 fewer days of life. p<.0001. 3. All else being equal, every unit increase in bilirubin level before transplant will result in 2.87 fewer days of life. p<.0001. 4. All else being equal, each centimeter increase in height of the transplant patient will result in 2.05 additional days of life. p<.0001. 5. All else being equal, every kilogram increase in weight of the transplant patient will result in 3.48 fewer days of life. p<.0001. 6. All else being equal, each centimeter increase in height of the liver donor will result in 2.11 additional days of life. p<.0001. 7. All else being equal, every kilogram increase in weight of the liver donor will result in 5.33 fewer days of life. p<.0001. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 234.
    Lecture 4-OPTN LiverTransplants 99 4. Logistic Regression Model of Patient of Liver Transplant Patient Death unos04d.sas Below is the logistic regression model of death following a liver transplantation using the effects of patient age, donor age and gender, and patient race. /*unos04d.sas*/ options nolabel nodate nonumber; proc logistic data=liver des; class patgendercat (param=ref ref='1') /*ref patient female**/ dongendercat (param=ref ref='1') /*ref donor female**/ racecat (param=ref ref='1') /*ref patient race white*/ ; model deceased=age age_don patgendercat dongendercat racecat ; units age=10 age_don=10; title 'logistic regression model of the patient status of death'; run; quit; options nolabel nodate nonumber; ; Below is the logistic regression model of death output. Logistic regression model of the patient status of death The LOGISTIC Procedure Model Information Data Set WORK.LIVER Response Variable deceased Number of Response Levels 2 Model binary logit Optimization Technique Fisher's scoring Number of Observations Read 88636 Number of Observations Used 88552 Response Profile Ordered Total Value deceased Frequency 1 1 25450 2 0 63102 Probability modeled is deceased=1. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 235.
    Lecture 4-OPTN LiverTransplants 100 NOTE: 84 observations were deleted due to missing values for the response or explanatory variables. Class Level Information Class Value Design Variables patgendercat 1 0 2 1 dongendercat 1 0 2 1 racecat 1 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 3 0 1 0 0 0 0 0 4 0 0 1 0 0 0 0 5 0 0 0 1 0 0 0 6 0 0 0 0 1 0 0 7 0 0 0 0 0 1 0 8 0 0 0 0 0 0 1 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. logistic regression model of the patient status of death The LOGISTIC Procedure Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 106230.54 105454.56 SC 106239.93 105567.25 -2 Log L 106228.54 105430.56 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 797.9861 11 <.0001 Score 769.8822 11 <.0001 Wald 759.6023 11 <.0001 Type 3 Analysis of Effects Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 236.
    Lecture 4-OPTN LiverTransplants 101 Wald Effect DF Chi-Square Pr > ChiSq AGE 1 589.2217 <.0001 AGE_DON 1 0.2799 0.5968 patgendercat 1 19.9454 <.0001 dongendercat 1 0.0303 0.8617 racecat 7 69.1360 <.0001 Analysis of Maximum Likelihood Estimates Standard Wald Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 -1.4176 0.0252 3175.6624 <.0001 AGE 1 0.0115 0.000475 589.2217 <.0001 AGE_DON 1 -0.00024 0.000451 0.2799 0.5968 patgendercat 2 1 0.0691 0.0155 19.9454 <.0001 dongendercat 2 1 -0.00272 0.0156 0.0303 0.8617 racecat 2 1 -0.1078 0.0233 21.4977 <.0001 racecat 3 1 -0.1593 0.0251 40.2186 <.0001 racecat 4 1 -0.0818 0.0570 2.0564 0.1516 racecat 5 1 -0.3244 0.1456 4.9646 0.0259 racecat 6 1 0.2508 0.1547 2.6294 0.1049 racecat 7 1 -0.2207 0.1142 3.7342 0.0533 racecat 8 1 0.2358 0.1485 2.5221 0.1123 logistic regression model of the patient status of death The LOGISTIC Procedure Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits AGE 1.012 1.011 1.013 AGE_DON 1.000 0.999 1.001 patgendercat 2 vs 1 1.072 1.040 1.105 dongendercat 2 vs 1 0.997 0.967 1.028 racecat 2 vs 1 0.898 0.858 0.940 racecat 3 vs 1 0.853 0.812 0.896 racecat 4 vs 1 0.921 0.824 1.030 racecat 5 vs 1 0.723 0.543 0.962 racecat 6 vs 1 1.285 0.949 1.740 racecat 7 vs 1 0.802 0.641 1.003 racecat 8 vs 1 1.266 0.946 1.693 Association of Predicted Probabilities and Observed Responses Percent Concordant 55.0 Somers' D 0.116 Percent Discordant 43.4 Gamma 0.118 Percent Tied 1.6 Tau-a 0.047 Pairs 1605945900 c 0.558 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 237.
    Lecture 4-OPTN LiverTransplants 102 Odds Ratios Effect Unit Estimate AGE 10.0000 1.122 AGE_DON 10.0000 0.998 As seen above in the proc logistic output of death after transplant considering the effects of patient age, donor age and gender, and patient race, the findings are as follows: 1. All else being equal, for every additional year of age at transplant the likelihood of death increases by 1.2 percent, p<.0001[CI 1.011, 1.0131]. 2. All else being equal, donor age does not have a significant effect upon patient death after transplant., p=.5968[CI 0.999 , 1.0011]. 3. All else being equal, females compared to males are 7.2 percent more likely to die after transplant, p<.0001[CI 1.040, 1.1050]. 4. All else being equal, donor gender does not have a significant effect upon patient death after transplant., p=.8617[CI 0.967, 1.0280]. 5. All else being equal, blacks compared to white are 10.2 less likely to die after transplant, p<.0001[CI 0.858, 0.940]. 6. All else being equal, Hispanics compared to whites are 13.7 less likely to die after transplant, p<.0001[CI 0.812, 0.896]. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 238.
    Lecture 4-OPTN LiverTransplants 103 Exercises 4.4 1. Add to the logistic model unos04d.sas, the effects of year of transplant on dying using 1996 as the reference year and interpret the findings. 2. Change the logistic model of exercise 4.4-1 to consider survival rather than death.. Answer to exercise 4.4-1. /*1. Add to the logistic model unos04d.sas, the effects of year of transplant using 1966 as*/ /*the reference year and interpret the findings. */ options nolabel nodate nonumber; proc logistic data=liver des; class patgendercat (param=ref ref='1') /*ref patient female**/ dongendercat (param=ref ref='1') /*ref donor female**/ racecat (param=ref ref='1') /*ref patient race white*/ txyearcat (param=ref ref='10') /*ref tx year 1996*/ ; model deceased=age age_don patgendercat dongendercat racecat txyearcat ; units age=10 age_don=10; title 'logistic regression model of the patient status of death'; run; quit; Proc logistic output for exercise 4.4-1. logistic regression model of the patient status of death The LOGISTIC Procedure Model Information Data Set WORK.LIVER Response Variable deceased Number of Response Levels 2 Model binary logit Optimization Technique Fisher's scoring Number of Observations Read 88636 Number of Observations Used 88552 Response Profile Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 239.
    Lecture 4-OPTN LiverTransplants 104 Ordered Total Value deceased Frequency 1 1 25450 2 0 63102 Probability modeled is deceased=1. NOTE: 84 observations were deleted due to missing values for the response or explanatory variables. Class Level Information Class Value patgendercat 1 2 dongendercat 1 2 racecat 1 2 3 4 5 6 7 8 txyearcat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Class Level Information Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 240.
    Lecture 4-OPTN LiverTransplants 105 Design Variables 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 106230.54 97754.883 SC 106239.93 98064.798 -2 Log L 106228.54 97688.883 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 241.
    Lecture 4-OPTN LiverTransplants 106 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 8539.6600 32 <.0001 Score 7849.3305 32 <.0001 Wald 6924.0794 32 <.0001 Type 3 Analysis of Effects Wald Effect DF Chi-Square Pr > ChiSq AGE 1 1133.8575 <.0001 AGE_DON 1 197.6462 <.0001 patgendercat 1 2.6282 0.1050 dongendercat 1 1.0245 0.3115 racecat 7 21.4843 0.0031 txyearcat 21 6328.2080 <.0001 Analysis of Maximum Likelihood Estimates Standard Wald Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 -1.5634 0.0422 1375.1982 <.0001 AGE 1 0.0171 0.000509 1133.8575 <.0001 AGE_DON 1 0.00678 0.000482 197.6462 <.0001 patgendercat 2 1 -0.0263 0.0162 2.6282 0.1050 dongendercat 2 1 0.0166 0.0164 1.0245 0.3115 racecat 2 1 0.0692 0.0244 8.0469 0.0046 racecat 3 1 0.0761 0.0264 8.2701 0.0040 racecat 4 1 0.0883 0.0596 2.1947 0.1385 racecat 5 1 -0.0562 0.1515 0.1378 0.7105 racecat 6 1 0.3620 0.1600 5.1213 0.0236 racecat 7 1 0.0873 0.1188 0.5404 0.4622 racecat 8 1 -0.0900 0.1513 0.3535 0.5522 txyearcat 1 1 0.9286 0.1188 61.0672 <.0001 txyearcat 2 1 0.6491 0.0600 117.0390 <.0001 txyearcat 3 1 0.7031 0.0549 164.0513 <.0001 txyearcat 4 1 0.5534 0.0515 115.3177 <.0001 txyearcat 5 1 0.5584 0.0501 124.2864 <.0001 txyearcat 6 1 0.4099 0.0496 68.2059 <.0001 txyearcat 7 1 0.3027 0.0482 39.4757 <.0001 txyearcat 8 1 0.1406 0.0478 8.6573 0.0033 txyearcat 9 1 0.0861 0.0469 3.3710 0.0664 txyearcat 11 1 -0.0475 0.0465 1.0412 0.3076 txyearcat 12 1 -0.1645 0.0460 12.7835 0.0003 txyearcat 13 1 -0.2520 0.0457 30.4572 <.0001 txyearcat 14 1 -0.4253 0.0458 86.1805 <.0001 txyearcat 15 1 -0.4780 0.0456 109.8532 <.0001 txyearcat 16 1 -0.6581 0.0462 203.2506 <.0001 txyearcat 17 1 -0.8089 0.0462 306.3459 <.0001 txyearcat 18 1 -0.9278 0.0460 406.9406 <.0001 txyearcat 19 1 -1.1043 0.0466 560.5756 <.0001 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 242.
    Lecture 4-OPTN LiverTransplants 107 txyearcat 20 1 -1.4722 0.0493 892.8329 <.0001 txyearcat 21 1 -2.2320 0.0599 1389.9345 <.0001 txyearcat 22 1 -4.7871 1.0027 22.7937 <.0001 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits AGE 1.017 1.016 1.018 AGE_DON 1.007 1.006 1.008 patgendercat 2 vs 1 0.974 0.944 1.006 dongendercat 2 vs 1 1.017 0.985 1.050 racecat 2 vs 1 1.072 1.022 1.124 racecat 3 vs 1 1.079 1.025 1.136 racecat 4 vs 1 1.092 0.972 1.228 racecat 5 vs 1 0.945 0.702 1.272 racecat 6 vs 1 1.436 1.050 1.965 racecat 7 vs 1 1.091 0.865 1.377 racecat 8 vs 1 0.914 0.679 1.230 txyearcat 1 vs 10 2.531 2.005 3.195 txyearcat 2 vs 10 1.914 1.701 2.153 txyearcat 3 vs 10 2.020 1.814 2.249 txyearcat 4 vs 10 1.739 1.572 1.924 txyearcat 5 vs 10 1.748 1.584 1.928 txyearcat 6 vs 10 1.507 1.367 1.661 txyearcat 7 vs 10 1.354 1.232 1.488 txyearcat 8 vs 10 1.151 1.048 1.264 txyearcat 9 vs 10 1.090 0.994 1.195 txyearcat 11 vs 10 0.954 0.870 1.045 txyearcat 12 vs 10 0.848 0.775 0.928 txyearcat 13 vs 10 0.777 0.711 0.850 txyearcat 14 vs 10 0.654 0.597 0.715 txyearcat 15 vs 10 0.620 0.567 0.678 txyearcat 16 vs 10 0.518 0.473 0.567 txyearcat 17 vs 10 0.445 0.407 0.488 txyearcat 18 vs 10 0.395 0.361 0.433 txyearcat 19 vs 10 0.331 0.302 0.363 txyearcat 20 vs 10 0.229 0.208 0.253 txyearcat 21 vs 10 0.107 0.095 0.121 txyearcat 22 vs 10 0.008 0.001 0.059 Association of Predicted Probabilities and Observed Responses Percent Concordant 69.0 Somers' D 0.384 Percent Discordant 30.6 Gamma 0.386 Percent Tied 0.4 Tau-a 0.157 Pairs 1605945900 c 0.692 logistic regression model of the patient status of death The LOGISTIC Procedure Odds Ratios Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 243.
    Lecture 4-OPTN LiverTransplants 108 Effect Unit Estimate AGE 10.0000 1.187 AGE_DON 10.0000 1.070 As seen above in the proc logistic output of death after transplant considering the effects of patient age, donor age and gender, patient race and year of transplant , the findings are as follows: 1. All else being equal, for every additional year of age at transplant the likelihood of death increases by 1.7 percent, p<.0001[CI 1.016, 1.0181]. 2. All else being equal, for every year of the age of the donor at transplant the likelihood of death increases by 0.7 percent, p<.0001[CI 1.016, 1.0181]. 3. All else being equal, both patient and donor gender are insignificant effects upon those likely to die after transplant,. 4. All else being equal, blacks compared to whites are 7.2 percent more likely to die after transplant, p<.0.01[CI 1.022, 1.124]. 5. All else being equal, Hispanics compared to whites are 7.9 percent more likely to die after transplant, p<.0.01[CI 1.025, 1.136]. 6. All else being equal, patients transplanted in 1989 compared to 1996 were twice (2.020) as likely to die after transplant, p<.0.0001[CI 1.814, 2.249]. 7. All else being equal, patients transplanted in 2006 compared to 1996 were 87.1 percent less likely to die after transplant, p<.0.0001[CI 0.208, 0.253]. Answer to exercise 4.4-2. /*2. Change the logistic model of exercise 4.4-1 to consider survival rather than death*/ /*options nolabel nodate nonumber; */ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 244.
    Lecture 4-OPTN LiverTransplants 109 proc logistic data=liver des; class patgendercat (param=ref ref='1') /*ref patient female**/ dongendercat (param=ref ref='1') /*ref donor female**/ racecat (param=ref ref='1') /*ref patient race white*/ txyearcat (param=ref ref='10') /*ref tx year 1996*/ ; model living=age age_don patgendercat dongendercat racecat txyearcat ; units age=10 age_don=10; title 'logistic regression model of the patient status of alive'; run; quit; options nolabel nodate nonumber; Proc logistic output for exercise 4.4-2. logistic regression model of the patient status of being alive The LOGISTIC Procedure Model Information Data Set WORK.LIVER Response Variable living Number of Response Levels 2 Model binary logit Optimization Technique Fisher's scoring Number of Observations Read 88636 Number of Observations Used 88552 Response Profile Ordered Total Value living Frequency 1 1 46093 2 0 42459 Probability modeled is living=1. NOTE: 84 observations were deleted due to missing values for the response or explanatory variables. Class Level Information Class Value patgendercat 1 2 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 245.
    Lecture 4-OPTN LiverTransplants 110 dongendercat 1 2 racecat 1 2 3 4 5 6 7 8 txyearcat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Class Level Information Design Variables 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 246.
    Lecture 4-OPTN LiverTransplants 111 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 122611.96 105637.71 SC 122621.36 105947.62 -2 Log L 122609.96 105571.71 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 17038.2552 32 <.0001 Score 15989.6946 32 <.0001 Wald 13860.1677 32 <.0001 Type 3 Analysis of Effects Wald Effect DF Chi-Square Pr > ChiSq AGE 1 34.8506 <.0001 AGE_DON 1 669.7725 <.0001 patgendercat 1 31.3904 <.0001 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 247.
    Lecture 4-OPTN LiverTransplants 112 dongendercat 1 2.4775 0.1155 racecat 7 162.1487 <.0001 txyearcat 21 13730.8457 <.0001 Analysis of Maximum Likelihood Estimates Standard Wald Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 0.00424 0.0396 0.0115 0.9147 AGE 1 -0.00270 0.000458 34.8506 <.0001 AGE_DON 1 -0.0119 0.000458 669.7725 <.0001 patgendercat 2 1 0.0869 0.0155 31.3904 <.0001 dongendercat 2 1 -0.0245 0.0156 2.4775 0.1155 racecat 2 1 -0.2093 0.0229 83.5753 <.0001 racecat 3 1 -0.2162 0.0246 77.4271 <.0001 racecat 4 1 -0.2879 0.0558 26.6660 <.0001 racecat 5 1 0.0578 0.1373 0.1771 0.6739 racecat 6 1 -0.3304 0.1560 4.4862 0.0342 racecat 7 1 -0.1205 0.1076 1.2547 0.2627 racecat 8 1 -0.0383 0.1489 0.0663 0.7968 txyearcat 1 1 -1.6463 0.1726 91.0171 <.0001 txyearcat 2 1 -1.3304 0.0741 322.0483 <.0001 txyearcat 3 1 -1.1792 0.0653 325.7096 <.0001 txyearcat 4 1 -1.0185 0.0590 298.1991 <.0001 txyearcat 5 1 -0.8943 0.0559 255.5065 <.0001 txyearcat 6 1 -0.6650 0.0535 154.7815 <.0001 txyearcat 7 1 -0.4891 0.0504 94.1616 <.0001 txyearcat 8 1 -0.2369 0.0483 24.1021 <.0001 txyearcat 9 1 -0.1437 0.0470 9.3478 0.0022 txyearcat 11 1 0.1959 0.0454 18.5915 <.0001 txyearcat 12 1 0.3626 0.0445 66.4972 <.0001 txyearcat 13 1 0.5233 0.0439 142.2907 <.0001 txyearcat 14 1 0.7127 0.0434 269.1792 <.0001 txyearcat 15 1 0.8313 0.0432 370.4007 <.0001 txyearcat 16 1 1.1341 0.0435 679.9726 <.0001 txyearcat 17 1 1.2992 0.0433 898.7326 <.0001 txyearcat 18 1 1.5013 0.0433 1204.7821 <.0001 txyearcat 19 1 1.6946 0.0436 1508.6824 <.0001 txyearcat 20 1 2.1153 0.0456 2148.5186 <.0001 txyearcat 21 1 2.0269 0.0453 1998.1635 <.0001 txyearcat 22 1 -1.0982 0.2092 27.5634 <.0001 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits AGE 0.997 0.996 0.998 AGE_DON 0.988 0.987 0.989 patgendercat 2 vs 1 1.091 1.058 1.124 dongendercat 2 vs 1 0.976 0.947 1.006 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 248.
    Lecture 4-OPTN LiverTransplants 113 racecat 2 vs 1 0.811 0.776 0.848 racecat 3 vs 1 0.806 0.768 0.845 racecat 4 vs 1 0.750 0.672 0.836 racecat 5 vs 1 1.059 0.810 1.386 racecat 6 vs 1 0.719 0.529 0.976 racecat 7 vs 1 0.886 0.718 1.095 racecat 8 vs 1 0.962 0.719 1.289 txyearcat 1 vs 10 0.193 0.137 0.270 txyearcat 2 vs 10 0.264 0.229 0.306 txyearcat 3 vs 10 0.308 0.271 0.350 txyearcat 4 vs 10 0.361 0.322 0.405 txyearcat 5 vs 10 0.409 0.366 0.456 txyearcat 6 vs 10 0.514 0.463 0.571 txyearcat 7 vs 10 0.613 0.556 0.677 txyearcat 8 vs 10 0.789 0.718 0.867 txyearcat 9 vs 10 0.866 0.790 0.950 txyearcat 11 vs 10 1.216 1.113 1.330 txyearcat 12 vs 10 1.437 1.317 1.568 txyearcat 13 vs 10 1.688 1.549 1.839 txyearcat 14 vs 10 2.040 1.873 2.221 txyearcat 15 vs 10 2.296 2.110 2.499 txyearcat 16 vs 10 3.108 2.854 3.385 txyearcat 17 vs 10 3.666 3.368 3.991 txyearcat 18 vs 10 4.488 4.123 4.885 txyearcat 19 vs 10 5.445 4.998 5.931 txyearcat 20 vs 10 8.292 7.583 9.068 txyearcat 21 vs 10 7.590 6.945 8.296 txyearcat 22 vs 10 0.333 0.221 0.502 Association of Predicted Probabilities and Observed Responses Percent Concordant 74.4 Somers' D 0.490 Percent Discordant 25.4 Gamma 0.492 Percent Tied 0.2 Tau-a 0.245 Pairs 1957062687 c 0.745 Odds Ratios Effect Unit Estimate AGE 10.0000 0.973 AGE_DON 10.0000 0.888 As seen above in the proc logistic output of living after transplant considering the effects of patient age, donor age and gender, patient race and year of transplant , the findings are as follows: 1. All else being equal, each additional year in patient age at transplantation, the likelihood of surviving decreases by 0.3 percent. p<.0001[CI 0.996, 0.998] 2. All else being equal, for each year increase in donor age at transplantation, the patient’s likelihood of being alive decreases by 0.2 percent. p<.0001[CI 0.987, 0.989] Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 249.
    Lecture 4-OPTN LiverTransplants 114 3. All else being equal, female patients compared to males are 9.1 percent more likely of surviving after transplant. p<.0.001[CI 1.058, 1.1240] 4. All else being equal, patients having female donor compared to male donor has no significant effect upon survival after transplant. 5. All else being equal, blacks compared to whites are 18.9 percent less likely to survive after transplant p<.0.001[CI 0.776, 0.848] 6. All else being equal, Hispanics compared to whites are 19.1 percent less likely to survive after transplant. p<.0.001[CI0.768, 0.845] 7. All else being equal, patients transplanted in the year 1989 compared to 1996 were 69.2 percent less likely to survive. p<.0.0001[CI 0.271, 0.350 8. All else being equal, patients transplanted in 2000 compared to 1996 were twice as likely to survive. p<.0.0001[CI 1.873, 2.221] Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 250.
    Lecture 4-OPTN LiverTransplants 115 5. Survival Analysis “Survival analysis is a collection of specialized methods used to analyze data in which time until an event occurs in the response variable of interest. The response variable, often called in survival analysis, a failure time, survival time, or event time, and is usually continuous and can be measured in weeks, months, years etc. . Events can be death, onset of disease, marriages, arrests, etc.. What is unique about survival analysis is that even if the subject did not experience the event (death), the subject’s survival time or length of time is taken into account” Survival Analysis Using the Proportional Hazard Model Course Notes, 2006 SAS institute, Cary NC, pp 1-3, ISBN 978-1-59994-306. Below is the SAS code for a Life Test Procedure Survival Analysis. *unos05d.sas*/ proc lifetest data=liver plots =(s,c,ls, lls) cs=none; time txyearcat*deceased(0); strata gender / test=(all); title 'Liver Transplant Survival Rates'; run; quit; Partial Output of the Life Test Procedure of Liver transplants . The LIFETEST Procedure Stratum 2: GENDER = M Product-Limit Survival Estimates Survival Standard Number Number txyearcat Survival Failure Error Failed Left 19.0000* . . . 14551 11867 19.0000* . . . 14551 11866 19.0000* . . . 14551 11865 19.0000* . . . 14551 11864 19.0000* . . . 14551 11863 19.0000* . . . 14551 11862 19.0000* . . . 14551 11861 19.0000* . . . 14551 11860 19.0000* . . . 14551 11859 19.0000* . . . 14551 11858 19.0000* . . . 14551 11857 19.0000* . . . 14551 11856 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 251.
    Lecture 4-OPTN LiverTransplants 116 19.0000* . . . 14551 11855 19.0000* . . . 14551 11854 19.0000* . . . 14551 11853 19.0000* . . . 14551 11852 19.0000* . . . 14551 11851 19.0000* . . . 14551 11850 19.0000* . . . 14551 11849 19.0000* . . . 14551 11848 19.0000* . . . 14551 11847 19.0000* . . . 14551 11846 19.0000* . . . 14551 11845 19.0000* . . . 14551 11844 Liver Transplant Survival Rates The LIFETEST Procedure Stratum 2: GENDER = M NOTE: The marked survival times are censored observations. Summary Statistics for Time Variable txyearcat Quartile Estimates Point 95% Confidence Interval Percent Estimate Transform [Lower Upper) 75 . LOGLOG . . 50 . LOGLOG . . 25 16.0000 LOGLOG 15.0000 16.0000 Mean Standard Error 17.6839 0.0241 NOTE: The mean survival time and its standard error were underestimated because the largest observation was censored and the estimation was restricted to the largest event time. Summary of the Number of Censored and Uncensored Values Percent Stratum GENDER Total Failed Censored Censored 1 F 34629 10078 24551 70.90 2 M 54007 15392 38615 71.50 ------------------------------------------------------------- Total 88636 25470 63166 71.26 Liver Transplant Survival Rates The LIFETEST Procedure Testing Homogeneity of Survival Curves for txyearcat over Strata Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 252.
    Lecture 4-OPTN LiverTransplants 117 Rank Statistics Modified GENDER Log-Rank Wilcoxon Tarone Peto Peto Fleming F 797.25 54404932 205342.7 697.88 697.87 712.69 M -797.25 -5.44E7 -205343 -697.88 -697.87 -712.69 Covariance Matrix for the Log-Rank Statistics GENDER F M F 5725.14 -5725.14 M -5725.14 5725.14 Covariance Matrix for the Wilcoxon Statistics GENDER F M F 2.187E13 -2.19E13 M -2.19E13 2.187E13 Covariance Matrix for the Tarone Statistics GENDER F M F 3.2996E8 -3.3E8 M -3.3E8 3.2996E8 Covariance Matrix for the Peto Statistics GENDER F M F 3919.25 -3919.25 M -3919.25 3919.25 Covariance Matrix for the Modified Peto Statistics GENDER F M F 3919.10 -3919.10 M -3919.10 3919.10 Liver Transplant Survival Rates Covariance Matrix for the Fleming Statistics GENDER F M F 4119.94 -4119.94 M -4119.94 4119.94 Test of Equality over Strata Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 253.
    Lecture 4-OPTN LiverTransplants 118 Pr > Test Chi-Square DF Chi-Square Log-Rank 111.0194 1 <.0001 Wilcoxon 135.3590 1 <.0001 Tarone 127.7890 1 <.0001 Peto 124.2695 1 <.0001 Modified Peto 124.2694 1 <.0001 Fleming(1) 123.2863 1 <.0001 The above results of the nonparametric tests show there is a significant difference in the survival functions between males and females The plot of survival function shows that over 22 years males have had longer survival rates compared to females. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 254.
    Lecture 4-OPTN LiverTransplants 119 Exercise 4.5 1. Produce a survival analysis using patient race - white, black and Hispanic - as the strata and determine which race has the highest survival rate. 2. Produce a survival analysis using donor race - white, black and Hispanic -as the strata and determine which race has the highest survival rate 3. Produce a survival analysis using patient age groups as the strata. Answer to exercise 4.5-1. /*2. Produce a survival analysis using race white, black and Hispanic as the strata and determine which race has the highest survival rate. .*/ proc lifetest data=liver plots =(s,c,ls, lls) cs=none; where ethcat=1 or ethcat=2 or ethcat=4; time txyearcat*deceased(0); strata ethcat / test=(all); title 'Liver Transplant Survival Rates'; run; quit; Partial output of Proc Lifetest for Exercise 4.5-1 Liver Transplant Survival Rates The LIFETEST Procedure Stratum 3: ETHCAT = 4 Product-Limit Survival Estimates Survival Standard Number Number txyearcat Survival Failure Error Failed Left Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 255.
    Lecture 4-OPTN LiverTransplants 120 21.0000* . . . 2466 38 21.0000* . . . 2466 37 21.0000* . . . 2466 36 21.0000* . . . 2466 35 21.0000* . . . 2466 34 21.0000* . . . 2466 33 21.0000* . . . 2466 32 21.0000* . . . 2466 31 21.0000* . . . 2466 30 22.0000 0.5803 0.4197 0.0211 2467 29 22.0000* . . . 2467 28 22.0000* . . . 2467 27 22.0000* . . . 2467 26 22.0000* . . . 2467 25 22.0000* . . . 2467 24 22.0000* . . . 2467 23 22.0000* . . . 2467 22 22.0000* . . . 2467 21 22.0000* . . . 2467 20 22.0000* . . . 2467 19 22.0000* . . . 2467 18 22.0000* . . . 2467 17 22.0000* . . . 2467 16 22.0000* . . . 2467 15 22.0000* . . . 2467 14 22.0000* . . . 2467 13 22.0000* . . . 2467 12 22.0000* . . . 2467 11 22.0000* . . . 2467 10 22.0000* . . . 2467 9 22.0000* . . . 2467 8 22.0000* . . . 2467 7 22.0000* . . . 2467 6 22.0000* . . . 2467 5 22.0000* . . . 2467 4 22.0000* . . . 2467 3 22.0000* . . . 2467 2 22.0000* . . . 2467 1 22.0000* . . . 2467 0 NOTE: The marked survival times are censored observations. Stratum 3: ETHCAT = 4 Summary Statistics for Time Variable txyearcat Quartile Estimates Point 95% Confidence Interval Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 256.
    Lecture 4-OPTN LiverTransplants 121 Percent Estimate Transform [Lower Upper) 75 . LOGLOG . . 50 . LOGLOG . . 25 17.0000 LOGLOG 17.0000 18.0000 Mean Standard Error 18.9788 0.0538 NOTE: The mean survival time and its standard error were underestimated because the largest observation was censored and the estimation was restricted to the largest event time. Summary of the Number of Censored and Uncensored Values Percent Stratum ETHCAT Total Failed Censored Censored 1 1 66103 19472 46631 70.54 2 2 7882 2411 5471 69.41 3 4 10315 2467 7848 76.08 ------------------------------------------------------------------- Total 84300 24350 59950 71.12 Testing Homogeneity of Survival Curves for txyearcat over Strata Rank Statistics Modified ETHCAT Log-Rank Wilcoxon Tarone Peto Peto Fleming 1 767.31 54511758 203704.2 698.36 698.35 711.22 2 14.87 -4190729 -8535.46 -16.17 -16.17 -14.15 4 -782.18 -5.032E7 -195169 -682.19 -682.18 -697.06 Covariance Matrix for the Log-Rank Statistics ETHCAT 1 2 4 1 4207.29 -1785.89 -2421.40 2 -1785.89 2096.54 -310.65 4 -2421.40 -310.65 2732.05 Covariance Matrix for the Wilcoxon Statistics ETHCAT 1 2 4 1 1.406E13 -5.98E12 -8.08E12 2 -5.98E12 6.984E12 -1E12 4 -8.08E12 -1E12 9.08E12 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 257.
    Lecture 4-OPTN LiverTransplants 122 Covariance Matrix for the Tarone Statistics ETHCAT 1 2 4 1 2.2595E8 -9.602E7 -1.299E8 2 -9.602E7 1.1234E8 -1.632E7 4 -1.299E8 -1.632E7 1.4625E8 Covariance Matrix for the Peto Statistics ETHCAT 1 2 4 1 2834.79 -1204.39 -1630.40 2 -1204.39 1410.48 -206.09 4 -1630.40 -206.09 1836.49 Liver Transplant Survival Rates The LIFETEST Procedure Covariance Matrix for the Modified Peto Statistics ETHCAT 1 2 4 1 2834.67 -1204.34 -1630.33 2 -1204.34 1410.42 -206.08 4 -1630.33 -206.08 1836.41 Covariance Matrix for the Fleming Statistics ETHCAT 1 2 4 1 2984.23 -1267.78 -1716.45 2 -1267.78 1485.01 -217.23 4 -1716.45 -217.23 1933.67 Test of Equality over Strata Pr > Test Chi-Square DF Chi-Square Log-Rank 226.5981 2 <.0001 Wilcoxon 292.7058 2 <.0001 Tarone 268.7596 2 <.0001 Peto 259.6070 2 <.0001 Modified Peto 259.6106 2 <.0001 Fleming(1) 257.1350 2 <.0001 The results of the above non-parametric tests show that there is a significant difference between the survival functions between whites, blacks and Hispanics. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 258.
    Lecture 4-OPTN LiverTransplants 123 This plot of survival function shows that over 22 years whites (ethcat=1) have a longer liver transplant survival rate when compared to Hispanics (ethcat=4) and blacks (ethcat=2). It also should be noted survival rates, over in the past five years, between blacks and whites have almost become equal. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 259.
    Lecture 4-OPTN LiverTransplants 124 Answer to exercise 4.5-2. /*2. Produce a survival analysis using doner race white, black and Hispanic as the strata.*/ proc lifetest data=liver plots =(s,c,ls, lls) cs=none; where ethcat_don=1 or ethcat_don=2 or ethcat_don=4; time txyearcat*deceased(0); strata ethcat_don / test=(all); title 'Liver Transplant Survival Rates'; run; quit; Partial output of Proc Lifetest for Donor Race, Exercise 4.5-2. The LIFETEST Procedure Stratum 3: ETHCAT_DON = 4 Product-Limit Survival Estimates Survival Standard Number Number txyearcat Survival Failure Error Failed Left 21.0000* . . . 2473 40 21.0000* . . . 2473 39 21.0000* . . . 2473 38 21.0000* . . . 2473 37 21.0000* . . . 2473 36 21.0000* . . . 2473 35 21.0000* . . . 2473 34 21.0000* . . . 2473 33 21.0000* . . . 2473 32 21.0000* . . . 2473 31 21.0000* . . . 2473 30 21.0000* . . . 2473 29 21.0000* . . . 2473 28 22.0000* . . . 2473 27 22.0000* . . . 2473 26 22.0000* . . . 2473 25 22.0000* . . . 2473 24 22.0000* . . . 2473 23 22.0000* . . . 2473 22 22.0000* . . . 2473 21 22.0000* . . . 2473 20 22.0000* . . . 2473 19 22.0000* . . . 2473 18 22.0000* . . . 2473 17 22.0000* . . . 2473 16 22.0000* . . . 2473 15 22.0000* . . . 2473 14 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 260.
    Lecture 4-OPTN LiverTransplants 125 22.0000* . . . 2473 13 22.0000* . . . 2473 12 22.0000* . . . 2473 11 22.0000* . . . 2473 10 22.0000* . . . 2473 9 22.0000* . . . 2473 8 22.0000* . . . 2473 7 22.0000* . . . 2473 6 22.0000* . . . 2473 5 22.0000* . . . 2473 4 22.0000* . . . 2473 3 22.0000* . . . 2473 2 22.0000* . . . 2473 1 22.0000* . . . 2473 0 NOTE: The marked survival times are censored observations. Liver Transplant Survival Rates The LIFETEST Procedure Stratum 3: ETHCAT_DON = 4 Summary Statistics for Time Variable txyearcat Quartile Estimates Point 95% Confidence Interval Percent Estimate Transform [Lower Upper) 75 . LOGLOG . . 50 . LOGLOG . . 25 17.0000 LOGLOG 17.0000 18.0000 Mean Standard Error 18.3210 0.0510 NOTE: The mean survival time and its standard error were underestimated because the largest observation was censored and the estimation was restricted to the largest event time. Summary of the Number of Censored and Uncensored Values Percent Stratum ETHCAT_DON Total Failed Censored Censored 1 1 65430 19275 46155 70.54 2 2 11012 2973 8039 73.00 3 4 9500 2473 7027 73.97 ------------------------------------------------------------------- Total 85942 24721 61221 71.24 Liver Transplant Survival Rates The LIFETEST Procedure Testing Homogeneity of Survival Curves for txyearcat over Strata Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 261.
    Lecture 4-OPTN LiverTransplants 126 Rank Statistics ETHCAT_ Modified DON Log-Rank Wilcoxon Tarone Peto Peto Fleming 1 1151.8 78602574 299192.2 1022.0 1022.0 1042.3 2 -496.7 -3.326E7 -127436 -437.6 -437.6 -446.4 4 -655.1 -4.534E7 -171756 -584.3 -584.3 -595.8 Covariance Matrix for the Log-Rank Statistics ETHCAT_DON 1 2 4 1 4685.12 -2464.48 -2220.63 2 -2464.48 2892.59 -428.11 4 -2220.63 -428.11 2648.74 Covariance Matrix for the Wilcoxon Statistics ETHCAT_DON 1 2 4 1 1.616E13 -8.55E12 -7.61E12 2 -8.55E12 9.927E12 -1.38E12 4 -7.61E12 -1.38E12 8.986E12 Covariance Matrix for the Tarone Statistics ETHCAT_DON 1 2 4 1 2.5531E8 -1.347E8 -1.206E8 2 -1.347E8 1.57E8 -2.23E7 4 -1.206E8 -2.23E7 1.4291E8 Covariance Matrix for the Peto Statistics ETHCAT_DON 1 2 4 1 3147.89 -1659.62 -1488.27 2 -1659.62 1938.37 -278.75 4 -1488.27 -278.75 1767.01 Liver Transplant Survival Rates The LIFETEST Procedure Covariance Matrix for the Modified Peto Statistics ETHCAT_DON 1 2 4 1 3147.76 -1659.55 -1488.20 2 -1659.55 1938.29 -278.74 4 -1488.20 -278.74 1766.94 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 262.
    Lecture 4-OPTN LiverTransplants 127 Covariance Matrix for the Fleming Statistics ETHCAT_DON 1 2 4 1 3313.76 -1746.76 -1567.00 2 -1746.76 2040.94 -294.18 4 -1567.00 -294.18 1861.18 Test of Equality over Strata Pr > Test Chi-Square DF Chi-Square Log-Rank 290.6337 2 <.0001 Wilcoxon 395.1013 2 <.0001 Tarone 361.3777 2 <.0001 Peto 341.4192 2 <.0001 Modified Peto 341.4225 2 <.0001 Fleming(1) 337.2794 2 <.0001 The results of the above non-parametric tests show that there is a significant difference between the survival functions between recipients of whites, blacks and Hispanics donors. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 263.
    Lecture 4-OPTN LiverTransplants 128 This plot of survival function shows that over 22 years those receiving livers from white donors (ethcat=1) have a longer liver transplant survival rate when compared to Hispanics (ethcat=4) and blacks (ethcat=2). This has been consistent for 22 years. /*3. Produce a survival analysis using patient age groups as the strata. */ proc lifetest data=liver plots =(s,c,ls, lls) cs=none; time txyearcat*deceased(0); strata agecat / test=(all); title 'Liver Transplant Survival Rates'; run; quit; Liver Transplant Survival Rates The LIFETEST Procedure Stratum 8: agecat = 8 Product-Limit Survival Estimates Survival Standard Number Number txyearcat Survival Failure Error Failed Left Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 264.
    Lecture 4-OPTN LiverTransplants 129 22.0000* . . . 2325 9 22.0000* . . . 2325 8 22.0000* . . . 2325 7 22.0000* . . . 2325 6 22.0000* . . . 2325 5 22.0000* . . . 2325 4 22.0000* . . . 2325 3 22.0000* . . . 2325 2 22.0000* . . . 2325 1 22.0000* . . . 2325 0 NOTE: The marked survival times are censored observations. Summary Statistics for Time Variable txyearcat Quartile Estimates Point 95% Confidence Interval Percent Estimate Transform [Lower Upper) 75 . LOGLOG . . 50 21.0000 LOGLOG . . 25 15.0000 LOGLOG 14.0000 15.0000 Mean Standard Error 17.4546 0.0663 NOTE: The mean survival time and its standard error were underestimated because the largest observation was censored and the estimation was restricted to the largest event time. Summary of the Number of Censored and Uncensored Values Percent Stratum agecat Total Failed Censored Censored 1 1 3070 627 2443 79.58 2 2 4057 847 3210 79.12 3 3 1513 251 1262 83.41 4 4 2271 463 1808 79.61 Liver Transplant Survival Rates The LIFETEST Procedure Summary of the Number of Censored and Uncensored Values Percent Stratum agecat Total Failed Censored Censored 5 5 6678 1748 4930 73.82 6 6 27104 7795 19309 71.24 7 7 37656 11414 26242 69.69 8 8 6287 2325 3962 63.02 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 265.
    Lecture 4-OPTN LiverTransplants 130 ------------------------------------------------------------------- Total 88636 25470 63166 71.26 Liver Transplant Survival Rates The LIFETEST Procedure Testing Homogeneity of Survival Curves for txyearcat over Strata Rank Statistics Modified agecat Log-Rank Wilcoxon Tarone Peto Peto Fleming 1 -148.01 -8326456 -34721.7 -120.19 -120.19 -123.53 2 -105.90 -4610268 -21788.7 -78.51 -78.51 -81.48 3 -102.57 -5779113 -23844.8 -83.30 -83.30 -85.60 4 -110.01 -5898304 -24821.2 -87.72 -87.72 -90.34 5 139.66 16723985 51116.82 161.32 161.32 161.48 6 806.92 52487545 207508.4 693.69 693.69 709.07 7 -689.48 -4.725E7 -181334 -605.47 -605.46 -617.86 8 209.39 2656151 27884.9 120.18 120.17 128.25 Covariance Matrix for the Log-Rank Statistics agecat 1 2 3 4 5 6 7 8 1 730.48 -28.46 -10.58 -17.09 -47.90 -208.78 -355.62 -62.05 2 -28.46 891.74 -13.05 -21.06 -59.05 -257.30 -436.66 -76.16 3 -10.58 -13.05 339.15 -7.83 -21.94 -95.76 -161.78 -28.21 4 -17.09 -21.06 -7.83 544.66 -35.44 -154.66 -262.75 -45.83 5 -47.90 -59.05 -21.94 -35.44 1464.24 -432.59 -738.45 -128.87 6 -208.78 -257.30 -95.76 -154.66 -432.59 4907.42 -3200.32 -558.02 7 -355.62 -436.66 -161.78 -262.75 -738.45 -3200.32 6136.81 -981.23 8 -62.05 -76.16 -28.21 -45.83 -128.87 -558.02 -981.23 1880.37 Covariance Matrix for the Wilcoxon Statistics agecat 1 2 3 4 5 6 7 8 1 2.89E12 -1.2E11 -4.5E10 -7.12E10 -1.98E11 -8.77E11 -1.35E12 -2.32E11 2 -1.2E11 3.577E12 -5.64E10 -8.9E10 -2.48E11 -1.1E12 -1.68E12 -2.89E11 3 -4.5E10 -5.64E10 1.379E12 -3.35E10 -9.33E10 -4.12E11 -6.3E11 -1.09E11 4 -7.12E10 -8.9E10 -3.35E10 2.167E12 -1.47E11 -6.52E11 -1E12 -1.73E11 5 -1.98E11 -2.48E11 -9.33E10 -1.47E11 5.766E12 -1.82E12 -2.78E12 -4.8E11 6 -8.77E11 -1.1E12 -4.12E11 -6.52E11 -1.82E12 1.931E13 -1.23E13 -2.13E12 7 -1.35E12 -1.68E12 -6.3E11 -1E12 -2.78E12 -1.23E13 2.308E13 -3.31E12 8 -2.32E11 -2.89E11 -1.09E11 -1.73E11 -4.8E11 -2.13E12 -3.31E12 6.718E12 Liver Transplant Survival Rates The LIFETEST Procedure Covariance Matrix for the Tarone Statistics agecat 1 2 3 4 5 6 7 8 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 266.
    Lecture 4-OPTN LiverTransplants 131 1 42999350 -1738916 -651605 -1040061 -2895291 -1.279E7 -2.036E7 -3525283 2 -1738916 52912751 -810452 -1292224 -3600003 -1.589E7 -2.522E7 -4364853 3 -651605 -810452 20313772 -484178 -1348360 -5956796 -9430101 -1632280 4 -1040061 -1292224 -484178 32224989 -2151333 -9509395 -1.513E7 -2619655 5 -2895291 -3600003 -1348360 -2151333 85844237 -2.645E7 -4.211E7 -7291945 6 -1.279E7 -1.589E7 -5956796 -9509395 -2.645E7 2.8866E8 -1.859E8 -3.219E7 7 -2.036E7 -2.522E7 -9430101 -1.513E7 -4.211E7 -1.859E8 3.5044E8 -5.233E7 8 -3525283 -4364853 -1632280 -2619655 -7291945 -3.219E7 -5.233E7 1.0395E8 Covariance Matrix for the Peto Statistics agecat 1 2 3 4 5 6 7 8 1 507.83 -20.34 -7.60 -12.17 -33.97 -149.37 -242.31 -42.05 2 -20.34 623.72 -9.44 -15.10 -42.16 -185.23 -299.51 -51.95 3 -7.60 -9.44 238.78 -5.64 -15.75 -69.28 -111.68 -19.37 4 -12.17 -15.10 -5.64 379.91 -25.20 -110.90 -179.71 -31.18 5 -33.97 -42.16 -15.75 -25.20 1015.40 -309.15 -502.04 -87.13 6 -149.37 -185.23 -69.28 -110.90 -309.15 3407.66 -2201.73 -382.00 7 -242.31 -299.51 -111.68 -179.71 -502.04 -2201.73 4172.97 -635.99 8 -42.05 -51.95 -19.37 -31.18 -87.13 -382.00 -635.99 1249.68 Covariance Matrix for the Modified Peto Statistics agecat 1 2 3 4 5 6 7 8 1 507.81 -20.34 -7.60 -12.17 -33.97 -149.36 -242.30 -42.05 2 -20.34 623.70 -9.44 -15.09 -42.16 -185.22 -299.49 -51.95 3 -7.60 -9.44 238.77 -5.64 -15.75 -69.28 -111.68 -19.37 4 -12.17 -15.09 -5.64 379.90 -25.20 -110.90 -179.71 -31.18 5 -33.97 -42.16 -15.75 -25.20 1015.36 -309.14 -502.02 -87.13 6 -149.36 -185.22 -69.28 -110.90 -309.14 3407.53 -2201.65 -381.98 7 -242.30 -299.49 -111.68 -179.71 -502.02 -2201.65 4172.80 -635.96 8 -42.05 -51.95 -19.37 -31.18 -87.13 -381.98 -635.96 1249.62 Liver Transplant Survival Rates The LIFETEST Procedure Covariance Matrix for the Fleming Statistics agecat 1 2 3 4 5 6 7 8 1 533.17 -21.31 -7.96 -12.76 -35.61 -156.48 -254.81 -44.24 2 -21.31 654.52 -9.88 -15.81 -44.16 -193.95 -314.77 -54.63 3 -7.96 -9.88 250.45 -5.91 -16.50 -72.52 -117.33 -20.36 4 -12.76 -15.81 -5.91 398.77 -26.41 -116.16 -188.93 -32.80 5 -35.61 -44.16 -16.50 -26.41 1066.24 -323.88 -528.00 -91.68 6 -156.48 -193.95 -72.52 -116.16 -323.88 3578.20 -2313.63 -401.58 7 -254.81 -314.77 -117.33 -188.93 -528.00 -2313.63 4389.00 -671.53 8 -44.24 -54.63 -20.36 -32.80 -91.68 -401.58 -671.53 1316.81 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 267.
    Lecture 4-OPTN LiverTransplants 132 Test of Equality over Strata Pr > Test Chi-Square DF Chi-Square Log-Rank 263.8732 7 <.0001 Wilcoxon 268.5349 7 <.0001 Tarone 274.2439 7 <.0001 Peto 268.1175 7 <.0001 Modified Peto 268.1196 7 <.0001 Fleming(1) 267.7420 7 <.0001 The results of the above non-parametric tests show that there is a significant difference between the survival functions between the various age groups of patients. This plot of survival function shows that those receiving livers in age group 6-10 years old (agecat=3) have a longer liver transplant survival rate when compared to all other age groups. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 268.
    Lecture 4-OPTN LiverTransplants 133 The age group greater than 65 (agecat=8) has the lowest survival rate and appears to be consistent over the 22 years. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 269.
    Lecture 4-OPTN LiverTransplants 134 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 270.
    Baruch College/Mount Sinai School of Medicine Program in Health Care Administration and Policy Health Data Analysis and ® Statistics Using SAS Course Notes STA9000 Chapter 5- Office of Statewide Health Planning & Development (OSHPD) California Emergency Department Data
  • 271.
    2 Health Data Analysisand Statistics Using SAS® Course Notes was developed by Raymond R. Arons. SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. Health Data Analysis and Statistics Using SAS® Course Note Copyright © 2009 Raymond R. Arons. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, Raymond R. Arons, Teaneck, New Jersey. Prepared date 7Aug09. TABLE OF CONTENTS
  • 272.
    Chapter 5-OSPHD EmergencyDepartment 3 Objectives of Chapter 4 Section – 1 The Office of Statewide Health Planning and Development (OSPHD) – Putting the Pieces Together 5 Section 2 - Using OSHPD Data to Understand Health and Healthcare Patterns: Descriptive Reports and Research Briefs 14 Section 3 – Using the National Hospital Ambulatory Medical Care Survey (NHAMCS) data for injury analysis, 2004 18 Section 4 – OSPHD Public Use Data Variables 22 Section 5 - Emergency Department and Ambulatory Surgery Center File Documentation 23 Demonstration 1 OSPHD California 2007 Emergency Department Data PROC Format, Labels, PROC Contents, and PROC Freq Statements 33 Exercise 5.1 51 Demonstration 2 SAS Code for OSPHD Indicator and Truth Logic Variables with PROC MEANS and PROC TABULATE 66 Exercise 5.2 73 Demonstration 3 Multiple Linear Regression Model of California ED visits with the response variable of Patient Age (age_years) 87 Exercise 5.3 89 Demonstration 4 Logistic Regression Model of California Self Pay Emergency Department Visits 93 Exercise 5.4 98 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 273.
    Chapter 5-OSPHD EmergencyDepartment 4 Office of Statewide Health Planning & Development (OSHPD) California Emergency Department Data Lecture 5 Objectives Provide an overview of Office of Statewide Health Planning & Development (OSHPD) California Emergency Department Data Review the available descriptive data that is provided in the annual 2007 OSPHD reports. Review the variables and their definitions that exist on the (OSHPD) California Emergency Department Data OPTN Liver transplantation data files. Identify the additional information that can be obtained from the raw data. Pose the range of potential study questions. Write SAS code to analyze the OSPHD data. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 274.
    Chapter 5-OSPHD EmergencyDepartment 5 The Office of Statewide Health Planning and Development David M. Carlisle, MD, PhD Director, OSHPD Ron Spingarn Deputy Director, Healthcare Information Division Office of Statewide Health Planning and Development 456 Employees Annual Budget of $88.9 million Offices in Sacramento and Los Angeles Five Divisions and Five Boards/Commissions Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 275.
    Chapter 5-OSPHD EmergencyDepartment 6 OSHPD in the California Government Hierarchy Governor Health & Human CPHS Services Health Social Mental Public Care Services Health OSHPD Services Health Other CHHS Departments: Aging, Alcohol and Drug Programs, Child Support Services, Community Services and Development, Developmental Services, Emergency Medical Services Authority, Managed Risk Medical Insurance Board, and Rehabilitation OSHPD History Created as a result of the break up of the Department of Public Health in 1978. Responsible for: Hospital construction and plan review. Collection and dissemination of healthcare information. Collection and reporting of outcome data on selected medical conditions and procedures. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 276.
    Chapter 5-OSPHD EmergencyDepartment 7 Origin of OSHPD’s Data Collection OSHPD data and quality programs have evolved over more than three decades. 1971 -- SB 283 established California Hospital Disclosure Act, created California Hospital Commission (CHC) To set standards for hospital uniform accounting & reporting To prepare for hospital rate setting as means of health care cost control Allow scrutiny of financial aspects of CA hospitals Data collection began in July 1974. Thanks to Michael Kassis for compiling this historical information! Data Collection (continued) 1974 -- CHC’s jurisdiction expanded, mandating uniform accounting and reporting system for long-term care (LTC) facilities CHC renamed the California Health Facilities Commission (CHFC) reflecting broadened responsibilities LTC data collection began for FYs starting on or after 1/1/1977 1980 -- SB 1370 added responsibilities: Collect quarterly financial and utilization data to assess success of hospital industry’s voluntary effort to contain costs Integrate CHFC’s LTC disclosure report with Medi-Cal cost report to reduce reporting burden on health facilities Collect 12 discharge data elements on hospital inpatients to inform understanding of the characteristics of care rendered by hospitals Submission of quarterly financial, patient-level data began in 1981 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 277.
    Chapter 5-OSPHD EmergencyDepartment 8 Data Collection (continued) 1982 -- AB 3480 expanded inpatient discharge data elements Total charges, other diagnoses, other procedures and dates, date of principal procedure, starting 1/1/1983. Option to report the Abstract (Medical) Record Number. 1984 -- SB 181: Health Data and Advisory Council Consolidation Act Transferred functions of CHFC to OSHPD, eliminated State Advisory Health Council and formed advisory body (California Health Policy and Data Advisory Commission -- CHPDAC) OSHPD Data and Quality Measurement History 1985 -- AB 2011 (Chapter 1021) required hospitals to submit hospital inpatient discharge data semiannually, not later than six months after the end of each semiannual period commencing six months after January 1, 1986. 1988 -- SB 2398 (Chapter 1140) added external cause of injury and patient social security number effective with discharges on July 1, 1990. 1991 -- AB 524 - Bronzan (Chapter 1075) established the California Hospital Outcomes Project (CHOP) in order to promote and conduct risk adjusted outcome studies of hospitals and strengthen patient discharge data through additions or changes. The bill also created the Technical Advisory Committee (TAC) within CHPDAC. SB 697 - Torres (Chapter 812) required private not-for-profit hospitals to develop and annually submit community benefits plans that include a description of the activities that the hospital has undertaken in order to address identified community needs within its mission and financial capacity, and the process by which the hospital developed the plan in consultation with the community. Submission of plans began with fiscal years ending in 1995. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 278.
    Chapter 5-OSPHD EmergencyDepartment 9 Our Vision: “Equitable Healthcare Accessibility for California” OSHPD’s Divisions Workforce Facilities Development Development Healthcare Professions Education Foundation OSHPD Cal-Mortgage Healthcare Loan Information Insurance Administration Plus Six Advisory Bodies Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 279.
    Chapter 5-OSPHD EmergencyDepartment 10 Major Challenges – Policy: Ensuring Patient Confidentiality and Secure Data Informing the Public and Policy-Makers to Help Ensure Access to Healthcare Assessing Quality of Care Enforcing Seismic Safety Shifting Landscape New Legislators Hospital Construction Healthcare Reform (state & federal) New Federal Administration Economic Stimulus Package for CA Healthcare Information Technology Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 280.
    Chapter 5-OSPHD EmergencyDepartment 11 Facilities Development Division Reviews plans and inspects health facility construction projects to ensure compliance with building standards. Ensures patient safety in these facilities in the event of an earthquake or other disaster. The 1971 San Fernando, California, earthquake (magnitude 6.7) severely damaged the recently built Olive View Hospital. This building was not instrumented with seismic sensors. Accordingly, no data were obtained to understand how the damage initiated and progressed during the intense shaking. The building was razed and replaced with a stronger structure that survived the 1994 Northridge earthquake. Most loss of life and property in earthquakes is the result of damage to or collapse of buildings or other structures from strong shaking. Key to reducing such losses are recordings of structural response to damaging levels of shaking. Using these recordings, engineers can better design new buildings and strengthen existing buildings to survive future quakes. The U.S. Geological Survey (USGS) and cooperators are engaged in a national effort to acquire these critically needed strong-motion measurements in earthquake-prone urban areas. http://pubs.usgs.gov/fs/2003/fs068-03/ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 281.
    Chapter 5-OSPHD EmergencyDepartment 12 Healthcare Information Division Collects and maintains data from California- licensed: Hospitals Long-term care facilities Home health agencies Hospices, and Primary care and specialty clinics Healthcare Information Division Workforce Facilities Development Development Healthcare Professions Education Healthcare Foundation OSHPD Outcomes Center Cal-Mortgage Healthcare Loan Information Insurance ARSS Administration PDS DMO HIRC Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 282.
    Chapter 5-OSPHD EmergencyDepartment 13 Healthcare Outcomes Center Produces: Risk-adjusted outcome reports, assessing quality of care of hospitals and surgeons for Coronary Artery Bypass Graft (CABG) Surgery and Community-Acquired Pneumonia Inpatient Mortality Indicators (currently on 8 conditions or procedures) OSPHD Contacts Visit our Web site at: www.oshpd.ca.gov or contact us at: Ombudsman@oshpd.ca.gov Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 283.
    Chapter 5-OSPHD EmergencyDepartment 14 Using OSHPD Data to Understand Health and Healthcare Patterns: Descriptive Reports and Research Briefs Presenter: Mary Tran, PhD, MPH Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 284.
    Chapter 5-OSPHD EmergencyDepartment 15 Kinds of healthcare information you can find in the data Patient information: Demographics, source of admission, and area of residence Diagnoses, procedures, type of discharge Source of payment, length of stay, charges Facility information: Hospital type of ownership, capacity, financing Staffing ratios, time on diversion Area of location Examples of possible linkages, with IRB approvals: Hospitalization records with death certificates Hospitalization records with outpatient visits Multiple hospitalizations over time for the same patient Examples of subjects you can address: Specific types of illness or injury that are leading to hospitalization—trends, demographics, geography How patients are utilizing the healthcare system (who goes where for what kind of care?) Reflections of public health trends (as revealed by patterns of hospitalization or ED visits) Trends in sources of payment for healthcare Tracking capacity of the healthcare system Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 285.
    Chapter 5-OSPHD EmergencyDepartment 16 Examples of analyses from OSHPD reports How many episodes of care happen in ED, compared to hospitalizations? Patient Profile Report, 2005 ED-Visits only 8,556,699 ASC-Hospital associated 1,738,755 ASC-Free standing 1,052,398 Inpatient-Physical Rehab 36,309 Inpatient-Chemical 13,538 Dependency Inpatient-Psychiatric 197,822 Total Inpatient: 3,990,255 Total ASC Free-standing + Hospital-associated: 2,831,212 Total ED Visits + Admissions: 10,182,025 Inpatient-SNF 68,714 Inpatient-GAC 3,673,824 0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000 8,000,000 9,000,000 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 286.
    Chapter 5-OSPHD EmergencyDepartment 17 Do urban areas make more use of emergency rooms for medical care? Patient Profile Report, 2005 Are the same types of procedures routinely performed in inpatient vs. outpatient settings? Patient Profile Report, 2005 Top 10 Procedures for Inpatient and Outpatient Encounters. California, 2005 GENERAL ACUTE ASC FREE- ASC HOSPITAL EMERGENCY CARE STANDING BASED DEPARTMENT Principal Procedure (CCS Code) F M F M F M F M Other procedures to assist delivery 239,767 Cesarean section 163,197 Repair of current obstetric laceration 55,651 Hysterectomy, abdominal and vaginal 49,647 Respiratory intubation, mechanical ventilation 35,436 39,091 Blood transfusion 34,224 25,586 Upper gastrointestinal endoscopy, biopsy 34,025 30,266 54,451 38,031 64,570 46,700 Prophylactic vaccinations and inoculations 31,789 23,531 Forceps, vacuum, and breech delivery 30,211 Episiotomy 29,136 Circumcision 55,094 PTCA 38,471 Appendectomy 23,304 Cardiac catheterization 23,116 22,632 Other vascular catheterization, not heart 20,415 Colonoscopy and biopsy 151,050 130,478 124,217 107,128 Lens and cataract procedures 80,454 52,988 65,994 44,443 Insertion of catheter, injection to spinal canal 73,888 57,198 37,955 26,574 OR procedures on skin and breast 27,242 18,177 Procedures on muscles and tendons 14,104 13,879 17,542 Excision of semilunar cartilage of knee 13,776 18,385 20,742 Procedures on eyelids, conjunctiva, cornea 13,163 8,254 Decompression peripheral nerve 11,781 Other OR therapeutic procedures on joints 10,348 12,405 Inguinal and femoral hernia repair 8,544 36,896 Arthroplasty other than hip or knee 6,177 Excision of skin lesion 15,268 Lumpectomy, quadrantectomy of breast 30,977 Cholecystectomy 22,449 D and C after delivery 18,617 Pathology 18,450 Interview, evaluation, consultation 1,181,059 1,034,969 Laboratory - Chemistry and Hematology 142,021 99,541 Suture of skin and subcutaneous tissue 92,509 185,634 Traction, splints, and other wound care 78,742 95,264 Diagnostic radiology 78,115 80,593 Routine chest X-ray 49,284 45,036 Electrocardiogram 39,638 30,630 Microscopic examination 38,500 22,573 Incision and drainage (skin, subQ) 23,512 28,540 Total number of encounters 1,477,340 908,067 590,471 454,982 968,245 761,625 2,209,650 2,015,345 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 287.
    Chapter 5-OSPHD EmergencyDepartment 18 Other OSPHD reports in the pipeline HIV/AIDS: Trends in Hospital and Emergency Room Patients Gunshot Wounds: Trends in Hospital and Emergency Room Patients Emergency Rooms: Patterns of Utilization Status of California’s Safety Net Section 3- Using the National Hospital Ambulatory Medical Care Survey (NHAMCS) data for injury analysis, 2004 l Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 288.
    Chapter 5-OSPHD EmergencyDepartment 19 Linda McCaig, Ambulatory Care Statistics Branch, Division of Health Care Statistics, Using National Hospital Ambulatory Medical Care Survey (NHAMCS) data for injury analysis, 2004 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 289.
    Chapter 5-OSPHD EmergencyDepartment 20 Highlights From the 1994-2004 National Hospital Ambulatory Surgery Survey (NHAMCS) continued... Highlights From the 2004 National Hospital Ambulatory Surgery Survey (NHAMCS) continued... Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 290.
    Chapter 5-OSPHD EmergencyDepartment 21 Highlights From the 2004 National Hospital Ambulatory Surgery Survey (NHAMCS) continued... Highlights From the 2004 National Hospital Ambulatory Surgery Survey (NHAMCS) Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 291.
    Chapter 5-OSPHD EmergencyDepartment 22 OSPHD Public Use Data Variables Facility Identification Number Patient Type (Am-Surg. or ED) License Type – Free standing – Hospital Based Age in Years (at admission) Age Range (20 Categories) Age Range (5 Categories) Gender N Ethnicity u m Race b er continued... of OSPHD Public Use Data Variables Patient Zip Code (first 3 digits) Patient County Quarter of Year Service Patient Disposition Expected Source of Payment Principal External Cause of Injury –E-Code Other External Cause of Injury - E-Code Principal Diagnosis Other Diagnosis Principal Procedure Other Procedures Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 292.
    Chapter 5-OSPHD EmergencyDepartment 23 INTRODUCTION Emergency Department and Ambulatory Surgery Center File Documentation Public Version July – December 2007 SAS (version 9.1) File Comma-Delimited Text File Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 293.
    Chapter 5-OSPHD EmergencyDepartment 24 INTRODUCTION General Information: The California Office of Statewide Health Planning and Development (OSHPD) provides public datasets of data collected from licensed emergency departments and ambulatory surgery centers in California. The ambulatory surgery data includes both hospital-based and freestanding clinics. Each record within the dataset consists of one outpatient encounter, also known as a service visit, for each time a patient is treated. Data collected for these encounters include demographic, clinical, payment, and facility information. The public data is released twice a year by OSHPD once it has been screened by the automated reporting software (MIRCal) and corrected by the individual facilities. Separate public files are available for emergency departments and ambulatory surgery center encounters. Because of its size, the emergency department data is divided into three separate files based on the geographic location of the facility as indicated below: • Los Angeles County • Southern California (seven counties, not including Los Angeles) • Northern California (50 counties) Masked Variables: To protect patient confidentiality, records with unique combinations of certain demographic variables will have one or more of those variables masked to make sure the files are de- identified. In most cases, masking involves defaulting the variable to blank or missing. Each unique record will have the minimum number of fields masked to ensure it is no longer unique. The variable masking occurs in the following order: ORDER OF DATA FIELDS SUBJECT TO MASKING MASKING 1st Age in years (on service date) 2nd Ethnicity 3rd Race 4th Sex 5th Age Category 20 (20 Age Categories) 6th Age Category 5 (5 Age Categories) 7th Service Quarter 8th Patient ZIP Code (5-digit)* 9th Small County Groups** 10th Patient ZIP Code (3-digit)* *Five-digit ZIP will be masked to three-digits; if record is still unique, ZIP will be totally masked with an asterisk. **Small counties with total populations of 30,000 or less are grouped into 3 categories: Central (CE), Northeastern (NE), and Northwestern (NW). Listings of small counties for each reporting year are provided in Appendix A along with the number of records that were masked by variable. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA 10 3 of
  • 294.
    Chapter 5-OSPHD EmergencyDepartment 25 Modifications and Variant Action Reports: Some facilities have applied for and been granted "modifications" to standard emergency department or ambulatory surgery data reporting requirements. Other facilities were unable to complete specific fields as required and were deemed "non-compliant" at the time of reporting. See Appendix B (Data Exceptions and Modifications) for a listing of all non-compliant facilities and those with approved modifications and their affected variables. Importing Notes: There are several fields that although they appear to contain numeric data, should be treated as text. This is particularly important when working with diagnosis and procedure codes. These fields are comprised of ICD-9-CM (diagnosis) and CPT (procedure) codes. Diagnosis and procedure codes are stored without decimals and many contain leading zeros. For example, the ICD-9-CM code for Salmonella Gastroenteritis is “003.0” (implied decimal following the third digit from the left). If it is not formatted as text, the leading zeros may be dropped and the code will appear as “30”, an invalid diagnosis code. File Format: In the comma-delimited set, the length of each field and the length of each record will vary according to the data reported. To assist you in using the comma delimited patient-level datasets, a header row identifying each data element is provided in the position of the first record. The SAS data set was created using SAS version 9.1 for Windows. The attributes for each data field is provided below. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 295.
    Chapter 5-OSPHD EmergencyDepartment 26 File Documentation Facility Identification Number Field Name: Fac_ID Definition: A unique six-digit identifier assigned to each facility by the Office of Statewide Health Planning and Development. The first two digits indicate the county in which the facility is located. The last four digits are unique within each county. A list of facility numbers and their names are provided in Appendices C (emergency departments) and D (ambulatory Surgery centers). Variable Type: Character Variable Length: 6 Patient Type Field Name: Pat_Type Definition: A one character filed that indicates the type of facility where a particular patient encounter occurred. A represents Ambulatory Surgery Center and E represents Emergency Department. Variable Type: Character Variable Length: 1 License Type Field Name: Lic_Type Definition: The license type of the reporting facility where C=Clinic and H=Hospital. For Ambulatory Surgery Centers, this variable can be used to distinguish between freestanding surgery centers and hospital based clinics. Variable Type: Character Variable Length: 1 Age in Years (at Admission) Field Name: Age_Yrs Definition: Age of the patient at the time of service. This is based on the reported service data and patient’s date of birth. If the date of birth is unknown or invalid, the age in years is set to “0”. Variable Type: Numeric Variable Length: 3 Age Range (20 categories) Field Name: agecat20 Definition: Age range (based on 20 categories) of the patient at the time of service. 01 = Under 1 year 11 = 45–49 years 02 = 1–4 years 12 = 50–54 years 03 = 5–9 years 13 = 55–59 years Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 296.
    Chapter 5-OSPHD EmergencyDepartment 27 04 = 10–14 years 14 = 60–64 years 05 = 15–19 years 15 = 65–69 years 06 = 20–24 years 16 = 70–74 years 07 = 25–29 years 17 = 75–79 years 08 = 30–34 years 18 = 80–84 years 09 = 35–39 years 19 = 85 years or greater 10 = 40–44 years 00 = Unknown age Variable Type: Character Variable Length: 2 Age Range (5 categories) Field Name: agecat20 Definition: Age range (based on 5 categories) of the patient at the time of service. 1 = Under 1 year 4 = 35–64 years 2 = 1–17 years 5 = 65 years or greater 3 = 18–34 years 0 = Unknown Age Variable Type: Character Variable Length: 1 Gender Field Name: Sex Definition: Gender of the patient at time of service. M = Male F = Female U = Unknown / Invalid Variable Type: Character Variable Length: 1 Ethnicity Field Name: Eth Definition: Ethnicity (self reported) of the patient. E1 = Hispanic E2 = Non-Hispanic 99 = Unknown / Invalid / Blank Variable Type: Character Variable Length: 2 Race Field Name: Race Definition: Patient’s racial background (self- reported). R1 = American Indian / Alaskan Native Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 297.
    Chapter 5-OSPHD EmergencyDepartment 28 R2 = Asian R3 = Black / African American R4 = Native Hawaiian / Other Pacific Islander R5 = White R9 = Other Race 99 = Unknown / Invalid / Blank Variable Type Character Variable Length 2 Patient Zip Code Field Name: Patzip Definition: The patient’s 5-digit Zip Code of residence. If the Zip Code is unknown it is assigned a value of 99999. In the masking process the Zip Code may be masked at the 3-digit level (i.e. first 3 digits) Variable Type: Character Variable Length: 5 Patient County Field Name: Patco Definition: The patient’s county of residence. OSHPD assigns the county of residence based on the patient’s reported Zip Code. Invalid, blank and unknown zip codes are assigned a county code value of 00. Counties with populations of less than 30,000 residents are assigned to one of three small county codes. 01 = Alameda 21 = Marin 42 = Santa Barbara 03 = Amador 23 = Mendocino 43 = Santa Clara 04 = Butte 24 = Merced 44 = Santa Cruz 05 = Calaveras 27 = Monterey 45 = Shasta 06 = Colusa 28 = Napa 47 = Siskiyou 07 = Contra Costa 29 = Nevada 48 = Solano 09 = El Dorado 30 = Orange 49 = Sonoma 10 = Fresno 31 = Placer 50 = Stanislaus 11 = Glenn 33 = Riverside 51 = Sutter 12 = Humboldt 34 = Sacramento 52 = Tehama 13 = Imperial 35 = San Benito 53 = Trinity 15 = Kern 36 = San Bernardino 54 = Tulare 16 = Kings 37 = San Diego 55 = Tuolumne 17 = Lake 38 = San Francisco 56 = Ventura 18 = Lassen 39 = San Joaquin 57 = Yolo 19 = Los Angeles 40 = San Luis Obispo 58 = Yuba 20 = Madera 41 = San Mateo 00 = Unknown / Invalid CE = Alpine, Inyo, Mariposa & Mono Counties combined NE = Del Norte, Modoc, Plumas & Sierra Counties combined NW = Colusa, Glenn & Trinity Counties combined Variable Type: Character Variable Length: 2 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 298.
    Chapter 5-OSPHD EmergencyDepartment 29 Quarter of Service Field Name: Serv_Q Definition: The calendar quarter when service was provided. 1 = January - March 2 = April - June 3 = July - September 4 = October - December Variable Type: Character Variable Length: 1 Disposition Field Name: Dispn Definition: The consequent arrangement or event ending a patient’s encounter in the reporting facility. 01 = Discharged to home of self care (routine discharge) 02 = Discharged/Transferred to a short term general care hospital or inpatient care 03 = Discharged/Transferred to a skilled nursing facility with Medicare certification 04 = Discharged/Transferred to an intermediate care facility 05 = Discharged/Transferred to another type of institution not on this list 06 = Discharged/Transferred home under the care of a home health service organization 07 = Left or discontinued care against medical advice 20 = Died 43 = Discharged/Transferred to a federal health care facility 50 = Discharged home with hospice care 51 = Discharged to a medical facility with hospice care 61 = Discharged/Transferred to a hospital-based Medicare approved swing bed 62 = Discharged/Transferred to an inpatient rehabilitation facility or unit of a hospital 63 = Discharged/Transferred to a Medicare certified long term care hospital 64 = Discharged/Transferred to a nursing facility certified under Medicaid but not Medicare 65 = Discharged/Transferred to a psychiatric hospital or unit of a hospital 66 = Discharged/Transferred to a critical access hospital 00 = Other 99 = Invalid / Blank Variable Type: Character Variable Length: 2 Expected Source of Payment Field Name: payer Definition: The type of entity or organization expected to pay the greatest share of the patient’s bill. For a complete list of definitions for these payers see Appendix E. 09 = Self Pay 11 = Other Non-federal Programs 12 = Preferred Provider Organization (PPO) Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 299.
    Chapter 5-OSPHD EmergencyDepartment 30 13 = Point of Service (POS) 14 = Exclusive Provider Organization (EPO) 16 = Health Maintenance Organization (HMO) Medicare Risk AM = Automobile Medical BL = Blue Cross / Blue Shield CH = CHAMPUS (TRICARE) CI = Commercial Insurance Company DS = Disability HM = Health Maintenance Organization MA = Medicare Part A MB = Medicare Part B MC = Medi-Cal (California’s Medicaid program) OF = Other Federal Program TV = Title V VA = Veterans Affairs Plan WC = Workers’ Compensation Health Claim 00 = Other 99 = Invalid / Unknown Variable Type: Vharacter, Variable Length 2 External Cause of Injury - Principal E-Code Field Name: EC_Prin Definition: The external cause of injury or poisoning or adverse effect code (E800E999) which describes the mechanism that resulted in the most severe injury, poisoning, or adverse effect related to the encounter. An E-code is to be included for the first reported encounter during which the injury, poisoning, or adverse effect was first diagnosed and/or treated. If a patient was first diagnosed in a doctor’s office and then sent to an ED or AS facility, the E-code is to be reported on the ED or AS record. They are coded according to the rd ICD-9-CM. Variable Type: Character (implied decimal after the 3 character from the left) Variable Length: 5 (7 for SAS variables) External Cause of Injury - Other E-Code (up to 4) Field Name(s): EC1 – EC4 Definition: The additional external cause of injury or poisoning or adverse effect codes (E800-E999) that completely describe the mechanisms that contributed to, or the causal events surrounding, any injury, poisoning, or adverse effect. Up to 4 other E- codes should be included for the first reported encounter during which the injury, poisoning, or adverse effect was first diagnosed and/or treated. If a patient was first diagnosed in a doctor’s office and then sent to an ED or AS facility, the E-code is to be reported on the ED or AS Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 300.
    Chapter 5-OSPHD EmergencyDepartment 31 Principal Diagnosis Field Name(s): Dx_Prin Definition: The condition, problem, or other reason established to be the chief cause of the encounter. Procedures are coded according to the Current Procedural Terminology (CPT). The version used depends on the year the encounter was reported. They are coded according to the rd ICD-9-CM Variable Type: Character (implied decimal after the 3 character from the Variable Length: 5 (7 for SAS variables) Other Diagnoses (up to 24) Field Name(s): Odx1-Odx24 Definition: All conditions that coexist at the time of the encounter for emergency or ambulatory surgery care, that develop subsequently during the encounter, or that affect the treatment received. They are coded according to the ICD9-CM. Variable Type: Character rd (implied decimal after the 3 character from the left) Variable Length: 5 (7 for SAS variables) Principal Procedure Field Name(s): Pr_Prin Definition: The procedure that is surgical in nature, or carries a procedural risk, or carries an anesthetic risk and is most closely related to the principal diagnosis, as the chief reason for the encounter. Procedures are coded according to the Current Procedural Terminology (CPT). The version used depends nd the year the encounter was reported Variable Type: Character on . (implied decimal after the 2 character from the left) Variable Length: 4 (5 for SAS variables) Other Procedures (up to 20) Field Name(s): Opr1-Opr20 Definition: All other procedures, related to the encounter, which are surgical in nature, carry a procedural risk, or carry an anesthetic risk. Procedures are coded according to the Current Procedural Terminology (CPT). The version used depends on the year the encounter was nd reported Variable Type: Character (implied decimal after the 2 character from the left) Variable Length: 4 (5 for SAS variables) Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 301.
    Chapter 5-OSPHD EmergencyDepartment 32 Modifications and Variant Action Reports: Some facilities have applied for and been granted "modifications" to standard emergency department or ambulatory surgery data reporting requirements. Other facilities were unable to complete specific fields as required and were deemed "non-compliant" at the time of reporting. See Appendix B (Data Exceptions and Modifications) for a listing of all non-compliant facilities and those with approved modifications and their affected variables. Importing Notes: There are several fields that although they appear to contain numeric data, should be treated as text. This is particularly important when working with diagnosis and procedure codes. These fields are comprised of ICD-9-CM (diagnosis) and CPT (procedure) codes. Diagnosis and procedure codes are stored without decimals and many contain leading zeros. For example, the ICD-9-CM code for Salmonella Gastroenteritis is “003.0” (implied decimal following the third digit from the left). If it is not formatted as text, the leading zeros may be dropped and the code will appear as “30”, an invalid diagnosis code. File Format: In the comma-delimited set, the length of each field and the length of each record will vary according to the data reported. To assist you in using the comma delimited patient-level datasets, a header row identifying each data element is provided in the position of the first record. The SAS data set was created using SAS version 9.1 for Windows. The attributes for each data field is provided below. . Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA 10 3 of
  • 302.
    Chapter 5-OSPHD EmergencyDepartment 33 1. OSPHD California 2007 Emergency Department Data PROC Format, Labels, PROC Contents, and PROC Freq Statements oshpd01.sas The program below contains the basic structure for a SAS analysis of the OSPHD Emergency Department. PROC Format provides the names of the values of the variables, PROC Contents yields the specifications of your data set, and PROC Freq provides the frequency distributions of each of the variables. In most instances, the PROC Formats are partial lists of the actual code due to their size. /*oshpd01.sas*/ proc format; value $diag3df '001'='(001) Cholera' '002'='(002) Typhoid and paratyphoid fevers' '003'='(003) Other salmonella infections' '004'='(004) Shigellosis' '005'='(005) Other food poisoning (bacterial)' '006'='(006) Amebiasis' '007'='(007) Other protozoal intestinal dise...' '008'='(008) Intestinal infections due to ot...' '009'='(009) Ill-defined intestinal infections' '010'='(010) Primary tuberculous infection' '011'='(011) Pulmonary tuberculosis' '012'='(012) Other respiratory tuberculosis' '013'='(013) Tuberculosis of meninges and ce...' '014'='(014) Tuberculosis of intestine/perit...' '015'='(015) Tuberculosis of bones and joints' '016'='(016) Tuberculosis of genitourinary s...' '017'='(017) Tuberculosis of other organs' '018'='(018) Miliary tuberculosis' '020'='(020) Plague' '021'='(021) Tularemia' '022'='(022) Anthrax' '023'='(023) Brucellosis' '024'='(024) Glanders' '025'='(025) Melioidosis' '026'='(026) Rat-bite fever' '027'='(027) Other zoonotic bacterial diseases' '030'='(030) Leprosy' '031'='(031) Diseases due to other mycobacteria' '032'='(032) Diphtheria' '033'='(033) Whooping cough' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 303.
    Chapter 5-OSPHD EmergencyDepartment 34 '034'='(034) Streptococcal sore throat and s...' '035'='(035) Erysipelas' '036'='(036) Meningococcal infection' '037'='(037) Tetanus' '038'='(038) Septicemia' '039'='(039) Actinomycotic infections' '040'='(040) Other bacterial diseases' '041'='(041) Bacterial infec in conditns cla...' '042'='(042) Human immunodeficiency virus in...' '043'='(043) Human immunodeficiency virus in...' '044'='(044) Other human immunodeficiency vi...' '045'='(045) Acute poliomyelitis' '046'='(046) Slow virus infection of central...' '047'='(047) Meningitis due to enterovirus' '048'='(048) Other enterovirus diseases of c...' '049'='(049) Oth non-arthropod-borne viral d...' '050'='(050) Smallpox' '051'='(051) Cowpox and paravaccinia' '052'='(052) Chickenpox' '053'='(053) Herpes zoster' '054'='(054) Herpes simplex' '055'='(055) Measles' '056'='(056) Rubella' '057'='(057) Other viral exanthemata' '060'='(060) Yellow fever' '061'='(061) Dengue' '062'='(062) Mosquito-borne viral encephalitis' '063'='(063) Tick-borne viral encephalitis' '064'='(064) Viral encephalitis transmitted ...' '065'='(065) Arthropod-borne hemorrhagic fever' '066'='(066) Other arthropod-borne viral dis...' '070'='(070) Viral hepatitis' '071'='(071) Rabies' '072'='(072) Mumps' '073'='(073) Ornithosis' '074'='(074) Specific diseases due to Coxsac...' '075'='(075) Infectious mononucleosis' '076'='(076) Trachoma' '077'='(077) Other diseases of conjunctiva d...' '078'='(078) Other diseases due to viruses a...' '079'='(079) Viral infection in conditns cla...' '080'='(080) Louse-borne [epidemic] typhus' '081'='(081) Other typhus' '082'='(082) Tick-borne rickettsioses' '083'='(083) Other rickettsioses' '084'='(084) Malaria' '085'='(085) Leishmaniasis' '086'='(086) Trypanosomiasis' '087'='(087) Relapsing fever' '088'='(088) Other arthropod-borne diseases' ; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 304.
    Chapter 5-OSPHD EmergencyDepartment 35 value $ecodef 'E8000'='E8000 RR COLLISION NOS-EMPLOY' 'E8001'='E8001 RR COLL NOS-PASSENGER' 'E8002'='E8002 RR COLL NOS-PEDESTRIAN' 'E8003'='E8003 RR COLL NOS-PED CYCLIST' 'E8008'='E8008 RR COLL NOS-PERSON NEC' 'E8009'='E8009 RR COLL NOS-PERSON NOS' 'E8010'='E8010 RR COLL W OTH OBJ-EMPLOY' 'E8011'='E8011 RR COLL W OTH OBJ-PASNGR' 'E8012'='E8012 RR COLL W OTH OBJ-PEDEST' 'E8013'='E8013 RR COLL W OTH OBJ-CYCL' 'E8018'='E8018 RR COL W OTH OBJ-PER NEC' 'E8019'='E8019 RR COL W OTH OBJ-PER NOS' 'E8020'='E8020 RR ACC W DERAIL-EMPLOYEE' 'E8021'='E8021 RR ACC W DERAIL-PASSENG' 'E8022'='E8022 RR ACC W DERAIL-PEDEST' 'E8023'='E8023 RR ACC W DERAIL-PED CYCL' 'E8028'='E8028 RR ACC W DERAIL-PERS NEC' 'E8029'='E8029 RR ACC W DERAIL-PERS NOS' 'E8030'='E8030 RR ACC W EXPLOSION-EMPL' 'E8031'='E8031 RR ACC W EXPLOS-PASNGR' 'E8032'='E8032 RR ACC W EXPLOS-PEDEST' 'E8033'='E8033 RR ACC W EXPLOS-PED CYCL' 'E8038'='E8038 RR ACC W EXPLOS-PERS NEC' 'E8039'='E8039 RR ACC W EXPLOS-PERS NOS' 'E8040'='E8040 FALL ON/FROM TRAIN-EMPL' 'E8041'='E8041 FALL FROM TRAIN-PASSENGR' 'E8042'='E8042 FALL FROM TRAIN-PEDEST' 'E8043'='E8043 FALL FROM TRAIN-PED CYCL' 'E8048'='E8048 FALL FROM TRAIN-PERS NEC' 'E8049'='E8049 FALL FROM TRAIN-PERS NOS' 'E8050'='E8050 HIT BY TRAIN-EMPLOYEE' 'E8051'='E8051 HIT BY TRAIN-PASSENGER' 'E8052'='E8052 HIT BY TRAIN-PEDESTRIAN' 'E8053'='E8053 HIT BY TRAIN-PED CYCLIST' 'E8058'='E8058 HIT BY TRAIN-PERSON NEC' 'E8059'='E8059 HIT BY TRAIN-PERSON NOS' 'E8060'='E8060 RR ACC NEC-EMPLOYEE' 'E8061'='E8061 RR ACC NEC-PASSENGER' 'E8062'='E8062 RR ACC NEC-PEDESTRIAN' 'E8063'='E8063 RR ACC NEC-PED CYCLIST' 'E8068'='E8068 RR ACC NEC-PERSON NEC' 'E8069'='E8069 RR ACC NEC-PERSON NOS' 'E8070'='E8070 RR ACCIDENT NOS-EMPLOYEE' 'E8071'='E8071 RR ACC NOS-PASSENGER' 'E8072'='E8072 RR ACC NOS-PEDESTRIAN' 'E8073'='E8073 RR ACC NOS-PED CYCLIST' 'E8078'='E8078 RR ACC NOS-PERSON NEC' 'E8079'='E8079 RR ACC NOS-PERSON NOS' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 305.
    Chapter 5-OSPHD EmergencyDepartment 36 'E8100'='E8100 MV-TRAIN COLL-DRIVER' 'E8101'='E8101 MV-TRAIN COLL-PASNGR' 'E8102'='E8102 MV-TRAIN COLL-MOTORCYCL' 'E8103'='E8103 MV-TRAIN COLL-MCYCL PSGR' 'E8104'='E8104 MV-TRAIN COLL-ST CAR' 'E8105'='E8105 MV-TRAIN COLL-ANIM RID' 'E8106'='E8106 MV-TRAIN COLL-PED CYCL' 'E8107'='E8107 MV-TRAIN COLL-PEDEST' 'E8108'='E8108 MV-TRAIN COLL-PERS NEC' 'E8109'='E8109 MV-TRAIN COLL-PERS NOS' 'E8110'='E8110 REENTRANT MV COLL-DRIVER' 'E8111'='E8111 REENTRANT MV COLL-PASNGR' 'E8112'='E8112 REENTRANT COLL-MOTCYCL' 'E8113'='E8113 REENTRANT COLL-MCYC PSGR' 'E8114'='E8114 REENTRANT COLL-ST CAR' 'E8115'='E8115 REENTRANT COLL-ANIM RID' 'E8116'='E8116 REENTRANT COLL-PED CYCL' 'E8117'='E8117 REENTRANT COLL-PEDEST' 'E8118'='E8118 REENTRANT COLL-PERS NEC' 'E8119'='E8119 REENTRANT COLL-PERS NOS' 'E8120'='E8120 MV COLLISION NOS-DRIVER' 'E8121'='E8121 MV COLLISION NOS-PASNGR' 'E8122'='E8122 MV COLLIS NOS-MOTORCYCL' 'E8123'='E8123 MV COLL NOS-MCYCL PSNGR' 'E8124'='E8124 MV COLLISION NOS-ST CAR' 'E8125'='E8125 MV COLL NOS-ANIM RID' 'E8126'='E8126 MV COLL NOS-PED CYCL' 'E8127'='E8127 MV COLLISION NOS-PEDEST' 'E8128'='E8128 MV COLLIS NOS-PERS NEC' 'E8129'='E8129 MV COLLIS NOS-PERS NOS' 'E8130'='E8130 MV-OTH VEH COLL-DRIVER' 'E8131'='E8131 MV-OTH VEH COLL-PASNGR' 'E8132'='E8132 MV-OTH VEH COLL-MOTCYCL' 'E8133'='E8133 MV-OTH VEH COLL-MCYC PSG' 'E8134'='E8134 MV-OTH VEH COLL-ST CAR' 'E8135'='E8135 MV-OTH VEH COLL-ANIM RID' 'E8136'='E8136 MV-OTH VEH COLL-PED CYCL' 'E8137'='E8137 MV-OTH VEH COLL-PEDEST' 'E8138'='E8138 MV-OTH VEH COLL-PERS NEC' 'E8139'='E8139 MV-OTH VEH COLL-PERS NOS' 'E8140'='E8140 MV COLL W PEDEST-DRIVER' 'E8141'='E8141 MV COLL W PEDEST-PASNGR' 'E8142'='E8142 MV COLL W PEDEST-MOTCYCL' 'E8143'='E8143 MV COLL W PED-MCYCL PSGR' 'E8144'='E8144 MV COLL W PEDEST-ST CAR' 'E8145'='E8145 MV COLL W PED-ANIM RID' 'E8146'='E8146 MV COLL W PED-PED CYCL' 'E8147'='E8147 MV COLL W PEDEST-PEDEST' VALUE $proc2df Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 306.
    Chapter 5-OSPHD EmergencyDepartment 37 '00'='Blank/00:Procedures and interventns, NEC' '01'='01:Incision and excision of skull, br...' '02'='02:Other operations on skull, brain, ...' '03'='03:Operations on spinal cord and spin...' '04'='04:Operations on cranial and peripher...' '05'='05:Operations on sympathetic nerves o...' '06'='06:Operations on thyroid and parathyr...' '07'='07:Operations on other endocrine glands' '08'='08:Operations on eyelids' '09'='09:Operations on lacrimal system' '10'='10:Operations on conjunctiva' '11'='11:Operations on cornea' '12'='12:Operations on iris, ciliary body, ...' '13'='13:Operations on lens' '14'='14:Operations on retina, choroid, vit...' '15'='15:Operations on extraocular muscles' '16'='16:Operations on orbit and eyeball' '18'='18:Operations on external ear' '19'='19:Reconstructive operations on middl...' '20'='20:Other operations on middle and inn...' '21'='21:Operations on nose' '22'='22:Operations on nasal sinuses' '23'='23:Removal and restoration of teeth' '24'='24:Other operations on teeth, gums, a...' '25'='25:Operations on tongue' '26'='26:Operations on salivary glands and ...' '27'='27:Other operations on mouth and face' '28'='28:Operations on tonsils and adenoids' '29'='29:Operations on pharynx' '30'='30:Excision of larynx' '31'='31:Other operations on larynx and tra...' '32'='32:Excision of lung and bronchus' '33'='33:Other operations on lung and bronchus' '34'='34:Operations on chest wall, pleura, ...' '35'='35:Operations on valves and septa of ...' '36'='36:Operations on vessels of heart' '37'='37:Other operations on heart and peri...' '38'='38:Incision, excision, and occlusion ...' '39'='39:Other operations on vessels' '40'='40:Operations on lymphatic system' '41'='41:Operations on bone marrow and spleen' '42'='42:Operations on esophagus' '43'='43:Incision and excision of stomach' '44'='44:Other operations on stomach' '45'='45:Incision, excision, and anastomosi...' '46'='46:Other operations on intestine' '47'='47:Operations on appendix' '48'='48:Operations on rectum, rectosigmoid...' '49'='49:Operations on anus' '50'='50:Operations on liver' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 307.
    Chapter 5-OSPHD EmergencyDepartment 38 '51'='51:Operations on gallbladder and bili...' '52'='52:Operations on pancreas' '53'='53:Repair of hernia' '54'='54:Other operations on abdominal region' '55'='55:Operations on kidney' '56'='56:Operations on ureter' '57'='57:Operations on urinary bladder' '58'='58:Operations on urethra' '59'='59:Other operations on urinary tract' '60'='60:Operations on prostate and seminal...' '61'='61:Operations on scrotum and tunica v...' '62'='62:Operations on testes' '63'='63:Operations on spermatic cord, epid...' '64'='64:Operations on penis' '65'='65:Operations on ovary' '66'='66:Operations on fallopian tubes' '67'='67:Operations on cervix' '68'='68:Other incision and excision of uterus' '69'='69:Other operations on uterus and sup...' '70'='70:Operations on vagina and cul-de-sac' '71'='71:Operations on vulva and perineum' '72'='72:Forceps, vacuum, and breech delivery' '73'='73:Other procedures inducing or assis...' '74'='74:Cesarean section and removal of fetus' '75'='75:Other obstetric operations' '76'='76:Operations on facial bones and joints' '77'='77:Incision, excision, and division o...' '78'='78:Other operations on bones, except ...' '79'='79:Reduction of fracture and dislocation' '80'='80:Incision and excision of joint str...' '81'='81:Repair and plastic operations on j...' '82'='82:Operations on muscle, tendon, and ...' '83'='83:Operations on muscle, tendon, fasc...' '84'='84:Other procedures on musculoskeleta...' '85'='85:Operations on the breast' '86'='86:Operations on skin and subcutaneou...' '87'='87:Diagnostic radiology' '88'='88:Other diagnostic radiology and rel...' '89'='89:Interview, evaluation, consultatio...' '90'='90:Microscopic examination I' '91'='91:Microscopic examination II' '92'='92:Nuclear medicine' '93'='93:Physical therapy/respiratory thera...' '94'='94:Procedures related to the psyche' '95'='95:Ophthalmologic and otologic diagno...' '96'='96:Nonoperative intubation and irriga...' '97'='97:Replacement and removal of therape...' '98'='98:Nonoperative removal of foreign body' '99'='99:Other nonoperative procedures' ; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 308.
    Chapter 5-OSPHD EmergencyDepartment 39 value $hospitalf '010735'='ALAMEDA HOSPITAL' '010739'='ALTA BATES SUMMIT MED CTR-ALTA BATES CAMPUS ' '010776'='CHILDRENS HOSPITAL AND RESEARCH CTR AT OAKLAND ' '010805'='EDEN MEDICAL CENTER ' '010846'='ALAMEDA CO MED CTR - HIGHLAND CAMPUS ' '010856'='KAISER FND HOSP - OAKLAND CAMPUS ' '010858'='KAISER FND HOSP - HAYWARD ' '010937'='ALTA BATES SUMMIT MED CTR-SUMMIT CAMPUS- HAWTHORNE ' '010967'='ST. ROSE HOSPITAL ' '010983'='VALLEY MEMORIAL HOSPITAL - LIVERMORE ' '010987'='WASHINGTON HOSPITAL - FREMONT ' '013619'='SAN LEANDRO HOSPITAL ' '014132'='KAISER FND HOSP - FREMONT ' '034002'='SUTTER AMADOR HOSPITAL ' '040802'='BIGGS GRIDLEY MEMORIAL HOSPITAL ' '040875'='FEATHER RIVER HOSPITAL ' '040937'='OROVILLE HOSPITAL ' '040962'='ENLOE MEDICAL CENTER- ESPLANADE CAMPUS ' '050932'='MARK TWAIN ST. JOSEPHS HOSPITAL ' '060870'='COLUSA REGIONAL MEDICAL CENTER ' '070904'='DOCTORS MEDICAL CENTER - SAN PABLO ' '070924'='CONTRA COSTA REGIONAL MEDICAL CENTER ' '070934'='SUTTER DELTA MEDICAL CENTER ' '070988'='JOHN MUIR MEDICAL CENTER-WALNUT CREEK CAMPUS '070990'='KAISER FND HOSP - WALNUT CREEK ' '071018'='JOHN MUIR MEDICAL CENTER-CONCORD CAMPUS ' '074017'='SAN RAMON REGIONAL MEDICAL CENTER ' '074093'='KAISER FND HOSP - RICHMOND CAMPUS ' '074097'='KAISER FOUND HSP-ANTIOCH ' '084001'='SUTTER COAST HOSPITAL ' '090793'='BARTON MEMORIAL HOSPITAL ' '090933'='MARSHALL MEDICAL CENTER (1-RH) ' '100005'='COMMUNITY MEDICAL CENTER - CLOVIS ' '100697'='COALINGA REGIONAL MEDICAL CENTER ' '100717'='COMMUNITY REGIONAL MEDICAL CENTER-FRESNO ' '100745'='KINGSBURG MEDICAL CENTER ' '100797'='SIERRA KINGS DISTRICT HOSPITAL ' '100899'='ST. AGNES MEDICAL CENTER ' '104062'='KAISER FND HOSP - FRESNO ' '110889'='GLENN MEDICAL CENTER ' '121002'='MAD RIVER COMMUNITY HOSPITAL ' '121031'='JEROLD PHELPS COMMUNITY HOSPITAL ' '121051'='REDWOOD MEMORIAL HOSPITAL ' '121080'='ST JOSEPH HOSPITAL EUREKA ' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 309.
    Chapter 5-OSPHD EmergencyDepartment 40 '130699'='EL CENTRO REGIONAL MEDICAL CENTER ' '130760'=' PIONEERS MEMORIAL HOSPITAL ' '141273'='NORTHERN INYO HOSPITAL ' '141338'='SOUTHERN INYO HOSPITAL ' '150706'='DELANO REGIONAL MEDICAL CENTER ' '150722'='BAKERSFIELD MEMORIAL HOSPITAL- 34TH STREET ' '150736'='KERN MEDICAL CENTER' '150737'='KERN VALLEY HEALTHCARE DISTRICT' '150761'='MERCY HOSPITAL - BAKERSFIELD' '150782'='RIDGECREST REGIONAL HOSPITAL ' '190148'='CENTINELA HOSPITAL MEDICAL CENTER' '190155'='CENTURY CITY DOCTORS HOSPITAL' '190159'='TRI-CITY REGIONAL MEDICAL CENTER' '190170'='CHILDRENS HOSPITAL OF LOS ANGELES' '190197'='COMMUNITY AND MISSION HSP OF HNTG PK - SLAUSON' '190198'='LOS ANGELES COMMUNITY HOSPITAL' '190200'='SAN GABRIEL VALLEY MEDICAL CENTER' '190240'='LAKEWOOD REGIONAL MEDICAL CENTER' '190243'='DOWNEY REGIONAL MEDICAL CENTER' '190256'='EAST LOS ANGELES DOCTORS HOSPITAL' '190280'='ENCINO-TARZANA REGIONAL MED CTR-ENCINO' '190298'='FOOTHILL PRESBYTERIAN HOSPITAL-JOHNSTON MEMORIAL' '190315'='GARFIELD MEDICAL CENTER' '190323'='GLENDALE ADVENTIST MEDICAL CENTER - WILSON TERRACE' '190328'='EAST VALLEY HOSPITAL MEDICAL CENTER' '190352'='GREATER EL MONTE COMMUNITY HOSPITAL' '190382'='HOLLYWOOD PRESBYTERIAN MEDICAL CENTER' '190385'='PROVIDENCE HOLY CROSS MEDICAL CENTER' '190392'='GOOD SAMARITAN HOSPITAL-LOS ANGELES' '190400'='HUNTINGTON MEMORIAL HOSPITAL' '190413'='CITRUS VALLEY MEDICAL CENTER - IC CAMPUS' '190422'='TORRANCE MEMORIAL MEDICAL CENTER' '190429'='KAISER FND HOSP - SUNSET' '190430'='KAISER FND HOSP - BELLFLOWER' '190431'='KAISER FND HOSP - HARBOR CITY' '190432'='KAISER FND HOSP - PANORAMA CITY' '190434'='KAISER FND HOSP - WEST LA' '190455'='LANCASTER COMMUNITY HOSPITAL' '190470'='LITTLE COMPANY OF MARY HOSPITAL' '190475'='COMMUNITY HOSPITAL OF LONG BEACH' '190500'='CENTINELA FREEMAN REG MED CTR-MARINA CAMPUS' '190517'='ENCINO-TARZANA REGIONAL MED CTR-TARZANA' '190521'='MEMORIAL HOSPITAL OF GARDENA' '190522'='GLENDALE MEMORIAL HOSPITAL AND HEALTH CENTER' '190524'='MISSION COMMUNITY HOSPITAL - PANORAMA CAMPUS' '190525'='LONG BEACH MEMORIAL MEDICAL CENTER' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 310.
    Chapter 5-OSPHD EmergencyDepartment 41 value $countyf '01' = 'Alameda' '03' = 'Amador' '04' = 'Butte' '05' = 'Calaveras' '06' = 'Colusa' '07' = 'Contra Costa' '09' = 'El Dorado' '10' = 'Fresno' '11' = 'Glenn' '12' = 'Humboldt' '13' = 'Imperial' '15' = 'Kern' '16' = 'Kings' '17' = 'Lake' '18' = 'Lassen' '19' = 'Los Angeles' '20' = 'Madera' '21' = 'Marin' '23' = 'Mendocino' '24' = 'Merced' '27' = 'Monterey' '28' = 'Napa' '29' = 'Nevada' '30' = 'Orange' '31' = 'Placer' '33' = 'Riverside' '34' = 'Sacramento' '35' = 'San Benito' '36' = 'San Bernardino' '37' = 'San Diego' '38' = 'San Francisco' '39' = 'San Joaquin' '40' = 'San Luis Obispo' '41' = 'San Mateo' '42' = 'Santa Barbara' '43' = 'Santa Clara' '44' = 'Santa Cruz' '45' = 'Shasta' '47' = 'Siskiyou' '48' = 'Solano' '49' = 'Sonoma' '50' = 'Stanislaus' '51' = 'Sutter' '52' = 'Tehama' '53' = 'Trinity' '54' = 'Tulare' '55' = 'Tuolumne' '56' = 'Ventura' '57' = 'Yolo' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 311.
    Chapter 5-OSPHD EmergencyDepartment 42 '58' = 'Yuba' '00' = 'County Unknown' 'CE' = 'Alpine, Inyo, Mariposa & Mono' 'NE' = 'Del Norte, Modoc, Plumas & Sierra' 'NW' = 'Colusa, Glenn & Trinity' ; value $licencef 'C'='free standing' 'H'='hospital based' ; value $agecat5f '1' ='Under 1 year' '2' ='1-17 years' '3' ='18-34 years' '4' ='35-64 years' '5' ='65 years & over' '*' ='masked age group' ; value $sexf 'F' ='female' 'M' ='male' 'U' ='unknown sex' '*' ='masked sex' ; value $ethf 'E1'='Hispanic' 'E2'='non_Hispanic' '99'='ukn_ethnic' '*' ='masked ethnic' ; value $racef 'R1' ='native american' 'R2' ='asian' 'R3' ='black' 'R4' ='hawaiian' 'R5' ='white' 'R9' ='other race' '99' ='unknown race' '*' ='masked race' value $payerf Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 312.
    Chapter 5-OSPHD EmergencyDepartment 43 '09' ='selfpay' '11' ='other non-federal' '12' ='prefered provided org (PPO)' '13' ='point of service (POS)' '14' ='Exclusive Provider Organization (EPO)' '16' ='Medicare HMO' 'AM' ='automible med' 'BL' ='Bluecross' 'CH' ='Tricare' 'CI' ='commercial' 'DS' ='disability' 'HM' ='other HMO' 'MA' ='Medicare Part A' 'MB' ='Medicare Part B' 'MC' ='Medical-Cal' 'OF' ='Other Federal' 'TV' ='Title V' 'VA' ='Veterans Adm' 'WC' ='Worker Comp' '00' ='Other payer' '99' ='Payer Blank' ; value $dispnf '01' = '(01)Sent home or self care' '02' = '(02)Sent to a short term general care hospital or inpatient care' '03' = '(03)Sent to a skilled nursing facility with Medicare certification' '04' = '(04)Sent to an intermediate care facility' '05' = '(05)Sent to another type of institution not on this list' '06' = '(06)Sent home under the care of a home health service organization' '07' = '(07)Left or discontinued care against medical advice' '20' = '(20)Died' '43' = '(43)Sent to a federal health care facility' '50' = '(50)Sent home with hospice care' '51' = '(51)Sent to a medical facility with hospice care' '61' = '(61)Sent to a hospital-based Medicare approved swing bed' '62' = '(62)Sent to an inpatient rehabilitation facility or unit of a hospital' '63' = '(63)Sent to a Medicare certified long term care hospital' Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 313.
    Chapter 5-OSPHD EmergencyDepartment 44 '64' = '(64)Sent to a nursing facility certified under Medicaid but not Medicare' '65' = '(65)Sent to a psychiatric hospital or unit of a hospital' '66' = '(66)Sent to a critical access hospital' '00' = '(00)Disposition Other' '99' = '(99)Disposition Invalid_Blank' ; value $serv_q 3 = 'Third Quarter 2007' 4 = 'Fourth Quarter 2007' ; run; data ed2007; set osphd.caled2007 (keep=fac_id age_yrs agecat5 sex eth race patzip patco serv_q dispn payer ec_prin dx_prin odx1 odx2 pr_prin opr1); label fac_id = 'Facility Number (6-digit)' age_yrs = 'Age in Years at Service Date' agecat5 = 'Age Categories 5' sex = 'Sex' eth = 'Ethnicity' race = 'Race' patzip = 'Patient Zip Code' patco = 'Patient County of Residenc' serv_q = 'Quarter of Service' dispn = 'Disposition of the Patient' payer = 'Expected Source of Payment' ec_prin = 'Principal E-code' dx_prin = 'Principal Diagnosis' odx1 = 'Other Diagnosis 1' odx2 = 'Other Diagnosis 2' pr_prin = 'Principal Procedure' opr1 = 'Other Procedure 1' ; ; /* Substrings functions to select the*/ /* first N characters of a variable */ /* Must have length statement */ /* dx_prin is 5 characters long –we need first 3*/ /* pr_prin is 4 characters long –we need first 2*/ length dx_prin3 $3; length pr_prin2 $2; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 314.
    Chapter 5-OSPHD EmergencyDepartment 45 dx_prin3=substr(dx_prin,1,3); pr_prin2=substr(pr_prin,1,2); options label nodate nonumber; proc contents data=ed2007 varnum; run; options label nodate nonumber; proc freq data=ed2007; tables agecat5 sex eth race patco serv_q dispn payer ; format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef. patco $countyf. serv_q dispn $dispnf. payer $payerf. ; run; options label nodate nonumber; Below is the output of the Proc Contents for the California OSPHD data . The SAS System The CONTENTS Procedure Data Set Name WORK.ED2007 Observations 4364548 Member Type DATA Variables 17 Engine V9 Indexes 0 Created Saturday, August 08, 2009 06:29:19 PM Observation Length 65 Last Modified Saturday, August 08, 2009 06:29:19 PM Deleted Observations 0 Protection Compressed NO Data Set Type Sorted NO Label Data Representation WINDOWS_32 Encoding wlatin1 Western (Windows) Engine/Host Dependent Information Data Set Page Size 8192 Number of Data Set Pages 34917 First Data Page 1 Max Obs per Page 125 Obs in First Data Page 80 Number of Data Set Repairs 0 Filename C:DOCUME~1RAYMON~1.AROLOCALS~1TempSAS Temporary Files_TD2820ed2007.sas7bdat Release Created 9.0201M0 Host Created XP_PRO Variables in Creation Order # Variable Type Len Label 1 fac_id Char 6 Facility Number (6-digit) 2 age_yrs Num 3 Age in Years at Service Date Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 315.
    Chapter 5-OSPHD EmergencyDepartment 46 3 agecat5 Char 1 Age Categories 5 4 sex Char 1 Sex 5 eth Char 2 Ethnicity 6 race Char 2 Race 7 patzip Char 5 Patient Zip Code 8 patco Char 2 Patient County of Residenc 9 serv_q Char 1 Quarter of Service 10 dispn Char 2 Disposition of the Patient 11 payer Char 2 Expected Source of Payment 12 ec_prin Char 7 Principal E-code 13 dx_prin Char 7 Principal Diagnosis 14 odx1 Char 7 Other Diagnosis 1 15 odx2 Char 7 Other Diagnosis 2 16 pr_prin Char 5 Principal Procedure 17 opr1 Char 5 Other Procedure 1 Below is the output of the Proc Freq for the California OSPHD data. The SAS System The FREQ Procedure Age Categories 5 Cumulative Cumulative agecat5 Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ masked age group 207909 4.76 207909 4.76 0 198 0.00 208107 4.77 Under 1 year 161311 3.70 369418 8.46 1-17 years 908157 20.81 1277575 29.27 18-34 years 1111672 25.47 2389247 54.74 35-64 years 1465023 33.57 3854270 88.31 65 years & over 510278 11.69 4364548 100.00 Sex Cumulative Cumulative sex Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ masked sex 442466 10.14 442466 10.14 female 2130477 48.81 2572943 58.95 male 1791507 41.05 4364450 100.00 unknown sex 98 0.00 4364548 100.00 Ethnicity Cumulative Cumulative eth Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ masked ethnic 846250 19.39 846250 19.39 ukn_ethnic 168051 3.85 1014301 23.24 Hispanic 1190871 27.29 2205172 50.52 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 316.
    Chapter 5-OSPHD EmergencyDepartment 47 non_Hispanic 2159376 49.48 4364548 100.00 Race Cumulative Cumulative race Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ masked race 710284 16.27 710284 16.27 unknown race 126835 2.91 837119 19.18 native american 11001 0.25 848120 19.43 asian 115621 2.65 963741 22.08 black 379891 8.70 1343632 30.79 hawaiian 14802 0.34 1358434 31.12 white 2311007 52.95 3669441 84.07 other race 695107 15.93 4364548 100.00 The SAS System The FREQ Procedure Patient County of Residence Cumulative Cumulative patco Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ * 382 0.01 382 0.01 County Unknown 115702 2.65 116084 2.66 Alameda 186248 4.27 302332 6.93 Amador 5966 0.14 308298 7.06 Butte 29674 0.68 337972 7.74 Calaveras 6380 0.15 344352 7.89 Contra Costa 137924 3.16 482276 11.05 El Dorado 21978 0.50 504254 11.55 Fresno 115053 2.64 619307 14.19 Humboldt 23977 0.55 643284 14.74 Imperial 34185 0.78 677469 15.52 Kern 100344 2.30 777813 17.82 Kings 21597 0.49 799410 18.32 Lake 14922 0.34 814332 18.66 Lassen 4995 0.11 819327 18.77 Los Angeles 1051560 24.09 1870887 42.87 Madera 22816 0.52 1893703 43.39 Marin 29658 0.68 1923361 44.07 Mendocino 18836 0.43 1942197 44.50 Merced 35855 0.82 1978052 45.32 Monterey 55059 1.26 2033111 46.58 Napa 16339 0.37 2049450 46.96 Nevada 12242 0.28 2061692 47.24 Orange 281870 6.46 2343562 53.70 Placer 32879 0.75 2376441 54.45 Riverside 246686 5.65 2623127 60.10 Sacramento 164159 3.76 2787286 63.86 San Benito 8025 0.18 2795311 64.05 San Bernardino 267990 6.14 3063301 70.19 San Diego 302019 6.92 3365320 77.11 San Francisco 82529 1.89 3447849 79.00 San Joaquin 88816 2.03 3536665 81.03 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 317.
    Chapter 5-OSPHD EmergencyDepartment 48 San Luis Obispo 37074 0.85 3573739 81.88 San Mateo 74571 1.71 3648310 83.59 Santa Barbara 43457 1.00 3691767 84.59 Santa Clara 157136 3.60 3848903 88.19 Santa Cruz 29036 0.67 3877939 88.85 Shasta 35393 0.81 3913332 89.66 Siskiyou 8297 0.19 3921629 89.85 Solano 51526 1.18 3973155 91.03 Sonoma 54896 1.26 4028051 92.29 Stanislaus 85193 1.95 4113244 94.24 Sutter 12697 0.29 4125941 94.53 Tehama 13499 0.31 4139440 94.84 Tulare 67073 1.54 4206513 96.38 Tuolumne 9219 0.21 4215732 96.59 The SAS System The FREQ Procedure Patient County of Residenc Cumulative Cumulative patco Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Ventura 86190 1.97 4301922 98.57 Yolo 20390 0.47 4322312 99.03 Yuba 13573 0.31 4335885 99.34 Alpine, Inyo, Mariposa & Mono 7194 0.16 4343079 99.51 Del Norte, Modoc, Plumas & Sierra 13102 0.30 4356181 99.81 Colusa, Glenn & Trinity 8367 0.19 4364548 100.00 Quarter of Service Cumulative Cumulative serv_q Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ * 133987 3.07 133987 3.07 Third Quarter 2007 2113448 48.42 2247435 51.49 Fourth Quarter 2007 2117113 48.51 4364548 100.00 Disposition of the Patient dispn Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ (00)Disposition Other 35391 0.81 (01)Sent home or self care 4107639 94.11 (02)Sent to a short term general care hospital or inpatient care 56573 1.30 (03)Sent to a skilled nursing facility with Medicare certification 12374 0.28 (04)Sent to an intermediate care facility 2862 0.07 (05)Sent to another type of institution not on this list 17537 0.40 (06)Sent home under the care of a home health service organization 1978 0.05 (07)Left or discontinued care against medical advice 91514 2.10 (20)Died 7993 0.18 (43)Sent to a federal health care facility 351 0.01 (50)Sent home with hospice care 476 0.01 (51)Sent to a medical facility with hospice care 164 0.00 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 318.
    Chapter 5-OSPHD EmergencyDepartment 49 (61)Sent to a hospital-based Medicare approved swing bed 25 0.00 (62)Sent to an inpatient rehabilitation facility or unit of a hospital 690 0.02 (63)Sent to a Medicare certified long term care hospital 1621 0.04 (64)Sent to a nursing facility certified under Medicaid but not Medicare 266 0.01 (65)Sent to a psychiatric hospital or unit of a hospital 25800 0.59 (66)Sent to a critical access hospital 637 0.01 (99)Disposition Invalid_Blank 657 0.02 Disposition of the Patient Cumulative Cumulative dispn Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ƒ (00)Disposition Other 35391 0.81 (01)Sent home or self care 4143030 94.92 (02)Sent to a short term general care hospital or inpatient care 4199603 96.22 (03)Sent to a skilled nursing facility with Medicare certification 4211977 96.50 (04)Sent to an intermediate care facility 4214839 96.57 (05)Sent to another type of institution not on this list 4232376 96.97 (06)Sent home under the care of a home health service organization 4234354 97.02 (07)Left or discontinued care against medical advice 4325868 99.11 (20)Died 4333861 99.30 (43)Sent to a federal health care facility 4334212 99.30 (50)Sent home with hospice care 4334688 99.32 (51)Sent to a medical facility with hospice care 4334852 99.32 (61)Sent to a hospital-based Medicare approved swing bed 4334877 99.32 (62)Sent to an inpatient rehabilitation facility or unit of a hospital 4335567 99.34 (63)Sent to a Medicare certified long term care hospital 4337188 99.37 (64)Sent to a nursing facility certified under Medicaid but not Medicare 4337454 99.38 (65)Sent to a psychiatric hospital or unit of a hospital 4363254 99.97 (66)Sent to a critical access hospital 4363891 99.98 (99)Disposition Invalid_Blank 4364548 100.00 Expected Source of Payment Cumulative Cumulative payer Frequency Percent Frequency Percent ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Other payer 64563 1.48 64563 1.48 selfpay 763197 17.49 827760 18.97 other non-federal 102253 2.34 930013 21.31 prefered provided org (PPO) 264994 6.07 1195007 27.38 point of service (POS) 16455 0.38 1211462 27.76 Exclusive Provider Organization (EPO) 12904 0.30 1224366 28.05 Medicare HMO 181625 4.16 1405991 32.21 Payer Blank 1554 0.04 1407545 32.25 automible med 2660 0.06 1410205 32.31 Bluecross 240964 5.52 1651169 37.83 Tricare 31592 0.72 1682761 38.56 commercial 155151 3.55 1837912 42.11 disability 11 0.00 1837923 42.11 other HMO 886968 20.32 2724891 62.43 Medicare Part A 289889 6.64 3014780 69.07 Medicare Part B 159774 3.66 3174554 72.74 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 319.
    Chapter 5-OSPHD EmergencyDepartment 50 Medical-Cal 1064731 24.39 4239285 97.13 Other Federal 38440 0.88 4277725 98.01 Title V 3027 0.07 4280752 98.08 Veterans Adm 2754 0.06 4283506 98.14 Worker Comp 81042 1.86 4364548 100.00 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 320.
    Chapter 5-OSPHD EmergencyDepartment 51 Exercises 5.1 1. Produce a PROC FREQ in rank order of the emergency department principal diagnoses by gender in the last half of 2007. 2. Produce a PROC FREQ in rank order of the emergency department principal diagnoses by death in the last half of 2007. 3. Produce a PROC FREQ in rank order of the emergency department principal procedures by ethnicity in the last half of 2007. 4. Produce a PROC FREQ in rank order of the emergency department principal injuries by gender in the last half of 2007. 5. Produce a PROC FREQ in rank order of California EDs principal injuries by age groupings in the last half of 2007. 6. Produce a PROC FREQ in rank order of California EDs principal injuries by death and gender in the last half of 2007. 7. Briefly describe the findings in a paragraph for each exercise. Below is SAS code for exercise 5.1-1. options label nodate nonumber; proc freq data=ed2007 order=freq; tables dx_prin3*sex ; format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef. patco $countyf. serv_q $serv_q. dispn $dispnf. payer $payerf. dx_prin3 $diag3df. ; title 'California EDs Principal Diagnoses by Gender'; run; options label nodate nonumber; Below is the partial PROC FREQ output for exercise 5.1-1. California EDs Principal Diagnoses by Gender The FREQ Procedure Table of dx_prin3 by sex dx_prin3 sex(Sex) Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 321.
    Chapter 5-OSPHD EmergencyDepartment 52 Frequency ‚ Percent ‚ Row Pct ‚ Col Pct ‚female ‚male ‚masked s‚unknown ‚ Total ‚ ‚ ‚ex ‚sex ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (789) Other symp ‚ 129614 ‚ 69805 ‚ 18853 ‚ 4 ‚ 218276 toms involving a ‚ 2.97 ‚ 1.60 ‚ 0.43 ‚ 0.00 ‚ 5.00 bdome... ‚ 59.38 ‚ 31.98 ‚ 8.64 ‚ 0.00 ‚ ‚ 6.08 ‚ 3.90 ‚ 4.26 ‚ 4.08 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (780) General sy ‚ 100612 ‚ 88454 ‚ 22413 ‚ 1 ‚ 211480 mptoms ‚ 2.31 ‚ 2.03 ‚ 0.51 ‚ 0.00 ‚ 4.85 ‚ 47.58 ‚ 41.83 ‚ 10.60 ‚ 0.00 ‚ ‚ 4.72 ‚ 4.94 ‚ 5.07 ‚ 1.02 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (786) Symptoms i ‚ 94734 ‚ 76502 ‚ 19431 ‚ 3 ‚ 190670 nvolving respira ‚ 2.17 ‚ 1.75 ‚ 0.45 ‚ 0.00 ‚ 4.37 tory ... ‚ 49.68 ‚ 40.12 ‚ 10.19 ‚ 0.00 ‚ ‚ 4.45 ‚ 4.27 ‚ 4.39 ‚ 3.06 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (873) Other open ‚ 30529 ‚ 62446 ‚ 13427 ‚ 6 ‚ 106408 wound of head ‚ 0.70 ‚ 1.43 ‚ 0.31 ‚ 0.00 ‚ 2.44 ‚ 28.69 ‚ 58.69 ‚ 12.62 ‚ 0.01 ‚ ‚ 1.43 ‚ 3.49 ‚ 3.03 ‚ 6.12 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (682) Other cell ‚ 43151 ‚ 50131 ‚ 7485 ‚ 2 ‚ 100769 ulitis and absce ‚ 0.99 ‚ 1.15 ‚ 0.17 ‚ 0.00 ‚ 2.31 ss ‚ 42.82 ‚ 49.75 ‚ 7.43 ‚ 0.00 ‚ ‚ 2.03 ‚ 2.80 ‚ 1.69 ‚ 2.04 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (784) Symptoms i ‚ 57975 ‚ 32752 ‚ 8803 ‚ 2 ‚ 99532 nvolving head an ‚ 1.33 ‚ 0.75 ‚ 0.20 ‚ 0.00 ‚ 2.28 d neck ‚ 58.25 ‚ 32.91 ‚ 8.84 ‚ 0.00 ‚ ‚ 2.72 ‚ 1.83 ‚ 1.99 ‚ 2.04 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (787) Symptoms i ‚ 48489 ‚ 36641 ‚ 8368 ‚ 4 ‚ 93502 nvolving digesti ‚ 1.11 ‚ 0.84 ‚ 0.19 ‚ 0.00 ‚ 2.14 ve sy... ‚ 51.86 ‚ 39.19 ‚ 8.95 ‚ 0.00 ‚ ‚ 2.28 ‚ 2.05 ‚ 1.89 ‚ 4.08 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (724) Other and ‚ 48012 ‚ 35686 ‚ 8590 ‚ 2 ‚ 92290 unspecified diso ‚ 1.10 ‚ 0.82 ‚ 0.20 ‚ 0.00 ‚ 2.11 rders... ‚ 52.02 ‚ 38.67 ‚ 9.31 ‚ 0.00 ‚ ‚ 2.25 ‚ 1.99 ‚ 1.94 ‚ 2.04 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (465) Acute uppe ‚ 40474 ‚ 39119 ‚ 6074 ‚ 0 ‚ 85667 r respiratory in ‚ 0.93 ‚ 0.90 ‚ 0.14 ‚ 0.00 ‚ 1.96 fecti... ‚ 47.25 ‚ 45.66 ‚ 7.09 ‚ 0.00 ‚ ‚ 1.90 ‚ 2.18 ‚ 1.37 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (599) Other diso ‚ 60969 ‚ 16134 ‚ 8441 ‚ 0 ‚ 85544 rders of urethra ‚ 1.40 ‚ 0.37 ‚ 0.19 ‚ 0.00 ‚ 1.96 and ... ‚ 71.27 ‚ 18.86 ‚ 9.87 ‚ 0.00 ‚ ‚ 2.86 ‚ 0.90 ‚ 1.91 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 322.
    Chapter 5-OSPHD EmergencyDepartment 53 (847) Sprains an ‚ 41512 ‚ 30093 ‚ 11728 ‚ 1 ‚ 83334 d strains of oth ‚ 0.95 ‚ 0.69 ‚ 0.27 ‚ 0.00 ‚ 1.91 er an... ‚ 49.81 ‚ 36.11 ‚ 14.07 ‚ 0.00 ‚ ‚ 1.95 ‚ 1.68 ‚ 2.65 ‚ 1.02 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (959) Injury, ot ‚ 26923 ‚ 32218 ‚ 8585 ‚ 1 ‚ 67727 her and unspecif ‚ 0.62 ‚ 0.74 ‚ 0.20 ‚ 0.00 ‚ 1.55 ied ‚ 39.75 ‚ 47.57 ‚ 12.68 ‚ 0.00 ‚ ‚ 1.26 ‚ 1.80 ‚ 1.94 ‚ 1.02 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (493) Asthma ‚ 31909 ‚ 28945 ‚ 5559 ‚ 4 ‚ 66417 ‚ 0.73 ‚ 0.66 ‚ 0.13 ‚ 0.00 ‚ 1.52 ‚ 48.04 ‚ 43.58 ‚ 8.37 ‚ 0.01 ‚ ‚ 1.50 ‚ 1.62 ‚ 1.26 ‚ 4.08 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (382) Suppurativ ‚ 28101 ‚ 31329 ‚ 4974 ‚ 0 ‚ 64404 e and unspecifie ‚ 0.64 ‚ 0.72 ‚ 0.11 ‚ 0.00 ‚ 1.48 d oti... ‚ 43.63 ‚ 48.64 ‚ 7.72 ‚ 0.00 ‚ ‚ 1.32 ‚ 1.75 ‚ 1.12 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (462) Acute phar ‚ 28880 ‚ 22200 ‚ 5015 ‚ 0 ‚ 56095 yngitis ‚ 0.66 ‚ 0.51 ‚ 0.11 ‚ 0.00 ‚ 1.29 ‚ 51.48 ‚ 39.58 ‚ 8.94 ‚ 0.00 ‚ ‚ 1.36 ‚ 1.24 ‚ 1.13 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (558) Other noni ‚ 28304 ‚ 22571 ‚ 5002 ‚ 1 ‚ 55878 nfective gastroe ‚ 0.65 ‚ 0.52 ‚ 0.11 ‚ 0.00 ‚ 1.28 nteri... ‚ 50.65 ‚ 40.39 ‚ 8.95 ‚ 0.00 ‚ ‚ 1.33 ‚ 1.26 ‚ 1.13 ‚ 1.02 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (V58) Other and ‚ 19777 ‚ 32117 ‚ 1537 ‚ 4 ‚ 53435 unspecified afte ‚ 0.45 ‚ 0.74 ‚ 0.04 ‚ 0.00 ‚ 1.22 rcare ‚ 37.01 ‚ 60.10 ‚ 2.88 ‚ 0.01 ‚ ‚ 0.93 ‚ 1.79 ‚ 0.35 ‚ 4.08 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (883) Open wound ‚ 16917 ‚ 27740 ‚ 6625 ‚ 0 ‚ 51282 of finger(s) ‚ 0.39 ‚ 0.64 ‚ 0.15 ‚ 0.00 ‚ 1.17 ‚ 32.99 ‚ 54.09 ‚ 12.92 ‚ 0.00 ‚ ‚ 0.79 ‚ 1.55 ‚ 1.50 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 2130477 1791507 442466 98 4364548 48.81 41.05 10.14 0.00 100.00 2. Produce a PROC FREQ in rank order of the emergency department principal diagnoses by ethnicity in the last half of 2007. Below is SAS code for exercise 5.1-2 options label nodate nonumber; proc freq data=ed2007 order=freq; tables dx_prin3*eth ; format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 323.
    Chapter 5-OSPHD EmergencyDepartment 54 patco $countyf. serv_q $serv_q. dispn $dispnf. payer $payerf. dx_prin3 $diag3df. ; title 'California EDs Principal Diagnoses by Ethnicity'; run; options label nodate nonumber; Below is the partial PROC FREQ output for exercise 5.1-2 California EDs Principal Diagnoses by Ethnicity Table of dx_prin3 by eth dx_prin3 eth(Ethnicity) Frequency ‚ Percent ‚ Row Pct ‚ Col Pct ‚non_Hisp‚Hispanic‚masked e‚ukn_ethn‚ Total ‚anic ‚ ‚thnic ‚ic ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (789) Other symp ‚ 105592 ‚ 64591 ‚ 39413 ‚ 8680 ‚ 218276 toms involving a ‚ 2.42 ‚ 1.48 ‚ 0.90 ‚ 0.20 ‚ 5.00 bdome... ‚ 48.38 ‚ 29.59 ‚ 18.06 ‚ 3.98 ‚ ‚ 4.89 ‚ 5.42 ‚ 4.66 ‚ 5.17 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (780) General sy ‚ 100912 ‚ 57826 ‚ 43908 ‚ 8834 ‚ 211480 mptoms ‚ 2.31 ‚ 1.32 ‚ 1.01 ‚ 0.20 ‚ 4.85 ‚ 47.72 ‚ 27.34 ‚ 20.76 ‚ 4.18 ‚ ‚ 4.67 ‚ 4.86 ‚ 5.19 ‚ 5.26 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (786) Symptoms i ‚ 102049 ‚ 40836 ‚ 40297 ‚ 7488 ‚ 190670 nvolving respira ‚ 2.34 ‚ 0.94 ‚ 0.92 ‚ 0.17 ‚ 4.37 tory ... ‚ 53.52 ‚ 21.42 ‚ 21.13 ‚ 3.93 ‚ ‚ 4.73 ‚ 3.43 ‚ 4.76 ‚ 4.46 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (873) Other open ‚ 49506 ‚ 29160 ‚ 23129 ‚ 4613 ‚ 106408 wound of head ‚ 1.13 ‚ 0.67 ‚ 0.53 ‚ 0.11 ‚ 2.44 ‚ 46.52 ‚ 27.40 ‚ 21.74 ‚ 4.34 ‚ ‚ 2.29 ‚ 2.45 ‚ 2.73 ‚ 2.75 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (682) Other cell ‚ 57808 ‚ 25348 ‚ 13922 ‚ 3691 ‚ 100769 ulitis and absce ‚ 1.32 ‚ 0.58 ‚ 0.32 ‚ 0.08 ‚ 2.31 ss ‚ 57.37 ‚ 25.15 ‚ 13.82 ‚ 3.66 ‚ ‚ 2.68 ‚ 2.13 ‚ 1.65 ‚ 2.20 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (784) Symptoms i ‚ 50765 ‚ 26973 ‚ 17854 ‚ 3940 ‚ 99532 nvolving head an ‚ 1.16 ‚ 0.62 ‚ 0.41 ‚ 0.09 ‚ 2.28 d neck ‚ 51.00 ‚ 27.10 ‚ 17.94 ‚ 3.96 ‚ ‚ 2.35 ‚ 2.26 ‚ 2.11 ‚ 2.34 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (787) Symptoms i ‚ 43247 ‚ 30148 ‚ 16638 ‚ 3469 ‚ 93502 nvolving digesti ‚ 0.99 ‚ 0.69 ‚ 0.38 ‚ 0.08 ‚ 2.14 ve sy... ‚ 46.25 ‚ 32.24 ‚ 17.79 ‚ 3.71 ‚ ‚ 2.00 ‚ 2.53 ‚ 1.97 ‚ 2.06 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (724) Other and ‚ 53749 ‚ 19096 ‚ 16014 ‚ 3431 ‚ 92290 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 324.
    Chapter 5-OSPHD EmergencyDepartment 55 unspecified diso ‚ 1.23 ‚ 0.44 ‚ 0.37 ‚ 0.08 ‚ 2.11 rders... ‚ 58.24 ‚ 20.69 ‚ 17.35 ‚ 3.72 ‚ ‚ 2.49 ‚ 1.60 ‚ 1.89 ‚ 2.04 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (465) Acute uppe ‚ 30241 ‚ 39662 ‚ 12804 ‚ 2960 ‚ 85667 r respiratory in ‚ 0.69 ‚ 0.91 ‚ 0.29 ‚ 0.07 ‚ 1.96 fecti... ‚ 35.30 ‚ 46.30 ‚ 14.95 ‚ 3.46 ‚ ‚ 1.40 ‚ 3.33 ‚ 1.51 ‚ 1.76 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (599) Other diso ‚ 41656 ‚ 24426 ‚ 16165 ‚ 3297 ‚ 85544 rders of urethra ‚ 0.95 ‚ 0.56 ‚ 0.37 ‚ 0.08 ‚ 1.96 and ... ‚ 48.70 ‚ 28.55 ‚ 18.90 ‚ 3.85 ‚ ‚ 1.93 ‚ 2.05 ‚ 1.91 ‚ 1.96 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (847) Sprains an ‚ 42258 ‚ 17390 ‚ 20764 ‚ 2922 ‚ 83334 d strains of oth ‚ 0.97 ‚ 0.40 ‚ 0.48 ‚ 0.07 ‚ 1.91 er an... ‚ 50.71 ‚ 20.87 ‚ 24.92 ‚ 3.51 ‚ ‚ 1.96 ‚ 1.46 ‚ 2.45 ‚ 1.74 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (959) Injury, ot ‚ 33009 ‚ 15450 ‚ 15873 ‚ 3395 ‚ 67727 her and unspecif ‚ 0.76 ‚ 0.35 ‚ 0.36 ‚ 0.08 ‚ 1.55 ied ‚ 48.74 ‚ 22.81 ‚ 23.44 ‚ 5.01 ‚ ‚ 1.53 ‚ 1.30 ‚ 1.88 ‚ 2.02 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (493) Asthma ‚ 33202 ‚ 19715 ‚ 11300 ‚ 2200 ‚ 66417 ‚ 0.76 ‚ 0.45 ‚ 0.26 ‚ 0.05 ‚ 1.52 ‚ 49.99 ‚ 29.68 ‚ 17.01 ‚ 3.31 ‚ ‚ 1.54 ‚ 1.66 ‚ 1.34 ‚ 1.31 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ (382) Suppurativ ‚ 21739 ‚ 30355 ‚ 9725 ‚ 2585 ‚ 64404 e and unspecifie ‚ 0.50 ‚ 0.70 ‚ 0.22 ‚ 0.06 ‚ 1.48 d oti... ‚ 33.75 ‚ 47.13 ‚ 15.10 ‚ 4.01 ‚ ‚ 1.01 ‚ 2.55 ‚ 1.15 ‚ 1.54 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 2159376 1190871 846250 168051 4364548 3. Produce a PROC FREQ in rank order of the emergency department principal procedures by ethnicity in the last half of 2007. Below is SAS code for exercise 5.1-3. /*3. Produce a PROC FREQ in rank order of California EDs principal procedures by ethnicity in the last half of 2007.*/ options label nodate nonumber; proc freq data=ed2007 order=freq; tables pr_prin2*eth ; format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef. patco $countyf. serv_q $serv_q. pr_prin2 $proc2df. payer $payerf. dx_prin3 $diag3df. ; title 'California EDs Principal Procedures by Ethnicity'; run; options label nodate nonumber; Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 325.
    Chapter 5-OSPHD EmergencyDepartment 56 Below is the partial PROC FREQ output for exercise 5.1-3. California EDs Principal Procedures by Ethnicity The FREQ Procedure Table of pr_prin2 by eth pr_prin2 eth(Ethnicity) Frequency ‚ Percent ‚ Row Pct ‚ Col Pct ‚non_Hisp‚Hispanic‚masked e‚ukn_ethn‚ Total ‚anic ‚ ‚thnic ‚ic ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ * ‚ 969256 ‚ 518622 ‚ 381057 ‚ 112715 ‚1981650 ‚ 22.21 ‚ 11.88 ‚ 8.73 ‚ 2.58 ‚ 45.40 ‚ 48.91 ‚ 26.17 ‚ 19.23 ‚ 5.69 ‚ ‚ 44.89 ‚ 43.55 ‚ 45.03 ‚ 67.07 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 99:Other nonoper ‚ 575324 ‚ 351481 ‚ 231247 ‚ 25840 ‚1183892 ative procedures ‚ 13.18 ‚ 8.05 ‚ 5.30 ‚ 0.59 ‚ 27.13 ‚ 48.60 ‚ 29.69 ‚ 19.53 ‚ 2.18 ‚ ‚ 26.64 ‚ 29.51 ‚ 27.33 ‚ 15.38 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 90:Microscopic e ‚ 96949 ‚ 47912 ‚ 34675 ‚ 6000 ‚ 185536 xamination I ‚ 2.22 ‚ 1.10 ‚ 0.79 ‚ 0.14 ‚ 4.25 ‚ 52.25 ‚ 25.82 ‚ 18.69 ‚ 3.23 ‚ ‚ 4.49 ‚ 4.02 ‚ 4.10 ‚ 3.57 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 12:Operations on ‚ 70153 ‚ 37377 ‚ 32054 ‚ 4622 ‚ 144206 iris, ciliary b ‚ 1.61 ‚ 0.86 ‚ 0.73 ‚ 0.11 ‚ 3.30 ody, ... ‚ 48.65 ‚ 25.92 ‚ 22.23 ‚ 3.21 ‚ ‚ 3.25 ‚ 3.14 ‚ 3.79 ‚ 2.75 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 36:Operations on ‚ 78384 ‚ 30773 ‚ 25689 ‚ 821 ‚ 135667 vessels of hear ‚ 1.80 ‚ 0.71 ‚ 0.59 ‚ 0.02 ‚ 3.11 t ‚ 57.78 ‚ 22.68 ‚ 18.94 ‚ 0.61 ‚ ‚ 3.63 ‚ 2.58 ‚ 3.04 ‚ 0.49 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 29:Operations on ‚ 44832 ‚ 21534 ‚ 20636 ‚ 2067 ‚ 89069 pharynx ‚ 1.03 ‚ 0.49 ‚ 0.47 ‚ 0.05 ‚ 2.04 ‚ 50.33 ‚ 24.18 ‚ 23.17 ‚ 2.32 ‚ ‚ 2.08 ‚ 1.81 ‚ 2.44 ‚ 1.23 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 73:Other procedu ‚ 38855 ‚ 20048 ‚ 15955 ‚ 2786 ‚ 77644 res inducing or ‚ 0.89 ‚ 0.46 ‚ 0.37 ‚ 0.06 ‚ 1.78 assis... ‚ 50.04 ‚ 25.82 ‚ 20.55 ‚ 3.59 ‚ ‚ 1.80 ‚ 1.68 ‚ 1.89 ‚ 1.66 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 71:Operations on ‚ 30687 ‚ 18477 ‚ 12017 ‚ 3656 ‚ 64837 vulva and perin ‚ 0.70 ‚ 0.42 ‚ 0.28 ‚ 0.08 ‚ 1.49 eum ‚ 47.33 ‚ 28.50 ‚ 18.53 ‚ 5.64 ‚ ‚ 1.42 ‚ 1.55 ‚ 1.42 ‚ 2.18 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 80:Incision and ‚ 35877 ‚ 18560 ‚ 9577 ‚ 175 ‚ 64189 excision of join ‚ 0.82 ‚ 0.43 ‚ 0.22 ‚ 0.00 ‚ 1.47 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 326.
    Chapter 5-OSPHD EmergencyDepartment 57 t str... ‚ 55.89 ‚ 28.91 ‚ 14.92 ‚ 0.27 ‚ ‚ 1.66 ‚ 1.56 ‚ 1.13 ‚ 0.10 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 85:Operations on ‚ 20445 ‚ 11068 ‚ 7389 ‚ 131 ‚ 39033 the breast ‚ 0.47 ‚ 0.25 ‚ 0.17 ‚ 0.00 ‚ 0.89 ‚ 52.38 ‚ 28.36 ‚ 18.93 ‚ 0.34 ‚ ‚ 0.95 ‚ 0.93 ‚ 0.87 ‚ 0.08 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 93:Physical ther ‚ 22674 ‚ 7313 ‚ 8578 ‚ 441 ‚ 39006 apy/respiratory ‚ 0.52 ‚ 0.17 ‚ 0.20 ‚ 0.01 ‚ 0.89 thera... ‚ 58.13 ‚ 18.75 ‚ 21.99 ‚ 1.13 ‚ ‚ 1.05 ‚ 0.61 ‚ 1.01 ‚ 0.26 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 81:Repair and pl ‚ 17178 ‚ 14415 ‚ 6150 ‚ 151 ‚ 37894 astic operations ‚ 0.39 ‚ 0.33 ‚ 0.14 ‚ 0.00 ‚ 0.87 on j... ‚ 45.33 ‚ 38.04 ‚ 16.23 ‚ 0.40 ‚ ‚ 0.80 ‚ 1.21 ‚ 0.73 ‚ 0.09 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 10:Operations on ‚ 19775 ‚ 9072 ‚ 4782 ‚ 1090 ‚ 34719 conjunctiva ‚ 0.45 ‚ 0.21 ‚ 0.11 ‚ 0.02 ‚ 0.80 ‚ 56.96 ‚ 26.13 ‚ 13.77 ‚ 3.14 ‚ ‚ 0.92 ‚ 0.76 ‚ 0.57 ‚ 0.65 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 70:Operations on ‚ 16354 ‚ 8521 ‚ 7042 ‚ 1119 ‚ 33036 vagina and cul- ‚ 0.37 ‚ 0.20 ‚ 0.16 ‚ 0.03 ‚ 0.76 de-sac ‚ 49.50 ‚ 25.79 ‚ 21.32 ‚ 3.39 ‚ ‚ 0.76 ‚ 0.72 ‚ 0.83 ‚ 0.67 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 94:Procedures re ‚ 12613 ‚ 14386 ‚ 4928 ‚ 405 ‚ 32332 lated to the psy ‚ 0.29 ‚ 0.33 ‚ 0.11 ‚ 0.01 ‚ 0.74 che ‚ 39.01 ‚ 44.49 ‚ 15.24 ‚ 1.25 ‚ ‚ 0.58 ‚ 1.21 ‚ 0.58 ‚ 0.24 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 51:Operations on ‚ 16513 ‚ 7031 ‚ 5076 ‚ 1030 ‚ 29650 gallbladder and ‚ 0.38 ‚ 0.16 ‚ 0.12 ‚ 0.02 ‚ 0.68 bili... ‚ 55.69 ‚ 23.71 ‚ 17.12 ‚ 3.47 ‚ ‚ 0.76 ‚ 0.59 ‚ 0.60 ‚ 0.61 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 72:Forceps, vacu ‚ 13760 ‚ 6330 ‚ 5959 ‚ 1094 ‚ 27143 um, and breech d ‚ 0.32 ‚ 0.15 ‚ 0.14 ‚ 0.03 ‚ 0.62 elivery ‚ 50.69 ‚ 23.32 ‚ 21.95 ‚ 4.03 ‚ ‚ 0.64 ‚ 0.53 ‚ 0.70 ‚ 0.65 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 87:Diagnostic ra ‚ 9060 ‚ 6079 ‚ 2556 ‚ 94 ‚ 17789 diology ‚ 0.21 ‚ 0.14 ‚ 0.06 ‚ 0.00 ‚ 0.41 ‚ 50.93 ‚ 34.17 ‚ 14.37 ‚ 0.53 ‚ ‚ 0.42 ‚ 0.51 ‚ 0.30 ‚ 0.06 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 82:Operations on ‚ 7632 ‚ 4190 ‚ 3411 ‚ 45 ‚ 15278 muscle, tendon, ‚ 0.17 ‚ 0.10 ‚ 0.08 ‚ 0.00 ‚ 0.35 and ... ‚ 49.95 ‚ 27.43 ‚ 22.33 ‚ 0.29 ‚ ‚ 0.35 ‚ 0.35 ‚ 0.40 ‚ 0.03 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 76:Operations on ‚ 5374 ‚ 6280 ‚ 2461 ‚ 793 ‚ 14908 facial bones an ‚ 0.12 ‚ 0.14 ‚ 0.06 ‚ 0.02 ‚ 0.34 d joints ‚ 36.05 ‚ 42.13 ‚ 16.51 ‚ 5.32 ‚ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 327.
    Chapter 5-OSPHD EmergencyDepartment 58 ‚ 0.25 ‚ 0.53 ‚ 0.29 ‚ 0.47 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 74:Cesarean sect ‚ 7408 ‚ 4012 ‚ 2672 ‚ 303 ‚ 14395 ion and removal ‚ 0.17 ‚ 0.09 ‚ 0.06 ‚ 0.01 ‚ 0.33 of fetus ‚ 51.46 ‚ 27.87 ‚ 18.56 ‚ 2.10 ‚ ‚ 0.34 ‚ 0.34 ‚ 0.32 ‚ 0.18 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 84:Other procedu ‚ 2898 ‚ 3296 ‚ 1086 ‚ 9 ‚ 7289 res on musculosk ‚ 0.07 ‚ 0.08 ‚ 0.02 ‚ 0.00 ‚ 0.17 eleta... ‚ 39.76 ‚ 45.22 ‚ 14.90 ‚ 0.12 ‚ ‚ 0.13 ‚ 0.28 ‚ 0.13 ‚ 0.01 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 62:Operations on ‚ 3513 ‚ 2025 ‚ 1260 ‚ 129 ‚ 6927 testes ‚ 0.08 ‚ 0.05 ‚ 0.03 ‚ 0.00 ‚ 0.16 ‚ 50.71 ‚ 29.23 ‚ 18.19 ‚ 1.86 ‚ ‚ 0.16 ‚ 0.17 ‚ 0.15 ‚ 0.08 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 11:Operations on ‚ 2869 ‚ 2337 ‚ 1435 ‚ 226 ‚ 6867 cornea ‚ 0.07 ‚ 0.05 ‚ 0.03 ‚ 0.01 ‚ 0.16 ‚ 41.78 ‚ 34.03 ‚ 20.90 ‚ 3.29 ‚ ‚ 0.13 ‚ 0.20 ‚ 0.17 ‚ 0.13 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 2159376 1190871 846250 168051 4364548 49.48 27.29 19.39 3.85 100.00 4. Produce a PROC FREQ in rank order of the emergency department principal injuries by gender in the last half of 2007. Below is SAS code for exercise 5.1-4. options label nodate nonumber; proc freq data=ed2007 order=freq; tables ec_prin*sex ; format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef. patco $countyf. serv_q $serv_q. pr_prin2 $proc2df. payer $payerf. dx_prin3 $diag3df. ec_prin $ecodef. ; title 'California EDs Principal Injuries by Gender'; run; Below is Partial PROC FREQ output for exercise 5.1-4. California EDs Principal Injuries by Gender The FREQ Procedure Table of ec_prin by sex Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 328.
    Chapter 5-OSPHD EmergencyDepartment 59 ec_prin(Principal E-code) sex(Sex) Frequency ‚ Percent ‚ Row Pct ‚ Col Pct ‚female ‚male ‚masked s‚unknown ‚ Total ‚ ‚ ‚ex ‚sex ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8859 FALL FROM ‚ 52345 ‚ 32982 ‚ 12630 ‚ 0 ‚ 97957 SLIPPING NEC ‚ 4.68 ‚ 2.95 ‚ 1.13 ‚ 0.00 ‚ 8.76 ‚ 53.44 ‚ 33.67 ‚ 12.89 ‚ 0.00 ‚ ‚ 11.68 ‚ 6.28 ‚ 8.70 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E927 ACCID FROM ‚ 39039 ‚ 40638 ‚ 11591 ‚ 4 ‚ 91272 OVEREXERTION ‚ 3.49 ‚ 3.63 ‚ 1.04 ‚ 0.00 ‚ 8.16 ‚ 42.77 ‚ 44.52 ‚ 12.70 ‚ 0.00 ‚ ‚ 8.71 ‚ 7.74 ‚ 7.98 ‚ 11.43 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8889 FALL NOS ‚ 32796 ‚ 27514 ‚ 7752 ‚ 1 ‚ 68063 ‚ 2.93 ‚ 2.46 ‚ 0.69 ‚ 0.00 ‚ 6.08 ‚ 48.18 ‚ 40.42 ‚ 11.39 ‚ 0.00 ‚ ‚ 7.32 ‚ 5.24 ‚ 5.34 ‚ 2.86 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9179 OBJ W-W/O ‚ 21557 ‚ 33171 ‚ 7846 ‚ 1 ‚ 62575 SUB FALL NEC ‚ 1.93 ‚ 2.96 ‚ 0.70 ‚ 0.00 ‚ 5.59 ‚ 34.45 ‚ 53.01 ‚ 12.54 ‚ 0.00 ‚ ‚ 4.81 ‚ 6.31 ‚ 5.40 ‚ 2.86 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9289 ACCIDENT N ‚ 25772 ‚ 26093 ‚ 6099 ‚ 2 ‚ 57966 OS ‚ 2.30 ‚ 2.33 ‚ 0.55 ‚ 0.00 ‚ 5.18 ‚ 44.46 ‚ 45.01 ‚ 10.52 ‚ 0.00 ‚ ‚ 5.75 ‚ 4.97 ‚ 4.20 ‚ 5.71 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9208 ACC-CUTTIN ‚ 16070 ‚ 27168 ‚ 6184 ‚ 0 ‚ 49422 G INSTRUM NEC ‚ 1.44 ‚ 2.43 ‚ 0.55 ‚ 0.00 ‚ 4.42 ‚ 32.52 ‚ 54.97 ‚ 12.51 ‚ 0.00 ‚ ‚ 3.59 ‚ 5.17 ‚ 4.26 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8120 MV COLLISI ‚ 22556 ‚ 15478 ‚ 7652 ‚ 1 ‚ 45687 ON NOS-DRIVER ‚ 2.02 ‚ 1.38 ‚ 0.68 ‚ 0.00 ‚ 4.08 ‚ 49.37 ‚ 33.88 ‚ 16.75 ‚ 0.00 ‚ ‚ 5.03 ‚ 2.95 ‚ 5.27 ‚ 2.86 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9170 SPORTS ACC ‚ 5162 ‚ 21434 ‚ 4367 ‚ 0 ‚ 30963 W/O SUB FALL ‚ 0.46 ‚ 1.92 ‚ 0.39 ‚ 0.00 ‚ 2.77 ‚ 16.67 ‚ 69.22 ‚ 14.10 ‚ 0.00 ‚ ‚ 1.15 ‚ 4.08 ‚ 3.01 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9600 UNARMED FI ‚ 6777 ‚ 15652 ‚ 2664 ‚ 3 ‚ 25096 GHT OR BRAWL ‚ 0.61 ‚ 1.40 ‚ 0.24 ‚ 0.00 ‚ 2.24 ‚ 27.00 ‚ 62.37 ‚ 10.62 ‚ 0.01 ‚ ‚ 1.51 ‚ 2.98 ‚ 1.83 ‚ 8.57 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8121 MV COLLISI ‚ 11501 ‚ 6512 ‚ 4565 ‚ 2 ‚ 22580 ON NOS-PASNGR ‚ 1.03 ‚ 0.58 ‚ 0.41 ‚ 0.00 ‚ 2.02 ‚ 50.93 ‚ 28.84 ‚ 20.22 ‚ 0.01 ‚ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 329.
    Chapter 5-OSPHD EmergencyDepartment 60 ‚ 2.57 ‚ 1.24 ‚ 3.14 ‚ 5.71 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8881 FALL STRIK ‚ 8173 ‚ 9917 ‚ 2343 ‚ 0 ‚ 20433 ING OBJECT NEC ‚ 0.73 ‚ 0.89 ‚ 0.21 ‚ 0.00 ‚ 1.83 ‚ 40.00 ‚ 48.53 ‚ 11.47 ‚ 0.00 ‚ ‚ 1.82 ‚ 1.89 ‚ 1.61 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9288 ACCIDENT N ‚ 7658 ‚ 9596 ‚ 2609 ‚ 0 ‚ 19863 EC ‚ 0.68 ‚ 0.86 ‚ 0.23 ‚ 0.00 ‚ 1.78 ‚ 38.55 ‚ 48.31 ‚ 13.13 ‚ 0.00 ‚ ‚ 1.71 ‚ 1.83 ‚ 1.80 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8888 FALL NEC ‚ 9193 ‚ 8209 ‚ 2292 ‚ 0 ‚ 19694 ‚ 0.82 ‚ 0.73 ‚ 0.20 ‚ 0.00 ‚ 1.76 ‚ 46.68 ‚ 41.68 ‚ 11.64 ‚ 0.00 ‚ ‚ 2.05 ‚ 1.56 ‚ 1.58 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9203 KNIFE/SWOR ‚ 6470 ‚ 9472 ‚ 2162 ‚ 0 ‚ 18104 D/DAGGER ACC ‚ 0.58 ‚ 0.85 ‚ 0.19 ‚ 0.00 ‚ 1.62 ‚ 35.74 ‚ 52.32 ‚ 11.94 ‚ 0.00 ‚ ‚ 1.44 ‚ 1.80 ‚ 1.49 ‚ 0.00 ‚ E8261 PED CYCL A ‚ 3308 ‚ 12031 ‚ 2341 ‚ 0 ‚ 17680 CC-PED CYCLIST ‚ 0.30 ‚ 1.08 ‚ 0.21 ‚ 0.00 ‚ 1.58 ‚ 18.71 ‚ 68.05 ‚ 13.24 ‚ 0.00 ‚ ‚ 0.74 ‚ 2.29 ‚ 1.61 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E918 CAUGHT BET ‚ 6451 ‚ 8052 ‚ 2289 ‚ 0 ‚ 16792 WEEN OBJECTS ‚ 0.58 ‚ 0.72 ‚ 0.20 ‚ 0.00 ‚ 1.50 ‚ 38.42 ‚ 47.95 ‚ 13.63 ‚ 0.00 ‚ ‚ 1.44 ‚ 1.53 ‚ 1.58 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8809 FALL ON ST ‚ 9116 ‚ 5208 ‚ 2371 ‚ 0 ‚ 16695 AIR/STEP NEC ‚ 0.81 ‚ 0.47 ‚ 0.21 ‚ 0.00 ‚ 1.49 ‚ 54.60 ‚ 31.19 ‚ 14.20 ‚ 0.00 ‚ ‚ 2.03 ‚ 0.99 ‚ 1.63 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8849 FALL-1 LEV ‚ 5215 ‚ 8559 ‚ 2313 ‚ 0 ‚ 16087 EL TO OTH NEC ‚ 0.47 ‚ 0.77 ‚ 0.21 ‚ 0.00 ‚ 1.44 ‚ 32.42 ‚ 53.20 ‚ 14.38 ‚ 0.00 ‚ ‚ 1.16 ‚ 1.63 ‚ 1.59 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E915 FB ENTERIN ‚ 7144 ‚ 7222 ‚ 1518 ‚ 1 ‚ 15885 G OTH ORIFICE ‚ 0.64 ‚ 0.65 ‚ 0.14 ‚ 0.00 ‚ 1.42 ‚ 44.97 ‚ 45.46 ‚ 9.56 ‚ 0.01 ‚ ‚ 1.59 ‚ 1.37 ‚ 1.05 ‚ 2.86 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9174 STAT OB W/ ‚ 5156 ‚ 8028 ‚ 1719 ‚ 2 ‚ 14905 O SUB FALL NEC ‚ 0.46 ‚ 0.72 ‚ 0.15 ‚ 0.00 ‚ 1.33 ‚ 34.59 ‚ 53.86 ‚ 11.53 ‚ 0.01 ‚ ‚ 1.15 ‚ 1.53 ‚ 1.18 ‚ 5.71 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9060 DOG BITE ‚ 6126 ‚ 6902 ‚ 1769 ‚ 0 ‚ 14797 ‚ 0.55 ‚ 0.62 ‚ 0.16 ‚ 0.00 ‚ 1.32 ‚ 41.40 ‚ 46.64 ‚ 11.96 ‚ 0.00 ‚ ‚ 1.37 ‚ 1.31 ‚ 1.22 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 330.
    Chapter 5-OSPHD EmergencyDepartment 61 Total 448249 525310 145189 35 1118783 40.07 46.95 12.98 0.00 100.00 Below is SAS code for exercise 5.1-5. /*5. Produce a PROC FREQ in rank order of California EDs principal injuries by age groupings in the last half of 2007.*/ options label nodate nonumber; proc freq data=ed2007 order=freq; tables ec_prin*agecat5 ; format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef. patco $countyf. serv_q $serv_q. pr_prin2 $proc2df. payer $payerf. dx_prin3 $diag3df. ec_prin $ecodef. ; title 'California EDs Principal Injuries by Age Categories'; run; Below is partial PROC FREQ output for exercise 5.1-5, California EDs Principal Injuries by Age Categories The FREQ Procedure Table of ec_prin by agecat5 ec_prin(Principal E-code) agecat5(Age Categories 5) Frequency ‚ Percent ‚ Row Pct ‚ Col Pct ‚35-64 ye‚18-34 ye‚1-17 ye‚65 years‚masked a‚Under 1 ‚0 ‚ Total ‚ars ‚ars ‚ars ‚ & over ‚ge group‚year ‚ ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8859 FALL FROM ‚ 29780 ‚ 12871 ‚ 21413 ‚ 27052 ‚ 6442 ‚ 398 ‚ 1 ‚ 97957 SLIPPING NEC ‚ 2.66 ‚ 1.15 ‚ 1.91 ‚ 2.42 ‚ 0.58 ‚ 0.04 ‚ 0.00 ‚ 8.76 ‚ 30.40 ‚ 13.14 ‚ 21.86 ‚ 27.62 ‚ 6.58 ‚ 0.41 ‚ 0.00 ‚ ‚ 8.96 ‚ 4.52 ‚ 7.09 ‚ 23.42 ‚ 9.02 ‚ 3.09 ‚ 2.04 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E927 ACCID FROM ‚ 33453 ‚ 27736 ‚ 19284 ‚ 4800 ‚ 5707 ‚ 291 ‚ 1 ‚ 91272 OVEREXERTION ‚ 2.99 ‚ 2.48 ‚ 1.72 ‚ 0.43 ‚ 0.51 ‚ 0.03 ‚ 0.00 ‚ 8.16 ‚ 36.65 ‚ 30.39 ‚ 21.13 ‚ 5.26 ‚ 6.25 ‚ 0.32 ‚ 0.00 ‚ ‚ 10.07 ‚ 9.75 ‚ 6.38 ‚ 4.16 ‚ 7.99 ‚ 2.26 ‚ 2.04 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8889 FALL NOS ‚ 17845 ‚ 8694 ‚ 19291 ‚ 17817 ‚ 3768 ‚ 647 ‚ 1 ‚ 68063 ‚ 1.60 ‚ 0.78 ‚ 1.72 ‚ 1.59 ‚ 0.34 ‚ 0.06 ‚ 0.00 ‚ 6.08 ‚ 26.22 ‚ 12.77 ‚ 28.34 ‚ 26.18 ‚ 5.54 ‚ 0.95 ‚ 0.00 ‚ ‚ 5.37 ‚ 3.06 ‚ 6.38 ‚ 15.42 ‚ 5.28 ‚ 5.03 ‚ 2.04 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9179 OBJ W-W/O ‚ 15662 ‚ 15031 ‚ 23864 ‚ 3351 ‚ 4031 ‚ 634 ‚ 2 ‚ 62575 SUB FALL NEC ‚ 1.40 ‚ 1.34 ‚ 2.13 ‚ 0.30 ‚ 0.36 ‚ 0.06 ‚ 0.00 ‚ 5.59 ‚ 25.03 ‚ 24.02 ‚ 38.14 ‚ 5.36 ‚ 6.44 ‚ 1.01 ‚ 0.00 ‚ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 331.
    Chapter 5-OSPHD EmergencyDepartment 62 ‚ 4.71 ‚ 5.28 ‚ 7.90 ‚ 2.90 ‚ 5.64 ‚ 4.93 ‚ 4.08 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9289 ACCIDENT N ‚ 21696 ‚ 14878 ‚ 11499 ‚ 6351 ‚ 2857 ‚ 681 ‚ 4 ‚ 57966 OS ‚ 1.94 ‚ 1.33 ‚ 1.03 ‚ 0.57 ‚ 0.26 ‚ 0.06 ‚ 0.00 ‚ 5.18 ‚ 37.43 ‚ 25.67 ‚ 19.84 ‚ 10.96 ‚ 4.93 ‚ 1.17 ‚ 0.01 ‚ ‚ 6.53 ‚ 5.23 ‚ 3.81 ‚ 5.50 ‚ 4.00 ‚ 5.29 ‚ 8.16 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9208 ACC-CUTTIN ‚ 14622 ‚ 16107 ‚ 12856 ‚ 2501 ‚ 3101 ‚ 234 ‚ 1 ‚ 49422 G INSTRUM NEC ‚ 1.31 ‚ 1.44 ‚ 1.15 ‚ 0.22 ‚ 0.28 ‚ 0.02 ‚ 0.00 ‚ 4.42 ‚ 29.59 ‚ 32.59 ‚ 26.01 ‚ 5.06 ‚ 6.27 ‚ 0.47 ‚ 0.00 ‚ ‚ 4.40 ‚ 5.66 ‚ 4.25 ‚ 2.17 ‚ 4.34 ‚ 1.82 ‚ 2.04 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8120 MV COLLISI ‚ 19149 ‚ 19301 ‚ 1269 ‚ 2801 ‚ 3161 ‚ 5 ‚ 1 ‚ 45687 ON NOS-DRIVER ‚ 1.71 ‚ 1.73 ‚ 0.11 ‚ 0.25 ‚ 0.28 ‚ 0.00 ‚ 0.00 ‚ 4.08 ‚ 41.91 ‚ 42.25 ‚ 2.78 ‚ 6.13 ‚ 6.92 ‚ 0.01 ‚ 0.00 ‚ ‚ 5.76 ‚ 6.78 ‚ 0.42 ‚ 2.42 ‚ 4.43 ‚ 0.04 ‚ 2.04 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9170 SPORTS ACC ‚ 2958 ‚ 7207 ‚ 18480 ‚ 113 ‚ 2197 ‚ 8 ‚ 0 ‚ 30963 W/O SUB FALL ‚ 0.26 ‚ 0.64 ‚ 1.65 ‚ 0.01 ‚ 0.20 ‚ 0.00 ‚ 0.00 ‚ 2.77 ‚ 9.55 ‚ 23.28 ‚ 59.68 ‚ 0.36 ‚ 7.10 ‚ 0.03 ‚ 0.00 ‚ ‚ 0.89 ‚ 2.53 ‚ 6.12 ‚ 0.10 ‚ 3.08 ‚ 0.06 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9600 UNARMED FI ‚ 7573 ‚ 11614 ‚ 4411 ‚ 282 ‚ 1205 ‚ 4 ‚ 7 ‚ 25096 GHT OR BRAWL ‚ 0.68 ‚ 1.04 ‚ 0.39 ‚ 0.03 ‚ 0.11 ‚ 0.00 ‚ 0.00 ‚ 2.24 ‚ 30.18 ‚ 46.28 ‚ 17.58 ‚ 1.12 ‚ 4.80 ‚ 0.02 ‚ 0.03 ‚ ‚ 2.28 ‚ 4.08 ‚ 1.46 ‚ 0.24 ‚ 1.69 ‚ 0.03 ‚ 14.29 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8121 MV COLLISI ‚ 5004 ‚ 6953 ‚ 7034 ‚ 1217 ‚ 2022 ‚ 349 ‚ 1 ‚ 22580 ON NOS-PASNGR ‚ 0.45 ‚ 0.62 ‚ 0.63 ‚ 0.11 ‚ 0.18 ‚ 0.03 ‚ 0.00 ‚ 2.02 ‚ 22.16 ‚ 30.79 ‚ 31.15 ‚ 5.39 ‚ 8.95 ‚ 1.55 ‚ 0.00 ‚ ‚ 1.51 ‚ 2.44 ‚ 2.33 ‚ 1.05 ‚ 2.83 ‚ 2.71 ‚ 2.04 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8881 FALL STRIK ‚ 3633 ‚ 2007 ‚ 9789 ‚ 3346 ‚ 1251 ‚ 407 ‚ 0 ‚ 20433 ING OBJECT NEC ‚ 0.32 ‚ 0.18 ‚ 0.87 ‚ 0.30 ‚ 0.11 ‚ 0.04 ‚ 0.00 ‚ 1.83 ‚ 17.78 ‚ 9.82 ‚ 47.91 ‚ 16.38 ‚ 6.12 ‚ 1.99 ‚ 0.00 ‚ ‚ 1.09 ‚ 0.71 ‚ 3.24 ‚ 2.90 ‚ 1.75 ‚ 3.16 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9288 ACCIDENT N ‚ 6365 ‚ 5291 ‚ 5128 ‚ 1547 ‚ 1285 ‚ 246 ‚ 1 ‚ 19863 EC ‚ 0.57 ‚ 0.47 ‚ 0.46 ‚ 0.14 ‚ 0.11 ‚ 0.02 ‚ 0.00 ‚ 1.78 ‚ 32.04 ‚ 26.64 ‚ 25.82 ‚ 7.79 ‚ 6.47 ‚ 1.24 ‚ 0.01 ‚ ‚ 1.92 ‚ 1.86 ‚ 1.70 ‚ 1.34 ‚ 1.80 ‚ 1.91 ‚ 2.04 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8888 FALL NEC ‚ 5186 ‚ 2749 ‚ 5534 ‚ 4859 ‚ 1094 ‚ 271 ‚ 1 ‚ 19694 ‚ 0.46 ‚ 0.25 ‚ 0.49 ‚ 0.43 ‚ 0.10 ‚ 0.02 ‚ 0.00 ‚ 1.76 ‚ 26.33 ‚ 13.96 ‚ 28.10 ‚ 24.67 ‚ 5.55 ‚ 1.38 ‚ 0.01 ‚ ‚ 1.56 ‚ 0.97 ‚ 1.83 ‚ 4.21 ‚ 1.53 ‚ 2.11 ‚ 2.04 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9203 KNIFE/SWOR ‚ 6911 ‚ 6953 ‚ 2248 ‚ 985 ‚ 995 ‚ 12 ‚ 0 ‚ 18104 D/DAGGER ACC ‚ 0.62 ‚ 0.62 ‚ 0.20 ‚ 0.09 ‚ 0.09 ‚ 0.00 ‚ 0.00 ‚ 1.62 ‚ 38.17 ‚ 38.41 ‚ 12.42 ‚ 5.44 ‚ 5.50 ‚ 0.07 ‚ 0.00 ‚ ‚ 2.08 ‚ 2.44 ‚ 0.74 ‚ 0.85 ‚ 1.39 ‚ 0.09 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Frequency ‚ Percent ‚ Row Pct ‚ Col Pct ‚35-64 ye‚18-34 ye‚1-17 ye‚65 years‚masked a‚Under 1 ‚0 ‚ Total ‚ars ‚ars ‚ars ‚ & over ‚ge group‚year ‚ ‚ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 332.
    Chapter 5-OSPHD EmergencyDepartment 63 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8261 PED CYCL A ‚ 5011 ‚ 3962 ‚ 7120 ‚ 386 ‚ 1197 ‚ 4 ‚ 0 ‚ 17680 CC-PED CYCLIST ‚ 0.45 ‚ 0.35 ‚ 0.64 ‚ 0.03 ‚ 0.11 ‚ 0.00 ‚ 0.00 ‚ 1.58 ‚ 28.34 ‚ 22.41 ‚ 40.27 ‚ 2.18 ‚ 6.77 ‚ 0.02 ‚ 0.00 ‚ ‚ 1.51 ‚ 1.39 ‚ 2.36 ‚ 0.33 ‚ 1.68 ‚ 0.03 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E918 CAUGHT BET ‚ 4442 ‚ 3929 ‚ 6220 ‚ 848 ‚ 1177 ‚ 176 ‚ 0 ‚ 16792 WEEN OBJECTS ‚ 0.40 ‚ 0.35 ‚ 0.56 ‚ 0.08 ‚ 0.11 ‚ 0.02 ‚ 0.00 ‚ 1.50 ‚ 26.45 ‚ 23.40 ‚ 37.04 ‚ 5.05 ‚ 7.01 ‚ 1.05 ‚ 0.00 ‚ ‚ 1.34 ‚ 1.38 ‚ 2.06 ‚ 0.73 ‚ 1.65 ‚ 1.37 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8809 FALL ON ST ‚ 6049 ‚ 3711 ‚ 3166 ‚ 2274 ‚ 1280 ‚ 215 ‚ 0 ‚ 16695 AIR/STEP NEC ‚ 0.54 ‚ 0.33 ‚ 0.28 ‚ 0.20 ‚ 0.11 ‚ 0.02 ‚ 0.00 ‚ 1.49 ‚ 36.23 ‚ 22.23 ‚ 18.96 ‚ 13.62 ‚ 7.67 ‚ 1.29 ‚ 0.00 ‚ ‚ 1.82 ‚ 1.30 ‚ 1.05 ‚ 1.97 ‚ 1.79 ‚ 1.67 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8849 FALL-1 LEV ‚ 3317 ‚ 2649 ‚ 6878 ‚ 798 ‚ 1265 ‚ 1180 ‚ 0 ‚ 16087 EL TO OTH NEC ‚ 0.30 ‚ 0.24 ‚ 0.61 ‚ 0.07 ‚ 0.11 ‚ 0.11 ‚ 0.00 ‚ 1.44 ‚ 20.62 ‚ 16.47 ‚ 42.76 ‚ 4.96 ‚ 7.86 ‚ 7.34 ‚ 0.00 ‚ ‚ 1.00 ‚ 0.93 ‚ 2.28 ‚ 0.69 ‚ 1.77 ‚ 9.17 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E915 FB ENTERIN ‚ 2800 ‚ 2185 ‚ 8379 ‚ 1038 ‚ 774 ‚ 709 ‚ 0 ‚ 15885 G OTH ORIFICE ‚ 0.25 ‚ 0.20 ‚ 0.75 ‚ 0.09 ‚ 0.07 ‚ 0.06 ‚ 0.00 ‚ 1.42 ‚ 17.63 ‚ 13.76 ‚ 52.75 ‚ 6.53 ‚ 4.87 ‚ 4.46 ‚ 0.00 ‚ ‚ 0.84 ‚ 0.77 ‚ 2.77 ‚ 0.90 ‚ 1.08 ‚ 5.51 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9174 STAT OB W/ ‚ 3413 ‚ 3835 ‚ 5856 ‚ 808 ‚ 883 ‚ 110 ‚ 0 ‚ 14905 O SUB FALL NEC ‚ 0.31 ‚ 0.34 ‚ 0.52 ‚ 0.07 ‚ 0.08 ‚ 0.01 ‚ 0.00 ‚ 1.33 ‚ 22.90 ‚ 25.73 ‚ 39.29 ‚ 5.42 ‚ 5.92 ‚ 0.74 ‚ 0.00 ‚ ‚ 1.03 ‚ 1.35 ‚ 1.94 ‚ 0.70 ‚ 1.24 ‚ 0.86 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9060 DOG BITE ‚ 4545 ‚ 2996 ‚ 5270 ‚ 1011 ‚ 928 ‚ 47 ‚ 0 ‚ 14797 ‚ 0.41 ‚ 0.27 ‚ 0.47 ‚ 0.09 ‚ 0.08 ‚ 0.00 ‚ 0.00 ‚ 1.32 ‚ 30.72 ‚ 20.25 ‚ 35.62 ‚ 6.83 ‚ 6.27 ‚ 0.32 ‚ 0.00 ‚ ‚ 1.37 ‚ 1.05 ‚ 1.74 ‚ 0.88 ‚ 1.30 ‚ 0.37 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 332199 284573 302155 115511 71431 12865 49 1118783 29.69 25.44 27.01 10.32 6.38 1.15 0.00 100.00 Below is SAS code for exercise 5.1-6. /*6. Produce a PROC FREQ in rank order of California EDs principal injuries by death and gender in the last half of 2007.*/ options label nodate nonumber; proc freq data=ed2007 order=freq; where dispn='20'; tables ec_prin*sex ; format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef. patco $countyf. serv_q $serv_q. pr_prin2 $proc2df. payer $payerf. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 333.
    Chapter 5-OSPHD EmergencyDepartment 64 dx_prin3 $diag3df. ec_prin $ecodef. ; title 'California EDs Principal Injury Death by Sex'; run; Below is partial PROC FREQ output for exercise 5.1-6. California EDs Principal Injury Death by Sex The FREQ Procedure Table of ec_prin by sex ec_prin(Principal E-code) sex(Sex) Frequency ‚ Percent ‚ Row Pct ‚ Col Pct ‚male ‚female ‚masked s‚unknown ‚ Total ‚ ‚ ‚ex ‚sex ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9654 ASSAULT-FI ‚ 86 ‚ 7 ‚ 10 ‚ 1 ‚ 104 REARM NEC ‚ 8.37 ‚ 0.68 ‚ 0.97 ‚ 0.10 ‚ 10.13 ‚ 82.69 ‚ 6.73 ‚ 9.62 ‚ 0.96 ‚ ‚ 13.74 ‚ 3.29 ‚ 5.43 ‚ 25.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8147 MV COLL W ‚ 39 ‚ 23 ‚ 11 ‚ 0 ‚ 73 PEDEST-PEDEST ‚ 3.80 ‚ 2.24 ‚ 1.07 ‚ 0.00 ‚ 7.11 ‚ 53.42 ‚ 31.51 ‚ 15.07 ‚ 0.00 ‚ ‚ 6.23 ‚ 10.80 ‚ 5.98 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8120 MV COLLISI ‚ 24 ‚ 8 ‚ 14 ‚ 0 ‚ 46 ON NOS-DRIVER ‚ 2.34 ‚ 0.78 ‚ 1.36 ‚ 0.00 ‚ 4.48 ‚ 52.17 ‚ 17.39 ‚ 30.43 ‚ 0.00 ‚ ‚ 3.83 ‚ 3.76 ‚ 7.61 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9229 FIREARM AC ‚ 37 ‚ 3 ‚ 5 ‚ 1 ‚ 46 CIDENT NOS ‚ 3.60 ‚ 0.29 ‚ 0.49 ‚ 0.10 ‚ 4.48 ‚ 80.43 ‚ 6.52 ‚ 10.87 ‚ 2.17 ‚ ‚ 5.91 ‚ 1.41 ‚ 2.72 ‚ 25.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E966 ASSAULT-CU ‚ 33 ‚ 6 ‚ 5 ‚ 0 ‚ 44 TTING INSTR ‚ 3.21 ‚ 0.58 ‚ 0.49 ‚ 0.00 ‚ 4.28 ‚ 75.00 ‚ 13.64 ‚ 11.36 ‚ 0.00 ‚ ‚ 5.27 ‚ 2.82 ‚ 2.72 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9650 ASSAULT-HA ‚ 25 ‚ 4 ‚ 3 ‚ 0 ‚ 32 NDGUN ‚ 2.43 ‚ 0.39 ‚ 0.29 ‚ 0.00 ‚ 3.12 ‚ 78.13 ‚ 12.50 ‚ 9.38 ‚ 0.00 ‚ ‚ 3.99 ‚ 1.88 ‚ 1.63 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8121 MV COLLISI ‚ 10 ‚ 12 ‚ 9 ‚ 0 ‚ 31 ON NOS-PASNGR ‚ 0.97 ‚ 1.17 ‚ 0.88 ‚ 0.00 ‚ 3.02 ‚ 32.26 ‚ 38.71 ‚ 29.03 ‚ 0.00 ‚ ‚ 1.60 ‚ 5.63 ‚ 4.89 ‚ 0.00 ‚ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 334.
    Chapter 5-OSPHD EmergencyDepartment 65 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9289 ACCIDENT N ‚ 10 ‚ 13 ‚ 7 ‚ 0 ‚ 30 OS ‚ 0.97 ‚ 1.27 ‚ 0.68 ‚ 0.00 ‚ 2.92 ‚ 33.33 ‚ 43.33 ‚ 23.33 ‚ 0.00 ‚ ‚ 1.60 ‚ 6.10 ‚ 3.80 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8122 MV COLLIS ‚ 20 ‚ 1 ‚ 8 ‚ 0 ‚ 29 NOS-MOTORCYCL ‚ 1.95 ‚ 0.10 ‚ 0.78 ‚ 0.00 ‚ 2.82 ‚ 68.97 ‚ 3.45 ‚ 27.59 ‚ 0.00 ‚ ‚ 3.19 ‚ 0.47 ‚ 4.35 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E8889 FALL NOS ‚ 13 ‚ 8 ‚ 7 ‚ 0 ‚ 28 ‚ 1.27 ‚ 0.78 ‚ 0.68 ‚ 0.00 ‚ 2.73 ‚ 46.43 ‚ 28.57 ‚ 25.00 ‚ 0.00 ‚ ‚ 2.08 ‚ 3.76 ‚ 3.80 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9530 INJURY-HAN ‚ 20 ‚ 7 ‚ 0 ‚ 0 ‚ 27 GING ‚ 1.95 ‚ 0.68 ‚ 0.00 ‚ 0.00 ‚ 2.63 ‚ 74.07 ‚ 25.93 ‚ 0.00 ‚ 0.00 ‚ ‚ 3.19 ‚ 3.29 ‚ 0.00 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9854 UNDETER CI ‚ 20 ‚ 2 ‚ 3 ‚ 0 ‚ 25 RC-FIREARM NEC ‚ 1.95 ‚ 0.19 ‚ 0.29 ‚ 0.00 ‚ 2.43 ‚ 80.00 ‚ 8.00 ‚ 12.00 ‚ 0.00 ‚ ‚ 3.19 ‚ 0.94 ‚ 1.63 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9550 INJURY-HAN ‚ 11 ‚ 5 ‚ 7 ‚ 1 ‚ 24 DGUN ‚ 1.07 ‚ 0.49 ‚ 0.68 ‚ 0.10 ‚ 2.34 ‚ 45.83 ‚ 20.83 ‚ 29.17 ‚ 4.17 ‚ ‚ 1.76 ‚ 2.35 ‚ 3.80 ‚ 25.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ E9651 ASSAULT-SH ‚ 21 ‚ 0 ‚ 2 ‚ 0 ‚ 23 OTGUN ‚ 2.04 ‚ 0.00 ‚ 0.19 ‚ 0.00 ‚ 2.24 ‚ 91.30 ‚ 0.00 ‚ 8.70 ‚ 0.00 ‚ ‚ 3.35 ‚ 0.00 ‚ 1.09 ‚ 0.00 ‚ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ Total 626 213 184 4 1027 60.95 20.74 17.92 0.39 100.00 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 335.
    Chapter 5-OSPHD EmergencyDepartment 66 2. SAS Code for OSPHD Indicator and Truth Logic Variables with PROC MEANS and PROC TABULATE osphd02d.sas The program below contains SAS code that creates indicator and truth logic variables for analysis of the OSPHD emergency department data. The PROC Means calculates the means, sums, minimum and maximum value for each variable. The PROC Tabulate produces multiple analyses such as hospital by payer and mean age. /****osph02d.sas**********/ data ed2007; set osphd.caled2007 (keep=fac_id age_yrs agecat5 sex eth race patzip patco serv_q dispn payer ec_prin dx_prin odx1 odx2 pr_prin opr1); /****gender indicator variables ***/ male =(sex='M'); female =(sex='F'); othgen =(sex='U'); unkgen =(sex='*'); /** Create Gender Categories Using Truth logic**/ gendercat=1*(sex='M')+ 2*(sex='F') + 3*(sex='U') + 4*(sex='*'); /****ethnic indicator variabbles ***/ hispanic =(eth='E1'); non_hispanic =(eth='E2'); hispanic_unk =(eth='99'); hispanic_blnk =(eth='*'); /** Create Race Ethnic Categories Using Truth logic**/ ethnicat=1*(eth='E1')+ 2*(eth='E2') + 3*(eth='99') + 4*(eth='*'); /****race indicator variables ***/ native_american =(race='R1'); asian =(race='R2'); black =(race='R3'); hawaiian =(race='R4'); white =(race='R5'); othrace =(race='R9'); Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 336.
    Chapter 5-OSPHD EmergencyDepartment 67 unkrace =(race='99'); race_blk =(race='*'); /** Create Race Categories Using Truth logic**/ racecat=1*(race='R1') + 2*(race='R2') + 3*(race='R3') + 4*(race='R4')+ 5*(race='R5') + 6*(race='R9') + 7*(race='99') + 8*(race='*'); /****payer indicator variables ***/ selfpay =(payer='09'); othnonfed =(payer='11'); ppo =(payer='12'); pos =(payer='13'); epo =(payer='14'); carehmo =(payer='16'); automed =(payer='AM'); bluecross =(payer='BL'); tricare =(payer='CH'); commercial =(payer='CI'); disability =(payer='DS'); othhmo =(payer='HM'); careparta =(payer='MA'); carepartb =(payer='MB'); medical =(payer='MC'); othfed =(payer='OF'); titleV =(payer='TV'); veterans =(payer='VA'); workcomp =(payer='WC'); payoth =(payer='00'); payblank =(payer='99'); /** Create Payer Categories Using Truth logic**/ paycat=1*(payer='09') + 2*(payer='11') + 3*(payer='12') + 4*(payer='13') + 5*(payer='14') + 6*(payer='16') + 7*(payer='AM') + 8*(payer='BL') + 9*(payer='CH') + 10*(payer='CI') + 11*(payer='DS') + 12*(payer='HM') + 13*(payer='MA') + 14*(payer='MB') + 15*(payer='MC') +16*(payer='OF') + 17*(payer='TV') + 18*(payer='VA') + 19*(payer='WC') + 20*(payer='00') + 21*(payer='99'); /*******Disposition Indicator Variables*****************/ home = (dispn='01'); inpatinpatient_care = (dispn='02'); snf = (dispn='03'); intermediate_care = (dispn='04'); Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 337.
    Chapter 5-OSPHD EmergencyDepartment 68 other_type_inst = (dispn='05'); home_health = (dispn='06'); lma = (dispn='07'); died = (dispn='20'); federal_health = (dispn='43'); home_hospice_care = (dispn='50'); hospital_hospice = (dispn='51'); hospital_swing_bed = (dispn='61'); inpatient_rehab = (dispn='62'); ltc_hospital = (dispn='63'); snf_no_cert = (dispn='64'); psych_hospital = (dispn='65'); critical_hospital = (dispn='66'); dispo_other = (dispn='00'); dispo_invalid = (dispn='99'); /*******Disposition Truth Logic Variables*****************/ dispocat= 1*(dispn='01') + 2*(dispn='02') +3*(dispn='03') + 4*(dispn='04') + 5*(dispn='05') +6*(dispn='06') + 7*(dispn='07') + 8*(dispn='20') +9*(dispn='43') + 10*(dispn='50') + 11*(dispn='51') +12*(dispn='61') + 13*(dispn='62') + 14*(dispn='63') +15*(dispn='64') + 16*(dispn='65') + 17*(dispn='66') +18*(dispn='00') + 19*(dispn='99'); /*******age category indicator variables********/ agelt1 =(agecat5='1'); age1to17 =(agecat5='2'); age18to34 =(agecat5='3'); age35to64 =(agecat5='4'); agege65 =(agecat5='5'); uknagecat =(agecat5='*'); /** Create Age Categories Using Truth logic**/ agegroup= 1*(agecat5='*') + 2*(agecat5='0') + 3*(agecat5='1') + 4*(agecat5='2') + 5*(agecat5='3') + 6*(agecat5='4') + 7*(agecat5='5'); /* Substrings funtions to select the*/ /* first N characters of a variable */ /* Must have length statement */ length dx_prin3 $3; length pr_prin2 $2; dx_prin3=substr(dx_prin,1,3); Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 338.
    Chapter 5-OSPHD EmergencyDepartment 69 pr_prin2=substr(pr_prin,1,2); options nolabel nodate nonumber; proc contents data=ed2007; run; proc means n mean sum min max data=ed2007; var age_yrs agelt1 age1to17 age18to34 age35to64 agege65 uknagecat male female unkgen hispanic non_hispanic hispanic_unk hispanic_blnk white black native_american asian hawaiian othrace unkrace race_blk selfpay othnonfed ppo pos epo carehmo automed bluecross tricare commercial disability othhmo careparta carepartb medical othfed titleV veterans workcomp payoth payblank age_yrs home inpatinpatient_care snf intermediate_care other_type_inst home_health lma died federal_health home_hospice_care hospital_hospice hospital_swing_bed inpatient_rehab ltc_hospital snf_no_cert psych_hospital critical_hospital dispo_other dispo_invalid gendercat ethnicat racecat paycat agegroup dispocat; title 'Means of Demographic Variable in the Last Half 2007 California EDs'; run; Below is the Proc Means Output Means of Demographic Variable in the Last Half 2007 California EDs The MEANS Procedure Variable N Mean Sum Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ age_yrs 2887049 33.5966369 96995137.00 0 85.0000000 agelt1 4364548 0.0369594 161311.00 0 1.0000000 age1to17 4364548 0.2080758 908157.00 0 1.0000000 age18to34 4364548 0.2547050 1111672.00 0 1.0000000 age35to64 4364548 0.3356643 1465023.00 0 1.0000000 agege65 4364548 0.1169143 510278.00 0 1.0000000 uknagecat 4364548 0.0476359 207909.00 0 1.0000000 male 4364548 0.4104679 1791507.00 0 1.0000000 female 4364548 0.4881323 2130477.00 0 1.0000000 unkgen 4364548 0.1013773 442466.00 0 1.0000000 hispanic 4364548 0.2728509 1190871.00 0 1.0000000 non_hispanic 4364548 0.4947536 2159376.00 0 1.0000000 hispanic_unk 4364548 0.0385036 168051.00 0 1.0000000 hispanic_blnk 4364548 0.1938918 846250.00 0 1.0000000 white 4364548 0.5294952 2311007.00 0 1.0000000 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 339.
    Chapter 5-OSPHD EmergencyDepartment 70 black 4364548 0.0870402 379891.00 0 1.0000000 native_american 4364548 0.0025205 11001.00 0 1.0000000 asian 4364548 0.0264909 115621.00 0 1.0000000 hawaiian 4364548 0.0033914 14802.00 0 1.0000000 othrace 4364548 0.1592621 695107.00 0 1.0000000 unkrace 4364548 0.0290603 126835.00 0 1.0000000 race_blk 4364548 0.1627394 710284.00 0 1.0000000 selfpay 4364548 0.1748628 763197.00 0 1.0000000 othnonfed 4364548 0.0234281 102253.00 0 1.0000000 ppo 4364548 0.0607151 264994.00 0 1.0000000 pos 4364548 0.0037701 16455.00 0 1.0000000 epo 4364548 0.0029565 12904.00 0 1.0000000 carehmo 4364548 0.0416137 181625.00 0 1.0000000 automed 4364548 0.000609456 2660.00 0 1.0000000 bluecross 4364548 0.0552094 240964.00 0 1.0000000 tricare 4364548 0.0072383 31592.00 0 1.0000000 commercial 4364548 0.0355480 155151.00 0 1.0000000 disability 4364548 2.5203068E-6 11.0000000 0 1.0000000 othhmo 4364548 0.2032210 886968.00 0 1.0000000 careparta 4364548 0.0664190 289889.00 0 1.0000000 carepartb 4364548 0.0366072 159774.00 0 1.0000000 medical 4364548 0.2439499 1064731.00 0 1.0000000 othfed 4364548 0.0088073 38440.00 0 1.0000000 titleV 4364548 0.000693543 3027.00 0 1.0000000 veterans 4364548 0.000630993 2754.00 0 1.0000000 workcomp 4364548 0.0185682 81042.00 0 1.0000000 payoth 4364548 0.0147926 64563.00 0 1.0000000 payblank 4364548 0.000356051 1554.00 0 1.0000000 home 4364548 0.9411373 4107639.00 0 1.0000000 inpatinpatient_care 4364548 0.0129619 56573.00 0 1.0000000 snf 4364548 0.0028351 12374.00 0 1.0000000 intermediate_care 4364548 0.000655738 2862.00 0 1.0000000 other_type_inst 4364548 0.0040181 17537.00 0 1.0000000 home_health 4364548 0.000453197 1978.00 0 1.0000000 lma 4364548 0.0209676 91514.00 0 1.0000000 died 4364548 0.0018313 7993.00 0 1.0000000 federal_health 4364548 0.000080421 351.0000000 0 1.0000000 home_hospice_care 4364548 0.000109061 476.0000000 0 1.0000000 hospital_hospice 4364548 0.000037575 164.0000000 0 1.0000000 hospital_swing_bed 4364548 5.72797E-6 25.0000000 0 1.0000000 inpatient_rehab 4364548 0.000158092 690.0000000 0 1.0000000 ltc_hospital 4364548 0.000371402 1621.00 0 1.0000000 snf_no_cert 4364548 0.000060946 266.0000000 0 1.0000000 psych_hospital 4364548 0.0059113 25800.00 0 1.0000000 critical_hospital 4364548 0.000145949 637.0000000 0 1.0000000 dispo_other 4364548 0.0081087 35391.00 0 1.0000000 dispo_invalid 4364548 0.000150531 657.0000000 0 1.0000000 gendercat 4364548 1.7923091 7822619.00 1.0000000 4.0000000 ethnicat 4364548 2.1534363 9398776.00 1.0000000 4.0000000 racecat 4364548 5.4385742 23736918.00 1.0000000 8.0000000 paycat 4364548 9.8440441 42964803.00 1.0000000 21.0000000 agegroup 4364548 5.0968187 22245310.00 1.0000000 7.0000000 dispocat 4364548 1.4187671 6192277.00 1.0000000 19.0000000 The PROC Means validates your indicator variables and consists of a minimum value of zero and a maximum value of one. If this does not exist, check your code. For truth logic variables, Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 340.
    Chapter 5-OSPHD EmergencyDepartment 71 the minimum is usually 1 and the maximum equals the total number of values assigned to the variable. Again, if this does not occur, check your logic code. For example, pay category (paycat) has a minimum of 0 and a maximum of 21, while the white indicator variable has a minimum of 0 and a maximum of 1. The n=4,364,548 are the total emergency department visits in the last half of 2007. The mean value is the percentage of each variable within a category. For example, females were 48.8 percent of the emergency department visits. Below is the PROC Tabulate produces hospital by selfpay and mean age. options nolabel nodate nonumber; proc tabulate data=ed2007 order=freq; class selfpay fac_id; var age_yrs; tables fac_id all, (selfpay all)*(age_yrs*(n*f=6.0 mean*f=3.2)) /rts=30; format fac_id $hospitalf.; run; title 'Distribution in Rank order of the Hospital Selfpay Patients'; Distribution in Rank order of the Hospital Selfpay Patients „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ† ‚ ‚ selfpay ‚ ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ 0 ‚ 1 ‚ All ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ age_yrs ‚ age_yrs ‚ age_yrs ‚ ‚ ‡ƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒ‰ ‚ ‚ ‚Me-‚ ‚Me-‚ ‚Me-‚ ‚ ‚ N ‚an ‚ N ‚an ‚ N ‚an ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚fac_id ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ ‚ ‚ ‚ ‚ARROWHEAD REGIONAL MEDICAL ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚CENTER ‚ 21346‚ 32‚ 15367‚ 32‚ 36713‚ 32‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚LOS ANGELES CO USC MEDICAL ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚CENTER ‚ 3309‚ 38‚ 18794‚ 29‚ 22103‚ 30‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚KAISER FND HOSP - SAN DIEGO ‚ 22478‚ 42‚ 1420‚ 29‚ 23898‚ 41‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚190034 ‚ 26546‚ 28‚ 5579‚ 29‚ 32125‚ 28‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚KAISER FND HOSP - BELLFLOWER‚ 17844‚ 35‚ 1835‚ 27‚ 19679‚ 34‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚RIVERSIDE COUNTY REGIONAL ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚MEDICAL CENTER ‚ 14138‚ 30‚ 10423‚ 32‚ 24561‚ 31‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚COMMUNITY REGIONAL MEDICAL ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚CENTER-FRESNO ‚ 20229‚ 33‚ 5379‚ 33‚ 25608‚ 33‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚KAISER FND HOSP - FONTANA ‚ 12731‚ 36‚ 3369‚ 24‚ 16100‚ 34‚ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 341.
    Chapter 5-OSPHD EmergencyDepartment 72 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚GROSSMONT HOSPITAL ‚ 17462‚ 41‚ 4847‚ 31‚ 22309‚ 39‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚SOUTHWEST HEALTHCARE SYSTEM-‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚MURRIETA ‚ 22553‚ 33‚ 2850‚ 29‚ 25403‚ 33‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚POMONA VALLEY HOSPITAL ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚MEDICAL CENTER ‚ 16841‚ 29‚ 3674‚ 29‚ 20515‚ 29‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚LONG BEACH MEMORIAL MEDICAL ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚CENTER ‚ 15298‚ 24‚ 2683‚ 27‚ 17981‚ 24‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚DOCTORS MEDICAL CENTER ‚ 18219‚ 30‚ 4887‚ 31‚ 23106‚ 30‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚KAWEAH DELTA DISTRICT ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚HOSPITAL ‚ 23577‚ 30‚ .‚ .‚ 23577‚ 30‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚KAISER FND HOSP - SOUTH ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚SACRAMENTO ‚ 16382‚ 36‚ 2707‚ 28‚ 19089‚ 35‚ Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒŒ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ ‚ ‚ ‚ ‚TRI-CITY MEDICAL CENTER ‚ 18232‚ 39‚ 3587‚ 30‚ 21819‚ 37‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚CEDARS SINAI MEDICAL CENTER ‚ 12416‚ 40‚ 3053‚ 33‚ 15469‚ 38‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚KAISER FND HOSP - BALDWIN ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚PARK ‚ 11466‚ 37‚ 1421‚ 27‚ 12887‚ 36‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚MEMORIAL HOSPITAL MEDICAL ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚CENTER - MODESTO ‚ 18352‚ 36‚ 2997‚ 28‚ 21349‚ 35‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚SANTA CLARA VALLEY MEDICAL ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚CENTER ‚ 14123‚ 39‚ 3199‚ 34‚ 17322‚ 38‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚HOAG MEMORIAL HOSPITAL ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚PRESBYTERIAN ‚ 17674‚ 42‚ .‚ .‚ 17674‚ 42‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚RIVERSIDE COMMUNITY HOSPITAL‚ 15998‚ 29‚ 3214‚ 29‚ 19212‚ 29‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚KAISER FND HOSP - WEST LA ‚ 10814‚ 49‚ 1814‚ 34‚ 12628‚ 47‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚CHILDRENS HOSPITAL OF LOS ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ANGELES ‚ 20732‚4.2‚ .‚ .‚ 20732‚4.2‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚KAISER FND HOSP - SUNSET ‚ 8656‚ 43‚ 1228‚ 34‚ 9884‚ 42‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚All ‚ 2.4E6‚ 34‚488201‚ 31‚2.89E6‚ 34‚ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 342.
    Chapter 5-OSPHD EmergencyDepartment 73 Exercises 5.2 1. Using osphd02d.sas, write the indicator and truth logic code for California counties. 2. Using osphd02d.sas, produce a PROC Tabulate and identify the California Counties with the most ED deaths. 3. From a Proc Means, using the class statement for selfpay output, prepare a descriptive statistics narrative of the findings. 4. Using a PROC Tabulate, identify the diseases presented to the California EDs when patzip=99999 is a proxy for the homeless. Describe your findings, Below is SAS code for exercise 5.2-1 to 4. Answer to exercise 5.2-1. /*1. Using osphd02d, write the indicator and truth logic code for California */ /*Counties. Insert them into a PROC Means and see if your code works*/ data ed2007; set osphd.caled2007 (keep= patco); Alameda = (patco='01'); Amador = (patco='03'); Butte = (patco='04'); Calaveras = (patco='05'); Colusa = (patco='06'); Contra_Costa = (patco='07'); El_Dorado = (patco='09'); Fresno = (patco='10'); Glenn = (patco='11'); Humboldt = (patco='12'); Imperial = (patco='13'); Kern = (patco='15'); Kings = (patco='16'); Lake = (patco='17'); Lassen = (patco='18'); LosAngeles = (patco='19'); Madera = (patco='20'); Marin = (patco='21'); Mendocino = (patco='23'); Merced = (patco='24'); Monterey = (patco='27'); Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 343.
    Chapter 5-OSPHD EmergencyDepartment 74 Napa = (patco='28'); Nevada = (patco='29'); Orange = (patco='30'); Placer = (patco='31'); Riverside = (patco='33'); Sacramento = (patco='34'); San_Benito = (patco='35'); San_Bernardino = (patco='36'); San_Diego = (patco='37'); San_Francisco = (patco='38'); San_Joaquin = (patco='39'); SanLuisObispo = (patco='40'); San_Mateo = (patco='41'); Santa_Barbara = (patco='42'); Santa_Clara = (patco='43'); Santa_Cruz = (patco='44'); Shasta = (patco='45'); Siskiyou = (patco='47'); Solano = (patco='48'); Sonoma = (patco='49'); Stanislaus = (patco='50'); Sutter = (patco='51'); Tehama = (patco='52'); Trinity = (patco='53'); Tulare = (patco='54'); Tuolumne = (patco='55'); Ventura = (patco='56'); Yolo = (patco='57'); Yuba = (patco='58'); CountyUnknown = (patco='00'); Alpine_Inyo_Mariposa =(patco='CE'); Del_Norte_Modoc =(patco='NE'); Colusa_Glenn_Trinity =(patco='NW'); missing_county =(patco='*'); patcocat = 1*(patco='01') + 2*(patco='03') + 3*(patco='04') + 4*(patco='05') + 5*(patco='06') + 6*(patco='07') + 7*(patco='09') + 8*(patco='10') + 9*(patco='11') + 10*(patco='12') + 11*(patco='13') + 12*(patco='15') + 13*(patco='16') + 14*(patco='17') + 15*(patco='18') + 16*(patco='19') + 17*(patco='20') + 18*(patco='21') + 19*(patco='23') + 20*(patco='24') + 21*(patco='27') + 22*(patco='28') + 23*(patco='29') + 24*(patco='30') + 25*(patco='31') + 26*(patco='33') + 27*(patco='34') + 28*(patco='35') + 29*(patco='36') + 30*(patco='37') + 31*(patco='38') + 32*(patco='39') + 33*(patco='40') + 34*(patco='41') + 35*(patco='42') + 36*(patco='43') + 37*(patco='44') + 38*(patco='45') + 39*(patco='47') + 40*(patco='48') + 41*(patco='49') + 42*(patco='50') + 43*(patco='51') + 44*(patco='52') + 45*(patco='53') + Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 344.
    Chapter 5-OSPHD EmergencyDepartment 75 46*(patco='54') + 47*(patco='55') + 48*(patco='56') + 49*(patco='57') + 50*(patco='58') + 51*(patco='00') + 52*(patco='CE') + 53*(patco='NE') + 54*(patco='NW') + 55*(patco='*'); options nolabel nodate nonumber; proc means n mean sum min max data=ed2007; var Alameda Amador Butte Calaveras Colusa Contra_Costa El_Dorado Fresno Glenn Humboldt Imperial Kern Kings Lake Lassen LosAngeles Madera Mendocino Marin Merced Monterey Napa Nevada Orange Placer Riverside Sacramento San_Benito San_Bernardino San_Diego San_Francisco San_Joaquin SanLuisObispo San_Mateo Santa_Barbara Santa_Clara Santa_Cruz Shasta Siskiyou Solano Sonoma Stanislaus Sutter Tehama Trinity Tulare Tuolumne Ventura Yolo Yuba CountyUnknown Alpine_Inyo_Mariposa Del_Norte_Modoc Colusa_Glenn_Trinity patcocat ; title 'Means of County Variable in the Last Half 2007 California EDs'; run; options nolabel nodate nonumber; Below is the output for exercise 5.2-1. Means of County Variable in the Last Half 2007 California EDs The MEANS Procedure Variable N Mean Sum Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Alameda 4364548 0.0426729 186248.00 0 1.0000000 Amador 4364548 0.0013669 5966.00 0 1.0000000 Butte 4364548 0.0067989 29674.00 0 1.0000000 Calaveras 4364548 0.0014618 6380.00 0 1.0000000 Colusa 4364548 0 0 0 0 Contra_Costa 4364548 0.0316010 137924.00 0 1.0000000 El_Dorado 4364548 0.0050356 21978.00 0 1.0000000 Fresno 4364548 0.0263608 115053.00 0 1.0000000 Glenn 4364548 0 0 0 0 Humboldt 4364548 0.0054936 23977.00 0 1.0000000 Imperial 4364548 0.0078324 34185.00 0 1.0000000 Kern 4364548 0.0229907 100344.00 0 1.0000000 Kings 4364548 0.0049483 21597.00 0 1.0000000 Lake 4364548 0.0034189 14922.00 0 1.0000000 Lassen 4364548 0.0011444 4995.00 0 1.0000000 LosAngeles 4364548 0.2409322 1051560.00 0 1.0000000 Madera 4364548 0.0052276 22816.00 0 1.0000000 Mendocino 4364548 0.0043157 18836.00 0 1.0000000 Marin 4364548 0.0067952 29658.00 0 1.0000000 Merced 4364548 0.0082151 35855.00 0 1.0000000 Monterey 4364548 0.0126151 55059.00 0 1.0000000 Napa 4364548 0.0037436 16339.00 0 1.0000000 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 345.
    Chapter 5-OSPHD EmergencyDepartment 76 Nevada 4364548 0.0028049 12242.00 0 1.0000000 Orange 4364548 0.0645817 281870.00 0 1.0000000 Placer 4364548 0.0075332 32879.00 0 1.0000000 Riverside 4364548 0.0565204 246686.00 0 1.0000000 Sacramento 4364548 0.0376119 164159.00 0 1.0000000 San_Benito 4364548 0.0018387 8025.00 0 1.0000000 San_Bernardino 4364548 0.0614015 267990.00 0 1.0000000 San_Diego 4364548 0.0691982 302019.00 0 1.0000000 San_Francisco 4364548 0.0189089 82529.00 0 1.0000000 San_Joaquin 4364548 0.0203494 88816.00 0 1.0000000 SanLuisObispo 4364548 0.0084944 37074.00 0 1.0000000 San_Mateo 4364548 0.0170856 74571.00 0 1.0000000 Santa_Barbara 4364548 0.0099568 43457.00 0 1.0000000 Santa_Clara 4364548 0.0360028 157136.00 0 1.0000000 Santa_Cruz 4364548 0.0066527 29036.00 0 1.0000000 Shasta 4364548 0.0081092 35393.00 0 1.0000000 Siskiyou 4364548 0.0019010 8297.00 0 1.0000000 Solano 4364548 0.0118056 51526.00 0 1.0000000 Sonoma 4364548 0.0125777 54896.00 0 1.0000000 Stanislaus 4364548 0.0195193 85193.00 0 1.0000000 Sutter 4364548 0.0029091 12697.00 0 1.0000000 Tehama 4364548 0.0030929 13499.00 0 1.0000000 Trinity 4364548 0 0 0 0 Tulare 4364548 0.0153677 67073.00 0 1.0000000 Tuolumne 4364548 0.0021122 9219.00 0 1.0000000 Ventura 4364548 0.0197477 86190.00 0 1.0000000 Yolo 4364548 0.0046717 20390.00 0 1.0000000 Yuba 4364548 0.0031098 13573.00 0 1.0000000 CountyUnknown 4364548 0.0265095 115702.00 0 1.0000000 Alpine_Inyo_Mariposa 4364548 0.0016483 7194.00 0 1.0000000 Del_Norte_Modoc 4364548 0.0030019 13102.00 0 1.0000000 Colusa_Glenn_Trinity 4364548 0.0019170 8367.00 0 1.0000000 patcocat 4364548 24.1934608 105593521 1.0000000 55.0000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 2. Using osphd02d, produce a PROC Tabulate of the California counties in rank order of ED deaths. Add the above code into osphd02 and the PROC Tabulate below. Below is SAS code for exercise 5.2-2. /*2. Using osphd02d, produce a PROC Tabulate to identify the California Counties with the most ED deaths*/ /*osphd02d.sas*/ options nolabel nodate nonumber; proc tabulate data=ed2007 order=freq; class died patco; var age_yrs; tables patco all, (died all)*(age_yrs*(n*f=6.0 mean*f=3.2)) /rts=30; format patco $countyf. dispn; title 'Distribution in Rank order of the County ED Deaths'; run; options nolabel nodate nonumber Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 346.
    Chapter 5-OSPHD EmergencyDepartment 77 Below is Partial Proc Tabulate for exercise 5.2-2. Distribution in Rank order of the County ED Deaths „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ† ‚ ‚ died ‚ ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ 0 ‚ 1 ‚ All ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ age_yrs ‚ age_yrs ‚ age_yrs ‚ ‚ ‡ƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒ‰ ‚ ‚ ‚Me-‚ ‚Me-‚ ‚Me-‚ ‚ ‚ N ‚an ‚ N ‚an ‚ N ‚an ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚patco ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ ‚ ‚ ‚ ‚Los Angeles ‚632660‚ 31‚ 904‚ 62‚633564‚ 31‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚San Diego ‚199414‚ 36‚ 246‚ 64‚199660‚ 36‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Orange ‚174899‚ 34‚ 252‚ 66‚175151‚ 34‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚San Bernardino ‚186261‚ 29‚ 261‚ 59‚186522‚ 29‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Riverside ‚177735‚ 32‚ 252‚ 62‚177987‚ 32‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Alameda ‚121411‚ 35‚ 184‚ 62‚121595‚ 35‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Sacramento ‚ 98329‚ 37‚ 242‚ 60‚ 98571‚ 37‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Santa Clara ‚ 91068‚ 34‚ 126‚ 66‚ 91194‚ 34‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Contra Costa ‚ 94378‚ 37‚ 106‚ 63‚ 94484‚ 37‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚County Unknown ‚ 36316‚ 40‚ 76‚ 43‚ 36392‚ 40‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Fresno ‚ 81984‚ 29‚ 128‚ 53‚ 82112‚ 29‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Kern ‚ 74225‚ 30‚ 126‚ 55‚ 74351‚ 30‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚San Joaquin ‚ 61285‚ 34‚ 162‚ 59‚ 61447‚ 34‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Ventura ‚ 65308‚ 36‚ 121‚ 65‚ 65429‚ 36‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Stanislaus ‚ 66387‚ 31‚ 106‚ 56‚ 66493‚ 31‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚San Francisco ‚ 47693‚ 42‚ 29‚ 71‚ 47722‚ 42‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚San Mateo ‚ 45273‚ 39‚ 58‚ 70‚ 45331‚ 39‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Tulare ‚ 54784‚ 28‚ 91‚ 59‚ 54875‚ 28‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚Monterey ‚ 43138‚ 29‚ 51‚ 59‚ 43189‚ 29‚ Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒ ƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒ ‚All ‚2.88E6‚ 34‚ 4368‚ 61‚2.89E6‚ 34‚ Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒŒ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 347.
    Chapter 5-OSPHD EmergencyDepartment 78 3. Using the osphd02d insert the below Proc Means below and a class statement, and identify the differences in demographic characteristics of the selfpay and non-self pay population. var options nolabel nodate nonumber; proc means n mean sum data=ed2007; class selfpay; var age_yrs agelt1 age1to17 age18to34 age35to64 agege65 uknagecat male female unkgen hispanic non_hispanic hispanic_unk hispanic_blnk white black native_american asian hawaiian othrace unkrace race_blk selfpay othnonfed ppo pos epo carehmo automed bluecross tricare commercial disability othhmo careparta carepartb medical othfed titleV veterans workcomp payoth payblank age_yrs home inpatinpatient_care snf intermediate_care other_type_inst home_health lma died federal_health home_hospice_care hospital_hospice hospital_swing_bed inpatient_rehab ltc_hospital snf_no_cert psych_hospital critical_hospital dispo_other dispo_invalid gendercat ethnicat racecat paycat agegroup dispocat Alameda Amador Butte Calaveras Colusa Contra_Costa El_Dorado Fresno Glenn Humboldt Imperial Kern Kings Lake Lassen LosAngeles Madera Mendocino Marin Merced Monterey Napa Nevada Orange Placer Riverside Sacramento San_Benito San_Bernardino San_Diego San_Francisco San_Joaquin SanLuisObispo San_Mateo Santa_Barbara Santa_Clara Santa_Cruz Shasta Siskiyou Solano Sonoma Stanislaus Sutter Tehama Trinity Tulare Tuolumne Ventura Yolo Yuba CountyUnknown Alpine_Inyo_Mariposa Del_Norte_Modoc Colusa_Glenn_Trinity patcocat ; title 'Means of Selfpay vs Non-selfpay Patients in the Last Half 2007 California EDs'; run; options nolabel nodate nonumber; The MEANS Procedure Means of Selfpay Variable in the Last Half 2007 California EDs The MEANS Procedure selfpay N Obs Variable N Mean Sum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 0 3601351 age_yrs 2398848 34.2003266 82041385.00 agelt1 3601351 0.0401921 144746.00 age1to17 3601351 0.2246407 809010.00 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 348.
    Chapter 5-OSPHD EmergencyDepartment 79 age18to34 3601351 0.2238168 806043.00 age35to64 3601351 0.3284206 1182758.00 agege65 3601351 0.1377691 496155.00 uknagecat 3601351 0.0451267 162517.00 male 3601351 0.3976305 1432007.00 female 3601351 0.5043360 1816291.00 unkgen 3601351 0.0980174 352995.00 hispanic 3601351 0.2633628 948462.00 non_hispanic 3601351 0.5069595 1825739.00 hispanic_unk 3601351 0.0398048 143351.00 hispanic_blnk 3601351 0.1898729 683799.00 white 3601351 0.5357620 1929467.00 black 3601351 0.0840843 302817.00 native_american 3601351 0.0024996 9002.00 asian 3601351 0.0288431 103874.00 hawaiian 3601351 0.0034612 12465.00 othrace 3601351 0.1559134 561499.00 unkrace 3601351 0.0302081 108790.00 race_blk 3601351 0.1592283 573437.00 selfpay 3601351 0 0 othnonfed 3601351 0.0283930 102253.00 ppo 3601351 0.0735818 264994.00 pos 3601351 0.0045691 16455.00 epo 3601351 0.0035831 12904.00 carehmo 3601351 0.0504325 181625.00 automed 3601351 0.000738612 2660.00 bluecross 3601351 0.0669093 240964.00 tricare 3601351 0.0087723 31592.00 commercial 3601351 0.0430813 155151.00 disability 3601351 3.0544093E-6 11.0000000 othhmo 3601351 0.2462876 886968.00 careparta 3601351 0.0804945 289889.00 carepartb 3601351 0.0443650 159774.00 medical 3601351 0.2956477 1064731.00 othfed 3601351 0.0106738 38440.00 titleV 3601351 0.000840518 3027.00 veterans 3601351 0.000764713 2754.00 workcomp 3601351 0.0225032 81042.00 payoth 3601351 0.0179274 64563.00 payblank 3601351 0.000431505 1554.00 home 3601351 0.9435242 3397962.00 inpatinpatient_care 3601351 0.0136310 49090.00 snf 3601351 0.0033696 12135.00 intermediate_care 3601351 0.000761103 2741.00 other_type_inst 3601351 0.0037028 13335.00 0 3601351 home_health 3601351 0.000490927 1768.00 lma 3601351 0.0172785 62226.00 died 3601351 0.0017710 6378.00 federal_health 3601351 0.000081081 292.0000000 home_hospice_care 3601351 0.000119955 432.0000000 hospital_hospice 3601351 0.000042206 152.0000000 hospital_swing_bed 3601351 5.831145E-6 21.0000000 inpatient_rehab 3601351 0.000159385 574.0000000 ltc_hospital 3601351 0.000433171 1560.00 snf_no_cert 3601351 0.000071917 259.0000000 psych_hospital 3601351 0.0057248 20617.00 critical_hospital 3601351 0.000154109 555.0000000 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 349.
    Chapter 5-OSPHD EmergencyDepartment 80 dispo_other 3601351 0.0085329 30730.00 dispo_invalid 3601351 0.000145501 524.0000000 gendercat 3601351 1.7984204 6476743.00 ethnicat 3601351 2.1561878 7765189.00 racecat 3601351 5.4258571 19540416.00 paycat 3601351 11.7182707 42201606.00 agegroup 3601351 5.1183256 18432887.00 dispocat 3601351 1.4027686 5051862.00 Alameda 3601351 0.0443561 159742.00 Amador 3601351 0.0014217 5120.00 Butte 3601351 0.0072145 25982.00 Calaveras 3601351 0.0014875 5357.00 Colusa 3601351 0 0 Contra_Costa 3601351 0.0325239 117130.00 El_Dorado 3601351 0.0056257 20260.00 Fresno 3601351 0.0273695 98567.00 Glenn 3601351 0 0 Humboldt 3601351 0.0055213 19884.00 Imperial 3601351 0.0085257 30704.00 Kern 3601351 0.0226929 81725.00 Kings 3601351 0.0053013 19092.00 Lake 3601351 0.0035464 12772.00 Lassen 3601351 0.0012781 4603.00 LosAngeles 3601351 0.2346556 845077.00 Madera 3601351 0.0053746 19356.00 Mendocino 3601351 0.0045902 16531.00 Marin 3601351 0.0073050 26308.00 Merced 3601351 0.0082869 29844.00 Monterey 3601351 0.0128102 46134.00 Napa 3601351 0.0039952 14388.00 Nevada 3601351 0.0029336 10565.00 Orange 3601351 0.0687403 247558.00 Placer 3601351 0.0080248 28900.00 Riverside 3601351 0.0542274 195292.00 Sacramento 3601351 0.0386938 139350.00 San_Benito 3601351 0.0019470 7012.00 0 3601351 San_Bernardino 3601351 0.0573476 206529.00 San_Diego 3601351 0.0702398 252958.00 San_Francisco 3601351 0.0196557 70787.00 San_Joaquin 3601351 0.0197834 71247.00 SanLuisObispo 3601351 0.0088842 31995.00 San_Mateo 3601351 0.0172952 62286.00 Santa_Barbara 3601351 0.0067539 24323.00 Santa_Clara 3601351 0.0381199 137283.00 Santa_Cruz 3601351 0.0058384 21026.00 Shasta 3601351 0.0081172 29233.00 Siskiyou 3601351 0.0020576 7410.00 Solano 3601351 0.0123473 44467.00 Sonoma 3601351 0.0131720 47437.00 Stanislaus 3601351 0.0197001 70947.00 Sutter 3601351 0.0034420 12396.00 Tehama 3601351 0.0030561 11006.00 Trinity 3601351 0 0 Tulare 3601351 0.0169142 60914.00 Tuolumne 3601351 0.0023252 8374.00 Ventura 3601351 0.0200100 72063.00 Yolo 3601351 0.0049273 17745.00 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 350.
    Chapter 5-OSPHD EmergencyDepartment 81 Yuba 3601351 0.0036997 13324.00 CountyUnknown 3601351 0.0207850 74854.00 Alpine_Inyo_Mariposa 3601351 0.0017374 6257.00 Del_Norte_Modoc 3601351 0.0032249 11614.00 Colusa_Glenn_Trinity 3601351 0.0020309 7314.00 patcocat 3601351 24.0626093 86657902.00 1 763197 age_yrs 488201 30.6303183 14953752.00 agelt1 763197 0.0217047 16565.00 age1to17 763197 0.1299101 99147.00 age18to34 763197 0.4004589 305629.00 age35to64 763197 0.3698455 282265.00 agege65 763197 0.0185051 14123.00 uknagecat 763197 0.0594761 45392.00 male 763197 0.4710448 359500.00 female 763197 0.4116709 314186.00 unkgen 763197 0.1172319 89471.00 hispanic 763197 0.3176231 242409.00 non_hispanic 763197 0.4371571 333637.00 hispanic_unk 763197 0.0323639 24700.00 hispanic_blnk 763197 0.2128559 162451.00 white 763197 0.4999233 381540.00 black 763197 0.1009883 77074.00 native_american 763197 0.0026192 1999.00 asian 763197 0.0153918 11747.00 hawaiian 763197 0.0030621 2337.00 othrace 763197 0.1750636 133608.00 1 763197 unkrace 763197 0.0236440 18045.00 race_blk 763197 0.1793076 136847.00 selfpay 763197 1.0000000 763197.00 othnonfed 763197 0 0 ppo 763197 0 0 pos 763197 0 0 epo 763197 0 0 carehmo 763197 0 0 automed 763197 0 0 bluecross 763197 0 0 tricare 763197 0 0 commercial 763197 0 0 disability 763197 0 0 othhmo 763197 0 0 careparta 763197 0 0 carepartb 763197 0 0 medical 763197 0 0 othfed 763197 0 0 titleV 763197 0 0 veterans 763197 0 0 workcomp 763197 0 0 payoth 763197 0 0 payblank 763197 0 0 home 763197 0.9298739 709677.00 inpatinpatient_care 763197 0.0098048 7483.00 snf 763197 0.000313156 239.0000000 intermediate_care 763197 0.000158544 121.0000000 other_type_inst 763197 0.0055058 4202.00 home_health 763197 0.000275158 210.0000000 lma 763197 0.0383754 29288.00 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 351.
    Chapter 5-OSPHD EmergencyDepartment 82 died 763197 0.0021161 1615.00 federal_health 763197 0.000077306 59.0000000 home_hospice_care 763197 0.000057652 44.0000000 hospital_hospice 763197 0.000015723 12.0000000 hospital_swing_bed 763197 5.2411107E-6 4.0000000 inpatient_rehab 763197 0.000151992 116.0000000 ltc_hospital 763197 0.000079927 61.0000000 snf_no_cert 763197 9.1719438E-6 7.0000000 psych_hospital 763197 0.0067912 5183.00 critical_hospital 763197 0.000107443 82.0000000 dispo_other 763197 0.0061072 4661.00 dispo_invalid 763197 0.000174267 133.0000000 gendercat 763197 1.7634713 1345876.00 ethnicat 763197 2.1404526 1633587.00 racecat 763197 5.4985829 4196502.00 paycat 763197 1.0000000 763197.00 agegroup 763197 4.9953328 3812423.00 dispocat 763197 1.4942603 1140415.00 1 763197 Alameda 763197 0.0347302 26506.00 Amador 763197 0.0011085 846.0000000 Butte 763197 0.0048375 3692.00 Calaveras 763197 0.0013404 1023.00 Colusa 763197 0 0 Contra_Costa 763197 0.0272459 20794.00 El_Dorado 763197 0.0022511 1718.00 Fresno 763197 0.0216012 16486.00 Glenn 763197 0 0 Humboldt 763197 0.0053630 4093.00 Imperial 763197 0.0045611 3481.00 Kern 763197 0.0243961 18619.00 Kings 763197 0.0032822 2505.00 Lake 763197 0.0028171 2150.00 Lassen 763197 0.000513629 392.0000000 LosAngeles 763197 0.2705501 206483.00 Madera 763197 0.0045336 3460.00 Mendocino 763197 0.0030202 2305.00 Marin 763197 0.0043894 3350.00 Merced 763197 0.0078761 6011.00 Monterey 763197 0.0116942 8925.00 Napa 763197 0.0025564 1951.00 Nevada 763197 0.0021973 1677.00 Orange 763197 0.0449582 34312.00 Placer 763197 0.0052136 3979.00 Riverside 763197 0.0673404 51394.00 Sacramento 763197 0.0325067 24809.00 San_Benito 763197 0.0013273 1013.00 San_Bernardino 763197 0.0805310 61461.00 San_Diego 763197 0.0642835 49061.00 San_Francisco 763197 0.0153853 11742.00 San_Joaquin 763197 0.0230203 17569.00 SanLuisObispo 763197 0.0066549 5079.00 San_Mateo 763197 0.0160968 12285.00 Santa_Barbara 763197 0.0250709 19134.00 Santa_Clara 763197 0.0260129 19853.00 Santa_Cruz 763197 0.0104953 8010.00 Shasta 763197 0.0080713 6160.00 Siskiyou 763197 0.0011622 887.0000000 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 352.
    Chapter 5-OSPHD EmergencyDepartment 83 Solano 763197 0.0092493 7059.00 Sonoma 763197 0.0097734 7459.00 Stanislaus 763197 0.0186662 14246.00 Sutter 763197 0.000394394 301.0000000 Tehama 763197 0.0032665 2493.00 Trinity 763197 0 0 Tulare 763197 0.0080700 6159.00 Tuolumne 763197 0.0011072 845.0000000 Ventura 763197 0.0185103 14127.00 1 763197 Yolo 763197 0.0034657 2645.00 Yuba 763197 0.000326259 249.0000000 CountyUnknown 763197 0.0535222 40848.00 Alpine_Inyo_Mariposa 763197 0.0012277 937.0000000 Del_Norte_Modoc 763197 0.0019497 1488.00 Colusa_Glenn_Trinity 763197 0.0013797 1053.00 patcocat 763197 24.8109191 18935619.00 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Exercise 5.2-5: Using a PROC Tabulate, identify the diseases presented to the California EDs when patzip=99999 is a proxy for the homeless. Describe your findings. /*5. Using a PROC Tabulate identify the diseases presented to the California*/ /*EDs when patzip=99999 is a proxy for the homeless. Describe your findings. */ options nolabel nodate nonumber; proc tabulate data=ed2007 order=freq; where patzip='99999'; class dx_prin3 payer; var age_yrs; tables dx_prin3 all, (payer all)*(age_yrs*(n*f=6.0 mean*f=3.2)) /rts=30; format agecat5 $agecat5f. sex $sexf. eth $ethf. race $racef. patco $countyf. serv_q $serv_q. pr_prin2 $proc2df. payer $payerf. dx_prin3 $diag3df. ec_prin $ecodef. ; title 'Distribution in Rank order of the Homeless Diagnoses by Payer'; run; options nolabel nodate nonumber; Exercise 5.2-4: Partial Output of PROC Tabulate to identify the diseases presented to the California EDs when patzip=99999 is a proxy for the homeless. Describe your findings Distribution in Rank order of the Homeless Diagnoses by Payer „ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ† ‚ ‚ payer ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ Medical- ‚other non-‚ ‚ ‚ Medicare ‚ ‚ ‚ selfpay ‚ Cal ‚ federal ‚other HMO ‚commercial‚ Part A ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ age_yrs ‚ age_yrs ‚ age_yrs ‚ age_yrs ‚ age_yrs ‚ age_yrs ‚ ‚ ‡ƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒˆƒƒƒƒƒƒ…ƒƒƒ‰ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 353.
    Chapter 5-OSPHD EmergencyDepartment 84 ‚ ‚ ‚Me-‚ ‚Me-‚ ‚Me-‚ ‚Me-‚ ‚Me-‚ ‚Me-‚ ‚ ‚ N ‚an ‚ N ‚an ‚ N ‚an ‚ N ‚an ‚ N ‚an ‚ N ‚an ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚dx_prin3 ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚(305) Nondependent abuse of ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚drugs ‚ 1045‚ 43‚ 212‚ 47‚ 238‚ 42‚ 25‚ 37‚ 46‚ 40‚ 65‚ 50‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(780) General symptoms ‚ 528‚ 37‚ 237‚ 37‚ 170‚ 40‚ 26‚ 23‚ 39‚ 29‚ 66‚ 48‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(786) Symptoms involving ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚respiratory ... ‚ 317‚ 40‚ 172‚ 45‚ 128‚ 44‚ 28‚ 32‚ 19‚ 43‚ 40‚ 57‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(789) Other symptoms ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚involving abdome... ‚ 277‚ 37‚ 129‚ 38‚ 134‚ 41‚ 32‚ 34‚ 22‚ 32‚ 26‚ 54‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(873) Other open wound of ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚head ‚ 322‚ 34‚ 65‚ 32‚ 140‚ 38‚ 19‚ 22‚ 40‚ 40‚ 12‚ 45‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(682) Other cellulitis and ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚abscess ‚ 344‚ 41‚ 110‚ 43‚ 156‚ 42‚ 17‚ 33‚ 27‚ 38‚ 28‚ 50‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(298) Other nonorganic ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚psychoses ‚ 392‚ 38‚ 108‚ 40‚ 86‚ 37‚ 1‚ 21‚ 6‚ 43‚ 41‚ 44‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(959) Injury, other and ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚unspecified ‚ 222‚ 33‚ 50‚ 29‚ 62‚ 35‚ 21‚ 20‚ 6‚ 22‚ 9‚ 55‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(724) Other and unspecified ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚disorders... ‚ 225‚ 41‚ 84‚ 46‚ 71‚ 44‚ 16‚ 33‚ 7‚ 49‚ 21‚ 50‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(784) Symptoms involving ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚head and neck ‚ 145‚ 37‚ 62‚ 38‚ 72‚ 40‚ 14‚ 36‚ 10‚ 54‚ 9‚ 54‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(V70) General medical ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚examination ‚ 101‚ 39‚ 35‚ 41‚ 74‚ 38‚ 14‚ 36‚ 57‚ 43‚ 5‚ 61‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(V68) Encounters for ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚administrative p... ‚ 204‚ 39‚ 72‚ 48‚ 61‚ 44‚ 3‚ 16‚ 3‚ 37‚ 19‚ 61‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(729) Other disorders of ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚soft tissues ‚ 180‚ 44‚ 89‚ 49‚ 59‚ 40‚ 3‚ 25‚ 9‚ 43‚ 42‚ 53‚ Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒŒ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚(303) Alcohol dependence ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚syndrome ‚ 247‚ 46‚ 62‚ 49‚ 69‚ 40‚ 5‚ 49‚ 15‚ 47‚ 19‚ 50‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(296) Affective psychoses ‚ 245‚ 39‚ 110‚ 39‚ 48‚ 40‚ 3‚ 37‚ 7‚ 34‚ 37‚ 45‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(847) Sprains and strains of‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚other an... ‚ 108‚ 34‚ 28‚ 35‚ 29‚ 42‚ 13‚ 31‚ 11‚ 35‚ 10‚ 40‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(719) Other and unspecified ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚disorder ... ‚ 129‚ 44‚ 74‚ 50‚ 67‚ 41‚ 9‚ 30‚ 5‚ 43‚ 26‚ 49‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(787) Symptoms involving ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚digestive sy... ‚ 121‚ 31‚ 56‚ 23‚ 29‚ 37‚ 18‚ 25‚ 8‚ 35‚ 8‚ 48‚ Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 354.
    Chapter 5-OSPHD EmergencyDepartment 85 ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(295) Schizophrenic ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚psychoses ‚ 127‚ 39‚ 163‚ 41‚ 23‚ 40‚ 1‚ 26‚ 4‚ 38‚ 48‚ 44‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(311) Depressive disorder, ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚not elsewh... ‚ 144‚ 40‚ 93‚ 43‚ 70‚ 39‚ 7‚ 37‚ 7‚ 36‚ 27‚ 48‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(300) Neurotic disorders ‚ 118‚ 36‚ 58‚ 44‚ 25‚ 40‚ 10‚ 38‚ 10‚ 36‚ 25‚ 46‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(599) Other disorders of ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚urethra and ... ‚ 88‚ 34‚ 30‚ 32‚ 13‚ 41‚ 11‚ 32‚ 14‚ 36‚ 10‚ 63‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(920) Contusion of face, ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚scalp, and n... ‚ 122‚ 34‚ 32‚ 27‚ 33‚ 39‚ 5‚8.8‚ 10‚ 28‚ 5‚ 55‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(493) Asthma ‚ 108‚ 41‚ 65‚ 40‚ 34‚ 42‚ 11‚ 23‚ 8‚ 21‚ 7‚ 52‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(465) Acute upper ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚respiratory infecti... ‚ 70‚ 29‚ 79‚ 17‚ 17‚ 42‚ 13‚ 14‚ 5‚ 24‚ 5‚ 53‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒˆƒƒƒ‰ ‚(V58) Other and unspecified ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚aftercare ‚ 180‚ 38‚ 37‚ 32‚ 24‚ 44‚ 9‚ 23‚ 26‚ 47‚ 16‚ 49‚ Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒ‹ƒƒƒŒ 3. From a Proc Means, using the class statement for selfpay output, prepare a descriptive statistics narrative of the findings. 4. Using a PROC Tabulate, identify the diseases presented to the California EDs when patzip=99999 is a proxy for the homeless and describe your findings. In the last half of 2007, there were 763,197 (17.5%) emergency department (ED) uninsured (self- pay) visits to California hospitals and 3.6 million ED visits (82.5%) with insurance. The uninsured were younger, 30.6 years old compared to the insured of 34.2 years. The uninsured were more males than females (47.1% versus 41.1%) and the insured were more females than males (50.4% versus 39.7%). The racial mix of the uninsured was white (49.9%), black (10.9%), and all other (39.7%). The racial mix of the insured was white (53.5%), black (8.4 %), and all other (37.9%). The payer mix of the insured was 29.6% Medical, 6.6% Bluecross, 4.3% commercial, 5.0% Medicare HMO, 24.6% other HMO, 12.4 % Medicare, and 20.5% other. 92.9 % of the uninsured went home, 0.98% went to a skilled nursing facility, 3.8% left against medical advice and 2.3 %had other dispositions. 94.3 % of the insured went home, 1.3% went to a skilled nursing facility and the remaing 4.4% had other dispositions. Los Angeles EDs had 27.0% (206,483) uninsured, followed by 8% in San Bernardino (61,461), 6.7 % in Riverside (51,394) and 6.4% in San Diego County (49,061). Los Angeles had 23.4% (845,077), followed by 7.0% in San Diego (252,958), 6.8 % in Orange (247,558) and 5.7% in San Bernardino County (206,529). In summary, 17.5% of emergency department visits were uninsured compared to 82.5 percent insured. The uninsured compared to the insured were younger, male, less white, and more black. Fewer went home, more left against medical advice and less went to other facilities. The most were in Los Angeles, followed by San Bernardino. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 355.
    Chapter 5-OSPHD EmergencyDepartment 86 Of the 46,368 homeless visits, 23,643 had principal diagnoses treated in the last half of 2007 in California emergency departments. Their mean age was 39 years old. The top ten diagnoses are: 1. Nondependent abuse of drugs (1,773) with a mean age of 43; 2. General symptoms (1,211) with a mean age of 38; 3. Respiratory symptoms (801) with a mean age of 44; 4. Abdominal symptoms (715) with a mean age of 39; 5. Open wound of the head (693) with a mean age of 35; 6. Cellulites and abscess (769) with a mean age of 41; 7. Other non organic psychosis (684) with a mean age of 39; 8. Injury and other unspecified (417) with mean age of 33; 9. Other unspecified disorders (478) with a mean age of 44 and 10. Symptoms involving the head and neck (349) with a mean age of 40. In summary, these ten diagnoses contain one-third of the homeless ED visits and reflect exposure and neglect of this young population, all of which are mostly uninsured. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 356.
    Chapter 5-OSPHD EmergencyDepartment 87 3. Multiple Linear Regression Model of California ED visits in with the response variable of Patient Age (age_years) osphd03d.sas Below is the linear regression model (Proc Reg) of the response variable, patient age in years and the effects of gender, race, ethnicity payer disposition, and county, using 1 million observations. /*osphd03d.sas*/ options nolabel nodate nonumber; proc reg data=ed2007 (obs=1000000); model age_yrs=male white hispanic selfpay snf LosAngeles; title 'Linear regression for age of ED patients in California in 2007'; run; Below is the output of the linear regression. Linear regression for age of ED patients in California in 2007 The REG Procedure Model: MODEL1 Dependent Variable: age_yrs Number of Observations Read 1000000 Number of Observations Used 694628 Number of Observations with Missing Values 305372 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 6 44696134 7449356 15642.8 <.0001 Error 694621 330789063 476.21518 Corrected Total 694627 375485196 Root MSE 21.82235 R-Square 0.1190 Dependent Mean 32.99430 Adj R-Sq 0.1190 Coeff Var 66.13977 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 37.28367 0.05568 669.55 <.0001 male 1 -3.60033 0.05284 -68.14 <.0001 white 1 4.94754 0.05427 91.17 <.0001 hispanic 1 -12.38907 0.05810 -213.23 <.0001 selfpay 1 -1.49705 0.07303 -20.50 <.0001 snf 1 35.75377 0.51267 69.74 <.0001 LosAngeles 1 -3.55061 0.06132 -57.91 <.0001 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 357.
    Chapter 5-OSPHD EmergencyDepartment 88 As seen above in the PROC REG models, output of visit age (age_yrs) for California emergency department visits in the last half of 2007 all of the effects are significant at p<.0001. Controlling for visit gender, race, ethnicity, payer, disposition and county, the findings are as follows: 1. All else being equal, male visits are 3.6 years younger than females. p<.0001 2. All else being equal, white visits are 4.9 years older than non-white. p<.0001 3. All else being equal, hispanic visits are 12 years younger than non-Hispanics. p<.0001 4. All else being equal, self-pay visits are 1.5 years younger than non self-pay. p<.0001 5. All else being equal, skilled nursing facility (snf) disposition visits are 35.7 years older. p<.0001 6. All else being equal, visits in Los Angeles are 3.5 years younger than all other counties. p<.0001 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 358.
    Chapter 5-OSPHD EmergencyDepartment 89 Exercise 5.3 Using osphd03d.sas, perform the below and interpret the findings: 1. Run the model with 2 million observations and compare the intercept and beta coefficients to the model with 1 million observations. 2. Run the model with all 4.3 million observations and compare the intercept and beta coefficients to the two previous models. Run the model with 2 million observations and compare the intercept and beta coefficients to the model with 1 million observations. /*Answer to Exercise 5.3-1 */ /*osphd03d.sas*/ options nolabel nodate nonumber; proc reg data=ed2007 (obs=2000000); model age_yrs=male white hispanic selfpay snf LosAngeles; title 'Linear regression for age of ED patients in California in 2007'; run; Proc Reg output for exercise 4.3. Linear regression for age of ED patients in California in 2007 The REG Procedure Model: MODEL1 Dependent Variable: age_yrs Number of Observations Read 2000000 Number of Observations Used 1303336 Number of Observations with Missing Values 696664 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 6 88097868 14682978 30334.7 <.0001 Error 1.3E6 630852936 484.03200 Corrected Total 1.3E6 718950804 Root MSE 22.00073 R-Square 0.1225 Dependent Mean 32.74570 Adj R-Sq 0.1225 Coeff Var 67.18661 Parameter Estimates Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 359.
    Chapter 5-OSPHD EmergencyDepartment 90 Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 37.29365 0.04431 841.75 <.0001 male 1 -3.93503 0.03886 -101.27 <.0001 white 1 4.70930 0.04001 117.71 <.0001 hispanic 1 -13.98514 0.04093 -341.73 <.0001 selfpay 1 -0.89066 0.05157 -17.27 <.0001 snf 1 35.99326 0.39001 92.29 <.0001 LosAngeles 1 0.32646 0.03939 8.29 <.0001 1 million observations Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 37.28367 0.05568 669.55 <.0001 male 1 -3.60033 0.05284 -68.14 <.0001 white 1 4.94754 0.05427 91.17 <.0001 hispanic 1 -12.38907 0.05810 -213.23 <.0001 selfpay 1 -1.49705 0.07303 -20.50 <.0001 snf 1 35.75377 0.51267 69.74 <.0001 LosAngeles 1 -3.55061 0.06132 -57.91 <.0001 The intercepts are almost equal as well as all of the effects with the exception of self-pay and Los Angeles. Increasing the observations to 2 million, the self-pay visits compared to all non-selfpay visits is 0.89 years younger rather than 1.49 years in the one million-observation model. In addition, patients from Los Angeles are 0.32 years older rather than 3.5 years younger. When it is not a random sample, model size equal to the first million observations compared to the second million have slight but important differences. Run the model with all 4.36 million observations and compare the coefficients to the two previous models /*osphd03d.sas*/ options nolabel nodate nonumber; proc reg data=ed2007; model age_yrs=male white hispanic selfpay snf LosAngeles; title 'Linear regression for age of ED patients in California in 2007'; run; quit; options label; title; Linear regression for age of ED patients in California in 2007 The REG Procedure Model: MODEL1 Dependent Variable: age_yrs Number of Observations Read 4364548 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 360.
    Chapter 5-OSPHD EmergencyDepartment 91 Number of Observations Used 2887049 Number of Observations with Missing Values 1477499 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 6 182211742 30368624 61709.6 <.0001 Error 2.89E6 1420775878 492.12165 Corrected Total 2.89E6 1602987621 Root MSE 22.18382 R-Square 0.1137 Dependent Mean 33.59664 Adj R-Sq 0.1137 Coeff Var 66.02987 All Observations Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 36.80474 0.02970 1239.05 <.0001 male 1 -3.76998 0.02631 -143.28 <.0001 white 1 5.00609 0.02814 177.87 <.0001 hispanic 1 -13.43844 0.02848 -471.90 <.0001 selfpay 1 -1.99993 0.03499 -57.16 <.0001 snf 1 37.18328 0.24254 153.31 <.0001 LosAngeles 1 0.52051 0.03214 16.19 <.0001 2 million observations Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 37.29365 0.04431 841.75 <.0001 male 1 -3.93503 0.03886 -101.27 <.0001 white 1 4.70930 0.04001 117.71 <.0001 hispanic 1 -13.98514 0.04093 -341.73 <.0001 selfpay 1 -0.89066 0.05157 -17.27 <.0001 snf 1 35.99326 0.39001 92.29 <.0001 LosAngeles 1 0.32646 0.03939 8.29 <.0001 1 million observations Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 37.28367 0.05568 669.55 <.0001 male 1 -3.60033 0.05284 -68.14 <.0001 white 1 4.94754 0.05427 91.17 <.0001 hispanic 1 -12.38907 0.05810 -213.23 <.0001 selfpay 1 -1.49705 0.07303 -20.50 <.0001 snf 1 35.75377 0.51267 69.74 <.0001 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 361.
    Chapter 5-OSPHD EmergencyDepartment 92 LosAngeles 1 -3.55061 0.06132 -57.91 <.0001 All three intercepts are almost equal, as well as all of the effects with the exception of self-pay. Increasing the observations to 4.6 million, the self-pay ED visit compared to all non-selfpay ED visits are almost 2 years younger rather than 0.89, and 1.49 in the two other models. Overall, the differences between using the full sample do have small but important differences in a few effects. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 362.
    Chapter 5-OSPHD EmergencyDepartment 93 4. Logistic Regression Model of California Self Pay Emergency Department Visits Below is the logistic regression model of California emergency department visits and the response variable of self-pay and the effects of age, sex, race and ethnicity. /*osphd04.sas*/ options nolabel nodate nonumber; proc logistic data=ed2007 des; class race (param=ref ref='R3') sex (param=ref ref='F') eth (param=ref ref='E2') dispn (param=ref ref='01') /**home**/ patco (param=ref ref='19') /**Los Angeles**/ ; model selfpay=age_yrs sex race eth patco ; ; ; units age_yrs=10; title 'Logistic Regression for in Selfpay Visits in California in 2007'; run; quit; options label; It should be noted regarding the log below that on my computer this regression took over 14 minutes to run. Therefore we will run in our exercises less than 4.3 million observations and determine any differences as we had previously done with the PROC Reg model. NOTE: PROC LOGISTIC is modeling the probability that selfpay=1. NOTE: Convergence criterion (GCONV=1E-8) satisfied. NOTE: There were 4364548 observations read from the data set WORK.ED2007. NOTE: PROCEDURE LOGISTIC used (Total process time): real time 14:30.68 cpu time 4:13.45 Logistic Regression for in Selfpay Visits in California in 2007 The LOGISTIC Procedure Model Information Data Set WORK.ED2007 Response Variable selfpay Number of Response Levels 2 Model binary logit Optimization Technique Fisher's scoring Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 363.
    Chapter 5-OSPHD EmergencyDepartment 94 Number of Observations Read 4364548 Number of Observations Used 4364548 Response Profile Ordered Total Value selfpay Frequency 1 1 763197 2 0 3601351 Probability modeled is selfpay=1. Class Level Information Class Value Design Variables race * 1 0 0 0 0 0 0 99 0 1 0 0 0 0 0 R1 0 0 1 0 0 0 0 R2 0 0 0 1 0 0 0 R3 0 0 0 0 0 0 0 R4 0 0 0 0 1 0 0 R5 0 0 0 0 0 1 0 R9 0 0 0 0 0 0 1 sex * 1 0 0 F 0 0 0 M 0 1 0 U 0 0 1 eth * 1 0 0 99 0 1 0 E1 0 0 1 E2 0 0 0 Logistic Regression for in Selfpay Visits in California in 2007 The LOGISTIC Procedure Class Level Information Class Value Design Variables agecat5 * 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 2 0 0 1 0 0 0 3 0 0 0 1 0 0 4 0 0 0 0 1 0 5 0 0 0 0 0 1 Model Convergence Status Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 364.
    Chapter 5-OSPHD EmergencyDepartment 95 Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 4046056.7 3776115.2 SC 4046070.0 3776380.9 -2 Log L 4046054.7 3776075.2 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 269979.578 19 <.0001 Score 237839.819 19 <.0001 Wald 199688.328 19 <.0001 Type 3 Analysis of Effects Wald Effect DF Chi-Square Pr > ChiSq agecat5 6 166688.946 <.0001 sex 3 27391.3169 <.0001 race 7 6407.0501 <.0001 Type 3 Analysis of Effects Wald Effect DF Chi-Square Pr > ChiSq eth 3 13035.6968 <.0001 Analysis of Maximum Likelihood Estimates Standard Wald Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 -2.4268 0.00939 66832.9306 <.0001 agecat5 * 1 0.9237 0.0113 6716.7404 <.0001 agecat5 0 1 1.7952 0.1508 141.7844 <.0001 agecat5 2 1 0.1137 0.00891 162.8886 <.0001 agecat5 3 1 1.3528 0.00856 24957.3595 <.0001 agecat5 4 1 0.8998 0.00858 10992.7961 <.0001 agecat5 5 1 -1.1664 0.0120 9512.5575 <.0001 sex * 1 0.2887 0.00769 1408.7201 <.0001 sex M 1 0.4606 0.00279 27334.8644 <.0001 sex U 1 1.4484 0.2203 43.2430 <.0001 race * 1 -0.3685 0.00992 1379.3116 <.0001 race 99 1 -0.5190 0.0113 2113.8857 <.0001 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 365.
    Chapter 5-OSPHD EmergencyDepartment 96 race R1 1 -0.2394 0.0257 86.7720 <.0001 race R2 1 -0.6786 0.0108 3973.4762 <.0001 race R4 1 -0.2207 0.0236 87.7924 <.0001 race R5 1 -0.2808 0.00466 3632.0910 <.0001 race R9 1 -0.3163 0.00602 2757.8259 <.0001 eth * 1 0.3074 0.00754 1663.5127 <.0001 eth 99 1 0.0737 0.00919 64.3370 <.0001 eth E1 1 0.4137 0.00369 12548.8385 <.0001 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits agecat5 * vs 1 2.519 2.464 2.575 agecat5 0 vs 1 6.021 4.481 8.091 agecat5 2 vs 1 1.120 1.101 1.140 agecat5 3 vs 1 3.868 3.804 3.934 agecat5 4 vs 1 2.459 2.418 2.501 agecat5 5 vs 1 0.311 0.304 0.319 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits sex * vs F 1.335 1.315 1.355 sex M vs F 1.585 1.576 1.594 sex U vs F 4.256 2.764 6.554 race * vs R3 0.692 0.678 0.705 race 99 vs R3 0.595 0.582 0.608 race R1 vs R3 0.787 0.748 0.828 race R2 vs R3 0.507 0.497 0.518 race R4 vs R3 0.802 0.766 0.840 race R5 vs R3 0.755 0.748 0.762 race R9 vs R3 0.729 0.720 0.738 eth * vs E2 1.360 1.340 1.380 eth 99 vs E2 1.077 1.057 1.096 eth E1 vs E2 1.512 1.502 1.523 Association of Predicted Probabilities and Observed Responses Percent Concordant 66.4 Somers' D 0.356 Percent Discordant 30.8 Gamma 0.367 Percent Tied 2.9 Tau-a 0.103 Pairs 2.7485403E12 c 0.678 As seen above in the proc logistic output of the response variable of selfpay, considering the effects of visit age group, gender, race, and ethnicity, the findings are as follows: Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 366.
    Chapter 5-OSPHD EmergencyDepartment 97 1. All else being equal, those who visit California ED between 18 and 34 years old compared to those less than 1 year old are 3.9 times more likely to be self pay (uninsured). p<.0001[CI 3.804, 3.934] 2. All else being equal, males compared to females who visit California EDs are1.5 times more likely to be uninsured. p<.0001[CI 1.576, 1.594] 3. All else being equal, whites compared to blacks who visit California EDs are 21.3 percent less likely to be uninsured. p<.0001[CI 0.748, 0.828] 4. All else being equal, Hispanics compared to non-Hispanics who visit California EDs are1.5 times more likely to be uninsured. p<.0001[CI 1.502 , 1.523] The partial SAS code from osphd02d.sas is available to interpret findings. agelt1 =(agecat5='1'); age1to17 =(agecat5='2'); age18to34 =(agecat5='3'); age35to64 =(agecat5='4'); agege65 =(agecat5='5'); uknagecat =(agecat5='*'); native_american =(race='R1'); asian =(race='R2'); black =(race='R3'); hawaiian =(race='R4'); white =(race='R5'); othrace =(race='R9'); unkrace =(race='99'); race_blk =(race='*'); hispanic =(eth='E1'); non_hispanic =(eth='E2'); hispanic_unk =(eth='99'); hispanic_blnk =(eth='*'); Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 367.
    Chapter 5-OSPHD EmergencyDepartment 98 Exercises 5.4 1. Run the selfpay logistic model with 1,000,000 observations and determine if the findings differ significantly. As shown below, the run time was a little over 1 minute. 2. Change the logistic model of exercise 5.4-1 to consider homeless rather than selfpay. options label nodate nonumber; proc logistic data=ed2007 (obs=1000000) des; class race (param=ref ref='R3') sex (param=ref ref='F') eth (param=ref ref='E2') agecat5 (param=ref ref='1') ; model selfpay=agecat5 sex race eth; ; title 'Logistic Regression for in Selfpay Visits in California in 2007'; run; quit; options label; NOTE: PROC LOGISTIC is modeling the probability that selfpay=1. NOTE: Convergence criterion (GCONV=1E-8) satisfied. NOTE: There were 1000000 observations read from the data set WORK.ED2007. NOTE: PROCEDURE LOGISTIC used (Total process time): real time 1:03.67 cpu time 27.24 seconds Logistic Regression for in Selfpay Visits in California in 2007 The LOGISTIC Procedure Model Information Data Set WORK.ED2007 Response Variable selfpay Number of Response Levels 2 Model binary logit Optimization Technique Fisher's scoring Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 368.
    Chapter 5-OSPHD EmergencyDepartment 99 Number of Observations Read 1000000 Number of Observations Used 1000000 Response Profile Ordered Total Value selfpay Frequency 1 1 159030 2 0 840970 Probability modeled is selfpay=1. Class Level Information Class Value Design Variables race * 1 0 0 0 0 0 0 99 0 1 0 0 0 0 0 R1 0 0 1 0 0 0 0 R2 0 0 0 1 0 0 0 R3 0 0 0 0 0 0 0 R4 0 0 0 0 1 0 0 R5 0 0 0 0 0 1 0 R9 0 0 0 0 0 0 1 sex * 1 0 0 F 0 0 0 M 0 1 0 U 0 0 1 eth * 1 0 0 99 0 1 0 E1 0 0 1 E2 0 0 0 agecat5 * 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 2 0 0 1 0 0 0 3 0 0 0 1 0 0 4 0 0 0 0 1 0 5 0 0 0 0 0 1 Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 369.
    Chapter 5-OSPHD EmergencyDepartment 100 Criterion Only Covariates AIC 876117.78 808937.15 SC 876129.60 809173.46 -2 Log L 876115.78 808897.15 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 67218.6338 19 <.0001 Score 59387.4263 19 <.0001 Wald 48879.8943 19 <.0001 Type 3 Analysis of Effects Wald Effect DF Chi-Square Pr > ChiSq agecat5 6 42061.6983 <.0001 sex 3 8010.3725 <.0001 race 7 1436.8306 <.0001 Type 3 Analysis of Effects Wald Effect DF Chi-Square Pr > ChiSq eth 3 1079.0166 <.0001 Analysis of Maximum Likelihood Estimates Standard Wald Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 -2.7678 0.0211 17160.9522 <.0001 agecat5 * 1 1.1355 0.0258 1933.6508 <.0001 agecat5 0 1 0.6094 0.7562 0.6494 0.4203 agecat5 2 1 0.1507 0.0210 51.5961 <.0001 agecat5 3 1 1.6198 0.0201 6501.4024 <.0001 agecat5 4 1 1.0921 0.0202 2936.5548 <.0001 agecat5 5 1 -1.1878 0.0289 1688.6914 <.0001 sex * 1 0.3818 0.0174 484.0206 <.0001 sex M 1 0.5417 0.00606 7986.3940 <.0001 sex U 1 0.8830 0.5519 2.5603 0.1096 race * 1 -0.2982 0.0232 165.5796 <.0001 race 99 1 -0.4575 0.0254 323.3297 <.0001 race R1 1 -0.1989 0.0435 20.9436 <.0001 race R2 1 -0.6510 0.0242 723.6139 <.0001 race R4 1 -0.1666 0.0672 6.1559 0.0131 race R5 1 -0.2507 0.00873 824.5226 <.0001 race R9 1 -0.3394 0.0119 807.5155 <.0001 eth * 1 0.2573 0.0186 190.5329 <.0001 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 370.
    Chapter 5-OSPHD EmergencyDepartment 101 eth 99 1 0.2770 0.0212 171.1656 <.0001 eth E1 1 0.2605 0.00835 974.0387 <.0001 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits agecat5 * vs 1 3.113 2.959 3.274 agecat5 0 vs 1 1.839 0.418 8.098 agecat5 2 vs 1 1.163 1.116 1.211 agecat5 3 vs 1 5.052 4.857 5.255 agecat5 4 vs 1 2.980 2.865 3.100 agecat5 5 vs 1 0.305 0.288 0.323 sex * vs F 1.465 1.416 1.516 sex M vs F 1.719 1.699 1.739 sex U vs F 2.418 0.820 7.132 race * vs R3 0.742 0.709 0.777 race 99 vs R3 0.633 0.602 0.665 race R1 vs R3 0.820 0.753 0.893 race R2 vs R3 0.522 0.497 0.547 race R4 vs R3 0.847 0.742 0.966 race R5 vs R3 0.778 0.765 0.792 race R9 vs R3 0.712 0.696 0.729 eth * vs E2 1.293 1.247 1.342 eth 99 vs E2 1.319 1.266 1.375 eth E1 vs E2 1.298 1.276 1.319 Association of Predicted Probabilities and Observed Responses Percent Concordant 68.0 Somers' D 0.390 Percent Discordant 29.0 Gamma 0.402 Percent Tied 2.9 Tau-a 0.104 Pairs 133739459100 c 0.695 As seen above in the proc logistic with 1 million visits, the output of the response variable of selfpay, considering the effects of visit age group, gender, race, and ethnicity, the findings are as follows: 1. All else being equal, those who visit California ED between 18 and 34 years old compared to those less than 1 year old are 5.0 times more likely to be self pay (uninsured). p<.0001[CI 4.857, 5.255] 2. All else being equal, males compared to females who visit California EDs are1.7 times more likely to be uninsured. p<.0001[CI 1.699 , 1.739] 3. All else being equal, whites compared to blacks who visit California EDs are 28 percent less likely to be uninsured. p<.0001[CI 0.753, 0.893] 4. All else being equal, Hispanics compared to non-Hispanics who visit California EDs are1.3 times more likely to be uninsured. p<.0001[CI 1.276, 1.319] Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 371.
    Chapter 5-OSPHD EmergencyDepartment 102 There are differences in the values of the effects of logistic models with 4.3 million observations versus the model with 1-million observations.. However, they do not change the findings in any significant way concerning the direction of the effects. Those effects that are more likely continue to be more likely and those less likely remain less likely with only differences in the odds ratios. 2. Change the logistic model of exercise 5.4-1 to consider homeless rather than selfpay. Again the 4.6 million visits took 23 minutes with questionable findings. . : PROC LOGISTIC is modeling the probability that homeless=1. WARNING: Ridging has failed to improve the loglikelihood. You may want to use a different ridging technique (RIDGING= option), or switch to using linesearch to reduce the step size (RIDGING=NONE), or specify a new set of initial estimates (INEST= option). WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are based on the last maximum likelihood iteration. Validity of the model fit is questionable. NOTE: There were 4364548 observations read from the data set WORK.ED2007. NOTE: PROCEDURE LOGISTIC used (Total process time): real time 23:19.18 cpu time 5:40.71 Logistic Regression for in Homeless Visits to California EDs in 2007 The LOGISTIC Procedure Model Information Data Set WORK.ED2007 Response Variable homeless Number of Response Levels 2 Model binary logit Optimization Technique Fisher's scoring Number of Observations Read 4364548 Number of Observations Used 4364548 Response Profile Ordered Total Value homeless Frequency 1 1 46368 2 0 4318180 Probability modeled is homeless=1. Class Level Information Class Value Design Variables Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 372.
    Chapter 5-OSPHD EmergencyDepartment 103 race * 1 0 0 0 0 0 0 99 0 1 0 0 0 0 0 R1 0 0 1 0 0 0 0 R2 0 0 0 1 0 0 0 R3 0 0 0 0 0 0 0 R4 0 0 0 0 1 0 0 R5 0 0 0 0 0 1 0 R9 0 0 0 0 0 0 1 sex * 1 0 0 F 0 0 0 M 0 1 0 U 0 0 1 eth * 1 0 0 99 0 1 0 E1 0 0 1 E2 0 0 0 agecat5 * 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 2 0 0 1 0 0 0 3 0 0 0 1 0 0 4 0 0 0 0 1 0 5 0 0 0 0 0 1 Model Convergence Status Ridging has failed to improve the likelihood function. WARNING: Ridging has failed to improve the loglikelihood. You may want to use a different ridging technique (RIDGING= option), or switch to using linesearch to reduce the step size (RIDGING=NONE), or specify a new set of initial estimates (INEST= option). WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are based on the last maximum likelihood iteration. Validity of the model fit is questionable. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 513697.26 498937.36 SC 513710.55 499203.14 -2 Log L 513695.26 498897.36 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 14797.9024 19 <.0001 Score 39505.8285 19 <.0001 Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 373.
    Chapter 5-OSPHD EmergencyDepartment 104 Wald 243467366 19 <.0001 WARNING: The validity of the model fit is questionable. Type 3 Analysis of Effects Wald Effect DF Chi-Square Pr > ChiSq agecat5 6 101425783 <.0001 sex 3 63393608.4 <.0001 race 7 32233931.4 <.0001 eth 3 46386687.8 <.0001 Analysis of Maximum Likelihood Estimates Standard Wald Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 -5.2457 0.000097 2925199665 <.0001 agecat5 * 1 -1.2673 0.000714 3149519.81 <.0001 agecat5 0 1 59.1960 1.3203E9 0.0000 1.0000 agecat5 2 1 0.0727 0.000291 62445.0935 <.0001 agecat5 3 1 0.8342 0.000187 19798648.4 <.0001 agecat5 4 1 1.1877 0.000134 78301886.1 <.0001 agecat5 5 1 0.1294 0.000384 113313.412 <.0001 sex * 1 0.9567 0.000235 16634980.2 <.0001 sex M 1 0.8979 0.000131 46758637.3 <.0001 sex U 1 20.4739 6.8995 8.8059 0.0030 race * 1 -0.3412 0.000182 3504440.60 <.0001 race 99 1 -1.0485 0.000437 5768647.87 <.0001 race R1 1 -0.0646 0.00155 1741.0541 <.0001 race R2 1 -1.0437 0.000844 1528065.56 <.0001 race R4 1 -1.0865 0.00253 184309.705 <.0001 race R5 1 -0.5595 0.000148 14306875.6 <.0001 race R9 1 -0.8255 0.000313 6939869.22 <.0001 eth * 1 0.7271 0.000170 18353359.9 <.0001 eth 99 1 1.6103 0.000304 28029136.3 <.0001 eth E1 1 0.0155 0.000240 4199.1113 <.0001 Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits agecat5 * vs 1 0.282 0.281 0.282 agecat5 0 vs 1 >999.999 <0.001 >999.999 WARNING: The validity of the model fit is questionable. Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 374.
    Chapter 5-OSPHD EmergencyDepartment 105 agecat5 2 vs 1 1.075 1.075 1.076 agecat5 3 vs 1 2.303 2.302 2.304 agecat5 4 vs 1 3.280 3.279 3.280 agecat5 5 vs 1 1.138 1.137 1.139 sex * vs F 2.603 2.602 2.604 sex M vs F 2.455 2.454 2.455 sex U vs F >999.999 >999.999 >999.999 race * vs R3 0.711 0.711 0.711 race 99 vs R3 0.350 0.350 0.351 race R1 vs R3 0.937 0.935 0.940 race R2 vs R3 0.352 0.352 0.353 race R4 vs R3 0.337 0.336 0.339 race R5 vs R3 0.571 0.571 0.572 race R9 vs R3 0.438 0.438 0.438 eth * vs E2 2.069 2.068 2.070 eth 99 vs E2 5.004 5.001 5.007 eth E1 vs E2 1.016 1.015 1.016 Association of Predicted Probabilities and Observed Responses Percent Concordant 69.1 Somers' D 0.451 Percent Discordant 24.0 Gamma 0.484 Percent Tied 6.9 Tau-a 0.009 Pairs 200225370240 c 0.725 As seen above in the proc logistic with all visits, for the response variable of homeless considering the effects of visit age group, gender, race, and ethnicity, the findings are as follows: 1. All else being equal, those who visit California ED between 18 and 34 years old compared to those less than 1 years old are 2.3 times more likely to be homeless. p<.0001[CI 2.302, 2.304] 2. All else being equal, males compared to females who visit California EDs are 2.4 times more likely to be homeless. p<.0001[CI 2.454, 2.455] 3. All else being equal, whites compared to blacks who visit California EDs are 16.3 percent less likely to be homeless. p<.0001[CI 0.935, 0.940] 4. All else being equal, Hispanics compared to non-Hispanics who visit California EDs are1.6 percent more likely to be homeless. p<.0001[CI 1.015, 1.016] agelt1 =(agecat5='1'); age1to17 =(agecat5='2'); Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 375.
    Chapter 5-OSPHD EmergencyDepartment 106 age18to34 =(agecat5='3'); age35to64 =(agecat5='4'); agege65 =(agecat5='5'); uknagecat =(agecat5='*'); hispanic =(eth='E1'); non_hispanic =(eth='E2'); hispanic_unk =(eth='99'); hispanic_blnk =(eth='*'); native_american =(race='R1'); asian =(race='R2'); black =(race='R3'); hawaiian =(race='R4'); white =(race='R5'); othrace =(race='R9'); unkrace =(race='99'); race_blk =(race='*'); Change the logistic model of exercise 5.4-1 to consider homeless rather than selfpay. Use one million visits and see if the differences are signicant. As shown below the time to complete the analysis was 1 ½ minutes. NOTE: PROC LOGISTIC is modeling the probability that homeless=1. WARNING: Ridging has failed to improve the loglikelihood. You may want to use a different ridging technique (RIDGING= option), or switch to using linesearch to reduce the step size (RIDGING=NONE), or specify a new set of initial estimates (INEST= option). WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are based on the last maximum likelihood iteration. Validity of the model fit is questionable. NOTE: There were 1000000 observations read from the data set WORK.ED2007. NOTE: PROCEDURE LOGISTIC used (Total process time): real time 1:40.92 cpu time 28.81 se Logistic Regression for in Homeless Visits to California EDs in 2007 The LOGISTIC Procedure Model Information Data Set WORK.ED2007 Response Variable homeless Number of Response Levels 2 Model binary logit Optimization Technique Fisher's scoring Number of Observations Read 1000000 Number of Observations Used 1000000 Response Profile Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 376.
    Chapter 5-OSPHD EmergencyDepartment 107 Ordered Total Value homeless Frequency 1 1 8821 2 0 991179 Probability modeled is homeless=1. Class Level Information Class Value Design Variables race * 1 0 0 0 0 0 0 99 0 1 0 0 0 0 0 R1 0 0 1 0 0 0 0 R2 0 0 0 1 0 0 0 R3 0 0 0 0 0 0 0 R4 0 0 0 0 1 0 0 R5 0 0 0 0 0 1 0 R9 0 0 0 0 0 0 1 sex * 1 0 0 F 0 0 0 M 0 1 0 U 0 0 1 eth * 1 0 0 99 0 1 0 E1 0 0 1 E2 0 0 0 agecat5 * 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 2 0 0 1 0 0 0 3 0 0 0 1 0 0 4 0 0 0 0 1 0 5 0 0 0 0 0 1 Model Convergence Status Ridging has failed to improve the likelihood function. WARNING: Ridging has failed to improve the loglikelihood. You may want to use a different ridging technique (RIDGING= option), or switch to using linesearch to reduce the step size (RIDGING=NONE), or specify a new set of initial estimates (INEST= option). WARNING: The LOGISTIC procedure continues in spite of the above warning. Results shown are based on the last maximum likelihood iteration. Validity of the model fit is questionable. Model Fit Statistics Intercept Intercept and Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 377.
    Chapter 5-OSPHD EmergencyDepartment 108 Criterion Only Covariates AIC 101023.56 96987.890 SC 101035.37 97224.200 -2 Log L 101021.56 96947.890 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 4073.6687 19 <.0001 Score 11113.0234 19 <.0001 Wald 71511547.1 19 <.0001 WARNING: The validity of the model fit is questionable. Type 3 Analysis of Effects Wald Effect DF Chi-Square Pr > ChiSq agecat5 6 29518495.1 <.0001 sex 3 15281632.4 <.0001 race 7 16124948.4 <.0001 eth 3 10587559.6 <.0001 Analysis of Maximum Likelihood Estimates Standard Wald Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 -5.2779 0.000211 626201293 <.0001 agecat5 * 1 -1.2510 0.00154 655713.269 <.0001 agecat5 0 1 93.1823 8.867E16 0.0000 1.0000 agecat5 2 1 0.1193 0.000661 32571.4824 <.0001 agecat5 3 1 0.9928 0.000409 5899903.85 <.0001 agecat5 4 1 1.3755 0.000288 22757152.5 <.0001 agecat5 5 1 0.3497 0.000840 173163.456 <.0001 sex * 1 0.9343 0.000475 3871059.31 <.0001 sex M 1 0.9747 0.000289 11410577.7 <.0001 sex U 1 96.0488 2.689E17 0.0000 1.0000 race * 1 -0.6463 0.000366 3114234.89 <.0001 race 99 1 -0.3799 0.00129 87409.7501 <.0001 race R1 1 -0.9221 0.00369 62575.8348 <.0001 race R2 1 -1.5110 0.00224 453179.722 <.0001 race R4 1 -1.2860 0.00680 35799.9462 <.0001 race R5 1 -1.1222 0.000387 8388355.83 <.0001 race R9 1 -1.3047 0.000654 3983400.30 <.0001 eth * 1 1.1034 0.000346 10196015.4 <.0001 eth 99 1 0.5126 0.00131 152577.845 <.0001 eth E1 1 0.2519 0.000515 238967.375 <.0001 Odds Ratio Estimates Point 95% Wald Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 378.
    Chapter 5-OSPHD EmergencyDepartment 109 Effect Estimate Confidence Limits agecat5 * vs 1 0.286 0.285 0.287 agecat5 0 vs 1 >999.999 <0.001 >999.999 WARNING: The validity of the model fit is questionable. Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits agecat5 2 vs 1 1.127 1.125 1.128 agecat5 3 vs 1 2.699 2.697 2.701 agecat5 4 vs 1 3.957 3.955 3.959 agecat5 5 vs 1 1.419 1.416 1.421 sex * vs F 2.545 2.543 2.548 sex M vs F 2.650 2.649 2.652 sex U vs F >999.999 <0.001 >999.999 race * vs R3 0.524 0.524 0.524 race 99 vs R3 0.684 0.682 0.686 race R1 vs R3 0.398 0.395 0.401 race R2 vs R3 0.221 0.220 0.222 race R4 vs R3 0.276 0.273 0.280 race R5 vs R3 0.326 0.325 0.326 race R9 vs R3 0.271 0.271 0.272 eth * vs E2 3.014 3.012 3.016 eth 99 vs E2 1.670 1.665 1.674 eth E1 vs E2 1.286 1.285 1.288 Association of Predicted Probabilities and Observed Responses Percent Concordant 72.5 Somers' D 0.510 Percent Discordant 21.6 Gamma 0.542 Percent Tied 5.9 Tau-a 0.009 Pairs 8743189959 c 0.755 As seen above in the proc logistic with 1 million visits, for the output response variable of homeless considering the effects of visit age group, gender, race, and ethnicity, the findings are as follows: 1. All else being equal, those who visit California ED between 18 and 34 years old compared to those less than 1 years old are 2.7 times more likely to be homeless. p<.0001[CI 2.697, 2.701] 2. All else being equal, males compared to females who visit California EDs are 2.6 times more likely to be homeless. p<.0001[CI 2.649, 2.652] 3. All else being equal, whites compared to blacks who visit California EDs are 60.2 percent less likely to be homeless. p<.0001[CI 0.395, 0.401] 4. All else being equal, Hispanics compared to non-Hispanics who visit California EDs are1.3 times more likely to be homeless. p<.0001[CI 1.285, 1.288] Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA
  • 379.
    Chapter 5-OSPHD EmergencyDepartment 110 In summary, for logistic regression of California ED visits, the differences between 4.3 million and 1 million visits does not significantly effect the findings of the models of uninsured and homeless. Copyright © 2009 Raymond R. Arons, Teaneck, NJ, USA