SlideShare a Scribd company logo
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مدرس‬:
‫کو‬‫نقمه‬ ‫مرتضی‬
‫مکانیک‬ ‫مهندسی‬ ‫ارشد‬ ‫کارشناسی‬ ‫دانشجوی‬-‫انرژی‬ ‫تبدیل‬
‫اصفهان‬ ‫صنعتی‬ ‫دانشگاه‬
‫حرارت‬ ‫انتقال‬ ‫درس‬ ‫آموزشی‬ ‫دوره‬
1
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫درس‬‫یازدهم‬
‫جابجایی‬ ‫حرارت‬ ‫انتقال‬
‫ها‬ ‫جریان‬ ‫انواع‬
‫حرارت‬ ‫انتقال‬ ‫ضریب‬ ‫آوردن‬ ‫دست‬ ‫به‬ ‫و‬
2
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مطالب‬ ‫فهرست‬
•‫حدس‬‫دما‬ ‫پروفیل‬
•‫نحوه‬‫نوسلت‬ ‫عدد‬ ‫و‬ ‫جابجایی‬ ‫حرارت‬ ‫انتقال‬ ‫ضریب‬ ‫آوردن‬ ‫دست‬ ‫به‬
•‫دمای‬‫سیال‬ ‫فیلم‬ ‫اصطالح‬ ‫به‬
•‫آنالوژی‬‫برن‬ ‫کول‬
•‫انتقال‬‫مایع‬ ‫فلزات‬ ‫در‬ ‫حرارت‬
•‫انتقال‬‫لوله‬ ‫درون‬ ‫جابجایی‬ ‫حرارت‬
•‫جریان‬‫آن‬ ‫بر‬ ‫حاکم‬ ‫روابط‬ ‫و‬ ‫کوئت‬
3
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫دما‬ ‫پروفیل‬ ‫حدس‬
•‫وجود‬‫اختالف‬‫دما‬‫بین‬‫صفحه‬‫و‬‫سیال‬‫منجر‬‫به‬‫الیه‬‫مرزی‬‫حرارتی‬‫شود‬‫می‬.
•‫الیه‬‫مرزی‬‫هیدرودینامیکی‬𝛿
•‫الیه‬‫مرزی‬‫حرارتی‬𝛿𝑡
•‫حل‬‫معادالت‬‫پیوستگی‬‫و‬‫اندازه‬‫حرکت‬(‫به‬‫صورت‬‫عددی‬)«‫توزیع‬‫سرعت‬»‫را‬‫دهد‬‫می‬
•‫حل‬‫معادله‬‫انرژی‬‫همراه‬‫با‬‫این‬‫دو‬،‫معادله‬(‫به‬‫صورت‬‫عددی‬)«‫توزیع‬‫دما‬»‫را‬‫نیز‬‫دهد‬‫می‬
•‫روند‬‫حدس‬‫پروفیل‬‫دما‬‫مانند‬‫حدس‬‫پروفیل‬‫سرعت‬
4
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫سرعت‬ ‫پروفیل‬ ‫حدس‬ ‫بررسی‬
𝑢 = 𝑐0 + 𝑐1 𝑦 + 𝑐2 𝑦2
+ 𝑐3 𝑦3
•‫مرزی‬ ‫شرایط‬
1) 𝑦 = 0 u = 0
2) 𝑦 = δ u = 𝑢∞
3) 𝑦 = δ
𝜕u
𝜕𝑦
= 0
𝑢
𝜕𝑢
𝜕𝑥
+ 𝑣
𝜕𝑢
𝜕𝑦
= 𝜗
𝜕2
𝑢
𝜕𝑦2
4) y = 0
𝜕2 𝑢
𝜕𝑦2 = 0
𝑢 =
3
2
𝑦
𝛿
−
1
2
𝑦
𝛿
3
5
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫سرعت‬ ‫پروفیل‬ ‫حدس‬ ‫بررسی‬
𝑢 =
3
2
𝑦
𝛿
−
1
2
𝑦
𝛿
3
• Von-Karman:
𝑑
𝑑𝑥
න
0
𝛿
𝑢∞ − 𝑢 𝑢 𝑑𝑦 = 𝜐
𝑑𝑢
𝑑𝑦
| 𝑦=0
𝛿
𝑥
=
4.64
𝑅𝑒
• Exact Value:
𝛿
𝑥
=
5
𝑅𝑒
6
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫حدس‬‫پروفیل‬‫دما‬
𝑇 = 𝑐0 + 𝑐1 𝑦 + 𝑐2 𝑦2
+ 𝑐3 𝑦3
•‫مرزی‬ ‫شرایط‬
1) 𝑦 = 0 T = 𝑇 𝑤
2) 𝑦 = δ 𝑡 T = 𝑇∞
3) 𝑦 = δ 𝑡
𝜕T
𝜕𝑦
= 0
𝑢
𝜕𝑇
𝜕𝑥
+ 𝑣
𝜕𝑇
𝜕𝑦
= 𝛼
𝜕2
𝑢
𝜕𝑦2
4) y = 0
𝜕2 𝑇
𝜕𝑦2 = 0
•‫متغیر‬ ‫تغییر‬𝜃 = 𝑇 − 𝑇 𝑤
7
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫حدس‬‫پروفیل‬‫دما‬
•‫جدید‬ ‫متغیر‬ ‫با‬ ‫مرزی‬ ‫شرایط‬ ‫بازنویسی‬
1) 𝑦 = 0 θ = 0
2) 𝑦 = δ 𝑡 θ = 𝑇∞ − 𝑇 𝑤 = 𝜃∞
3) 𝑦 = δ 𝑡
𝜕θ
𝜕𝑦
= 0
4) y = 0
𝜕2 𝜃
𝜕𝑦2 = 0
𝜃
𝜃∞
=
𝑇 − 𝑇 𝑤
𝑇∞ − 𝑇 𝑤
=
3
2
𝑦
𝛿𝑡
−
3
2
𝑦
𝛿𝑡
3
8
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫حدس‬‫پروفیل‬‫دما‬
•‫معادله‬ ‫از‬ ‫حرارتی‬ ‫مرزی‬ ‫الیه‬ ‫ضخامت‬ ‫آوردن‬ ‫دست‬ ‫به‬ ‫برای‬‫انتگرالی‬‫گیریم‬‫می‬ ‫بهره‬ ‫انرژی‬:
𝑑
𝑑𝑥
න
0
𝛿 𝑡
𝑇∞ − 𝑇 𝑢 𝑑𝑦 = 𝛼
𝜕𝑇
𝜕𝑦
| 𝑦=0
•‫ال‬ ‫ضخامت‬ ‫فرمول‬ ‫به‬ ‫توجه‬ ‫با‬ ‫و‬ ‫سرعت‬ ‫و‬ ‫دما‬ ‫های‬ ‫پروفیل‬ ‫حدس‬ ‫از‬ ‫آمده‬ ‫دست‬ ‫به‬ ‫معادالت‬ ‫جایگذاری‬ ‫با‬‫یه‬
‫داشت‬ ‫خواهیم‬ ‫هیدرودینامیکی‬ ‫مرزی‬:
•‫از‬ ‫صفحه‬ ‫از‬ ‫حرارت‬ ‫اینکه‬ ‫فرض‬ ‫با‬x=x0‫باشد‬ ‫شده‬ ‫آغاز‬.
𝛿𝑡
𝛿
=
1
1.026
𝑃𝑟−
1
3 1 −
𝑥0
𝑥
3
4
1
3
9
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫جابجایی‬ ‫حرارت‬ ‫انتقال‬ ‫ضریب‬ ‫آوردن‬ ‫دست‬ ‫به‬ ‫نحوه‬
𝛿𝑡
𝛿
=
1
1.026
𝑃𝑟−
1
3 1 −
𝑥0
𝑥
3
4
1
3
•‫یابد‬ ‫انتقال‬ ‫صفحه‬ ‫ابتدای‬ ‫از‬ ‫حرارت‬ ‫اگر‬(x0=0)
𝛿𝑡
𝛿
=
1
1.026
𝑃𝑟−
1
3 ≅ 𝑃𝑟−
1
3
•‫عدد‬ ‫که‬ ‫کرد‬ ‫ادعا‬ ‫توان‬‫می‬‫پراندتل‬‫بین‬ ‫رابط‬‫هیدرودینامیک‬‫است‬ ‫حرارت‬ ‫و‬.
10
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫جابجایی‬ ‫حرارت‬ ‫انتقال‬ ‫ضریب‬ ‫آوردن‬ ‫دست‬ ‫به‬ ‫نحوه‬
•‫دیواره‬ ‫روی‬ ‫سیال‬ ‫به‬ ‫مربوط‬ ‫رابطه‬:
ℎ =
−𝑘∞
𝑑𝑇
𝑑𝑦
| 𝑦=0
𝑇 𝑤 − 𝑇∞
=
−𝑘∞(𝑇∞ − 𝑇 𝑤)
3
2𝛿𝑡
−
3𝑦2
2𝛿𝑡
3
𝑦=0
𝑇 𝑤 − 𝑇∞
=
3𝑘∞
2𝛿𝑡
ℎ ∝
1
𝛿𝑡
•‫عبارت‬ ‫جایگذاری‬ ‫با‬h‫فرمول‬ ‫در‬𝛿𝑡‫داشت‬ ‫خواهیم‬:
ℎ = 0.332𝑃𝑟
1
3 𝑘
𝑢∞
𝜗𝑥
1
2
1 −
𝑥0
𝑥
3
4
−
1
3
= ℎ 𝑥
• Where hx is “Local convection heat transfer coefficient”
11
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫جابجایی‬ ‫حرارت‬ ‫انتقال‬ ‫ضریب‬ ‫آوردن‬ ‫دست‬ ‫به‬ ‫نحوه‬
•‫شود‬ ‫انجام‬ ‫صفحه‬ ‫ابتدای‬ ‫از‬ ‫حرارت‬ ‫انتقال‬ ‫اگر‬:
ℎ 𝑥 = 0.332𝑃𝑟
1
3 𝑘
𝑢∞
𝜗𝑥
1
2
= 0.332
𝜇𝑐 𝑝
𝑘
1
3
𝑘
𝜌𝑢∞
𝜇𝑥
1
2
ℎ 𝑥 = 𝑓(𝜇, 𝑘, 𝑐 𝑝, 𝑢∞, 𝑥, 𝜌)
12
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫نوسلت‬ ‫عدد‬
• Local Nusselt number is defined as:
𝑁𝑢 𝑥 =
ℎ𝑥
𝑘
•‫عدد‬ ‫با‬ ‫تفاوت‬‫بایو‬‫است‬ ‫آن‬ ‫طول‬ ‫و‬ ‫هدایتی‬ ‫ضریب‬ ‫در‬.
•‫داشت‬ ‫خواهیم‬ ‫قبلی‬ ‫مسئله‬ ‫برای‬ ‫پس‬:
𝑁𝑢 𝑥 = 0.332𝑃𝑟
1
3 𝑅𝑒
1
2 1 −
𝑥0
𝑥
3
4
−
1
3
•‫صفحه‬ ‫ابتدای‬ ‫از‬ ‫حرارت‬ ‫انتقال‬:
𝑁𝑢 𝑥 = 0.332𝑃𝑟
1
3 𝑅𝑒
1
2
13
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫حرارت‬ ‫انتقال‬ ‫ضریب‬ ‫آوردن‬ ‫دست‬ ‫به‬ ‫نحوه‬‫نوسلت‬ ‫عدد‬ ‫و‬ ‫جابجایی‬
• So, For calculating the convective heat transfer coefficient we should
integrate hx from 0 to L and devide to the length of plane:
തℎ =
‫׬‬0
𝐿
ℎ 𝑥 𝑑𝑥
‫׬‬0
𝐿
𝑑𝑥
=
‫׬‬0
𝐿
ℎ 𝑥 𝑑𝑥
𝐿
= 2ℎ 𝑥=𝐿
• Then, For Nusselt number we have:
𝑁𝑢 = 2𝑁𝑢 𝑥=𝐿
14
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫سیال‬ ‫فیلم‬ ‫دمای‬
ℎ 𝑥 = 𝑓(𝜇, 𝑘, 𝑐 𝑝, 𝑢∞, 𝑥, 𝜌)
•‫پارامترهای‬𝜇,𝑘,𝑐 𝑝,𝜌‫هستند‬ ‫دما‬ ‫به‬ ‫وابسته‬
𝑇𝑓 =
𝑇 𝑤 + 𝑇∞
2
•‫آرام‬ ‫مرزی‬ ‫الیه‬ ‫برای‬ ‫گذشته‬ ‫روابط‬(Re<5×105)‫بیش‬ ‫پراندتل‬ ‫اعداد‬ ‫و‬‫از‬0.7‫صادق‬‫است‬
•‫دارای‬ ‫که‬ ‫مایع‬ ‫فلزات‬ ‫برای‬‫پراندتل‬‫خوا‬ ‫اشاره‬ ‫آن‬ ‫به‬ ً‫ا‬‫بعد‬ ‫که‬ ‫است‬ ‫متفاوت‬ ‫ها‬ ‫فرمول‬ ‫این‬ ،‫هستند‬ ‫کمی‬‫کرد‬ ‫هیم‬
15
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مثال‬
•‫دمای‬ ‫در‬ ‫هوا‬27‫صفحه‬ ‫روی‬ ‫سلسیوس‬ ‫درجه‬‫مسطحه‬‫دهی‬ ‫حرارت‬ ‫زیر‬ ‫از‬ ‫را‬ ‫صفحه‬ ‫اگر‬ ،‫کند‬‫می‬ ‫حرکت‬ ‫افقی‬‫م‬
‫به‬ ‫صفحه‬ ‫دمای‬ ‫که‬ ‫ای‬ ‫گونه‬ ‫به‬60‫برسد؛‬ ‫سلسیوس‬ ‫درجه‬
•‫الف‬)‫در‬ ‫شده‬ ‫جابجا‬ ‫گرمای‬ ‫محاسبه‬ ‫مطلوبست‬20‫صفحه‬ ‫ابتدای‬ ‫از‬ ‫متری‬ ‫سانتی‬(‫را‬ ‫هوا‬ ‫سرعت‬2‫ثانیه‬ ‫بر‬ ‫متر‬
‫بگیرید‬ ‫نظر‬ ‫در‬)
•‫ب‬)‫در‬ ‫شده‬ ‫جابجا‬ ‫گرمای‬ ‫محاسبه‬ ‫مطلوبست‬40‫صفحه‬ ‫ابتدای‬ ‫متری‬ ‫سانتی‬
‫حل‬:
𝑇∞ = 27℃ = 273 + 27 𝐾 = 300 𝐾
𝑇 𝑤 = 60℃ = 333 𝐾
𝑢∞ = 2 Τ𝑚
𝑠
16
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مثال‬
𝑇𝑓 =
333 + 300
2
= 316.5 𝐾
𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑎𝑝𝑝𝑒𝑛𝑑𝑖𝑥 𝑡𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑇𝑓 = 316.5 𝑤𝑒 ℎ𝑎𝑣𝑒:
𝜗 ≅ 17.36 × 10−6 ൗ𝑚2
𝑠
𝑘 ≅ 0.02749 ൗ𝑊
𝑚℃
𝑃𝑟𝑎𝑖𝑟 ≅ 0.7
𝑐 𝑝 ≅ 1.006 ൗ
𝑘𝐽
𝑘𝑔℃
First we should check the stream that is laminar or not?
𝑅𝑒 =
𝜌𝑢∞ 𝑥
𝜇
=
𝑢∞ 𝑥
𝜗
=
(2)(0.20)
17.36 × 10−6
= 23041 < 105
So the stream is laminar.
17
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مثال‬
𝑁𝑢 𝑥 =
ℎ 𝑥 𝑥
𝑘
= 0.332𝑃𝑟 ൗ1
3 𝑅𝑒 ൗ1
2 = 0.332 0.7 ൗ1
3 23041 ൗ1
2 = 44.74
ℎ 𝑥 = 𝑁𝑢 𝑥
𝑘
𝑥
= 44.74
0.02749
0.20
= 6.15 ൗ𝑊
𝑚2℃
തℎ = 2ℎ 𝑥=𝐿 = 2 × 6.15 = 12.3 ൗ𝑊
𝑚2℃
𝑞 = തℎ𝐴 𝑇 𝑤 − 𝑇∞ = 12.3 1 0.20 333 − 300 = 81.18 𝑊
18
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مثال‬
𝑅𝑒 =
𝜌𝑢∞ 𝑥
𝜇
=
𝑢∞ 𝑥
𝜗
=
(2)(0.40)
17.36 × 10−6
= 46082 < 105
𝑁𝑢 𝑥 =
ℎ 𝑥 𝑥
𝑘
= 0.332𝑃𝑟 ൗ1
3 𝑅𝑒 ൗ1
2 = 0.332 0.7 ൗ1
3 46082 ൗ1
2 = 63.28
ℎ 𝑥 = 𝑁𝑢 𝑥
𝑘
𝑥
= 63.28
0.02749
0.40
= 4.349 ൗ𝑊
𝑚2℃
തℎ = 2ℎ 𝑥=𝐿 = 2 × 4.349 = 8.698 ൗ𝑊
𝑚2℃
𝑞 = തℎ𝐴 𝑇 𝑤 − 𝑇∞ = 8.698 1 0.40 333 − 300 = 114.6 𝑊
19
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫آنالوژی‬‫کولبرن‬
•‫سیاالت‬ ‫مکانیک‬ ‫در‬2‫درگ‬ ‫ضریب‬ ‫که‬ ‫خواندیم‬(‫اصطکاک‬)‫آید‬‫می‬ ‫دست‬ ‫به‬ ‫شکل‬ ‫این‬ ‫به‬:
𝐶 𝑑 = 𝐶𝑓 =
𝜏 𝑤
1
2
𝜌𝑢∞
2
•‫تنش‬ ‫آن‬ ‫در‬ ‫که‬‫برشی‬‫شود‬‫می‬ ‫دیواره‬ ‫به‬ ‫مربوط‬:
𝜏 𝑤 = 𝜏 𝑦=0 = 𝜇
𝑑𝑢
𝑑𝑦
| 𝑦=0
•‫کنیم‬‫می‬ ‫محاسبه‬ ‫را‬ ‫درگ‬ ‫ضریب‬ ،‫ایم‬ ‫آورده‬ ‫دست‬ ‫به‬ ‫تابحال‬ ‫که‬ ‫روابطی‬ ‫برای‬:
𝜏 𝑤 = 𝜇
𝑑𝑢
𝑑𝑦
| 𝑦=0 = 𝜇𝑢∞
3
2𝛿
−
3𝑦2
2𝛿3
𝑦=0
=
3𝜇𝑢∞
2𝛿
=
3𝜇𝑢∞
2
𝜌𝑢∞ 𝑥
𝜇
ൗ1
2
4.64𝑥
20
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫آنالوژی‬‫کولبرن‬
1
2
𝐶 𝑑 =
𝜏 𝑤
𝜌𝑢∞
2
=
3𝜇𝑢∞ 𝜌 ൗ1
2 𝑢∞
ൗ1
2 𝑥 ൗ1
2
2 4.64 𝑥𝜇 ൗ1
2 𝜌𝑢∞
2
=
3𝜇 ൗ1
2
2 4.64 𝑢∞
ൗ1
2 𝑥 ൗ1
2 𝜌 ൗ1
2
1
2
𝐶 𝑑 ≈ 0.323𝑅𝑒 𝑥
− ൗ1
2
I
•‫عدد‬‫استانتون‬:
𝑠𝑡 =
𝑁𝑢
𝑅𝑒 𝑃𝑟
=
ℎ𝑥
𝑘
𝑢∞ 𝑥
𝜗
𝜗
𝛼
=
ℎ
𝑘
𝜌𝑐 𝑝
𝑘𝑢∞
=
ℎ
𝜌𝑐 𝑝 𝑢∞
21
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫آنالوژی‬‫کولبرن‬
𝑁𝑢 𝑥 =
ℎ 𝑥 𝑥
𝑘
= 0.332𝑃𝑟 ൗ1
3 𝑅𝑒 ൗ1
2
𝑠𝑡 =
𝑁𝑢 𝑥
𝑃𝑒𝑐
=
𝑁𝑢 𝑥
𝑅𝑒 𝑃𝑟
= 0.332
𝑃𝑟 ൗ1
3 𝑅𝑒 ൗ1
2
𝑅𝑒 𝑃𝑟
= 0.332𝑃𝑟− ൗ2
3 𝑅𝑒− ൗ1
2
𝑠𝑡𝑃𝑟 ൗ2
3 = 0.332𝑅𝑒− ൗ1
2 (II)
22
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫آنالوژی‬‫کولبرن‬
1
2
𝐶 𝑑 ≈ 0.323𝑅𝑒 𝑥
− ൗ1
2
I
𝑠𝑡𝑃𝑟 ൗ2
3 = 0.332𝑅𝑒− ൗ1
2 II
1
2
𝐶 𝑑 ≅ 𝑠𝑡𝑃𝑟 ൗ2
3 = 0.332𝑅𝑒− ൗ1
2
23
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مثال‬
•‫در‬‫مثال‬،‫قبل‬‫اگر‬‫طول‬‫صفحه‬40‫سانتی‬‫متر‬‫بوده‬‫و‬‫عمق‬‫صفحه‬1‫واحد‬‫باشد‬‫و‬‫فشار‬‫هوا‬‫نیز‬1‫اتمسفر؛‬
‫مطلوبست‬‫محاسبه‬‫مقدار‬‫درگ؟‬
‫حل‬:
𝑃 = 𝜌𝑅𝑇 ⟹ 𝜌 =
𝑃
𝑅𝑇
=
1.0132 × 105
287 316.5
= 1.115 ൗ𝑘𝑔
𝑚3
𝑠𝑡 =
𝑁𝑢
𝑅𝑒 𝑃𝑟
=
63.28
(46082)(0.7)
= 3.88 × 10−3
1
2
𝐶 𝑑 = 𝑠𝑡𝑃𝑟 ൗ2
3 = 3.88 × 10−3
0.7 ൗ2
3 = 3.06 × 10−3
24
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مثال‬
𝐶 𝑑 =
𝜏 𝑤
1
2
𝜌𝑢∞
2
⟹ 𝜏 𝑤 =
1
2
𝐶 𝑑 𝜌𝑢∞
2
= 3.06 × 10−3
1.115 22
𝜏 𝑤 = 0.0136 ൗ𝑁
𝑚2
𝐷𝑟𝑎𝑔 = 𝐷 = 𝜏 𝑤 𝐴 = 0.0136 1 0.40 = 0.00544 𝑁
25
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫تخت‬ ‫صفحه‬ ‫روی‬ ‫مغشوش‬ ‫جریان‬
• (Reminder) In laminar flow, the friction coefficient obtains from:
𝑓 =
64
𝑅𝑒
• Colburn analogy was for polished horizontal planes and a link between
heat transfer and shear stress on the wall. This analogy is used both
laminar and turbulent flows.
• In fluid mechanics mentioned that the velocity distribution for turbulent
flow is:
𝑢
𝑢∞
=
𝑦
𝛿
ൗ1
7
26
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫تخت‬ ‫صفحه‬ ‫روی‬ ‫مغشوش‬ ‫جریان‬
• By replacing this formula in von-karman equation
𝑑
𝑑𝑥
න
0
𝛿
𝑢∞ − 𝑢 𝑢 𝑑𝑦 = 𝜐
𝑑𝑢
𝑑𝑦
| 𝑦=0
a) If flow from edge of plane is turbulent:
𝛿
𝑥
= 0.381𝑅𝑒 𝑥
− ൗ1
5
b) If flow is first laminar and then turbulent:
𝛿
𝑥
= 0.381𝑅𝑒 𝑥
− ൗ1
5
− 10256𝑅𝑒 𝑥
−1
27
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫تخت‬ ‫صفحه‬ ‫روی‬ ‫مغشوش‬ ‫جریان‬
𝑅𝑒 𝑐𝑟 =
𝑢∞ 𝑥 𝑐
𝜗
≅ 5 × 105
⟹ 𝑥 𝑐 = 5 × 105
𝑢∞
𝜗
• Well-known equation for turbulent flow on polished horizontal plane is:
𝑁𝑢 𝐿 =
തℎ𝐿
𝑘
= 𝑃𝑟 ൗ1
3(0.037 𝑅𝑒 𝐿
0.8
− 850)
• Where ReL defines as:
𝑅𝑒 𝐿 =
𝑢∞ 𝐿
𝜗
• L is plane’s length
• Almost all problems about turbulent solve experimentaly!
28
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مایع‬ ‫فلزات‬ ‫در‬ ‫جابجایی‬ ‫حرارت‬ ‫انتقال‬
𝑃𝑟 ≈ 0.001 to 0.01
•‫دارند‬ ‫کاربرد‬ ‫بزرگتر‬ ‫فضای‬ ‫یک‬ ‫به‬ ‫کوچک‬ ‫فضای‬ ‫یک‬ ‫از‬ ‫حرارت‬ ‫سریع‬ ‫انتقال‬ ‫برای‬.
•‫سریع‬ ‫بسیار‬ ‫حرارت‬ ‫پخش‬
•‫مرزی‬ ‫الیه‬ ‫طول‬ ‫تمامی‬ ‫در‬ ‫سرعت‬ ‫گرفتن‬ ‫نظر‬ ‫در‬ ‫ثابت‬𝑢 = 𝑢∞
29
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مایع‬ ‫فلزات‬ ‫در‬ ‫جابجایی‬ ‫حرارت‬ ‫انتقال‬
•‫دما‬ ‫قبلی‬ ‫پروفیل‬ ‫از‬ ‫استفاده‬:
𝑇 − 𝑇 𝑤
𝑇∞ − 𝑇 𝑤
=
3
2
𝑦
𝛿𝑡
−
3
2
𝑦
𝛿𝑡
3
•‫معادله‬ ‫از‬‫انتگرالی‬‫داشت‬ ‫خواهیم‬ ‫انرژی‬:
𝑑
𝑑𝑥
න
0
𝛿 𝑡
𝑇∞ − 𝑇 𝑢 𝑑𝑦 = 𝛼
𝜕𝑇
𝜕𝑦
| 𝑦=0
•‫با‬ ‫است‬ ‫برابر‬ ‫حرارتی‬ ‫مرزی‬ ‫الیه‬ ‫ضخامت‬ ،‫جدید‬ ‫روابط‬ ‫براساس‬ ‫بنابراین‬:
𝛿𝑡 =
8𝛼𝑥
𝑢∞
= 𝑓(𝑢∞
ൗ1
2
, 𝑥 ൗ1
2)
30
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مایع‬ ‫فلزات‬ ‫در‬ ‫جابجایی‬ ‫حرارت‬ ‫انتقال‬
•‫که‬ ‫آوردیم‬ ‫دست‬ ‫به‬ ً‫ال‬‫قب‬ ‫طرفی‬ ‫از‬:
ℎ =
−𝑘∞
𝑑𝑇
𝑑𝑦
| 𝑦=0
𝑇 𝑤 − 𝑇∞
=
3𝑘∞
2𝛿𝑡
‫باال‬ ‫فرمول‬ ‫در‬ ‫رابطه‬ ‫این‬ ‫جایگذاری‬ ‫با‬𝛿𝑡 =
8𝛼𝑥
𝑢∞
‫داریم‬:
𝑁𝑢 =
ℎ𝑥
𝑘
=
3𝑘
2𝛿𝑡
𝑥
𝑘
=
3𝑥
2𝛿𝑡
=
3𝑥 𝑢∞
2 8𝛼𝑥
= 0.53 𝑅𝑒 𝑃𝑟 ൗ1
2 = 0.53𝑃𝑒𝑐 ൗ1
2
31
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫جابجایی‬ ‫حرارت‬ ‫انتقال‬
•‫نیست‬ ‫مذاب‬ ‫سیال‬ ‫که‬ ‫مواقعی‬ ‫در‬ ‫نوسلت‬ ‫عدد‬ ‫کلی‬ ‫فرم‬:
𝑁𝑢 𝑥 = 𝐶𝑅𝑒 𝑚
𝑃𝑟 𝑛
•‫افقی‬ ‫مسطح‬ ‫صفحه‬ ‫روی‬ ‫سیال‬ ،‫مثال‬ ‫برای‬:
n=1/3
m=1/2
C=0.332
32
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬
33
Experimental measurements of the convection heat transfer coefficient for a
square bar in cross flow yielded the following values:
തℎ1 = 50 Τ𝑊
𝑚2.𝐾 when 𝑉1 = 20 Τ𝑚
𝑠
തℎ2 = 40 Τ𝑊
𝑚2.𝐾 when 𝑉2 = 15 Τ𝑚
𝑠
Assume that the functional form of the Nusselt number is 𝑁𝑢 = 𝐶 𝑅𝑒 𝑚
𝑃𝑟 𝑛
,
where C, m, and n are constants.
(a) What will be the convection heat transfer coefficient for a similar bar with
L = 1 m when V = 15 m/s?
(b) What will be the convection heat transfer coefficient for a similar bar with
L = 1 m when V = 30 m/s?
Would your results be the same if the side of the bar, rather than its diagonal,
were used as the characteristic length?
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬
34
KNOWN: Experimental measurements of the heat transfer
coefficient for a square bar in cross flow.
FIND: (a) h for the condition when L = 1m and V = 15m/s, (b) h for
the condition when L = 1m and V = 30m/s, (c) Effect of defining a
side as the characteristic length.
ASSUMPTIONS: (1) Functional form 𝑁𝑢 = C Rem Prn applies with
C, m, n being constants, (2) Constant properties.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
35
ANALYSIS: (a) For the experiments and the condition L = 1m and V = 15m/s, it
follows that Pr as well as C, m, and n are constants. Hence
തℎ𝐿 ∝ 𝑉𝐿 𝑚
Using the experimental results, find m. Substituting values
തℎ1 𝐿1
തℎ2 𝐿2
=
𝑉1 𝐿1
𝑉2 𝐿2
𝑚
50 0.5
(40)(0.5)
=
20 0.5
(15)(0.5)
𝑚
giving m = 0.782. It follows then for L = 1m and V = 15m/s,
തℎ = തℎ1
𝐿1
𝐿
𝑉𝐿
𝑉1 𝐿1
𝑚
= 50
0.5
1.0
15 1.0
20 0.5
0.782
= 34.3 𝑊/𝑚2
𝐾
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
36
(b) For the condition L = 1m and V = 30m/s, find
തℎ = തℎ1
𝐿1
𝐿
𝑉𝐿
𝑉1 𝐿1
𝑚
= 50
0.5
1.0
30 1.0
20 0.5
0.782
= 59.0 𝑊/𝑚2
𝐾
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
37
(c) If the characteristic length were chosen as a side rather than the
diagonal, the value of C would change. However, the coefficients m
and n would not change.
COMMENTS: The foregoing Nusselt number relation is used
frequently in heat transfer analysis, providing appropriate scaling for
the effects of length, velocity, and fluid properties on the heat transfer
coefficient.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬
38
Experimental results for heat transfer over a flat plate with
an extremely rough surface were found to be correlated by
an expression of the form
𝑁𝑢 𝑥 = 0.04 𝑅𝑒 𝑥
0.9
𝑃𝑟1/3
where Nux is the local value of the Nusselt number at a
position x measured from the leading edge of the plate.
Obtain an expression for the ratio of the average heat
transfer coefficient തℎ 𝑥 to the local coefficient hx.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬
39
KNOWN: Local Nusselt number correlation for flow over a roughened surface.
FIND: Ratio of average heat transfer coefficient to local coefficient.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
40
ANALYSIS: The local convection coefficient is obtained from the
prescribed correlation,
ℎ 𝑥 = 𝑁𝑢 𝑥
𝑘
𝑥
= 0.04
𝑘
𝑥
𝑅𝑒 𝑥
0.9
𝑃𝑟 ൗ1
3
ℎ 𝑥 = 0.04 𝑘
𝑉
𝑣
0.9
𝑃𝑟
1
3
𝑥0.9
𝑥
≡ 𝐶1 𝑥−0.1
To determine the average heat transfer coefficient for the length zero to x,
തℎ 𝑥 ≡
1
𝑥
න
0
𝑥
ℎ 𝑥 𝑑𝑥 =
1
𝑥
𝐶1 න
0
𝑥
𝑥−0.1
𝑑𝑥
തℎ 𝑥 =
𝐶1
𝑥
𝑥0.9
𝑥
= 1.11 𝐶1 𝑥−0.1
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
41
Hence, the ratio of the average to local coefficient is
തℎ 𝑥
ℎ 𝑥
=
1.11 𝐶1 𝑥−0.1
𝐶1 𝑥−0.1
= 1.11
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫جابجایی‬ ‫حرارت‬ ‫انتقال‬
•‫مذاب‬ ‫سیال‬ ‫برای‬ ‫نوسلت‬ ‫عدد‬ ‫کلی‬ ‫فرم‬:
𝑁𝑢 𝑥 = 𝐶𝑃𝑒𝑐 𝑚
•‫افقی‬ ‫مسطح‬ ‫صفحه‬ ‫روی‬ ‫سیال‬ ،‫مثال‬ ‫برای‬:
m=1/2
C=0.530
•‫جدول‬6-8‫کتاب‬‫هولمن‬
42
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬
43
Sketch the variation of the velocity and
thermal boundary layer thicknesses with
distance from the leading edge of a flat
plate for the laminar flow of air, water,
engine oil, and mercury. For each case
assume a mean fluid temperature of 300 K.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬
44
KNOWN: Air, water, engine oil or mercury at 300K in laminar,
parallel flow over a flat plate.
FIND: Sketch of velocity and thermal boundary layer thickness.
ASSUMPTIONS: (1) Laminar flow.
PROPERTIES: For the fluids at 300K:
Fluid Table Pr
Air A.4 0.71
Water A.6 5.83
Engine Oil A.5 6400
Mercury A.5 0.025
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
45
ANALYSIS: For laminar, boundary layer flow over a flat plate.
𝛿
𝛿𝑡
~𝑃𝑟 𝑛
where n > 0. Hence, the boundary layers appear as shown below.
Air:
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
46
COMMENTS: Although Pr
strongly influences relative
boundary layer development
in laminar flow, its influence
is weak for turbulent flow.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬
47
KNOWN: Velocity and temperature profiles and shear stress-boundary layer
thickness relation for turbulent flow over a flat plate.
FIND: (a) Expressions for hydrodynamic boundary layer thickness and average
friction coefficient, (b) Expressions for local and average Nusselt numbers.
ASSUMPTIONS: (1) Steady flow, (2) Constant properties, (3) Fully turbulent
boundary layer, (4) Incompressible flow, (5) Isothermal plate, (6) Negligible viscous
dissipation, (7) 𝛿 = 𝛿𝑡.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬
48
𝜌𝑢∞
2
𝑑
𝑑𝑥
න
0
𝛿
1 −
𝑢
𝑢∞
𝑢
𝑢∞
𝑑𝑦 = 𝜏 𝑠
Substituting the expression for the wall shear stress
𝜌𝑢∞
2
𝑑
𝑑𝑥
න
0
𝛿
1 −
𝑦
𝛿
1
7 𝑦
𝛿
1
7
𝑑𝑦 = 0.228 𝜌𝑢∞
2
𝑢∞ 𝛿
𝑣
−
1
4
𝑑
𝑑𝑥
න
0
𝛿
𝑦
𝛿
1
7
−
𝑦
𝛿
2
7
𝑑𝑦 =
𝑑
𝑑𝑥
ተ
7
8
𝑦
8
7
𝛿
1
7
−
7
9
𝑦
9
7
𝛿
2
7
0
𝛿
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬
49
𝑑
𝑑𝑥
7
8
𝛿 −
7
9
𝛿 = 0.0228
𝑢∞ 𝛿
𝑣
−
1
4
7
72
𝑑𝛿
𝑑𝑥
= 0.0228
𝑣
𝑢∞
1
4
𝛿−
1
4
7
72
න
0
𝛿
𝛿
1
4 𝑑𝛿 = 0.0228
𝑣
𝑢∞
1
4
න
0
𝑥
𝑑𝑥
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
50
7
72
×
4
5
𝛿
5
4 = 0.0228
𝑣
𝑢∞
1
4
𝑥
𝛿 = 0.376
𝑣
𝑢∞
1
5
𝑥
4
5,
𝛿
𝑥
= 0.376 𝑅𝑒 𝑥
−
1
5
Knowing𝛿, it follows
𝜏 𝑠 = 0.0228 𝜌𝑢∞
2
𝑣
𝑢∞
−
1
4
0.376 𝑥 𝑅𝑒 𝑥
−
1
5
−
1
4
𝐶𝑓,𝑥 =
𝜏 𝑠
𝜌𝑢∞
2
2
= 0.0456 0.376
𝑢∞
𝑣
𝑢∞
𝑣
−
1
5
𝑥𝑥−
1
5
−
1
4
= 0.0592 𝑅𝑒 𝑥
−
1
5
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
51
The average friction coefficient is then
ҧ𝐶𝑓,𝑥 =
1
𝑥
න
0
𝑥
𝐶𝑓,𝑥 𝑑𝑥 =
1
𝑥
0.0592
𝑣
𝑢∞
−
1
5
න
0
𝑥
𝑥−
1
5 𝑑𝑥
ҧ𝐶𝑓,𝑥 =
1
𝑥
0.0592
𝑣
𝑢∞
−
1
5
𝑥
4
5
5
4
= 0.074 𝑅𝑒 𝑥
−
1
5
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
52
(b) The energy integral equation for turbulent flow is
𝑑
𝑑𝑥
න
0
𝛿 𝑡
𝑢 𝑇∞ − 𝑇 𝑑𝑦 =
𝑞 𝑠
′′
𝜌𝑐 𝑝
= −
ℎ
𝜌𝑐 𝑝
𝑇𝑠 − 𝑇∞
Hence,
𝑢∞
𝑑
𝑑𝑥
න
0
𝛿 𝑡 𝑢
𝑢∞
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞
𝑑𝑦 = 𝑢∞
𝑑
𝑑𝑥
න
0
𝛿 𝑡 𝑦
𝛿
1
7
1 −
𝑦
𝛿𝑡
1
7
𝑑𝑦 =
ℎ
𝜌𝑐 𝑝
𝑢∞
𝑑
𝑑𝑥
7
8
𝛿𝑡
8
7
𝛿
1
7
−
7
9
𝛿𝑡
8
7
𝛿
1
7
=
ℎ
𝜌𝑐 𝑝
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
53
or, with 𝜉 ≡ 𝛿𝑡/𝛿,
𝑢∞
𝑑
𝑑𝑥
7
8
𝛿𝜉
8
7 −
7
9
𝛿𝜉
8
7 =
ℎ
𝜌𝑐 𝑝
𝑢∞
𝑑
𝑑𝑥
7
72
𝛿𝜉
8
7 =
ℎ
𝜌𝑐 𝑝
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
54
or, with 𝜉 ≡ 𝛿𝑡/𝛿,
𝑢∞
𝑑
𝑑𝑥
7
8
𝛿𝜉
8
7 −
7
9
𝛿𝜉
8
7 =
ℎ
𝜌𝑐 𝑝
𝑢∞
𝑑
𝑑𝑥
7
72
𝛿𝜉
8
7 =
ℎ
𝜌𝑐 𝑝
Hence, with 𝜉 ≈ 1 and /𝑥 = 0.376 𝑅𝑒 𝑥
−1/5
,
7
72
𝑢∞ 0.376
𝑢∞
𝑣
−
1
5 𝑑 𝑥
4
5
𝑑𝑥
=
ℎ
𝜌𝑐 𝑝
ℎ = 0.0292 𝜌 𝑐 𝑝 𝑢∞ 𝑅𝑒 𝑥
−
1
5
= 0.0292
𝑘
𝑥
𝑣
𝛼
𝑢∞ 𝑥
𝑣
𝑅𝑒 𝑥
−
1
5
𝑁𝑢 𝑥 =
ℎ𝑥
𝑘
= 0.0292 𝑅𝑒 𝑥
4
5
𝑃𝑟
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
55
Hence,
തℎ 𝑥 =
1
𝑥
න
0
𝑥
ℎ 𝑑𝑥 =
0.0292 𝑃𝑟
𝑥
𝑘
𝑢∞
𝑣
4
5
න
0
𝑥
𝑥−
1
5 𝑑𝑥 = 0.0292
𝑘
𝑥
𝑃𝑟
𝑢∞ 𝑥
𝑣
4
5 5
4
𝑁𝑢 𝑥 =
തℎ 𝑥 𝑥
𝑘
= 0.037 𝑅𝑒 𝑥
4
5
𝑃𝑟
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫جریان‬‫خزشی‬‫کره‬ ‫روی‬
• Creeping flow (Re<1) on sphere:
𝑁𝑢 =
ℎ𝑑
𝑘
= 2
ℎ =
𝑁𝑢 𝑘
𝑑
=
2𝑘
𝑑
⟹ 𝑞 = ℎ𝐴 𝑠𝑝ℎ𝑒𝑟𝑒 𝑇 𝑤 − 𝑇∞ =
2𝑘
𝑑
4𝜋𝑅2
𝑇 𝑤 − 𝑇∞
𝑞 = 2𝜋𝑑𝑘 𝑇 𝑤 − 𝑇∞
56
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫لوله‬ ‫درون‬ ‫حرارت‬ ‫انتقال‬
• (Re<2200) Laminar
• (2200<Re<2800) Transition
• (Re>2800) Turbulant
• Laminar stream in steady state condition and fully developed and
incompressible flow:
𝑢 = −
𝑅2
4𝜇
𝜕𝑃
𝜕𝑥
1 −
𝑟
𝑅
2
𝑁𝑢 𝑑 =
ℎ𝑑
𝑘
= 4.364
57
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫لوله‬ ‫درون‬ ‫حرارت‬ ‫انتقال‬
• Bulk temperature(Tb) is the mean temp. of flow in each section.
• For calculating Tb, solve the Energy equation in cylindrical coordinates
and obtain temperature distribution and get mean of each section’s
temperature.
• We will explain how to calculate the Tb.
• So, we have:
𝑞 = ℎ𝐴 𝑇 𝑤 − 𝑇𝑏 = 4.364
𝑘
𝑑
𝜋𝑑𝐿 𝑇 𝑤 − 𝑇𝑏 = 4.364 𝑘𝜋𝐿 𝑇 𝑤 − 𝑇𝑏
• Convected heat transferred per length unit:
𝑞
𝐿
= 4.364 𝑘𝜋 𝑇 𝑤 − 𝑇𝑏
58
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫لوله‬ ‫درون‬ ‫حرارت‬ ‫انتقال‬
• In other way, we know that
the Enthalpy changes from
one section to other. Then:
• ሶ𝑞 = ሶ𝑚𝑐 𝑝(𝑇𝑏1
− 𝑇𝑏2
)
59
𝑇𝑏1
𝑇𝑏2
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫دمای‬ ‫محاسبه‬‫بالک‬
𝑇𝑏 = ത𝑇 =
‫׬‬0
𝑅
ሶ𝑚(𝑐 𝑝 𝑇)
‫׬‬0
𝑅
ሶ𝑚(𝑐 𝑝)
• ሶ𝑚 = 𝜌𝐴𝑢 = 𝜌 2𝜋𝑟𝑑𝑟 𝑢
𝑇𝑏 = ത𝑇 =
‫׬‬0
𝑅
𝜌 2𝜋𝑟𝑑𝑟 𝑢(𝑐 𝑝 𝑇)
‫׬‬0
𝑅
𝜌 2𝜋𝑟𝑑𝑟 𝑢(𝑐 𝑝)
𝑇𝑏 =
‫׬‬0
𝑅
𝑢𝑇𝑟 𝑑𝑟
‫׬‬0
𝑅
𝑢𝑟 𝑑𝑟
60
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫دما‬ ‫توزیع‬ ‫محاسبه‬ ‫برای‬ ‫لوله‬ ‫در‬ ‫سرعت‬ ‫توزیع‬ ‫معادالت‬
• For laminar flow:
𝑢 = −
𝑅2
4𝜇
𝜕𝑃
𝜕𝑥
1 −
𝑟
𝑅
2
𝑢 𝑚𝑎𝑥 = −
𝑅2
4𝜇
𝜕𝑃
𝜕𝑥
𝑢
𝑢 𝑚𝑎𝑥
= 1 −
𝑟
𝑅
2
⟹ 𝑢∗
= 1 − 𝑥∗2
61
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫دما‬ ‫توزیع‬ ‫محاسبه‬ ‫برای‬ ‫لوله‬ ‫در‬ ‫سرعت‬ ‫توزیع‬ ‫معادالت‬
• For turbulent flow:
𝑢
𝑢 𝑐𝑒𝑛𝑡𝑒𝑟
= (1 −
𝑟
𝑅
) ൗ1
7
62
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫دمای‬ ‫محاسبه‬‫بالک‬‫نوسلت‬ ‫و‬
• Temperature distribution in a pipe with radius R:
𝑇 − 𝑇𝑐𝑒𝑛𝑡𝑒𝑟 =
1
𝛼
𝜕𝑇
𝜕𝑥
𝑢 𝑚𝑎𝑥 𝑅2
4
𝑟
𝑅
2
−
1
4
𝑟
𝑅
4
• So, the bulk temperature is:
𝑇𝑏 = 𝑇𝑐 +
7
96
𝑢 𝑚𝑎𝑥
𝛼
𝑅2
𝜕𝑇
𝜕𝑥
• For turbulent flow and polished pipe, best formula for Nusselt is:
𝑁𝑢 𝑑 =
ℎ𝑑
𝑘
= 0.023 𝑅𝑒 𝑑
0.8
𝑃𝑟 𝑛
𝑛 = ቊ
0.4 𝑖𝑓 𝑓𝑙𝑢𝑖𝑑 𝑖𝑠 ℎ𝑒𝑎𝑡𝑒𝑑
0.3 𝑖𝑓 𝑓𝑙𝑢𝑖𝑑 𝑖𝑠 𝑐𝑜𝑜𝑙𝑒𝑑
63
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫لوله‬ ‫داخل‬ ‫مغشوش‬ ‫جریان‬
• Eddy prandtl number is defined for turbulent flow as:
𝑃𝑟𝑡 =
𝜀 𝑚
𝜀 𝐻
=
𝑒𝑑𝑑𝑦 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚
𝑒𝑑𝑑𝑦 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 ℎ𝑒𝑎𝑡
• For rough tube and flow with pandtl number about one:
𝑠𝑡 =
ℎ
𝜌𝑐 𝑝 ത𝑢
=
𝑁𝑢
𝑃𝑒𝑐
=
𝑓
8
= 𝐴𝑛𝑎𝑙𝑜𝑔𝑦 𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠
• Where f is friction coefficient obtains from moody diagram.
• For using the moody diagram, we need to know the Reynolds number and
the rate of “rough coefficient” to “diameter”.
• Then the Reynolds analogy shows the relation between flow friction with
surface and heat transfer in turbulent flows.
64
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬
65
Fully developed conditions are known to
exist for water flowing through a 25-
mm-diameter tube at 0.01 kg/s and 27
ºC. What is the maximum velocity of the
water in the tube? What is the pressure
gradient associated with the flow?
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬
66
KNOWN: Flowrate and temperature of water in fully developed flow through
a tube of prescribed diameter.
FIND: Maximum velocity and pressure gradient.
ASSUMPTIONS: (1) Steady-state conditions, (2) Isothermal flow.
PROPERTIES: Table A-6, Water (300K): ρ = 998 kg/m3, µ = 855×10-6
N×s/m2.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
67
ANALYSIS: From Eq. 8.6,
𝑅𝑒 𝐷 =
4 ሶ𝑚
𝜋𝐷𝜇
=
4 0.01
𝜋 0.025 855 × 10−6
= 596
Hence the flow is laminar and the velocity profile is given by Eq. 8.15,
𝑢 𝑟
𝑢 𝑚
= 2 1 −
𝑟
𝑟𝑜
2
The maximum velocity is therefore at r = 0, the centerline, where
𝑢 0 = 2𝑢 𝑚
From Eq. 8.5
𝑢 𝑚 =
ሶ𝑚
𝜌𝜋 𝐷2/4
=
4 0.001
998 𝜋 0.025
= 0.020 𝑚/𝑠
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
68
hence
𝑢 0 = 0.041 𝑚/𝑠
Combining Eqs. 8.16 and 8.19, the pressure gradient is
𝑑𝑝
𝑑𝑥
= −
64
𝑅𝑒 𝐷
𝜌𝑢 𝑚
2
2𝐷
𝑑𝑝
𝑑𝑥
= −
64
596
×
998 0.020
2 0.025
= −0.86 𝑘𝑔/𝑚2
𝑠2
𝑑𝑝
𝑑𝑥
= −0.86 𝑁/𝑚2
𝑚 = −0.86 × 10−5
𝑏𝑎𝑟/𝑚
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬
69
For fully developed laminar flow through a parallel-plate channel, the x-momentum
equation has the form
𝜇
𝑑2
𝑢
𝑑𝑦2
=
𝑑𝑝
𝑑𝑥
= constant
The purpose of this problem is to develop expressions for the velocity distribution and
pressure gradient analogous to those for the circular tube in Section 8.1.
(a) Show that the velocity profile, u(y), is parabolic and of the form
𝑢 𝑦 =
2
3
𝑢 𝑚 1 −
𝑦2
ൗ𝑎
2
2
Where um is the mean velocity
𝑢 𝑚 = −
𝑎2
12𝜇
𝑑𝑝
𝑑𝑥
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬(‫ادامه‬)
70
And − ൗ𝑑𝑝
𝑑𝑥 = ൗ∆𝑝
𝐿, where Δp is the
pressure drop across the channel of
length L.
(a) Write an expression defining the friction
factor, f, using the hydraulic diameter Dh
as the characteristic length. What is the
hydraulic diameter for the parallel-plate
channel?
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬(‫ادامه‬)
71
(c) The friction factor is estimated from the expression 𝑓
= 𝐶/𝑅𝑒 𝐷ℎ
, where C depends upon the flow cross section, as
shown in Table 8.1. What is the coefficient C for the parallel-
plate channel?
(d) Airflow in a parallel-plate channel with a separation of 5
mm and a length of 200 mm experiences a pressure drop of
Δp = 3.75 N/m2. Calculate the mean velocity and the
Reynolds number for air at atmospheric pressure and 300 K.
Is the assumption of fully developed flow reasonable for this
application? If not, what is the effect on the estimate for um?
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬
72
KNOWN: The x-momentum equation for fully developed laminar flow in a parallel-
plate channel
𝑑𝑝
𝑑𝑥
= constant = 𝜇
𝑑2
𝑢
𝑑𝑦2
FIND: Following the same approach as for the circular tube in Section 8.1: (a) Show
that the velocity profile, u(y), is parabolic of the form
𝑢 𝑦 =
2
3
𝑢 𝑚 1 −
𝑦2
ൗ𝑎
2
2
Where um is the mean velocity expressed as
𝑢 𝑚 = −
𝑎2
12𝜇
𝑑𝑝
𝑑𝑥
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬
73
and -dp/dx = Δp/L where Δp is the pressure drop across the channel of length L;
(b) Write the expression defining the friction factor, f, using the hydraulic
diameter as the characteristic length, Dh; What is the hydraulic diameter for the
parallel-plate channel? (c) The friction factor is estimated from the expression f
= C ReDh where C depends upon the flow cross-section as shown in Table 8.1;
What is the coefficient C for the parallel-plate channel (b/a→ ∞)? (d) Calculate
the mean air velocity and the Reynolds number for air at atmospheric pressure
and 300 K in a parallel-plate channel with separation of 5 mm and length of 100
mm subjected to a pressure drop of ΔP = 3.75 N/m2; Is the assumption of fully
developed flow reasonable for this application? If not, what effect does this have
on the estimate for um?
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
74
ANALYSIS: (a) The x-momentum equation for fully developed
laminar flow is
𝜇
𝑑2
𝑢
𝑑𝑦2
=
𝑑𝑝
𝑑𝑥
= constant
Since the longitudinal pressure gradient is constant, separate
variables and integrate twice,
𝑑
𝑑𝑦
𝑑𝑢
𝑑𝑦
=
1
𝜇
𝑑𝑝
𝑑𝑥
𝑑𝑢
𝑑𝑦
=
1
𝜇
𝑑𝑝
𝑑𝑥
𝑦 + 𝐶1
𝑢 =
1
2𝜇
𝑑𝑝
𝑑𝑥
𝑦2
+ 𝐶1 𝑦 + 𝐶2
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
75
ASSUMPTIONS: (1) Fully developed laminar flow, (2) Parallel-plate
channel, a << b.
PROPERTIES: Table A-4, Air (300 K, 1 atm): μ = 184.6 × 10-7 N⋅s/m2, ν =
15.89 × 10-6 m2/s.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
76
The integration constants are determined from the boundary conditions,
ቤ
𝑑𝑢
𝑑𝑦 𝑦=0
= 0 𝑢(𝑎/2) = 0
to find
𝐶1 = 0 𝐶2 = −
1
2𝜇
𝑑𝑝
𝑑𝑥
𝑎/2 2
giving
𝑢 𝑦 = −
𝑎/2 2
2𝜇
𝑑𝑝
𝑑𝑥
1 −
𝑦2
𝑎/2 2
The mean velocity is
𝑢 𝑚 =
2
𝑎
න
0
𝑎/2
𝑢 𝑦 𝑑𝑦 = −
2
𝑎
𝑎/2 2
2𝜇
𝑑𝑝
𝑑𝑥
𝑦 −
𝑦3
𝑎/2 2
0
𝑎/2
=
𝑎2
12𝜇
−
𝑑𝑝
𝑑𝑥
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
77
(c) Substituting for the pressure gradient, Eq. (3), and rearranging, find using Eq.
(6)
𝑓 =
𝑢 𝑚
𝑎2/12𝜇
𝐷ℎ
𝜌𝑢 𝑚
2
/2
=
96
𝑢 𝑚 𝐷ℎ/𝑣
=
96
𝑅𝑒 𝐷ℎ
where the Reynolds number is
𝑅𝑒 𝐷ℎ
= 𝑢 𝑚 𝐷ℎ/𝑣
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
78
Substituting Eq. (3) for dp/dx into Eq. (2) find the velocity distribution in terms
of the mean velocity
𝑢 𝑦 =
3
2
𝑢 𝑚 1 −
𝑦2
𝑎/2 2
(b) The friction factor follows from its definition, Eq. 8.16,
𝑓 = −
𝑑𝑝/𝑑𝑥 𝐷ℎ
𝜌𝑢 𝑚
2
/2
where the hydraulic diameter for the channel using Eq. 8.67 is
𝐷ℎ =
4𝐴 𝑐
𝑃
=
4 𝑎 × 𝑏
2 𝑎 + 𝑏
= 2𝑎
Since a<<b.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
79
This result is in agreement with Table 8.1 for the cross-section with b/a → ∞ where
C = 96
(d) For the conditions shown in the schematic, with air properties evaluated at 300 K,
using Eqs. (3) and (8), find
𝑢 𝑚 =
0.005
12 184.6 × 10−7
3.75
0.100
= 1.06 𝑚/𝑠
𝑅𝑒 𝐷 =
1.06 2 0.005
15.89 × 10−6
= 667
The flow is laminar as ReDh < 2300, and from Eq. 8.3, the entry length is
𝑥 𝑓𝑑,ℎ
𝐷ℎ 𝑙𝑎𝑚
= 0.05 𝑅𝑒 𝐷ℎ
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
80
𝑥 𝑓𝑑,ℎ = 2 0.005 0.05 667 = 0.334 𝑚 = 334 𝑚𝑚
We conclude that the flow is not fully developed, and the friction factor in the entry
region will be higher than for fully developed conditions. Hence, for the same pressure
drop, the mean velocity will be less than our estimate.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫خارجی‬ ‫های‬ ‫جریان‬
• From the perspective of heat transfer, flows are two parts:
• Internal flows (like tubes,…)
• External flows:
• General forms for Nusselt number is:
𝑁𝑢 = 𝐶𝑅𝑒 𝑚
𝑃𝑟 𝑛
• Where m,n,C are constant and obtain from tables.
• Fand equation is a well-known equation for external liquid flows on
cylinder that is defined for Re between 10-1 and 105 as:
𝑁𝑢 𝑓 = 0.35 + 0.56𝑅𝑒𝑓
0.52
𝑃𝑟𝑓
0.3
• The f index is the properties in film temperature (Tf)
81
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫خارجی‬ ‫های‬ ‫جریان‬(‫کره‬ ‫حول‬)
• For very low speed velocities:
𝑁𝑢 𝑑 =
ℎ𝑑
𝑘
= 2
• For wide range of Re(17 to 70000), MC Adams equation is used:
𝑁𝑢 =
ℎ𝑑
𝑘
= 0.37
𝑢∞ 𝑑
𝜗𝑓
0.6
• Note that above equation is only for gases.
• For both liquids and gases, whitaker’s equation is defined as:
𝑁𝑢 𝑑 =
ℎ𝑑
𝑘
= 2 + (0.4 𝑅𝑒 𝑑
ൗ1
2
+ 0.06 𝑅𝑒 𝑑
ൗ2
3
)𝑃𝑟0.4
𝜇∞
𝜇 𝑤
ൗ1
4
• Index ω means µ in wall temperature.
82
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫کوئت‬ ‫های‬ ‫جریان‬
𝜕𝑢
𝜕𝑥
+
𝜕𝑣
𝜕𝑦
= 0 ⟹
𝜕𝑢
𝜕𝑥
= 0 ⟹ 𝑢 = 𝑓 𝑦
𝜌 𝑢
𝜕𝑢
𝜕𝑥
+ 𝑣
𝜕𝑢
𝜕𝑦
= −
𝜕𝑃
𝜕𝑥
+ 𝜇
𝜕2
𝑢
𝜕𝑥2
+
𝜕2
𝑢
𝜕𝑦2
+ 𝜌𝑔 𝑥
𝜕2
𝑢
𝜕𝑦2
=
1
𝜇
𝜕𝑃
𝜕𝑥
⟹ 𝑓 𝑦 = 𝑔 𝑥 ⟹
𝜕2
𝑢
𝜕𝑦2
=
1
𝜇
𝜕𝑃
𝜕𝑥
= 𝑐𝑡𝑒
• For coquette flow
𝜕𝑃
𝜕𝑥
= 0 ⟹ 𝑢 = 𝑐1 𝑦 + 𝑐2
83
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫کوئت‬ ‫های‬ ‫جریان‬
𝑢 = 𝑐1 𝑦 + 𝑐2
• Boundary conditions:
• 𝑦 = 0 ∶ 𝑢 = 0
• 𝑦 = 𝐻 ∶ 𝑢 = 𝑢∞
• Then:
𝑢 =
𝑢∞
𝐻
𝑦 ⟹ 𝑢∗
= 𝑦∗
84
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫کوئت‬ ‫های‬ ‫جریان‬
• After calculating velocity distribution, we should examine energy
equation:
𝜌𝑐 𝑝 𝑢
𝜕𝑇
𝜕𝑥
+ 𝑣
𝜕𝑇
𝜕𝑦
= 𝑘
𝜕2
𝑇
𝜕𝑥2
+
𝜕2
𝑇
𝜕𝑦2
+ 𝜇
𝜕𝑢
𝜕𝑦
2
0 = 𝑘
𝜕2
𝑇
𝜕𝑦2
+ 𝜇
𝑢∞
𝐻
2
𝜕2
𝑇
𝜕𝑦2
= −
𝑢∞
2
𝜇
𝑘𝐻2
• Make dimensionless:
𝜕2
𝑇∗
𝜕𝑦∗2 = −𝐸𝐶 𝑃𝑟
𝜕𝑢∗
𝜕𝑦∗
2
85
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬
86
KNOWN: Conditions associated with the Couette flow of air or water.
FIND: (a) Force and power requirements per unit surface area, (b) Viscous
dissipation, (c) Maximum fluid temperature.
ASSUMPTIONS: (1) fully-developed Couette flow, (2) Incompressible fluid with
constant properties.
PROPERTIES: Table A-4, Air (300K): μ =184.6×10-7N⋅s/m2, k=26.3×10-3W/m⋅K;
Table A-6,Water(300K): μ = 855×10-6 N⋅s/m2, k = 0.613 W/m⋅K.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬
87
ANALYSIS: (a) The force per unit area is associated with the shear stress. Hence, with the linear
velocity profile for Couette flow, 𝜏 = 𝜇(𝑑𝑢/𝑑𝑦) = 𝜇(𝑈/𝐿).
Air:
𝜏 𝑎𝑖𝑟 = 184.6 × 10−7
200
0.005
= 0.738 𝑁/𝑚2
Water:
𝜏 𝑤𝑎𝑡𝑒𝑟 = 855 × 10−6
200
0.005
= 34.2 𝑁/𝑚2
With the required power given by P/A= τ.U,
Air:
( ൗ𝑃
𝐴) 𝑎𝑖𝑟= 0.738 200 = 147.6 𝑊/𝑚2
Water:
( ൗ𝑃
𝐴) 𝑤𝑎𝑡𝑒𝑟= 34.2 200 = 6840 𝑊/𝑚2
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬
88
(b) The viscous dissipation is 𝜇Φ = 𝜇 Τ𝑑𝑢 𝑑𝑦 2
= 𝜇 Τ𝑈 𝐿 2
. Hence,
Air:
(𝜇Φ) 𝑎𝑖𝑟= 184.6 × 10−7
200
0.005
2
= 2.95 × 104 Τ𝑊 𝑚3
Water:
(𝜇Φ) 𝑤𝑎𝑡𝑒𝑟= 855 × 10−6
200
0.005
2
= 1.37 × 106 Τ𝑊 𝑚3
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
89
(c) From the solution to Part 4 of the text Example, the location of the maximum
temperature corresponds to ymax=L/2. Hence, 𝑇 𝑚𝑎𝑥 = 𝑇𝑜 + 𝜇𝑈2
/8𝑘 and
Air:
(𝑇 𝑚𝑎𝑥) 𝑎𝑖𝑟= 27 +
184.6 × 10−7
200
8 0.0263
= 30.5℃
Water:
(𝑇 𝑚𝑎𝑥) 𝑤𝑎𝑡𝑒𝑟= 27 +
855 × 10−6
200
8 0.613
= 34℃
COMMENTS: (1) The viscous dissipation associated with the entire fluid layer,
μΦ(LA), must equal the power, P. (2) Although (μΦ)water >> (μΦ)air , kwater >> kair .
Hence, Tmax,water ≈ Tmax,air.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬
90
KNOWN: Velocity and temperature difference of plates maintaining Couette flow.
Mean temperature of air, water or oil between the plates.
FIND: (a) Pr⋅Ec product for each fluid, (b) Pr⋅Ec product for air with plate at sonic
velocity.
ASSUMPTIONS: (1) Steady-state conditions, (2) Couette flow, (3) Air is at 1 atm.
PROPERTIES: Table A-4, Air (300K, 1atm), cp = 1007 J/kg⋅K, Pr = 0.707, γ = 1.4,
R= 287.02 J/kg⋅K; Table A-6, Water (300K): cp = 4179 J/kg⋅K, Pr = 5.83; Table A-5,
Engine oil (300K), cp = 1909 J/kg⋅K, Pr = 6400.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬
91
PROPERTIES: Table A-4, Air (300K, 1atm), cp = 1007 J/kg⋅K, Pr = 0.707, γ = 1.4,
R= 287.02 J/kg⋅K; Table A-6, Water (300K): cp = 4179 J/kg⋅K, Pr = 5.83; Table A-5,
Engine oil (300K), cp = 1909 J/kg⋅K, Pr = 6400.
ANALYSIS: The product of the Prandtl and Eckert numbers is dimensionless,
𝑃𝑟. 𝐸𝑐 = 𝑃𝑟
𝑈2
𝑐 𝑝∆𝑇
→
Τ𝑚2
𝑠2
( Τ𝐽 𝑘𝑔. 𝐾)𝐾
=
Τ𝑚2
𝑠2
(𝑘𝑔.
𝑚2
𝑠2 )/𝑘𝑔
Substituting numerical values, find
Air Water Oil
Pr.Ec 0.0028 0.0056 13.41
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
92
(b) For an ideal gas, the speed of sound is
𝑐 = 𝛾𝑅𝑇 1/2
where R, the gas constant for air, is Ru/Μ = 8.315 kJ/kmol⋅K/(28.97 kg/kmol) =
287.02 J/kg⋅K. Hence, at 300K for air,
𝑈 = 𝑐 = 1.4 × 287.02 × 300 1/2
= 347.2 𝑚/𝑠
For sonic velocities, it follows that
𝑃𝑟. 𝐸𝑐 = 0.707
347.2
1007 25
= 3.38
COMMENTS: From the above results it follows that viscous dissipation effects
must be considered in the high speed flow of gases and in oil flows at moderate
speeds. For Pr⋅Ec to be less than 0.1 in air with ΔT = 25°C, U should be < ~ 60
m/s.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬
93
KNOWN: Couette flow with moving plate isothermal and stationary
plate insulated.
FIND: Temperature of stationary plate and heat flux at the moving
plate.
ASSUMPTIONS: (1) Steady-state conditions, (2) incompressible fluid
with constant properties, (3) Couette flow.
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬
94
ANALYSIS: The energy equation is given by
0 = 𝑘
𝜕2
𝑇
𝜕𝑦2
+ 𝜇
𝜕𝑢
𝜕𝑦
2
Integrating twice find the general form of the temperature distribution,
𝜕2
𝑇
𝜕𝑦2
= −
𝜇
𝑘
𝑈
𝐿
2
𝜕𝑇
𝜕𝑦
= −
𝜇
𝑘
𝑈
𝐿
2
𝑦 + 𝐶1
𝑇 𝑦 = −
𝜇
2𝑘
𝑈
𝐿
2
𝑦2
+ 𝐶1 𝑦 + 𝐶2
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬
95
Consider the boundary conditions to evaluate the constants,
ቤ
𝜕𝑇
𝜕𝑦 𝑦=0
= 0 → 𝐶1 = 0
And
𝑇 𝐿 = 𝑇𝐿 → 𝐶2 = 𝑇𝐿 +
𝜇
2𝑘
𝑈2
Hence, the temperature distribution is
𝑇 𝑦 = 𝑇𝐿 +
𝜇𝑈2
2𝑘
1 −
𝑦
𝐿
2
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫مسئله‬ ‫حل‬(‫ادامه‬)
96
The temperature of the lower plate (y = 0) is
𝑇 0 = 𝑇𝐿 +
𝜇𝑈2
2𝑘
The heat flux to the upper plate (y = L) is
𝑞′′
𝐿 = −𝑘 ቤ
𝜕𝑇
𝜕𝑦 𝑦=𝐿
=
𝜇𝑈2
𝐿
COMMENTS: The heat flux at the top surface may also be obtained by
integrating the viscous dissipation over the fluid layer height. For a control
volume about a unit area of the fluid layer,
ሶ𝐸𝑔
′′
= ሶ𝐸 𝑜𝑢𝑡
′′
න
0
𝐿
𝜇
𝜕𝑢
𝜕𝑦
2
𝑑𝑦 = 𝑞′′
𝐿 𝑞′′
𝐿 =
𝜇𝑈2
𝐿
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫فرادرس‬ ‫در‬ ‫شده‬ ‫مطرح‬ ‫نکات‬ ‫مبنای‬ ‫بر‬ ‫ها‬ ‫اسالید‬ ‫این‬
«‫حرارت‬ ‫انتقال‬ ‫آموزش‬»
‫تهیه‬‫است‬ ‫شده‬.
‫مراجعه‬ ‫زیر‬ ‫لینک‬ ‫به‬ ‫آموزش‬ ‫این‬ ‫مورد‬ ‫در‬ ‫بیشتر‬ ‫اطالعات‬ ‫کسب‬ ‫برای‬‫نمای‬‫ید‬
faradars.org/ fvmec94064
‫حرارت‬ ‫انتقال‬ ‫آموزش‬
faradars.org/fvmec94064
‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬
FaraDars.org

More Related Content

Similar to آموزش انتقال حرارت - بخش سوم

heat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinderheat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinder
RabiaMalik723138
 
Radial heat conduction
Radial heat conductionRadial heat conduction
Radial heat conduction
Aree Salah
 
Thermal transfer Characteristics of TCM
Thermal transfer Characteristics of TCMThermal transfer Characteristics of TCM
Thermal transfer Characteristics of TCMjlrapter
 
Examen termo final
Examen termo finalExamen termo final
Examen termo final
HugoPalCastillo
 
Design & CFD Analysis of Heat Exchanger
Design & CFD Analysis of Heat ExchangerDesign & CFD Analysis of Heat Exchanger
Design & CFD Analysis of Heat Exchanger
CPDLR
 
Radial Heat conduction.docx
Radial Heat conduction.docxRadial Heat conduction.docx
Radial Heat conduction.docx
EngDiyar
 
Practica 3-ley-de-raoult
Practica 3-ley-de-raoultPractica 3-ley-de-raoult
Practica 3-ley-de-raoult
EdgarAlbertoMartinez3
 
Fluid Flow on Vertical Surface
Fluid Flow on Vertical SurfaceFluid Flow on Vertical Surface
Fluid Flow on Vertical Surface
Fahad B. Mostafa
 
Me 313 a mq2 solution
Me 313 a mq2 solutionMe 313 a mq2 solution
Me 313 a mq2 solution
Raizel Jianna Generosa
 
H04525159
H04525159H04525159
H04525159
IOSR-JEN
 
Ew35859862
Ew35859862Ew35859862
Ew35859862
IJERA Editor
 
The Melting of an hailstone: Energy, Heat and Mass Transfer Effects
The Melting of an hailstone: Energy, Heat and Mass Transfer EffectsThe Melting of an hailstone: Energy, Heat and Mass Transfer Effects
The Melting of an hailstone: Energy, Heat and Mass Transfer EffectsAkinola Oyedele
 
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
Wasswaderrick3
 
Heatequationincfd
HeatequationincfdHeatequationincfd
Heatequationincfd
Parhamsagharchi
 
Temperature Distribution in a ground section of a double-pipe system in a dis...
Temperature Distribution in a ground section of a double-pipe system in a dis...Temperature Distribution in a ground section of a double-pipe system in a dis...
Temperature Distribution in a ground section of a double-pipe system in a dis...
Paolo Fornaseri
 
Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated PipeCfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe
IOSR Journals
 

Similar to آموزش انتقال حرارت - بخش سوم (18)

heat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinderheat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinder
 
Radial heat conduction
Radial heat conductionRadial heat conduction
Radial heat conduction
 
Thermal transfer Characteristics of TCM
Thermal transfer Characteristics of TCMThermal transfer Characteristics of TCM
Thermal transfer Characteristics of TCM
 
Examen termo final
Examen termo finalExamen termo final
Examen termo final
 
Design & CFD Analysis of Heat Exchanger
Design & CFD Analysis of Heat ExchangerDesign & CFD Analysis of Heat Exchanger
Design & CFD Analysis of Heat Exchanger
 
Radial Heat conduction.docx
Radial Heat conduction.docxRadial Heat conduction.docx
Radial Heat conduction.docx
 
Practica 3-ley-de-raoult
Practica 3-ley-de-raoultPractica 3-ley-de-raoult
Practica 3-ley-de-raoult
 
Fluid Flow on Vertical Surface
Fluid Flow on Vertical SurfaceFluid Flow on Vertical Surface
Fluid Flow on Vertical Surface
 
Me 313 a mq2 solution
Me 313 a mq2 solutionMe 313 a mq2 solution
Me 313 a mq2 solution
 
H04525159
H04525159H04525159
H04525159
 
Ew35859862
Ew35859862Ew35859862
Ew35859862
 
2014_12_Sierra
2014_12_Sierra2014_12_Sierra
2014_12_Sierra
 
The Melting of an hailstone: Energy, Heat and Mass Transfer Effects
The Melting of an hailstone: Energy, Heat and Mass Transfer EffectsThe Melting of an hailstone: Energy, Heat and Mass Transfer Effects
The Melting of an hailstone: Energy, Heat and Mass Transfer Effects
 
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
GENERAL MATHEMATICAL THEORY OF HEAT CONDUCTION USING THE INTEGRAL HEAT EQUATI...
 
Heatequationincfd
HeatequationincfdHeatequationincfd
Heatequationincfd
 
FJMS
FJMSFJMS
FJMS
 
Temperature Distribution in a ground section of a double-pipe system in a dis...
Temperature Distribution in a ground section of a double-pipe system in a dis...Temperature Distribution in a ground section of a double-pipe system in a dis...
Temperature Distribution in a ground section of a double-pipe system in a dis...
 
Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated PipeCfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe
 

More from faradars

آموزش شبیه سازی مدارات الکتریکی با OrCAD
آموزش شبیه سازی مدارات الکتریکی با OrCADآموزش شبیه سازی مدارات الکتریکی با OrCAD
آموزش شبیه سازی مدارات الکتریکی با OrCAD
faradars
 
آموزش فیزیک الکتریسیته - فصل ششم تا نهم
آموزش فیزیک الکتریسیته - فصل ششم تا نهمآموزش فیزیک الکتریسیته - فصل ششم تا نهم
آموزش فیزیک الکتریسیته - فصل ششم تا نهم
faradars
 
آموزش فیزیک الکتریسیته - فصل یکم تا پنجم
آموزش فیزیک الکتریسیته - فصل یکم تا پنجمآموزش فیزیک الکتریسیته - فصل یکم تا پنجم
آموزش فیزیک الکتریسیته - فصل یکم تا پنجم
faradars
 
آموزش ذخیره و بازیابی اطلاعات - درس دهم
آموزش ذخیره و بازیابی اطلاعات - درس دهمآموزش ذخیره و بازیابی اطلاعات - درس دهم
آموزش ذخیره و بازیابی اطلاعات - درس دهم
faradars
 
آموزش ذخیره و بازیابی اطلاعات - درس نهم
آموزش ذخیره و بازیابی اطلاعات - درس نهمآموزش ذخیره و بازیابی اطلاعات - درس نهم
آموزش ذخیره و بازیابی اطلاعات - درس نهم
faradars
 
آموزش ذخیره و بازیابی اطلاعات - درس هشتم
آموزش ذخیره و بازیابی اطلاعات - درس هشتمآموزش ذخیره و بازیابی اطلاعات - درس هشتم
آموزش ذخیره و بازیابی اطلاعات - درس هشتم
faradars
 
آموزش ذخیره و بازیابی اطلاعات - درس هفتم
آموزش ذخیره و بازیابی اطلاعات - درس هفتمآموزش ذخیره و بازیابی اطلاعات - درس هفتم
آموزش ذخیره و بازیابی اطلاعات - درس هفتم
faradars
 
آموزش ذخیره و بازیابی اطلاعات - درس ششم
آموزش ذخیره و بازیابی اطلاعات - درس ششمآموزش ذخیره و بازیابی اطلاعات - درس ششم
آموزش ذخیره و بازیابی اطلاعات - درس ششم
faradars
 
آموزش ذخیره و بازیابی اطلاعات - درس پنجم
آموزش ذخیره و بازیابی اطلاعات - درس پنجمآموزش ذخیره و بازیابی اطلاعات - درس پنجم
آموزش ذخیره و بازیابی اطلاعات - درس پنجم
faradars
 
آموزش ذخیره و بازیابی اطلاعات - درس چهارم
آموزش ذخیره و بازیابی اطلاعات - درس چهارمآموزش ذخیره و بازیابی اطلاعات - درس چهارم
آموزش ذخیره و بازیابی اطلاعات - درس چهارم
faradars
 
آموزش ذخیره و بازیابی اطلاعات - درس سوم
آموزش ذخیره و بازیابی اطلاعات - درس سومآموزش ذخیره و بازیابی اطلاعات - درس سوم
آموزش ذخیره و بازیابی اطلاعات - درس سوم
faradars
 
آموزش ذخیره و بازیابی اطلاعات - درس دوم
آموزش ذخیره و بازیابی اطلاعات - درس دومآموزش ذخیره و بازیابی اطلاعات - درس دوم
آموزش ذخیره و بازیابی اطلاعات - درس دوم
faradars
 
آموزش ذخیره و بازیابی اطلاعات - درس یکم
آموزش ذخیره و بازیابی اطلاعات - درس یکمآموزش ذخیره و بازیابی اطلاعات - درس یکم
آموزش ذخیره و بازیابی اطلاعات - درس یکم
faradars
 
آموزش ترمودینامیک ۲ بخش سوم
آموزش ترمودینامیک ۲ بخش سومآموزش ترمودینامیک ۲ بخش سوم
آموزش ترمودینامیک ۲ بخش سوم
faradars
 
آموزش ترمودینامیک ۲ بخش هشتم
آموزش ترمودینامیک ۲ بخش هشتمآموزش ترمودینامیک ۲ بخش هشتم
آموزش ترمودینامیک ۲ بخش هشتم
faradars
 
آموزش ترمودینامیک ۲ بخش دوم
آموزش ترمودینامیک ۲ بخش دومآموزش ترمودینامیک ۲ بخش دوم
آموزش ترمودینامیک ۲ بخش دوم
faradars
 
آموزش ترمودینامیک ۲ بخش هفتم
آموزش ترمودینامیک ۲ بخش هفتمآموزش ترمودینامیک ۲ بخش هفتم
آموزش ترمودینامیک ۲ بخش هفتم
faradars
 
آموزش ترمودینامیک ۲ بخش ششم
آموزش ترمودینامیک ۲ بخش ششمآموزش ترمودینامیک ۲ بخش ششم
آموزش ترمودینامیک ۲ بخش ششم
faradars
 
آموزش ترمودینامیک ۲ بخش اول
آموزش ترمودینامیک ۲ بخش اولآموزش ترمودینامیک ۲ بخش اول
آموزش ترمودینامیک ۲ بخش اول
faradars
 
آموزش ترمودینامیک ۲ بخش پنجم
آموزش ترمودینامیک ۲ بخش پنجمآموزش ترمودینامیک ۲ بخش پنجم
آموزش ترمودینامیک ۲ بخش پنجم
faradars
 

More from faradars (20)

آموزش شبیه سازی مدارات الکتریکی با OrCAD
آموزش شبیه سازی مدارات الکتریکی با OrCADآموزش شبیه سازی مدارات الکتریکی با OrCAD
آموزش شبیه سازی مدارات الکتریکی با OrCAD
 
آموزش فیزیک الکتریسیته - فصل ششم تا نهم
آموزش فیزیک الکتریسیته - فصل ششم تا نهمآموزش فیزیک الکتریسیته - فصل ششم تا نهم
آموزش فیزیک الکتریسیته - فصل ششم تا نهم
 
آموزش فیزیک الکتریسیته - فصل یکم تا پنجم
آموزش فیزیک الکتریسیته - فصل یکم تا پنجمآموزش فیزیک الکتریسیته - فصل یکم تا پنجم
آموزش فیزیک الکتریسیته - فصل یکم تا پنجم
 
آموزش ذخیره و بازیابی اطلاعات - درس دهم
آموزش ذخیره و بازیابی اطلاعات - درس دهمآموزش ذخیره و بازیابی اطلاعات - درس دهم
آموزش ذخیره و بازیابی اطلاعات - درس دهم
 
آموزش ذخیره و بازیابی اطلاعات - درس نهم
آموزش ذخیره و بازیابی اطلاعات - درس نهمآموزش ذخیره و بازیابی اطلاعات - درس نهم
آموزش ذخیره و بازیابی اطلاعات - درس نهم
 
آموزش ذخیره و بازیابی اطلاعات - درس هشتم
آموزش ذخیره و بازیابی اطلاعات - درس هشتمآموزش ذخیره و بازیابی اطلاعات - درس هشتم
آموزش ذخیره و بازیابی اطلاعات - درس هشتم
 
آموزش ذخیره و بازیابی اطلاعات - درس هفتم
آموزش ذخیره و بازیابی اطلاعات - درس هفتمآموزش ذخیره و بازیابی اطلاعات - درس هفتم
آموزش ذخیره و بازیابی اطلاعات - درس هفتم
 
آموزش ذخیره و بازیابی اطلاعات - درس ششم
آموزش ذخیره و بازیابی اطلاعات - درس ششمآموزش ذخیره و بازیابی اطلاعات - درس ششم
آموزش ذخیره و بازیابی اطلاعات - درس ششم
 
آموزش ذخیره و بازیابی اطلاعات - درس پنجم
آموزش ذخیره و بازیابی اطلاعات - درس پنجمآموزش ذخیره و بازیابی اطلاعات - درس پنجم
آموزش ذخیره و بازیابی اطلاعات - درس پنجم
 
آموزش ذخیره و بازیابی اطلاعات - درس چهارم
آموزش ذخیره و بازیابی اطلاعات - درس چهارمآموزش ذخیره و بازیابی اطلاعات - درس چهارم
آموزش ذخیره و بازیابی اطلاعات - درس چهارم
 
آموزش ذخیره و بازیابی اطلاعات - درس سوم
آموزش ذخیره و بازیابی اطلاعات - درس سومآموزش ذخیره و بازیابی اطلاعات - درس سوم
آموزش ذخیره و بازیابی اطلاعات - درس سوم
 
آموزش ذخیره و بازیابی اطلاعات - درس دوم
آموزش ذخیره و بازیابی اطلاعات - درس دومآموزش ذخیره و بازیابی اطلاعات - درس دوم
آموزش ذخیره و بازیابی اطلاعات - درس دوم
 
آموزش ذخیره و بازیابی اطلاعات - درس یکم
آموزش ذخیره و بازیابی اطلاعات - درس یکمآموزش ذخیره و بازیابی اطلاعات - درس یکم
آموزش ذخیره و بازیابی اطلاعات - درس یکم
 
آموزش ترمودینامیک ۲ بخش سوم
آموزش ترمودینامیک ۲ بخش سومآموزش ترمودینامیک ۲ بخش سوم
آموزش ترمودینامیک ۲ بخش سوم
 
آموزش ترمودینامیک ۲ بخش هشتم
آموزش ترمودینامیک ۲ بخش هشتمآموزش ترمودینامیک ۲ بخش هشتم
آموزش ترمودینامیک ۲ بخش هشتم
 
آموزش ترمودینامیک ۲ بخش دوم
آموزش ترمودینامیک ۲ بخش دومآموزش ترمودینامیک ۲ بخش دوم
آموزش ترمودینامیک ۲ بخش دوم
 
آموزش ترمودینامیک ۲ بخش هفتم
آموزش ترمودینامیک ۲ بخش هفتمآموزش ترمودینامیک ۲ بخش هفتم
آموزش ترمودینامیک ۲ بخش هفتم
 
آموزش ترمودینامیک ۲ بخش ششم
آموزش ترمودینامیک ۲ بخش ششمآموزش ترمودینامیک ۲ بخش ششم
آموزش ترمودینامیک ۲ بخش ششم
 
آموزش ترمودینامیک ۲ بخش اول
آموزش ترمودینامیک ۲ بخش اولآموزش ترمودینامیک ۲ بخش اول
آموزش ترمودینامیک ۲ بخش اول
 
آموزش ترمودینامیک ۲ بخش پنجم
آموزش ترمودینامیک ۲ بخش پنجمآموزش ترمودینامیک ۲ بخش پنجم
آموزش ترمودینامیک ۲ بخش پنجم
 

Recently uploaded

Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Introduction to Quality Improvement Essentials
Introduction to Quality Improvement EssentialsIntroduction to Quality Improvement Essentials
Introduction to Quality Improvement Essentials
Excellence Foundation for South Sudan
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
Nguyen Thanh Tu Collection
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
Celine George
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
GeoBlogs
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
Steve Thomason
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 

Recently uploaded (20)

Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Introduction to Quality Improvement Essentials
Introduction to Quality Improvement EssentialsIntroduction to Quality Improvement Essentials
Introduction to Quality Improvement Essentials
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 

آموزش انتقال حرارت - بخش سوم

  • 1. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مدرس‬: ‫کو‬‫نقمه‬ ‫مرتضی‬ ‫مکانیک‬ ‫مهندسی‬ ‫ارشد‬ ‫کارشناسی‬ ‫دانشجوی‬-‫انرژی‬ ‫تبدیل‬ ‫اصفهان‬ ‫صنعتی‬ ‫دانشگاه‬ ‫حرارت‬ ‫انتقال‬ ‫درس‬ ‫آموزشی‬ ‫دوره‬ 1 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 2. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫درس‬‫یازدهم‬ ‫جابجایی‬ ‫حرارت‬ ‫انتقال‬ ‫ها‬ ‫جریان‬ ‫انواع‬ ‫حرارت‬ ‫انتقال‬ ‫ضریب‬ ‫آوردن‬ ‫دست‬ ‫به‬ ‫و‬ 2 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 3. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مطالب‬ ‫فهرست‬ •‫حدس‬‫دما‬ ‫پروفیل‬ •‫نحوه‬‫نوسلت‬ ‫عدد‬ ‫و‬ ‫جابجایی‬ ‫حرارت‬ ‫انتقال‬ ‫ضریب‬ ‫آوردن‬ ‫دست‬ ‫به‬ •‫دمای‬‫سیال‬ ‫فیلم‬ ‫اصطالح‬ ‫به‬ •‫آنالوژی‬‫برن‬ ‫کول‬ •‫انتقال‬‫مایع‬ ‫فلزات‬ ‫در‬ ‫حرارت‬ •‫انتقال‬‫لوله‬ ‫درون‬ ‫جابجایی‬ ‫حرارت‬ •‫جریان‬‫آن‬ ‫بر‬ ‫حاکم‬ ‫روابط‬ ‫و‬ ‫کوئت‬ 3 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 4. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫دما‬ ‫پروفیل‬ ‫حدس‬ •‫وجود‬‫اختالف‬‫دما‬‫بین‬‫صفحه‬‫و‬‫سیال‬‫منجر‬‫به‬‫الیه‬‫مرزی‬‫حرارتی‬‫شود‬‫می‬. •‫الیه‬‫مرزی‬‫هیدرودینامیکی‬𝛿 •‫الیه‬‫مرزی‬‫حرارتی‬𝛿𝑡 •‫حل‬‫معادالت‬‫پیوستگی‬‫و‬‫اندازه‬‫حرکت‬(‫به‬‫صورت‬‫عددی‬)«‫توزیع‬‫سرعت‬»‫را‬‫دهد‬‫می‬ •‫حل‬‫معادله‬‫انرژی‬‫همراه‬‫با‬‫این‬‫دو‬،‫معادله‬(‫به‬‫صورت‬‫عددی‬)«‫توزیع‬‫دما‬»‫را‬‫نیز‬‫دهد‬‫می‬ •‫روند‬‫حدس‬‫پروفیل‬‫دما‬‫مانند‬‫حدس‬‫پروفیل‬‫سرعت‬ 4 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 5. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫سرعت‬ ‫پروفیل‬ ‫حدس‬ ‫بررسی‬ 𝑢 = 𝑐0 + 𝑐1 𝑦 + 𝑐2 𝑦2 + 𝑐3 𝑦3 •‫مرزی‬ ‫شرایط‬ 1) 𝑦 = 0 u = 0 2) 𝑦 = δ u = 𝑢∞ 3) 𝑦 = δ 𝜕u 𝜕𝑦 = 0 𝑢 𝜕𝑢 𝜕𝑥 + 𝑣 𝜕𝑢 𝜕𝑦 = 𝜗 𝜕2 𝑢 𝜕𝑦2 4) y = 0 𝜕2 𝑢 𝜕𝑦2 = 0 𝑢 = 3 2 𝑦 𝛿 − 1 2 𝑦 𝛿 3 5 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 6. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫سرعت‬ ‫پروفیل‬ ‫حدس‬ ‫بررسی‬ 𝑢 = 3 2 𝑦 𝛿 − 1 2 𝑦 𝛿 3 • Von-Karman: 𝑑 𝑑𝑥 න 0 𝛿 𝑢∞ − 𝑢 𝑢 𝑑𝑦 = 𝜐 𝑑𝑢 𝑑𝑦 | 𝑦=0 𝛿 𝑥 = 4.64 𝑅𝑒 • Exact Value: 𝛿 𝑥 = 5 𝑅𝑒 6 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 7. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫حدس‬‫پروفیل‬‫دما‬ 𝑇 = 𝑐0 + 𝑐1 𝑦 + 𝑐2 𝑦2 + 𝑐3 𝑦3 •‫مرزی‬ ‫شرایط‬ 1) 𝑦 = 0 T = 𝑇 𝑤 2) 𝑦 = δ 𝑡 T = 𝑇∞ 3) 𝑦 = δ 𝑡 𝜕T 𝜕𝑦 = 0 𝑢 𝜕𝑇 𝜕𝑥 + 𝑣 𝜕𝑇 𝜕𝑦 = 𝛼 𝜕2 𝑢 𝜕𝑦2 4) y = 0 𝜕2 𝑇 𝜕𝑦2 = 0 •‫متغیر‬ ‫تغییر‬𝜃 = 𝑇 − 𝑇 𝑤 7 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 8. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫حدس‬‫پروفیل‬‫دما‬ •‫جدید‬ ‫متغیر‬ ‫با‬ ‫مرزی‬ ‫شرایط‬ ‫بازنویسی‬ 1) 𝑦 = 0 θ = 0 2) 𝑦 = δ 𝑡 θ = 𝑇∞ − 𝑇 𝑤 = 𝜃∞ 3) 𝑦 = δ 𝑡 𝜕θ 𝜕𝑦 = 0 4) y = 0 𝜕2 𝜃 𝜕𝑦2 = 0 𝜃 𝜃∞ = 𝑇 − 𝑇 𝑤 𝑇∞ − 𝑇 𝑤 = 3 2 𝑦 𝛿𝑡 − 3 2 𝑦 𝛿𝑡 3 8 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 9. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫حدس‬‫پروفیل‬‫دما‬ •‫معادله‬ ‫از‬ ‫حرارتی‬ ‫مرزی‬ ‫الیه‬ ‫ضخامت‬ ‫آوردن‬ ‫دست‬ ‫به‬ ‫برای‬‫انتگرالی‬‫گیریم‬‫می‬ ‫بهره‬ ‫انرژی‬: 𝑑 𝑑𝑥 න 0 𝛿 𝑡 𝑇∞ − 𝑇 𝑢 𝑑𝑦 = 𝛼 𝜕𝑇 𝜕𝑦 | 𝑦=0 •‫ال‬ ‫ضخامت‬ ‫فرمول‬ ‫به‬ ‫توجه‬ ‫با‬ ‫و‬ ‫سرعت‬ ‫و‬ ‫دما‬ ‫های‬ ‫پروفیل‬ ‫حدس‬ ‫از‬ ‫آمده‬ ‫دست‬ ‫به‬ ‫معادالت‬ ‫جایگذاری‬ ‫با‬‫یه‬ ‫داشت‬ ‫خواهیم‬ ‫هیدرودینامیکی‬ ‫مرزی‬: •‫از‬ ‫صفحه‬ ‫از‬ ‫حرارت‬ ‫اینکه‬ ‫فرض‬ ‫با‬x=x0‫باشد‬ ‫شده‬ ‫آغاز‬. 𝛿𝑡 𝛿 = 1 1.026 𝑃𝑟− 1 3 1 − 𝑥0 𝑥 3 4 1 3 9 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 10. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫جابجایی‬ ‫حرارت‬ ‫انتقال‬ ‫ضریب‬ ‫آوردن‬ ‫دست‬ ‫به‬ ‫نحوه‬ 𝛿𝑡 𝛿 = 1 1.026 𝑃𝑟− 1 3 1 − 𝑥0 𝑥 3 4 1 3 •‫یابد‬ ‫انتقال‬ ‫صفحه‬ ‫ابتدای‬ ‫از‬ ‫حرارت‬ ‫اگر‬(x0=0) 𝛿𝑡 𝛿 = 1 1.026 𝑃𝑟− 1 3 ≅ 𝑃𝑟− 1 3 •‫عدد‬ ‫که‬ ‫کرد‬ ‫ادعا‬ ‫توان‬‫می‬‫پراندتل‬‫بین‬ ‫رابط‬‫هیدرودینامیک‬‫است‬ ‫حرارت‬ ‫و‬. 10 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 11. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫جابجایی‬ ‫حرارت‬ ‫انتقال‬ ‫ضریب‬ ‫آوردن‬ ‫دست‬ ‫به‬ ‫نحوه‬ •‫دیواره‬ ‫روی‬ ‫سیال‬ ‫به‬ ‫مربوط‬ ‫رابطه‬: ℎ = −𝑘∞ 𝑑𝑇 𝑑𝑦 | 𝑦=0 𝑇 𝑤 − 𝑇∞ = −𝑘∞(𝑇∞ − 𝑇 𝑤) 3 2𝛿𝑡 − 3𝑦2 2𝛿𝑡 3 𝑦=0 𝑇 𝑤 − 𝑇∞ = 3𝑘∞ 2𝛿𝑡 ℎ ∝ 1 𝛿𝑡 •‫عبارت‬ ‫جایگذاری‬ ‫با‬h‫فرمول‬ ‫در‬𝛿𝑡‫داشت‬ ‫خواهیم‬: ℎ = 0.332𝑃𝑟 1 3 𝑘 𝑢∞ 𝜗𝑥 1 2 1 − 𝑥0 𝑥 3 4 − 1 3 = ℎ 𝑥 • Where hx is “Local convection heat transfer coefficient” 11 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 12. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫جابجایی‬ ‫حرارت‬ ‫انتقال‬ ‫ضریب‬ ‫آوردن‬ ‫دست‬ ‫به‬ ‫نحوه‬ •‫شود‬ ‫انجام‬ ‫صفحه‬ ‫ابتدای‬ ‫از‬ ‫حرارت‬ ‫انتقال‬ ‫اگر‬: ℎ 𝑥 = 0.332𝑃𝑟 1 3 𝑘 𝑢∞ 𝜗𝑥 1 2 = 0.332 𝜇𝑐 𝑝 𝑘 1 3 𝑘 𝜌𝑢∞ 𝜇𝑥 1 2 ℎ 𝑥 = 𝑓(𝜇, 𝑘, 𝑐 𝑝, 𝑢∞, 𝑥, 𝜌) 12 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 13. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫نوسلت‬ ‫عدد‬ • Local Nusselt number is defined as: 𝑁𝑢 𝑥 = ℎ𝑥 𝑘 •‫عدد‬ ‫با‬ ‫تفاوت‬‫بایو‬‫است‬ ‫آن‬ ‫طول‬ ‫و‬ ‫هدایتی‬ ‫ضریب‬ ‫در‬. •‫داشت‬ ‫خواهیم‬ ‫قبلی‬ ‫مسئله‬ ‫برای‬ ‫پس‬: 𝑁𝑢 𝑥 = 0.332𝑃𝑟 1 3 𝑅𝑒 1 2 1 − 𝑥0 𝑥 3 4 − 1 3 •‫صفحه‬ ‫ابتدای‬ ‫از‬ ‫حرارت‬ ‫انتقال‬: 𝑁𝑢 𝑥 = 0.332𝑃𝑟 1 3 𝑅𝑒 1 2 13 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 14. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫حرارت‬ ‫انتقال‬ ‫ضریب‬ ‫آوردن‬ ‫دست‬ ‫به‬ ‫نحوه‬‫نوسلت‬ ‫عدد‬ ‫و‬ ‫جابجایی‬ • So, For calculating the convective heat transfer coefficient we should integrate hx from 0 to L and devide to the length of plane: തℎ = ‫׬‬0 𝐿 ℎ 𝑥 𝑑𝑥 ‫׬‬0 𝐿 𝑑𝑥 = ‫׬‬0 𝐿 ℎ 𝑥 𝑑𝑥 𝐿 = 2ℎ 𝑥=𝐿 • Then, For Nusselt number we have: 𝑁𝑢 = 2𝑁𝑢 𝑥=𝐿 14 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 15. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫سیال‬ ‫فیلم‬ ‫دمای‬ ℎ 𝑥 = 𝑓(𝜇, 𝑘, 𝑐 𝑝, 𝑢∞, 𝑥, 𝜌) •‫پارامترهای‬𝜇,𝑘,𝑐 𝑝,𝜌‫هستند‬ ‫دما‬ ‫به‬ ‫وابسته‬ 𝑇𝑓 = 𝑇 𝑤 + 𝑇∞ 2 •‫آرام‬ ‫مرزی‬ ‫الیه‬ ‫برای‬ ‫گذشته‬ ‫روابط‬(Re<5×105)‫بیش‬ ‫پراندتل‬ ‫اعداد‬ ‫و‬‫از‬0.7‫صادق‬‫است‬ •‫دارای‬ ‫که‬ ‫مایع‬ ‫فلزات‬ ‫برای‬‫پراندتل‬‫خوا‬ ‫اشاره‬ ‫آن‬ ‫به‬ ً‫ا‬‫بعد‬ ‫که‬ ‫است‬ ‫متفاوت‬ ‫ها‬ ‫فرمول‬ ‫این‬ ،‫هستند‬ ‫کمی‬‫کرد‬ ‫هیم‬ 15 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 16. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مثال‬ •‫دمای‬ ‫در‬ ‫هوا‬27‫صفحه‬ ‫روی‬ ‫سلسیوس‬ ‫درجه‬‫مسطحه‬‫دهی‬ ‫حرارت‬ ‫زیر‬ ‫از‬ ‫را‬ ‫صفحه‬ ‫اگر‬ ،‫کند‬‫می‬ ‫حرکت‬ ‫افقی‬‫م‬ ‫به‬ ‫صفحه‬ ‫دمای‬ ‫که‬ ‫ای‬ ‫گونه‬ ‫به‬60‫برسد؛‬ ‫سلسیوس‬ ‫درجه‬ •‫الف‬)‫در‬ ‫شده‬ ‫جابجا‬ ‫گرمای‬ ‫محاسبه‬ ‫مطلوبست‬20‫صفحه‬ ‫ابتدای‬ ‫از‬ ‫متری‬ ‫سانتی‬(‫را‬ ‫هوا‬ ‫سرعت‬2‫ثانیه‬ ‫بر‬ ‫متر‬ ‫بگیرید‬ ‫نظر‬ ‫در‬) •‫ب‬)‫در‬ ‫شده‬ ‫جابجا‬ ‫گرمای‬ ‫محاسبه‬ ‫مطلوبست‬40‫صفحه‬ ‫ابتدای‬ ‫متری‬ ‫سانتی‬ ‫حل‬: 𝑇∞ = 27℃ = 273 + 27 𝐾 = 300 𝐾 𝑇 𝑤 = 60℃ = 333 𝐾 𝑢∞ = 2 Τ𝑚 𝑠 16 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 17. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مثال‬ 𝑇𝑓 = 333 + 300 2 = 316.5 𝐾 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑎𝑝𝑝𝑒𝑛𝑑𝑖𝑥 𝑡𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑇𝑓 = 316.5 𝑤𝑒 ℎ𝑎𝑣𝑒: 𝜗 ≅ 17.36 × 10−6 ൗ𝑚2 𝑠 𝑘 ≅ 0.02749 ൗ𝑊 𝑚℃ 𝑃𝑟𝑎𝑖𝑟 ≅ 0.7 𝑐 𝑝 ≅ 1.006 ൗ 𝑘𝐽 𝑘𝑔℃ First we should check the stream that is laminar or not? 𝑅𝑒 = 𝜌𝑢∞ 𝑥 𝜇 = 𝑢∞ 𝑥 𝜗 = (2)(0.20) 17.36 × 10−6 = 23041 < 105 So the stream is laminar. 17 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 18. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مثال‬ 𝑁𝑢 𝑥 = ℎ 𝑥 𝑥 𝑘 = 0.332𝑃𝑟 ൗ1 3 𝑅𝑒 ൗ1 2 = 0.332 0.7 ൗ1 3 23041 ൗ1 2 = 44.74 ℎ 𝑥 = 𝑁𝑢 𝑥 𝑘 𝑥 = 44.74 0.02749 0.20 = 6.15 ൗ𝑊 𝑚2℃ തℎ = 2ℎ 𝑥=𝐿 = 2 × 6.15 = 12.3 ൗ𝑊 𝑚2℃ 𝑞 = തℎ𝐴 𝑇 𝑤 − 𝑇∞ = 12.3 1 0.20 333 − 300 = 81.18 𝑊 18 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 19. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مثال‬ 𝑅𝑒 = 𝜌𝑢∞ 𝑥 𝜇 = 𝑢∞ 𝑥 𝜗 = (2)(0.40) 17.36 × 10−6 = 46082 < 105 𝑁𝑢 𝑥 = ℎ 𝑥 𝑥 𝑘 = 0.332𝑃𝑟 ൗ1 3 𝑅𝑒 ൗ1 2 = 0.332 0.7 ൗ1 3 46082 ൗ1 2 = 63.28 ℎ 𝑥 = 𝑁𝑢 𝑥 𝑘 𝑥 = 63.28 0.02749 0.40 = 4.349 ൗ𝑊 𝑚2℃ തℎ = 2ℎ 𝑥=𝐿 = 2 × 4.349 = 8.698 ൗ𝑊 𝑚2℃ 𝑞 = തℎ𝐴 𝑇 𝑤 − 𝑇∞ = 8.698 1 0.40 333 − 300 = 114.6 𝑊 19 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 20. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫آنالوژی‬‫کولبرن‬ •‫سیاالت‬ ‫مکانیک‬ ‫در‬2‫درگ‬ ‫ضریب‬ ‫که‬ ‫خواندیم‬(‫اصطکاک‬)‫آید‬‫می‬ ‫دست‬ ‫به‬ ‫شکل‬ ‫این‬ ‫به‬: 𝐶 𝑑 = 𝐶𝑓 = 𝜏 𝑤 1 2 𝜌𝑢∞ 2 •‫تنش‬ ‫آن‬ ‫در‬ ‫که‬‫برشی‬‫شود‬‫می‬ ‫دیواره‬ ‫به‬ ‫مربوط‬: 𝜏 𝑤 = 𝜏 𝑦=0 = 𝜇 𝑑𝑢 𝑑𝑦 | 𝑦=0 •‫کنیم‬‫می‬ ‫محاسبه‬ ‫را‬ ‫درگ‬ ‫ضریب‬ ،‫ایم‬ ‫آورده‬ ‫دست‬ ‫به‬ ‫تابحال‬ ‫که‬ ‫روابطی‬ ‫برای‬: 𝜏 𝑤 = 𝜇 𝑑𝑢 𝑑𝑦 | 𝑦=0 = 𝜇𝑢∞ 3 2𝛿 − 3𝑦2 2𝛿3 𝑦=0 = 3𝜇𝑢∞ 2𝛿 = 3𝜇𝑢∞ 2 𝜌𝑢∞ 𝑥 𝜇 ൗ1 2 4.64𝑥 20 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 21. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫آنالوژی‬‫کولبرن‬ 1 2 𝐶 𝑑 = 𝜏 𝑤 𝜌𝑢∞ 2 = 3𝜇𝑢∞ 𝜌 ൗ1 2 𝑢∞ ൗ1 2 𝑥 ൗ1 2 2 4.64 𝑥𝜇 ൗ1 2 𝜌𝑢∞ 2 = 3𝜇 ൗ1 2 2 4.64 𝑢∞ ൗ1 2 𝑥 ൗ1 2 𝜌 ൗ1 2 1 2 𝐶 𝑑 ≈ 0.323𝑅𝑒 𝑥 − ൗ1 2 I •‫عدد‬‫استانتون‬: 𝑠𝑡 = 𝑁𝑢 𝑅𝑒 𝑃𝑟 = ℎ𝑥 𝑘 𝑢∞ 𝑥 𝜗 𝜗 𝛼 = ℎ 𝑘 𝜌𝑐 𝑝 𝑘𝑢∞ = ℎ 𝜌𝑐 𝑝 𝑢∞ 21 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 22. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫آنالوژی‬‫کولبرن‬ 𝑁𝑢 𝑥 = ℎ 𝑥 𝑥 𝑘 = 0.332𝑃𝑟 ൗ1 3 𝑅𝑒 ൗ1 2 𝑠𝑡 = 𝑁𝑢 𝑥 𝑃𝑒𝑐 = 𝑁𝑢 𝑥 𝑅𝑒 𝑃𝑟 = 0.332 𝑃𝑟 ൗ1 3 𝑅𝑒 ൗ1 2 𝑅𝑒 𝑃𝑟 = 0.332𝑃𝑟− ൗ2 3 𝑅𝑒− ൗ1 2 𝑠𝑡𝑃𝑟 ൗ2 3 = 0.332𝑅𝑒− ൗ1 2 (II) 22 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 23. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫آنالوژی‬‫کولبرن‬ 1 2 𝐶 𝑑 ≈ 0.323𝑅𝑒 𝑥 − ൗ1 2 I 𝑠𝑡𝑃𝑟 ൗ2 3 = 0.332𝑅𝑒− ൗ1 2 II 1 2 𝐶 𝑑 ≅ 𝑠𝑡𝑃𝑟 ൗ2 3 = 0.332𝑅𝑒− ൗ1 2 23 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 24. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مثال‬ •‫در‬‫مثال‬،‫قبل‬‫اگر‬‫طول‬‫صفحه‬40‫سانتی‬‫متر‬‫بوده‬‫و‬‫عمق‬‫صفحه‬1‫واحد‬‫باشد‬‫و‬‫فشار‬‫هوا‬‫نیز‬1‫اتمسفر؛‬ ‫مطلوبست‬‫محاسبه‬‫مقدار‬‫درگ؟‬ ‫حل‬: 𝑃 = 𝜌𝑅𝑇 ⟹ 𝜌 = 𝑃 𝑅𝑇 = 1.0132 × 105 287 316.5 = 1.115 ൗ𝑘𝑔 𝑚3 𝑠𝑡 = 𝑁𝑢 𝑅𝑒 𝑃𝑟 = 63.28 (46082)(0.7) = 3.88 × 10−3 1 2 𝐶 𝑑 = 𝑠𝑡𝑃𝑟 ൗ2 3 = 3.88 × 10−3 0.7 ൗ2 3 = 3.06 × 10−3 24 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 25. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مثال‬ 𝐶 𝑑 = 𝜏 𝑤 1 2 𝜌𝑢∞ 2 ⟹ 𝜏 𝑤 = 1 2 𝐶 𝑑 𝜌𝑢∞ 2 = 3.06 × 10−3 1.115 22 𝜏 𝑤 = 0.0136 ൗ𝑁 𝑚2 𝐷𝑟𝑎𝑔 = 𝐷 = 𝜏 𝑤 𝐴 = 0.0136 1 0.40 = 0.00544 𝑁 25 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 26. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫تخت‬ ‫صفحه‬ ‫روی‬ ‫مغشوش‬ ‫جریان‬ • (Reminder) In laminar flow, the friction coefficient obtains from: 𝑓 = 64 𝑅𝑒 • Colburn analogy was for polished horizontal planes and a link between heat transfer and shear stress on the wall. This analogy is used both laminar and turbulent flows. • In fluid mechanics mentioned that the velocity distribution for turbulent flow is: 𝑢 𝑢∞ = 𝑦 𝛿 ൗ1 7 26 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 27. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫تخت‬ ‫صفحه‬ ‫روی‬ ‫مغشوش‬ ‫جریان‬ • By replacing this formula in von-karman equation 𝑑 𝑑𝑥 න 0 𝛿 𝑢∞ − 𝑢 𝑢 𝑑𝑦 = 𝜐 𝑑𝑢 𝑑𝑦 | 𝑦=0 a) If flow from edge of plane is turbulent: 𝛿 𝑥 = 0.381𝑅𝑒 𝑥 − ൗ1 5 b) If flow is first laminar and then turbulent: 𝛿 𝑥 = 0.381𝑅𝑒 𝑥 − ൗ1 5 − 10256𝑅𝑒 𝑥 −1 27 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 28. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫تخت‬ ‫صفحه‬ ‫روی‬ ‫مغشوش‬ ‫جریان‬ 𝑅𝑒 𝑐𝑟 = 𝑢∞ 𝑥 𝑐 𝜗 ≅ 5 × 105 ⟹ 𝑥 𝑐 = 5 × 105 𝑢∞ 𝜗 • Well-known equation for turbulent flow on polished horizontal plane is: 𝑁𝑢 𝐿 = തℎ𝐿 𝑘 = 𝑃𝑟 ൗ1 3(0.037 𝑅𝑒 𝐿 0.8 − 850) • Where ReL defines as: 𝑅𝑒 𝐿 = 𝑢∞ 𝐿 𝜗 • L is plane’s length • Almost all problems about turbulent solve experimentaly! 28 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 29. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مایع‬ ‫فلزات‬ ‫در‬ ‫جابجایی‬ ‫حرارت‬ ‫انتقال‬ 𝑃𝑟 ≈ 0.001 to 0.01 •‫دارند‬ ‫کاربرد‬ ‫بزرگتر‬ ‫فضای‬ ‫یک‬ ‫به‬ ‫کوچک‬ ‫فضای‬ ‫یک‬ ‫از‬ ‫حرارت‬ ‫سریع‬ ‫انتقال‬ ‫برای‬. •‫سریع‬ ‫بسیار‬ ‫حرارت‬ ‫پخش‬ •‫مرزی‬ ‫الیه‬ ‫طول‬ ‫تمامی‬ ‫در‬ ‫سرعت‬ ‫گرفتن‬ ‫نظر‬ ‫در‬ ‫ثابت‬𝑢 = 𝑢∞ 29 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 30. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مایع‬ ‫فلزات‬ ‫در‬ ‫جابجایی‬ ‫حرارت‬ ‫انتقال‬ •‫دما‬ ‫قبلی‬ ‫پروفیل‬ ‫از‬ ‫استفاده‬: 𝑇 − 𝑇 𝑤 𝑇∞ − 𝑇 𝑤 = 3 2 𝑦 𝛿𝑡 − 3 2 𝑦 𝛿𝑡 3 •‫معادله‬ ‫از‬‫انتگرالی‬‫داشت‬ ‫خواهیم‬ ‫انرژی‬: 𝑑 𝑑𝑥 න 0 𝛿 𝑡 𝑇∞ − 𝑇 𝑢 𝑑𝑦 = 𝛼 𝜕𝑇 𝜕𝑦 | 𝑦=0 •‫با‬ ‫است‬ ‫برابر‬ ‫حرارتی‬ ‫مرزی‬ ‫الیه‬ ‫ضخامت‬ ،‫جدید‬ ‫روابط‬ ‫براساس‬ ‫بنابراین‬: 𝛿𝑡 = 8𝛼𝑥 𝑢∞ = 𝑓(𝑢∞ ൗ1 2 , 𝑥 ൗ1 2) 30 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 31. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مایع‬ ‫فلزات‬ ‫در‬ ‫جابجایی‬ ‫حرارت‬ ‫انتقال‬ •‫که‬ ‫آوردیم‬ ‫دست‬ ‫به‬ ً‫ال‬‫قب‬ ‫طرفی‬ ‫از‬: ℎ = −𝑘∞ 𝑑𝑇 𝑑𝑦 | 𝑦=0 𝑇 𝑤 − 𝑇∞ = 3𝑘∞ 2𝛿𝑡 ‫باال‬ ‫فرمول‬ ‫در‬ ‫رابطه‬ ‫این‬ ‫جایگذاری‬ ‫با‬𝛿𝑡 = 8𝛼𝑥 𝑢∞ ‫داریم‬: 𝑁𝑢 = ℎ𝑥 𝑘 = 3𝑘 2𝛿𝑡 𝑥 𝑘 = 3𝑥 2𝛿𝑡 = 3𝑥 𝑢∞ 2 8𝛼𝑥 = 0.53 𝑅𝑒 𝑃𝑟 ൗ1 2 = 0.53𝑃𝑒𝑐 ൗ1 2 31 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 32. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫جابجایی‬ ‫حرارت‬ ‫انتقال‬ •‫نیست‬ ‫مذاب‬ ‫سیال‬ ‫که‬ ‫مواقعی‬ ‫در‬ ‫نوسلت‬ ‫عدد‬ ‫کلی‬ ‫فرم‬: 𝑁𝑢 𝑥 = 𝐶𝑅𝑒 𝑚 𝑃𝑟 𝑛 •‫افقی‬ ‫مسطح‬ ‫صفحه‬ ‫روی‬ ‫سیال‬ ،‫مثال‬ ‫برای‬: n=1/3 m=1/2 C=0.332 32 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 33. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ 33 Experimental measurements of the convection heat transfer coefficient for a square bar in cross flow yielded the following values: തℎ1 = 50 Τ𝑊 𝑚2.𝐾 when 𝑉1 = 20 Τ𝑚 𝑠 തℎ2 = 40 Τ𝑊 𝑚2.𝐾 when 𝑉2 = 15 Τ𝑚 𝑠 Assume that the functional form of the Nusselt number is 𝑁𝑢 = 𝐶 𝑅𝑒 𝑚 𝑃𝑟 𝑛 , where C, m, and n are constants. (a) What will be the convection heat transfer coefficient for a similar bar with L = 1 m when V = 15 m/s? (b) What will be the convection heat transfer coefficient for a similar bar with L = 1 m when V = 30 m/s? Would your results be the same if the side of the bar, rather than its diagonal, were used as the characteristic length? ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 34. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬ 34 KNOWN: Experimental measurements of the heat transfer coefficient for a square bar in cross flow. FIND: (a) h for the condition when L = 1m and V = 15m/s, (b) h for the condition when L = 1m and V = 30m/s, (c) Effect of defining a side as the characteristic length. ASSUMPTIONS: (1) Functional form 𝑁𝑢 = C Rem Prn applies with C, m, n being constants, (2) Constant properties. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 35. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 35 ANALYSIS: (a) For the experiments and the condition L = 1m and V = 15m/s, it follows that Pr as well as C, m, and n are constants. Hence തℎ𝐿 ∝ 𝑉𝐿 𝑚 Using the experimental results, find m. Substituting values തℎ1 𝐿1 തℎ2 𝐿2 = 𝑉1 𝐿1 𝑉2 𝐿2 𝑚 50 0.5 (40)(0.5) = 20 0.5 (15)(0.5) 𝑚 giving m = 0.782. It follows then for L = 1m and V = 15m/s, തℎ = തℎ1 𝐿1 𝐿 𝑉𝐿 𝑉1 𝐿1 𝑚 = 50 0.5 1.0 15 1.0 20 0.5 0.782 = 34.3 𝑊/𝑚2 𝐾 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 36. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 36 (b) For the condition L = 1m and V = 30m/s, find തℎ = തℎ1 𝐿1 𝐿 𝑉𝐿 𝑉1 𝐿1 𝑚 = 50 0.5 1.0 30 1.0 20 0.5 0.782 = 59.0 𝑊/𝑚2 𝐾 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 37. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 37 (c) If the characteristic length were chosen as a side rather than the diagonal, the value of C would change. However, the coefficients m and n would not change. COMMENTS: The foregoing Nusselt number relation is used frequently in heat transfer analysis, providing appropriate scaling for the effects of length, velocity, and fluid properties on the heat transfer coefficient. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 38. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ 38 Experimental results for heat transfer over a flat plate with an extremely rough surface were found to be correlated by an expression of the form 𝑁𝑢 𝑥 = 0.04 𝑅𝑒 𝑥 0.9 𝑃𝑟1/3 where Nux is the local value of the Nusselt number at a position x measured from the leading edge of the plate. Obtain an expression for the ratio of the average heat transfer coefficient തℎ 𝑥 to the local coefficient hx. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 39. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬ 39 KNOWN: Local Nusselt number correlation for flow over a roughened surface. FIND: Ratio of average heat transfer coefficient to local coefficient. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 40. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 40 ANALYSIS: The local convection coefficient is obtained from the prescribed correlation, ℎ 𝑥 = 𝑁𝑢 𝑥 𝑘 𝑥 = 0.04 𝑘 𝑥 𝑅𝑒 𝑥 0.9 𝑃𝑟 ൗ1 3 ℎ 𝑥 = 0.04 𝑘 𝑉 𝑣 0.9 𝑃𝑟 1 3 𝑥0.9 𝑥 ≡ 𝐶1 𝑥−0.1 To determine the average heat transfer coefficient for the length zero to x, തℎ 𝑥 ≡ 1 𝑥 න 0 𝑥 ℎ 𝑥 𝑑𝑥 = 1 𝑥 𝐶1 න 0 𝑥 𝑥−0.1 𝑑𝑥 തℎ 𝑥 = 𝐶1 𝑥 𝑥0.9 𝑥 = 1.11 𝐶1 𝑥−0.1 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 41. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 41 Hence, the ratio of the average to local coefficient is തℎ 𝑥 ℎ 𝑥 = 1.11 𝐶1 𝑥−0.1 𝐶1 𝑥−0.1 = 1.11 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 42. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫جابجایی‬ ‫حرارت‬ ‫انتقال‬ •‫مذاب‬ ‫سیال‬ ‫برای‬ ‫نوسلت‬ ‫عدد‬ ‫کلی‬ ‫فرم‬: 𝑁𝑢 𝑥 = 𝐶𝑃𝑒𝑐 𝑚 •‫افقی‬ ‫مسطح‬ ‫صفحه‬ ‫روی‬ ‫سیال‬ ،‫مثال‬ ‫برای‬: m=1/2 C=0.530 •‫جدول‬6-8‫کتاب‬‫هولمن‬ 42 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 43. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ 43 Sketch the variation of the velocity and thermal boundary layer thicknesses with distance from the leading edge of a flat plate for the laminar flow of air, water, engine oil, and mercury. For each case assume a mean fluid temperature of 300 K. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 44. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬ 44 KNOWN: Air, water, engine oil or mercury at 300K in laminar, parallel flow over a flat plate. FIND: Sketch of velocity and thermal boundary layer thickness. ASSUMPTIONS: (1) Laminar flow. PROPERTIES: For the fluids at 300K: Fluid Table Pr Air A.4 0.71 Water A.6 5.83 Engine Oil A.5 6400 Mercury A.5 0.025 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 45. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 45 ANALYSIS: For laminar, boundary layer flow over a flat plate. 𝛿 𝛿𝑡 ~𝑃𝑟 𝑛 where n > 0. Hence, the boundary layers appear as shown below. Air: ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 46. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 46 COMMENTS: Although Pr strongly influences relative boundary layer development in laminar flow, its influence is weak for turbulent flow. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 47. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ 47 KNOWN: Velocity and temperature profiles and shear stress-boundary layer thickness relation for turbulent flow over a flat plate. FIND: (a) Expressions for hydrodynamic boundary layer thickness and average friction coefficient, (b) Expressions for local and average Nusselt numbers. ASSUMPTIONS: (1) Steady flow, (2) Constant properties, (3) Fully turbulent boundary layer, (4) Incompressible flow, (5) Isothermal plate, (6) Negligible viscous dissipation, (7) 𝛿 = 𝛿𝑡. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 48. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬ 48 𝜌𝑢∞ 2 𝑑 𝑑𝑥 න 0 𝛿 1 − 𝑢 𝑢∞ 𝑢 𝑢∞ 𝑑𝑦 = 𝜏 𝑠 Substituting the expression for the wall shear stress 𝜌𝑢∞ 2 𝑑 𝑑𝑥 න 0 𝛿 1 − 𝑦 𝛿 1 7 𝑦 𝛿 1 7 𝑑𝑦 = 0.228 𝜌𝑢∞ 2 𝑢∞ 𝛿 𝑣 − 1 4 𝑑 𝑑𝑥 න 0 𝛿 𝑦 𝛿 1 7 − 𝑦 𝛿 2 7 𝑑𝑦 = 𝑑 𝑑𝑥 ተ 7 8 𝑦 8 7 𝛿 1 7 − 7 9 𝑦 9 7 𝛿 2 7 0 𝛿 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 49. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬ 49 𝑑 𝑑𝑥 7 8 𝛿 − 7 9 𝛿 = 0.0228 𝑢∞ 𝛿 𝑣 − 1 4 7 72 𝑑𝛿 𝑑𝑥 = 0.0228 𝑣 𝑢∞ 1 4 𝛿− 1 4 7 72 න 0 𝛿 𝛿 1 4 𝑑𝛿 = 0.0228 𝑣 𝑢∞ 1 4 න 0 𝑥 𝑑𝑥 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 50. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 50 7 72 × 4 5 𝛿 5 4 = 0.0228 𝑣 𝑢∞ 1 4 𝑥 𝛿 = 0.376 𝑣 𝑢∞ 1 5 𝑥 4 5, 𝛿 𝑥 = 0.376 𝑅𝑒 𝑥 − 1 5 Knowing𝛿, it follows 𝜏 𝑠 = 0.0228 𝜌𝑢∞ 2 𝑣 𝑢∞ − 1 4 0.376 𝑥 𝑅𝑒 𝑥 − 1 5 − 1 4 𝐶𝑓,𝑥 = 𝜏 𝑠 𝜌𝑢∞ 2 2 = 0.0456 0.376 𝑢∞ 𝑣 𝑢∞ 𝑣 − 1 5 𝑥𝑥− 1 5 − 1 4 = 0.0592 𝑅𝑒 𝑥 − 1 5 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 51. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 51 The average friction coefficient is then ҧ𝐶𝑓,𝑥 = 1 𝑥 න 0 𝑥 𝐶𝑓,𝑥 𝑑𝑥 = 1 𝑥 0.0592 𝑣 𝑢∞ − 1 5 න 0 𝑥 𝑥− 1 5 𝑑𝑥 ҧ𝐶𝑓,𝑥 = 1 𝑥 0.0592 𝑣 𝑢∞ − 1 5 𝑥 4 5 5 4 = 0.074 𝑅𝑒 𝑥 − 1 5 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 52. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 52 (b) The energy integral equation for turbulent flow is 𝑑 𝑑𝑥 න 0 𝛿 𝑡 𝑢 𝑇∞ − 𝑇 𝑑𝑦 = 𝑞 𝑠 ′′ 𝜌𝑐 𝑝 = − ℎ 𝜌𝑐 𝑝 𝑇𝑠 − 𝑇∞ Hence, 𝑢∞ 𝑑 𝑑𝑥 න 0 𝛿 𝑡 𝑢 𝑢∞ 𝑇 − 𝑇∞ 𝑇𝑠 − 𝑇∞ 𝑑𝑦 = 𝑢∞ 𝑑 𝑑𝑥 න 0 𝛿 𝑡 𝑦 𝛿 1 7 1 − 𝑦 𝛿𝑡 1 7 𝑑𝑦 = ℎ 𝜌𝑐 𝑝 𝑢∞ 𝑑 𝑑𝑥 7 8 𝛿𝑡 8 7 𝛿 1 7 − 7 9 𝛿𝑡 8 7 𝛿 1 7 = ℎ 𝜌𝑐 𝑝 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 53. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 53 or, with 𝜉 ≡ 𝛿𝑡/𝛿, 𝑢∞ 𝑑 𝑑𝑥 7 8 𝛿𝜉 8 7 − 7 9 𝛿𝜉 8 7 = ℎ 𝜌𝑐 𝑝 𝑢∞ 𝑑 𝑑𝑥 7 72 𝛿𝜉 8 7 = ℎ 𝜌𝑐 𝑝 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 54. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 54 or, with 𝜉 ≡ 𝛿𝑡/𝛿, 𝑢∞ 𝑑 𝑑𝑥 7 8 𝛿𝜉 8 7 − 7 9 𝛿𝜉 8 7 = ℎ 𝜌𝑐 𝑝 𝑢∞ 𝑑 𝑑𝑥 7 72 𝛿𝜉 8 7 = ℎ 𝜌𝑐 𝑝 Hence, with 𝜉 ≈ 1 and /𝑥 = 0.376 𝑅𝑒 𝑥 −1/5 , 7 72 𝑢∞ 0.376 𝑢∞ 𝑣 − 1 5 𝑑 𝑥 4 5 𝑑𝑥 = ℎ 𝜌𝑐 𝑝 ℎ = 0.0292 𝜌 𝑐 𝑝 𝑢∞ 𝑅𝑒 𝑥 − 1 5 = 0.0292 𝑘 𝑥 𝑣 𝛼 𝑢∞ 𝑥 𝑣 𝑅𝑒 𝑥 − 1 5 𝑁𝑢 𝑥 = ℎ𝑥 𝑘 = 0.0292 𝑅𝑒 𝑥 4 5 𝑃𝑟 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 55. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 55 Hence, തℎ 𝑥 = 1 𝑥 න 0 𝑥 ℎ 𝑑𝑥 = 0.0292 𝑃𝑟 𝑥 𝑘 𝑢∞ 𝑣 4 5 න 0 𝑥 𝑥− 1 5 𝑑𝑥 = 0.0292 𝑘 𝑥 𝑃𝑟 𝑢∞ 𝑥 𝑣 4 5 5 4 𝑁𝑢 𝑥 = തℎ 𝑥 𝑥 𝑘 = 0.037 𝑅𝑒 𝑥 4 5 𝑃𝑟 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 56. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫جریان‬‫خزشی‬‫کره‬ ‫روی‬ • Creeping flow (Re<1) on sphere: 𝑁𝑢 = ℎ𝑑 𝑘 = 2 ℎ = 𝑁𝑢 𝑘 𝑑 = 2𝑘 𝑑 ⟹ 𝑞 = ℎ𝐴 𝑠𝑝ℎ𝑒𝑟𝑒 𝑇 𝑤 − 𝑇∞ = 2𝑘 𝑑 4𝜋𝑅2 𝑇 𝑤 − 𝑇∞ 𝑞 = 2𝜋𝑑𝑘 𝑇 𝑤 − 𝑇∞ 56 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 57. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫لوله‬ ‫درون‬ ‫حرارت‬ ‫انتقال‬ • (Re<2200) Laminar • (2200<Re<2800) Transition • (Re>2800) Turbulant • Laminar stream in steady state condition and fully developed and incompressible flow: 𝑢 = − 𝑅2 4𝜇 𝜕𝑃 𝜕𝑥 1 − 𝑟 𝑅 2 𝑁𝑢 𝑑 = ℎ𝑑 𝑘 = 4.364 57 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 58. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫لوله‬ ‫درون‬ ‫حرارت‬ ‫انتقال‬ • Bulk temperature(Tb) is the mean temp. of flow in each section. • For calculating Tb, solve the Energy equation in cylindrical coordinates and obtain temperature distribution and get mean of each section’s temperature. • We will explain how to calculate the Tb. • So, we have: 𝑞 = ℎ𝐴 𝑇 𝑤 − 𝑇𝑏 = 4.364 𝑘 𝑑 𝜋𝑑𝐿 𝑇 𝑤 − 𝑇𝑏 = 4.364 𝑘𝜋𝐿 𝑇 𝑤 − 𝑇𝑏 • Convected heat transferred per length unit: 𝑞 𝐿 = 4.364 𝑘𝜋 𝑇 𝑤 − 𝑇𝑏 58 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 59. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫لوله‬ ‫درون‬ ‫حرارت‬ ‫انتقال‬ • In other way, we know that the Enthalpy changes from one section to other. Then: • ሶ𝑞 = ሶ𝑚𝑐 𝑝(𝑇𝑏1 − 𝑇𝑏2 ) 59 𝑇𝑏1 𝑇𝑏2 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 60. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫دمای‬ ‫محاسبه‬‫بالک‬ 𝑇𝑏 = ത𝑇 = ‫׬‬0 𝑅 ሶ𝑚(𝑐 𝑝 𝑇) ‫׬‬0 𝑅 ሶ𝑚(𝑐 𝑝) • ሶ𝑚 = 𝜌𝐴𝑢 = 𝜌 2𝜋𝑟𝑑𝑟 𝑢 𝑇𝑏 = ത𝑇 = ‫׬‬0 𝑅 𝜌 2𝜋𝑟𝑑𝑟 𝑢(𝑐 𝑝 𝑇) ‫׬‬0 𝑅 𝜌 2𝜋𝑟𝑑𝑟 𝑢(𝑐 𝑝) 𝑇𝑏 = ‫׬‬0 𝑅 𝑢𝑇𝑟 𝑑𝑟 ‫׬‬0 𝑅 𝑢𝑟 𝑑𝑟 60 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 61. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫دما‬ ‫توزیع‬ ‫محاسبه‬ ‫برای‬ ‫لوله‬ ‫در‬ ‫سرعت‬ ‫توزیع‬ ‫معادالت‬ • For laminar flow: 𝑢 = − 𝑅2 4𝜇 𝜕𝑃 𝜕𝑥 1 − 𝑟 𝑅 2 𝑢 𝑚𝑎𝑥 = − 𝑅2 4𝜇 𝜕𝑃 𝜕𝑥 𝑢 𝑢 𝑚𝑎𝑥 = 1 − 𝑟 𝑅 2 ⟹ 𝑢∗ = 1 − 𝑥∗2 61 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 62. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫دما‬ ‫توزیع‬ ‫محاسبه‬ ‫برای‬ ‫لوله‬ ‫در‬ ‫سرعت‬ ‫توزیع‬ ‫معادالت‬ • For turbulent flow: 𝑢 𝑢 𝑐𝑒𝑛𝑡𝑒𝑟 = (1 − 𝑟 𝑅 ) ൗ1 7 62 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 63. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫دمای‬ ‫محاسبه‬‫بالک‬‫نوسلت‬ ‫و‬ • Temperature distribution in a pipe with radius R: 𝑇 − 𝑇𝑐𝑒𝑛𝑡𝑒𝑟 = 1 𝛼 𝜕𝑇 𝜕𝑥 𝑢 𝑚𝑎𝑥 𝑅2 4 𝑟 𝑅 2 − 1 4 𝑟 𝑅 4 • So, the bulk temperature is: 𝑇𝑏 = 𝑇𝑐 + 7 96 𝑢 𝑚𝑎𝑥 𝛼 𝑅2 𝜕𝑇 𝜕𝑥 • For turbulent flow and polished pipe, best formula for Nusselt is: 𝑁𝑢 𝑑 = ℎ𝑑 𝑘 = 0.023 𝑅𝑒 𝑑 0.8 𝑃𝑟 𝑛 𝑛 = ቊ 0.4 𝑖𝑓 𝑓𝑙𝑢𝑖𝑑 𝑖𝑠 ℎ𝑒𝑎𝑡𝑒𝑑 0.3 𝑖𝑓 𝑓𝑙𝑢𝑖𝑑 𝑖𝑠 𝑐𝑜𝑜𝑙𝑒𝑑 63 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 64. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫لوله‬ ‫داخل‬ ‫مغشوش‬ ‫جریان‬ • Eddy prandtl number is defined for turbulent flow as: 𝑃𝑟𝑡 = 𝜀 𝑚 𝜀 𝐻 = 𝑒𝑑𝑑𝑦 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑒𝑑𝑑𝑦 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 ℎ𝑒𝑎𝑡 • For rough tube and flow with pandtl number about one: 𝑠𝑡 = ℎ 𝜌𝑐 𝑝 ത𝑢 = 𝑁𝑢 𝑃𝑒𝑐 = 𝑓 8 = 𝐴𝑛𝑎𝑙𝑜𝑔𝑦 𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 • Where f is friction coefficient obtains from moody diagram. • For using the moody diagram, we need to know the Reynolds number and the rate of “rough coefficient” to “diameter”. • Then the Reynolds analogy shows the relation between flow friction with surface and heat transfer in turbulent flows. 64 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 65. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ 65 Fully developed conditions are known to exist for water flowing through a 25- mm-diameter tube at 0.01 kg/s and 27 ºC. What is the maximum velocity of the water in the tube? What is the pressure gradient associated with the flow? ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 66. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬ 66 KNOWN: Flowrate and temperature of water in fully developed flow through a tube of prescribed diameter. FIND: Maximum velocity and pressure gradient. ASSUMPTIONS: (1) Steady-state conditions, (2) Isothermal flow. PROPERTIES: Table A-6, Water (300K): ρ = 998 kg/m3, µ = 855×10-6 N×s/m2. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 67. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 67 ANALYSIS: From Eq. 8.6, 𝑅𝑒 𝐷 = 4 ሶ𝑚 𝜋𝐷𝜇 = 4 0.01 𝜋 0.025 855 × 10−6 = 596 Hence the flow is laminar and the velocity profile is given by Eq. 8.15, 𝑢 𝑟 𝑢 𝑚 = 2 1 − 𝑟 𝑟𝑜 2 The maximum velocity is therefore at r = 0, the centerline, where 𝑢 0 = 2𝑢 𝑚 From Eq. 8.5 𝑢 𝑚 = ሶ𝑚 𝜌𝜋 𝐷2/4 = 4 0.001 998 𝜋 0.025 = 0.020 𝑚/𝑠 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 68. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 68 hence 𝑢 0 = 0.041 𝑚/𝑠 Combining Eqs. 8.16 and 8.19, the pressure gradient is 𝑑𝑝 𝑑𝑥 = − 64 𝑅𝑒 𝐷 𝜌𝑢 𝑚 2 2𝐷 𝑑𝑝 𝑑𝑥 = − 64 596 × 998 0.020 2 0.025 = −0.86 𝑘𝑔/𝑚2 𝑠2 𝑑𝑝 𝑑𝑥 = −0.86 𝑁/𝑚2 𝑚 = −0.86 × 10−5 𝑏𝑎𝑟/𝑚 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 69. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ 69 For fully developed laminar flow through a parallel-plate channel, the x-momentum equation has the form 𝜇 𝑑2 𝑢 𝑑𝑦2 = 𝑑𝑝 𝑑𝑥 = constant The purpose of this problem is to develop expressions for the velocity distribution and pressure gradient analogous to those for the circular tube in Section 8.1. (a) Show that the velocity profile, u(y), is parabolic and of the form 𝑢 𝑦 = 2 3 𝑢 𝑚 1 − 𝑦2 ൗ𝑎 2 2 Where um is the mean velocity 𝑢 𝑚 = − 𝑎2 12𝜇 𝑑𝑝 𝑑𝑥 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 70. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬(‫ادامه‬) 70 And − ൗ𝑑𝑝 𝑑𝑥 = ൗ∆𝑝 𝐿, where Δp is the pressure drop across the channel of length L. (a) Write an expression defining the friction factor, f, using the hydraulic diameter Dh as the characteristic length. What is the hydraulic diameter for the parallel-plate channel? ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 71. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬(‫ادامه‬) 71 (c) The friction factor is estimated from the expression 𝑓 = 𝐶/𝑅𝑒 𝐷ℎ , where C depends upon the flow cross section, as shown in Table 8.1. What is the coefficient C for the parallel- plate channel? (d) Airflow in a parallel-plate channel with a separation of 5 mm and a length of 200 mm experiences a pressure drop of Δp = 3.75 N/m2. Calculate the mean velocity and the Reynolds number for air at atmospheric pressure and 300 K. Is the assumption of fully developed flow reasonable for this application? If not, what is the effect on the estimate for um? ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 72. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬ 72 KNOWN: The x-momentum equation for fully developed laminar flow in a parallel- plate channel 𝑑𝑝 𝑑𝑥 = constant = 𝜇 𝑑2 𝑢 𝑑𝑦2 FIND: Following the same approach as for the circular tube in Section 8.1: (a) Show that the velocity profile, u(y), is parabolic of the form 𝑢 𝑦 = 2 3 𝑢 𝑚 1 − 𝑦2 ൗ𝑎 2 2 Where um is the mean velocity expressed as 𝑢 𝑚 = − 𝑎2 12𝜇 𝑑𝑝 𝑑𝑥 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 73. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬ 73 and -dp/dx = Δp/L where Δp is the pressure drop across the channel of length L; (b) Write the expression defining the friction factor, f, using the hydraulic diameter as the characteristic length, Dh; What is the hydraulic diameter for the parallel-plate channel? (c) The friction factor is estimated from the expression f = C ReDh where C depends upon the flow cross-section as shown in Table 8.1; What is the coefficient C for the parallel-plate channel (b/a→ ∞)? (d) Calculate the mean air velocity and the Reynolds number for air at atmospheric pressure and 300 K in a parallel-plate channel with separation of 5 mm and length of 100 mm subjected to a pressure drop of ΔP = 3.75 N/m2; Is the assumption of fully developed flow reasonable for this application? If not, what effect does this have on the estimate for um? ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 74. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 74 ANALYSIS: (a) The x-momentum equation for fully developed laminar flow is 𝜇 𝑑2 𝑢 𝑑𝑦2 = 𝑑𝑝 𝑑𝑥 = constant Since the longitudinal pressure gradient is constant, separate variables and integrate twice, 𝑑 𝑑𝑦 𝑑𝑢 𝑑𝑦 = 1 𝜇 𝑑𝑝 𝑑𝑥 𝑑𝑢 𝑑𝑦 = 1 𝜇 𝑑𝑝 𝑑𝑥 𝑦 + 𝐶1 𝑢 = 1 2𝜇 𝑑𝑝 𝑑𝑥 𝑦2 + 𝐶1 𝑦 + 𝐶2 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 75. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 75 ASSUMPTIONS: (1) Fully developed laminar flow, (2) Parallel-plate channel, a << b. PROPERTIES: Table A-4, Air (300 K, 1 atm): μ = 184.6 × 10-7 N⋅s/m2, ν = 15.89 × 10-6 m2/s. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 76. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 76 The integration constants are determined from the boundary conditions, ቤ 𝑑𝑢 𝑑𝑦 𝑦=0 = 0 𝑢(𝑎/2) = 0 to find 𝐶1 = 0 𝐶2 = − 1 2𝜇 𝑑𝑝 𝑑𝑥 𝑎/2 2 giving 𝑢 𝑦 = − 𝑎/2 2 2𝜇 𝑑𝑝 𝑑𝑥 1 − 𝑦2 𝑎/2 2 The mean velocity is 𝑢 𝑚 = 2 𝑎 න 0 𝑎/2 𝑢 𝑦 𝑑𝑦 = − 2 𝑎 𝑎/2 2 2𝜇 𝑑𝑝 𝑑𝑥 𝑦 − 𝑦3 𝑎/2 2 0 𝑎/2 = 𝑎2 12𝜇 − 𝑑𝑝 𝑑𝑥 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 77. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 77 (c) Substituting for the pressure gradient, Eq. (3), and rearranging, find using Eq. (6) 𝑓 = 𝑢 𝑚 𝑎2/12𝜇 𝐷ℎ 𝜌𝑢 𝑚 2 /2 = 96 𝑢 𝑚 𝐷ℎ/𝑣 = 96 𝑅𝑒 𝐷ℎ where the Reynolds number is 𝑅𝑒 𝐷ℎ = 𝑢 𝑚 𝐷ℎ/𝑣 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 78. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 78 Substituting Eq. (3) for dp/dx into Eq. (2) find the velocity distribution in terms of the mean velocity 𝑢 𝑦 = 3 2 𝑢 𝑚 1 − 𝑦2 𝑎/2 2 (b) The friction factor follows from its definition, Eq. 8.16, 𝑓 = − 𝑑𝑝/𝑑𝑥 𝐷ℎ 𝜌𝑢 𝑚 2 /2 where the hydraulic diameter for the channel using Eq. 8.67 is 𝐷ℎ = 4𝐴 𝑐 𝑃 = 4 𝑎 × 𝑏 2 𝑎 + 𝑏 = 2𝑎 Since a<<b. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 79. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 79 This result is in agreement with Table 8.1 for the cross-section with b/a → ∞ where C = 96 (d) For the conditions shown in the schematic, with air properties evaluated at 300 K, using Eqs. (3) and (8), find 𝑢 𝑚 = 0.005 12 184.6 × 10−7 3.75 0.100 = 1.06 𝑚/𝑠 𝑅𝑒 𝐷 = 1.06 2 0.005 15.89 × 10−6 = 667 The flow is laminar as ReDh < 2300, and from Eq. 8.3, the entry length is 𝑥 𝑓𝑑,ℎ 𝐷ℎ 𝑙𝑎𝑚 = 0.05 𝑅𝑒 𝐷ℎ ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 80. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 80 𝑥 𝑓𝑑,ℎ = 2 0.005 0.05 667 = 0.334 𝑚 = 334 𝑚𝑚 We conclude that the flow is not fully developed, and the friction factor in the entry region will be higher than for fully developed conditions. Hence, for the same pressure drop, the mean velocity will be less than our estimate. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 81. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫خارجی‬ ‫های‬ ‫جریان‬ • From the perspective of heat transfer, flows are two parts: • Internal flows (like tubes,…) • External flows: • General forms for Nusselt number is: 𝑁𝑢 = 𝐶𝑅𝑒 𝑚 𝑃𝑟 𝑛 • Where m,n,C are constant and obtain from tables. • Fand equation is a well-known equation for external liquid flows on cylinder that is defined for Re between 10-1 and 105 as: 𝑁𝑢 𝑓 = 0.35 + 0.56𝑅𝑒𝑓 0.52 𝑃𝑟𝑓 0.3 • The f index is the properties in film temperature (Tf) 81 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 82. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫خارجی‬ ‫های‬ ‫جریان‬(‫کره‬ ‫حول‬) • For very low speed velocities: 𝑁𝑢 𝑑 = ℎ𝑑 𝑘 = 2 • For wide range of Re(17 to 70000), MC Adams equation is used: 𝑁𝑢 = ℎ𝑑 𝑘 = 0.37 𝑢∞ 𝑑 𝜗𝑓 0.6 • Note that above equation is only for gases. • For both liquids and gases, whitaker’s equation is defined as: 𝑁𝑢 𝑑 = ℎ𝑑 𝑘 = 2 + (0.4 𝑅𝑒 𝑑 ൗ1 2 + 0.06 𝑅𝑒 𝑑 ൗ2 3 )𝑃𝑟0.4 𝜇∞ 𝜇 𝑤 ൗ1 4 • Index ω means µ in wall temperature. 82 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 83. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫کوئت‬ ‫های‬ ‫جریان‬ 𝜕𝑢 𝜕𝑥 + 𝜕𝑣 𝜕𝑦 = 0 ⟹ 𝜕𝑢 𝜕𝑥 = 0 ⟹ 𝑢 = 𝑓 𝑦 𝜌 𝑢 𝜕𝑢 𝜕𝑥 + 𝑣 𝜕𝑢 𝜕𝑦 = − 𝜕𝑃 𝜕𝑥 + 𝜇 𝜕2 𝑢 𝜕𝑥2 + 𝜕2 𝑢 𝜕𝑦2 + 𝜌𝑔 𝑥 𝜕2 𝑢 𝜕𝑦2 = 1 𝜇 𝜕𝑃 𝜕𝑥 ⟹ 𝑓 𝑦 = 𝑔 𝑥 ⟹ 𝜕2 𝑢 𝜕𝑦2 = 1 𝜇 𝜕𝑃 𝜕𝑥 = 𝑐𝑡𝑒 • For coquette flow 𝜕𝑃 𝜕𝑥 = 0 ⟹ 𝑢 = 𝑐1 𝑦 + 𝑐2 83 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 84. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫کوئت‬ ‫های‬ ‫جریان‬ 𝑢 = 𝑐1 𝑦 + 𝑐2 • Boundary conditions: • 𝑦 = 0 ∶ 𝑢 = 0 • 𝑦 = 𝐻 ∶ 𝑢 = 𝑢∞ • Then: 𝑢 = 𝑢∞ 𝐻 𝑦 ⟹ 𝑢∗ = 𝑦∗ 84 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 85. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫کوئت‬ ‫های‬ ‫جریان‬ • After calculating velocity distribution, we should examine energy equation: 𝜌𝑐 𝑝 𝑢 𝜕𝑇 𝜕𝑥 + 𝑣 𝜕𝑇 𝜕𝑦 = 𝑘 𝜕2 𝑇 𝜕𝑥2 + 𝜕2 𝑇 𝜕𝑦2 + 𝜇 𝜕𝑢 𝜕𝑦 2 0 = 𝑘 𝜕2 𝑇 𝜕𝑦2 + 𝜇 𝑢∞ 𝐻 2 𝜕2 𝑇 𝜕𝑦2 = − 𝑢∞ 2 𝜇 𝑘𝐻2 • Make dimensionless: 𝜕2 𝑇∗ 𝜕𝑦∗2 = −𝐸𝐶 𝑃𝑟 𝜕𝑢∗ 𝜕𝑦∗ 2 85 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 86. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ 86 KNOWN: Conditions associated with the Couette flow of air or water. FIND: (a) Force and power requirements per unit surface area, (b) Viscous dissipation, (c) Maximum fluid temperature. ASSUMPTIONS: (1) fully-developed Couette flow, (2) Incompressible fluid with constant properties. PROPERTIES: Table A-4, Air (300K): μ =184.6×10-7N⋅s/m2, k=26.3×10-3W/m⋅K; Table A-6,Water(300K): μ = 855×10-6 N⋅s/m2, k = 0.613 W/m⋅K. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 87. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬ 87 ANALYSIS: (a) The force per unit area is associated with the shear stress. Hence, with the linear velocity profile for Couette flow, 𝜏 = 𝜇(𝑑𝑢/𝑑𝑦) = 𝜇(𝑈/𝐿). Air: 𝜏 𝑎𝑖𝑟 = 184.6 × 10−7 200 0.005 = 0.738 𝑁/𝑚2 Water: 𝜏 𝑤𝑎𝑡𝑒𝑟 = 855 × 10−6 200 0.005 = 34.2 𝑁/𝑚2 With the required power given by P/A= τ.U, Air: ( ൗ𝑃 𝐴) 𝑎𝑖𝑟= 0.738 200 = 147.6 𝑊/𝑚2 Water: ( ൗ𝑃 𝐴) 𝑤𝑎𝑡𝑒𝑟= 34.2 200 = 6840 𝑊/𝑚2 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 88. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬ 88 (b) The viscous dissipation is 𝜇Φ = 𝜇 Τ𝑑𝑢 𝑑𝑦 2 = 𝜇 Τ𝑈 𝐿 2 . Hence, Air: (𝜇Φ) 𝑎𝑖𝑟= 184.6 × 10−7 200 0.005 2 = 2.95 × 104 Τ𝑊 𝑚3 Water: (𝜇Φ) 𝑤𝑎𝑡𝑒𝑟= 855 × 10−6 200 0.005 2 = 1.37 × 106 Τ𝑊 𝑚3 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 89. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 89 (c) From the solution to Part 4 of the text Example, the location of the maximum temperature corresponds to ymax=L/2. Hence, 𝑇 𝑚𝑎𝑥 = 𝑇𝑜 + 𝜇𝑈2 /8𝑘 and Air: (𝑇 𝑚𝑎𝑥) 𝑎𝑖𝑟= 27 + 184.6 × 10−7 200 8 0.0263 = 30.5℃ Water: (𝑇 𝑚𝑎𝑥) 𝑤𝑎𝑡𝑒𝑟= 27 + 855 × 10−6 200 8 0.613 = 34℃ COMMENTS: (1) The viscous dissipation associated with the entire fluid layer, μΦ(LA), must equal the power, P. (2) Although (μΦ)water >> (μΦ)air , kwater >> kair . Hence, Tmax,water ≈ Tmax,air. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 90. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ 90 KNOWN: Velocity and temperature difference of plates maintaining Couette flow. Mean temperature of air, water or oil between the plates. FIND: (a) Pr⋅Ec product for each fluid, (b) Pr⋅Ec product for air with plate at sonic velocity. ASSUMPTIONS: (1) Steady-state conditions, (2) Couette flow, (3) Air is at 1 atm. PROPERTIES: Table A-4, Air (300K, 1atm), cp = 1007 J/kg⋅K, Pr = 0.707, γ = 1.4, R= 287.02 J/kg⋅K; Table A-6, Water (300K): cp = 4179 J/kg⋅K, Pr = 5.83; Table A-5, Engine oil (300K), cp = 1909 J/kg⋅K, Pr = 6400. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 91. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬ 91 PROPERTIES: Table A-4, Air (300K, 1atm), cp = 1007 J/kg⋅K, Pr = 0.707, γ = 1.4, R= 287.02 J/kg⋅K; Table A-6, Water (300K): cp = 4179 J/kg⋅K, Pr = 5.83; Table A-5, Engine oil (300K), cp = 1909 J/kg⋅K, Pr = 6400. ANALYSIS: The product of the Prandtl and Eckert numbers is dimensionless, 𝑃𝑟. 𝐸𝑐 = 𝑃𝑟 𝑈2 𝑐 𝑝∆𝑇 → Τ𝑚2 𝑠2 ( Τ𝐽 𝑘𝑔. 𝐾)𝐾 = Τ𝑚2 𝑠2 (𝑘𝑔. 𝑚2 𝑠2 )/𝑘𝑔 Substituting numerical values, find Air Water Oil Pr.Ec 0.0028 0.0056 13.41 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 92. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 92 (b) For an ideal gas, the speed of sound is 𝑐 = 𝛾𝑅𝑇 1/2 where R, the gas constant for air, is Ru/Μ = 8.315 kJ/kmol⋅K/(28.97 kg/kmol) = 287.02 J/kg⋅K. Hence, at 300K for air, 𝑈 = 𝑐 = 1.4 × 287.02 × 300 1/2 = 347.2 𝑚/𝑠 For sonic velocities, it follows that 𝑃𝑟. 𝐸𝑐 = 0.707 347.2 1007 25 = 3.38 COMMENTS: From the above results it follows that viscous dissipation effects must be considered in the high speed flow of gases and in oil flows at moderate speeds. For Pr⋅Ec to be less than 0.1 in air with ΔT = 25°C, U should be < ~ 60 m/s. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 93. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ 93 KNOWN: Couette flow with moving plate isothermal and stationary plate insulated. FIND: Temperature of stationary plate and heat flux at the moving plate. ASSUMPTIONS: (1) Steady-state conditions, (2) incompressible fluid with constant properties, (3) Couette flow. ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 94. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬ 94 ANALYSIS: The energy equation is given by 0 = 𝑘 𝜕2 𝑇 𝜕𝑦2 + 𝜇 𝜕𝑢 𝜕𝑦 2 Integrating twice find the general form of the temperature distribution, 𝜕2 𝑇 𝜕𝑦2 = − 𝜇 𝑘 𝑈 𝐿 2 𝜕𝑇 𝜕𝑦 = − 𝜇 𝑘 𝑈 𝐿 2 𝑦 + 𝐶1 𝑇 𝑦 = − 𝜇 2𝑘 𝑈 𝐿 2 𝑦2 + 𝐶1 𝑦 + 𝐶2 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 95. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬ 95 Consider the boundary conditions to evaluate the constants, ቤ 𝜕𝑇 𝜕𝑦 𝑦=0 = 0 → 𝐶1 = 0 And 𝑇 𝐿 = 𝑇𝐿 → 𝐶2 = 𝑇𝐿 + 𝜇 2𝑘 𝑈2 Hence, the temperature distribution is 𝑇 𝑦 = 𝑇𝐿 + 𝜇𝑈2 2𝑘 1 − 𝑦 𝐿 2 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 96. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫مسئله‬ ‫حل‬(‫ادامه‬) 96 The temperature of the lower plate (y = 0) is 𝑇 0 = 𝑇𝐿 + 𝜇𝑈2 2𝑘 The heat flux to the upper plate (y = L) is 𝑞′′ 𝐿 = −𝑘 ቤ 𝜕𝑇 𝜕𝑦 𝑦=𝐿 = 𝜇𝑈2 𝐿 COMMENTS: The heat flux at the top surface may also be obtained by integrating the viscous dissipation over the fluid layer height. For a control volume about a unit area of the fluid layer, ሶ𝐸𝑔 ′′ = ሶ𝐸 𝑜𝑢𝑡 ′′ න 0 𝐿 𝜇 𝜕𝑢 𝜕𝑦 2 𝑑𝑦 = 𝑞′′ 𝐿 𝑞′′ 𝐿 = 𝜇𝑈2 𝐿 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org
  • 97. ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫فرادرس‬ ‫در‬ ‫شده‬ ‫مطرح‬ ‫نکات‬ ‫مبنای‬ ‫بر‬ ‫ها‬ ‫اسالید‬ ‫این‬ «‫حرارت‬ ‫انتقال‬ ‫آموزش‬» ‫تهیه‬‫است‬ ‫شده‬. ‫مراجعه‬ ‫زیر‬ ‫لینک‬ ‫به‬ ‫آموزش‬ ‫این‬ ‫مورد‬ ‫در‬ ‫بیشتر‬ ‫اطالعات‬ ‫کسب‬ ‫برای‬‫نمای‬‫ید‬ faradars.org/ fvmec94064 ‫حرارت‬ ‫انتقال‬ ‫آموزش‬ faradars.org/fvmec94064 ‫س‬‫ر‬‫د‬‫ا‬‫ﺮ‬‫ﻓ‬ FaraDars.org