SlideShare a Scribd company logo
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 21 | P a g e
Some common Fixed Point Theorems for compatible -
contractions in G-metric Spaces
1
B. Ramu Naidu, 2.
K.P.R. Sastry , 3
G. Appala Naidu , 4.
Ch. Srinivasa Rao,
1,2,3,4
Faculty in Mathematics, AU campus, Vizianagaram -535003 INDIA.
ABSTRACT
We prove some common fixed point theorems for compatible self mappings satisfying some kind of contractive
type conditions on complete G-metric spaces and obtain results of Kumara Swamy and Phaneendra[6] and
Sushanta Kumar Mohanta[16] as corollaries.
2010 Mathematics Subject Classification.47H10, 54H25
Keywords:- G-metric space, Compatible self-maps, G-Cauchy sequence, Common fixed point,
-contractions.
I. INTRODUCTION
The study of metric fixed point theory
plays an important role because the study finds
applications in many important areas as diverse as
differential equations, operation research,
mathematical economics and the like. Different
generalizations of the usual notion of a metric
space were proposed by several mathematicians
such as Gahler [3,4] (called 2-metric spaces) and
Dhage [1,2] (called D-metric spaces). K.S.Ha et al.
[5] have pointed out that the results cited by Gahler
are independent, rather than generalizations, of the
corresponding results in metric spaces. Moreover, it
was shown that Dhage’s notion of D-metric space
is flawed by errors and most of the results
established by him and others are invalid. These
facts determined Mustafa and Sims [11] to
introduce a new concept in the area, called G-
metric space. Recently, Mustafa et al. studied many
fixed point theorems for mappings satisfying
various contractive conditions on complete G-
metric spaces; see [8-13]. Subsequently, some
authors like Renu Chugh et al.[14], W.Shatanawi
[15] have generalized some results of Mustafa et al.
[7-8] and studied some fixed point results for self-
mappings in a complete G-metric space under some
contractive conditions related to a non-decreasing
       : 0, 0, w ith lim 0 for all 0, .
n
n
t t 
 
        
Kumara Swamy and Phaneendra[6] and Sushanta Kumar Mohanta[16] proved some fixed point theorems for
self-mappings on complete G-metric spaces.
In this paper we introduce  -contractions in G-metric spaces, prove fixed point results for such maps and
obtain results of Kumara Swamy and Phaneendra [6].
II. PRELIMINARIES
We begin by briefly recalling some basic definitions and results for G-metric spaces that will be needed in the
sequel.
Definition 2.1 :-(Mustafa and Sims [7]) Let X be a non–empty set, and let :G X X X R

   be a
function satisfying the following axioms:
   
   
     
        
       
1 , , 0 if ,
2 0 < , , , fo r all , , w ith ,
3 , , , , , fo r all , , , w ith ,
4 , , , , w h ere is a p erm u tatio n in , , ,
5 , , , , , , , fo r all , , , , r
G G x y z x y z
G G x x y x y X x y
G G x x y G x y z x y z X z y
G G x y z G x z y x y z
G G x y z G x a a G a y z x y z a X
 
  
 
  

    ectan g le in eq u ality .
RESEARCH ARTICLE OPEN ACCESS
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 22 | P a g e
Then the function G is called a generalized metric, or, more specifically a G- metric on X , and the pair
 ,X G is called a G-metric space.
Example 2.2:- (Mustafa and Sims [7]) Let R be the set of all real numbers define.
:G R R R R

   by
 , , , for all , , .G x y z x y y z z x x y z X      
Then it is clear that  ,R G is a G-metric space.
We use the following proposition in the Sequel without explicit mention.
Proposition 2.3:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space. Then for any
, , , an d ,x y z a X it follows that
   
       
       
       
          
         
1 if , , 0 th en ,
2 , , , , , , ,
3 , , 2 , , , 2 .3 .1
4 , , , , , , ,
2
5 , , , , , , , , ,
3
6 , , , , , , , , .
G x y z x y z
G x y z G x x y G x x z
G x y y G y x x
G x y z G x a z G a y z
G x y z G x y a G x a z G a y z
G x y z G x a a G y a a G z a a
  
 
  
 
  
  
Definition 2.4: (Mustafa and Sims [7]) Let  ,X G be a G-metric space, let  n
x be a sequence of points
of X , we say that  n
x is G-convergent to x
   
 
0
,
0
if lim , , 0; th at is, fo r an y 0, th ere ex ists su ch th at , , ,
fo r all , , . W e refer to as th e lim it o f th e seq u en ce an d w rite .
n m n m
n m
n n
G x x x n N G x x x
n m n x x x x
 
     
  
The following proposition is used in the section 3.
Proposition 2.5:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space. Then, the following are
equivalent:
   
   
   
   
1 is G -co n verg en t to .
2 , , 0, as .
3 , , 0, as .
4 , , 0, as , .
n
n n
n
m n
x x
G x x x n
G x x x n
G x x x m n
  
  
  
Definition 2.6:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space, sequence n
x is called G-
Cauchy if given 0
0, th ere is n N   such that   0
, , , for all , ,n m l
G x x x n m l n 
that is if  , , 0 as , , .n m l
G x x x n m l  
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 23 | P a g e
Proposition 2.7:- (Mustafa and Sims [7]) In a G-metric space  ,X G , the following are equivalent:
(1) The sequence  n
x is G-Cauchy.
(2) For every  0 0
0, there exists such that , , for all , .n m m
n N G x x x n m n    
Definition 2.8:- (Mustafa and Sims [7]) Let  ,X G and  ,X G  be G-metric spaces and let
   : , ,f X G X G  be a function, then f is said to be G-continuous at a point
if given 0, there exists > 0a X   
        such that , ; , , im plies , , < .x y X G a x y G f a f x f y    A function f is
G-continuous on X if and only if it is G-continuous at all .a X
Proposition 2.9:- (Mustafa and Sims [7]) Let  ,X G and  ,X G  be G-metric spaces, then a function
:f X X  is G-continuous at a point x X if and only if it is G-sequentially continuous at x ; that is,
whenever n
x is G-convergent to   , n
x f x is G-convergent to  f x .
Proposition 2.10:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space. Then, the function
 , ,G x y z is continuous in all variables.
Definition 2.11:- (Mustafa and Sims [7]) A G-metric space  ,X G is said to be G-complete (or a complete
G-metric space) if every G-Cauchy sequence in  ,X G is G-convergent in  ,X G .
Definition 2.12:- Two self-maps f and g on a G-metric space  ,X G are said to be compatible if
 lim , , 0n n n
G fgx gfx gfx
n

 
whenever  n
x is a sequence in X such that
lim lim fo r so m e .n n
fx g x p p X
n n
  
   
3. Main Result:-
Notation:-
     
1
: 0, 0, / is increasing, continuous and for 0 .
n
n
t t  


 
        
 

We observe that  0 0  and   .t t  (see Sastry,KPR et al.[15]) We also observe that, if we define
  for 0, w here 0 1 then .t k t t k      
Lemma 3.1:- Suppose 1,  and
       : 0, 0, is in creasin g an d 3 .1 .1
t
t 

      . Suppose  n

is a sequence of non-negative real numbers such that    1 1
a b 3.1.2n n n
    
   
Where a,b are positive real numbers such that a+b=  .
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 24 | P a g e
Then
1
n
n


 

 and 0 as , .k
m
m n
k n
   


Proof:- First we observe that   fo r 1, 2, 3, ....
n
n
t
t n n

 
Now
       1 1 1 1
1 1 1 1
a + b a + b a + b a+ b
.H en ce ,
n n n n n n n
n n n n n
      
     
   
   
   
      
a contradiction.
 
    
 
   
      
 
1
1
1
1 0
1 1 0 1
0
.
T h u s is a d ecreasin g seq u en ce
a+ ba b
sin ce is in creasin g
........ .
sin ce 1
1 1
H en ce 0 as , .
n n
n
nn n
n
n n
n
n n n n
n n
k
n
n n
m n
 

 
   
 
    

       


 






  
  

  
 
     
 
    
 
  
 
1
m
k 

Notation:- Let 1. 
Write      : 0, 0, / is in creasin g , co n tin u o u u s an d .
t
t   
  

 
      
 
We observe that
 
         1 0
sin ce
T h u s fo r > 1
H ere , 1, 2, ... w ith
n
n
n n
t
t
t t n t t
 

 


    

    
  
  
 
We prove the following common fixed point theorem.
Theorem 3.2:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that
     
 
 
          
     
a
b
c o r is co n tin u o u s,
d , , m ax , , , , , , ,
, , , , , , ,
f X g X
f g
G fx fy fz G g x fx fx G g y fy fy G g z fz fz
G g x fy fy G g y fx fx G g z fy fy
G



 
  
 
     
 
 
, , , , , ,
fo r all , , ............................ 3 .2 .1
e an d are co m p atib le.
T h en an d h ave a u n iq u e co m m o n fix ed p o in t.
g x fz fz G g y fz fz G g z fx fx
x y z X
f g
f g
 

B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 25 | P a g e
Proof:- Let 0
x X . In view of (a), we can choose points
 
   
        
1 2 1
1
1 1 1 1 1 1 1
, , ..., ... su ch th at fo r 1, 2, ..... 3 .2 .2 .
W ritin g an d in 3 .2 .1 an d th en u sin g 3 .2 .2 , w e h ave
, , m ax , , , , , , ,
n n n
n n
n n n n n n n n n n n n
x x x fx g x n
x x y z x
G fx fx fx G fx fx fx G fx fx fx G fx fx fx


      
 
  
  
     1 1 1 1 1
, , , , , , ,n n n n n n n n n
G fx fx fx G fx fx fx G fx fx fx    
 
     
    
1 1 1 1 1
1 1 1
, , , , , ,
m ax , , 2 , , ,
n n n n n n n n n
n n n n n n
G fx fx fx G fx fx fx G fx fx fx
G fx fx fx G fx fx fx
    
  
 
 
     1 1 1 1 1
, , , , 3 .2 .3n n n n n n
G fx fx fx G fx fx fx    
 
 
     
         
5
1 1 1 1 1 1
1 1 1 1 1 1 1 1
F ro m G , w e h ave
, , , , + , ,
F ro m 2 .3 .1 w e g et , , + , , , , + , ,
n n n n n n n n n
n n n n n n n n n n n n
G fx fx fx G fx fx fx G fx fx fx
G fx fx fx G fx fx fx G fx fx fx G fx fx fx
     
       


 
 
1 1
1 1
+ , ,
= , , + 2 , ,
n n n
n n n n n n
G fx fx fx
G fx fx fx G fx fx fx
 
    1
3 .2 .4

   
      
   
1 1 1 1 1
1 1 1
F ro m 3 .2 .3 an d 3 .2 .4 w e h ave
, , m ax , , 2 , , ,
, , 2 , ,
=
n n n n n n n n n
n n n n n n
n
G fx fx fx G fx fx fx G fx fx fx
G fx fx fx G fx fx fx
G fx


    
  

 

      
   
   
1 1 1
1
1 1
, , 2 , , 3 .2 .5
W rite , , . T h en fro m 3 .2 .5 , w e h ave
2 3 .2 .6
n n n n n
n n n n
n n n
fx fx G fx fx fx
G fx fx fx
n

   
 

 
 

   
By taking 3, a 1 and b 2    in lemma 2.1 it follows that
1
n
n


 

 and hence
0 as , .k
m
m n
k n
   


 
     
     
     
5
1
1 1 1
1 1 1 2 2 2
N o w , b y ,
, , , , , ,
P u t
, , , , , ,
, , , , , ,
n m m n m m
n
n m m n n n n m m
n n n n n n n m m
G
G fx fx fx G fx w w G w fx fx
w fx
G fx fx fx G fx fx fx G fx fx fx
G fx fx fx G fx fx fx G fx fx fx

  
     
 

  
  
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 26 | P a g e
   
 
 
1 1
1
1
B y in d u ctio n ,
1
, , , ,
0
1
0 as , b y lem m a 3 .1
0
, , 0 as ,
an d h en ce ,
n m m n i n i n i
n i
n m m
n
m n
G fx fx fx G fx fx fx
i
m n
m n
i
G fx fx fx m n
G g x g

    
 


 


 
   

   


 1 1
, 0 as ,m m
x g x m n 
  
 
 1
1
T h u s is C au ch y an d is C au ch y.
S in ce is G -co m p lete, w e can fin d a p o in t su ch th at
lim lim . 3 .2 .7
S u p p o se th at is co n tin u o u s.
T h en lim lim
n n
n n
n n
g x fx
X p X
fx g x p
n n
g
g fx g g x g p
n n



 
   
 
   
 
 
 
. 3 .2 .8
S in ce an d are co m p atib le,
lim , , 0 w h ich im p lies th at,
lim lim . 3 .2 .9
n n n
n n
f g
G fg x g fx g fx
n
g fx fg x g p
n n

 
 
   
 
         
 
1
B u t , fro m 3 .2 .1 , w e see th at
, , , , m ax , , , , , , ,
, ,
n n n n n n n n n n n n n n n
n n n n
G fg x fx fx G ffx fx fx G g fx ffx ffx G g x fx fx G g x fx fx
G g fx fx fx G g x

   
    
     
, , , ,
, , , , , ,
n n n n n
n n n n n n n n n
ffx ffx G g x fx fx
G g fx fx fx G g fx fx fx G g x ffx ffx

 
On taking the limit as n   , in view of (3.2.7),(3.2.8) and (3.2.9), it follow that
       
     
     
, , m ax , , , , , , ,
, , , , , , ,
, , , , , ,
G g p p p G g p g p g p G p p p G p p p
G g p p p G p g p g p G p p p
G g p p p G p p p G p g p g p
  
 
 
    
      
  
 
  2
, , , ,
, , 2 , , fro m 2 .3 .1
3 , ,
, , 0
fro m G
is a fix ed p o in t o f g .
G g p p p G p g p g p
G g p p p G g p p p
G g p p p
G g p p p
g p p
p



 
 

 
 

B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 27 | P a g e
       
     
     
N o w , , , m ax , , , , , , ,
, , , , , , ,
, , , , , ,
P
n n n n
n n n
n n n
G fx fp fp G g x fx fx G g p fp fp G g p fp fp
G g x fp fp G g p fx fx G g p fp fp
G g x fp fp G g p fp fp G g p fx fx
  
 
 

       
     
   
ro ceed in g to th e lim it as , w e g et
, , m ax , , , , , , ,
, , , , , , ,
, , , ,
n
G p fp fp G p p p G g p fp fp G g p fp fp
G p fp fp G g p p p G g p fp fp
G p fp fp G g p fp fp G g

 
  
 
   
     
  
   
 
 2
, ,
m ax 0, 2 , , , 2 , , , 2 , ,
2 , ,
2 2
3 . , , , ,
3 3
, , = 0 .
B y G ,
p p p
G p fp fp G p fp fp G p fp fp
G p fp fp
G p fp fp G p fp fp
G p fp fp
fp p





 
  
 

 
is a co m m o n fix ed p o in t o f a n d .p f g
Suppose p and q are common fixed points of f and g .
so that and .fp qp p fq gq q   
Now from (3.2.1), we have
         
     
, , , , m ax , , , , , , ,
, , , , , , ,
,
G p q q G fp fq fq G g p fp fp G g q fq fq G g q fq fq
G g p fq fq G g q fp fp G g q fq fq
G g p fq
   
 
     
     
     
, , , , ,
m ax , , , , , , ,
, , , , , , ,
fq G g q fq fq G g q fp fp
G p p p G q q q G q q q
G p q q G q p p G q q q

 
  
 
     
   
   
, , , , , ,
m ax 0 0 0, , , , , 0,
, , 0 , ,
G p q q G q q q G q p p
G p q q G q p p
G p q q G q p p

 
    
 
    
       
   
, , , ,
, , 2 , , fro m 2 .3 .1
3 , ,
G p q q G q p p
G p q q G q q p
G p q q



 
 

     
 
, , 3 , ,
, , 0 .
.
T h u s an d h a ve u n iq u e co m m o n
G p q q G p q q
G p q q
p q
f g
 
 
 
fix ed p o in t.
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 28 | P a g e
From theorem (3.2), we obtain the following result of K.Kumara Swamy and T.Phaneendra [6] as corollary.
Theorem 3.3:- (K.Kumara swamy and T.Phaneendra [6]) Suppose that f and g are self-maps on a complete G-
metric space  ,X G such that
     
 
 
        
     
a
1
b o r is co n tin u o u s, an d 0 .
3
c an d are co m p atib le.
S u p p o se , , m ax , , , , , , ,
, , , , , , ,
f X g X
f g k
f g
G fx fy fz k G g x fx fx G g y fy fy G g z fz fz
G g x fy fy G g y fx fx G g z fy fy

 
  
 
     
 
, , , , , ,
fo r all , , ............................ 3 .3 .1
G g x fz fz G g y fz fz G g z fx fx
x y z X
 

Proof:- Take  
1
w h ere 0 .
3
t kt k   
The following result of Sushanta Kumar Mohanta([16], Theorem 3.9)follows as a corollary of theorem 3.2, by
taking   .t kt 
Theorem 3.4:- (Sushanta Kumar Mohanta([16], Theorem 3.9)) Let  ,X G be a complete G-metric space,
and let :T X X be a mapping which satisfies the following condition
                     
              
              
, , m ax , , , , , , ,
, , , , , , ,
, , , , , ,
G T x T y T z k G x T y T y G y T x T x G z T z T z
G y T z T z G z T y T y G x T x T x
G z T x T x G x T z T z G y T y T y
  
 
 
 
1
, , , an d 0 .
3
T h en h as a u n iq u e fix ed p o in t in .
P ro o f:- T ak e an d in th eo rem 3 .2 .
x y z X k
T X
f g T t kt
   
  
Theorem 3.5:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that
     
 
 
          
 
a
b
c o r is co n tin u o u s,
d , , m ax , , , , , , , , ,
, ,
fo r all , , ..
f X g X
f g
G fx fy fz G g x g y g z G g x fx fx G g y fy fy
G g z fz fz
x y z X



 

  
 
.......................... 3 .5 .1
e an d are co m p atib le.
T h en an d h ave a u n iq u e co m m o n fi x ed p o in t.
f g
f g
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 29 | P a g e
Proof:- Let 0
x X . In view of (a), we can choose points
 
 
        
1 2 1
1
1 1 1 1 1 1 1
, , ..., ... su ch th at , 0,1, 2, ...
W rite an d in 3 .5 .1 w e g et
, , m ax , , , , , , , , ,
n n n
n n
n n n n n n n n n n n n
n
x x x f x g x n
x x y z x
G fx fx fx G g x g x g x G g x fx fx G g x fx fx
G g x



      

 
  

 1 1 1
, ,n n
fx fx 
      
 
    
     
   
1 1 1 1
1 1
1 1 1
1 1 1
1
m ax , , , , , , , , ,
, ,
m ax , , , , ,
m ax , , w h ere , ,
m ax , 3
n n n n n n n n n
n n n
n n n n n n
n n n n n n
n n n
G fx fx fx G fx fx fx G fx fx fx
G fx fx fx
G fx fx fx G fx fx fx
G fx fx fx


   
   
   
 
  
  



 
     
 
      
   
1
1 1
.5 .2
N o w a co n trad ictio n .
. T h u s is a d ecreasin g seq u en ce an d fro m 3 .5 .2
S u p p o se . T h u s
n n n n
n n n n n
n n
r r
    
     
   

 
  
  
 
   
 
 
 
 
 
1
1
0
0
1
1
0
0 .
S in ce , b y in d u ctio n w e h ave
H en ce
S o th at fo r ,
0 as , 3 .5 .3
S u p p o se . P u t , in 3 .5 .1
n n
n n
n
n
n
n
m n
n i
i
n m
n r r r
n m
n m
n m x x y z x
   
  
  
  



 
 

      


  

    
   
 

We get, by(G5)
     
     
     
1
1 1 1
1 1 1 2 2 2
, , , , , ,
P u t
, , , , , ,
, , , , , ,
n m m n m m
n
n m m n n n n m m
n n n n n n n m m
G fx fx fx G fx w w G w fx fx
w fx
G fx fx fx G fx fx fx G fx fx fx
G fx fx fx G fx fx fx G fx fx fx

  
     
 

  
  
   
  
 
1 1
1
1
B y in d u ctio n ,
1
, , , ,
0
1
0 as , fro m 3 .5 .3
0
, , 0 as ,
an d h en ce ,
n m m n i n i n i
n i
n m m
n m
m n
G fx fx fx G fx fx fx
i
m n
m n
i
G fx fx fx m n
G g x g x

    
 
 

 


 
   

   


 1 1
, 0 as ,m
g x m n
  
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 30 | P a g e
 
   
     
 
1
B u t , fro m 3 .5 .1 , w e see th at
, , , ,
m ax , , , , , , , , ,
, ,
m ax
n n n n n n
n n n n n n n n n
n n n
G fg x fx fx G ffx fx fx
G g fx g x g x G g fx fx fx G g x fx fx
G g x fx fx
G g





      
 
1 1 1
1
, , , , , , , , ,
, , .
n n n n n n n n n
n n n
fx fx fx G g fx fx fx G fx fx fx
G fx fx fx
  

           
    
 
O n lettin g ,
, , m ax , , , , , , , , , , , .
, , , ,
, , 0 .
is a fix ed p o in t o f .
n
G g p p p G g p p p G g p g p g p G p p p G g p g p g p
G g p p p G g p p p
G g p p p
g p p
p g


 

 
 
 

           
           
         
 
N o w ,
, , m ax , , , , , , , , , , , .
O n lettin g , w e g et
, , m ax , , , , , , , , , , ,
m ax , , , , , , , , , , ,
, ,
n n n n n n
G fx fp fp G g x fp fp G g x fx fx G g p fp fp G fx g p g p
n
G p fp fp G p fp fp G p p p G g p fp fp G p g p g p
G p fp fp G p p p G p fp fp G p p p
G p fp fp




 


   
 
, ,
, , 0
is a co m m o n fix ed p o in t o f an d .
G p fp fp
G p fp fp
fp p
p f g

 
 

 
           
S u p p o se an d are co m m o n fix ed p o in t o f an d
so th at an d
N o w fro m 3 .5 .1 , w e h ave
, , , , , , m ax , , , , , , , , ,
p q f g
fp g p p fq g q q
G p p p p G p fq fq G fp fq fq G g p g q g q G g p fp fp G g q fq fq
   
  
 
         
, ,
m ax , , , , , , , , , , ,
G g q fq fq
G p q q G p p p G q q q G q q q
   
  
 
m ax , ,
, ,
, , 0
.
T h u s an d h ave u n i
G p q q
G p q q
G p q q
p q
f g




 
 
q u e co m m o n fix ed p o in t.
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 31 | P a g e
Corollary 3.6:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that
     
 
 
         
 
a
b 0 1
c o r is co n tin u o u s,
d , , m ax , , , , , , , , ,
, ,
fo r all , ,
f X g X
k
f g
G fx fy fz k G g x g y g z G g x fx fx G g y fy fy
G g z fz fz
x y z X

 

  
 
............................ 3 .5 .1
e an d are co m p atib le.
T h en an d h ave a u n iq u e co m m o n fix ed p o in t.
f g
f g
Proof:- Take   in T heorem 3.5t kt 
Theorem 3.7:- Suppose that f and g are self-maps on a complete G-metric space  ,X G
such that
     
 
 
         
 
a
b
c o r is co n tin u o u s,
d , , m ax , , , , , , , , ,
, ,
fo r all , , ..
f X g X
f g
G fx fy fz G g x g y g z G g x fx fx G g y fy fy
G g z fz fz
x y z X



 

  
 
.......................... 3 .7 .1
e an d are co m p atib le.
T h en an d h ave a u n iq u e co m m o n fix ed p o in t.
f g
f g
Proof:- The proof of the theorem is similar to that of 3.5
Corollary 3.8:- Suppose that f and g are self-maps on a complete G-metric space  ,X G
such that
     
 
 
         
 
a
b 0 1 .
c o r is co n tin u o u s,
d , , m ax , , , , , , , , ,
, ,
fo r all , ,
f X g X
k
f g
G fx fy fz k G g x g y g z G g x fx fx G g y fy fy
G g z fz fz
x y z

 

  
 
............................ 3 .8 .1
e an d are co m p atib le.
T h en an d h ave a u n iq u e co m m o n fix ed p o in t.
X
f g
f g
B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32
www.ijera.com DOI: 10.9790/9622- 0703032132 32 | P a g e
Proof:- Take   in T heorem 3.7t kt 
ACKNOWLEDGEMENT
Fourth Author B.Ramu Naidu is grateful to Special
officer, AU.P.G.Centre, Vizianagaram for
providing necessary permissions and facilities to
carry on this research.
REFERENCES
[1]. Dhage, B.C., Generalized Metric Space and
Mapping with Fixed Point, Bull. Cal. Math.
Soc. 84, (1992), 329-336.
[2]. Dhage, B.C., Generalized Metric Space and
Topological Structure I , An. Stiint. Univ.
Al. I . Cuza Iasi. Mat (N.S), 46, (2000), 3-
24.
[3]. Gahler,s., 2-metriche raume und ihre
topologische, Math. Nachr. 26, 1963, 115-
148.
[4]. Gahler,s., Zur geometric raume, Reevue
Roumaine de Math. Pures et Appl., XI,
1966, 664-669.
[5]. HA. Et al,KI.S,CHO,Y.J and White. A
Strictly convex and 2-convex 2-normed
spaces,Math. Japonica, 33(3), (1988), 375-
384.
[6]. Kumara
Swamy.K and Phaneendra.T., FIXED
POINT THEOREM FOR TWO SELF-
MAPS IN A G-METRIC SPACE. Bulletin
of Mathematics and Statistics Research,
vol.4.S1.2016.ISSN:2348-0580.Pages 23-25.
[7]. Mustafa Z., and Sims, B., A new approach to
generalized metric spaces, J. Nonlinear
Convex Anal., 7(2006), 289-297.
[8]. Mustafa Z., and Sims, B., Fixed point
theorems for contractive mappings in
complete G-metric spaces, Fixed Point
Theory and Applications, Vol. 2009, Article
ID917175, 10 pages.
[9]. Mustafa Z., Obiedat H., Awawdeh F., Some
fixed point theorems for mappings on
complete G-metric spaces, Fixed Point
Theory and Applications, Vol. 2008, Article
ID18970, 12 pages.
[10]. Mustafa Z., Shatanawi W., Bataineh M.,
Existence of fixed point results in G-metric
spaces, International Journal of Mathematics
and Mathematical Sciences, Vol. 2009,
Article ID283028 10 pages.
[11]. Mustafa Z.and Sims, B., Some Remarks
Concerning D-Metric Spaces, Proceedings
of the Internatinal Conference on Fixed
Point Theory and Applications, Yokohama
Publishers, Valencia, Spain, July 13-19,
2004, 189-198.
[12]. Mustafa Z., Obiedat H., A fixed point
theorem of Reich in G-metric space, Cubo a
Mathematics Journal, 12(01)(2010), 83-93.
[13]. Mustafa Z., Awawdeh F., Shatanawi W.,
Fixed point theorem for expansive mapping
in G-metric space, Int.J.Contemp Math.
Sciences, 5(50)(2010), 2463-2472.
[14]. Renu.Chugh, T.Kadian, A.Rani, and
B.E.Rhoades, Property P in G-metric spaces,
Fixed Point Theory and Applications,
vol.2010, Article ID 401684, 12pages, 2010.
[15]. Sastry,K.P.R.,G.A.Naidu.,Ch.Srinivasa
Rao.,B.Ramu naidu Fixed point theorem for
contractions  on a G-metric
space and consequences, Volume 8, Issue 2,
February 2017 Edition.
[16]. Shatanawi W., Fixed point theory for
contractive mapping satisfying Ø- maps in
G-metric spaces, Fixed Point Theory and
Applications, Vol. 2010, Article ID181650,
9 pages.
[17]. Sushanta Kumar Mohanta., SOME FIXED
POINT THEOREMS IN G-METRIC
SPACE, An.st.UNIV. Ovidius Constanta
vol.20(1).2012.285-306
[18]. VATS, R.K., S.Kumar and V.Sihag., FIXED
POINT THEOREMS IN COMPLETE G-
METRIC SPACE.,FASCICULI
MATHEMATICI, Nr.17(2011),127-139.

More Related Content

What's hot

Codes from the cyclic group of order three
Codes from the cyclic group of order threeCodes from the cyclic group of order three
Codes from the cyclic group of order three
Editor Jacotech
 
SUPER MAGIC CORONATIONS OF GRAPHS
SUPER MAGIC CORONATIONS OF GRAPHS SUPER MAGIC CORONATIONS OF GRAPHS
SUPER MAGIC CORONATIONS OF GRAPHS
IAEME Publication
 
The discrete quartic spline interpolation over non uniform mesh
The discrete  quartic spline interpolation over non uniform meshThe discrete  quartic spline interpolation over non uniform mesh
The discrete quartic spline interpolation over non uniform mesh
Alexander Decker
 
Bounds on double domination in squares of graphs
Bounds on double domination in squares of graphsBounds on double domination in squares of graphs
Bounds on double domination in squares of graphs
eSAT Publishing House
 
On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
inventionjournals
 
A fixed point result in banach spaces
A fixed point result in banach spacesA fixed point result in banach spaces
A fixed point result in banach spacesAlexander Decker
 
A Note on Latent LSTM Allocation
A Note on Latent LSTM AllocationA Note on Latent LSTM Allocation
A Note on Latent LSTM Allocation
Tomonari Masada
 
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric SpaceSome Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
IOSR Journals
 
A Note on TopicRNN
A Note on TopicRNNA Note on TopicRNN
A Note on TopicRNN
Tomonari Masada
 
10.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.1110.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.11DAVID GIKUNJU
 
Algebra 2 Unit 5 Lesson 5
Algebra 2 Unit 5 Lesson 5Algebra 2 Unit 5 Lesson 5
Algebra 2 Unit 5 Lesson 5
Kate Nowak
 
IRJET- Direct Product of Soft Hyper Lattices
IRJET- Direct Product of Soft Hyper LatticesIRJET- Direct Product of Soft Hyper Lattices
IRJET- Direct Product of Soft Hyper Lattices
IRJET Journal
 
A new generalized lindley distribution
A new generalized lindley distributionA new generalized lindley distribution
A new generalized lindley distribution
Alexander Decker
 
Specific Finite Groups(General)
Specific Finite Groups(General)Specific Finite Groups(General)
Specific Finite Groups(General)Shane Nicklas
 
Structure of unital 3-fields, by S.Duplij, W.Werner
Structure of unital 3-fields, by S.Duplij, W.WernerStructure of unital 3-fields, by S.Duplij, W.Werner
Structure of unital 3-fields, by S.Duplij, W.Werner
Steven Duplij (Stepan Douplii)
 
Entropy 19-00079
Entropy 19-00079Entropy 19-00079
Entropy 19-00079
Mazharul Islam
 
Restrained lict domination in graphs
Restrained lict domination in graphsRestrained lict domination in graphs
Restrained lict domination in graphs
eSAT Publishing House
 
Relationship between some machine learning concepts
Relationship between some machine learning conceptsRelationship between some machine learning concepts
Relationship between some machine learning concepts
Zoya Bylinskii
 

What's hot (19)

Codes from the cyclic group of order three
Codes from the cyclic group of order threeCodes from the cyclic group of order three
Codes from the cyclic group of order three
 
SUPER MAGIC CORONATIONS OF GRAPHS
SUPER MAGIC CORONATIONS OF GRAPHS SUPER MAGIC CORONATIONS OF GRAPHS
SUPER MAGIC CORONATIONS OF GRAPHS
 
The discrete quartic spline interpolation over non uniform mesh
The discrete  quartic spline interpolation over non uniform meshThe discrete  quartic spline interpolation over non uniform mesh
The discrete quartic spline interpolation over non uniform mesh
 
Bounds on double domination in squares of graphs
Bounds on double domination in squares of graphsBounds on double domination in squares of graphs
Bounds on double domination in squares of graphs
 
On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
On Coincidence Points in Pseudocompact Tichonov Spaces and Common Fixed Point...
 
A fixed point result in banach spaces
A fixed point result in banach spacesA fixed point result in banach spaces
A fixed point result in banach spaces
 
A Note on Latent LSTM Allocation
A Note on Latent LSTM AllocationA Note on Latent LSTM Allocation
A Note on Latent LSTM Allocation
 
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric SpaceSome Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
 
A Note on TopicRNN
A Note on TopicRNNA Note on TopicRNN
A Note on TopicRNN
 
10.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.1110.11648.j.pamj.20170601.11
10.11648.j.pamj.20170601.11
 
Algebra 2 Unit 5 Lesson 5
Algebra 2 Unit 5 Lesson 5Algebra 2 Unit 5 Lesson 5
Algebra 2 Unit 5 Lesson 5
 
IRJET- Direct Product of Soft Hyper Lattices
IRJET- Direct Product of Soft Hyper LatticesIRJET- Direct Product of Soft Hyper Lattices
IRJET- Direct Product of Soft Hyper Lattices
 
A new generalized lindley distribution
A new generalized lindley distributionA new generalized lindley distribution
A new generalized lindley distribution
 
Specific Finite Groups(General)
Specific Finite Groups(General)Specific Finite Groups(General)
Specific Finite Groups(General)
 
Structure of unital 3-fields, by S.Duplij, W.Werner
Structure of unital 3-fields, by S.Duplij, W.WernerStructure of unital 3-fields, by S.Duplij, W.Werner
Structure of unital 3-fields, by S.Duplij, W.Werner
 
Entropy 19-00079
Entropy 19-00079Entropy 19-00079
Entropy 19-00079
 
Restrained lict domination in graphs
Restrained lict domination in graphsRestrained lict domination in graphs
Restrained lict domination in graphs
 
Relationship between some machine learning concepts
Relationship between some machine learning conceptsRelationship between some machine learning concepts
Relationship between some machine learning concepts
 
AIP conference proceedings
AIP conference proceedingsAIP conference proceedings
AIP conference proceedings
 

Viewers also liked

Study On The External Gas-Assisted Mold Temperature Control For Thin Wall Inj...
Study On The External Gas-Assisted Mold Temperature Control For Thin Wall Inj...Study On The External Gas-Assisted Mold Temperature Control For Thin Wall Inj...
Study On The External Gas-Assisted Mold Temperature Control For Thin Wall Inj...
IJERA Editor
 
Defects, Root Causes in Casting Process and Their Remedies: Review
Defects, Root Causes in Casting Process and Their Remedies: ReviewDefects, Root Causes in Casting Process and Their Remedies: Review
Defects, Root Causes in Casting Process and Their Remedies: Review
IJERA Editor
 
Brainstorming: Thinking - Problem Solving Strategy
Brainstorming: Thinking - Problem Solving StrategyBrainstorming: Thinking - Problem Solving Strategy
Brainstorming: Thinking - Problem Solving Strategy
IJERA Editor
 
Locating Facts Devices in Optimized manner in Power System by Means of Sensit...
Locating Facts Devices in Optimized manner in Power System by Means of Sensit...Locating Facts Devices in Optimized manner in Power System by Means of Sensit...
Locating Facts Devices in Optimized manner in Power System by Means of Sensit...
IJERA Editor
 
Design of Low Power Vedic Multiplier Based on Reversible Logic
Design of Low Power Vedic Multiplier Based on Reversible LogicDesign of Low Power Vedic Multiplier Based on Reversible Logic
Design of Low Power Vedic Multiplier Based on Reversible Logic
IJERA Editor
 
A Proposed Method for Safe Disposal of Consumed Photovoltaic Modules
A Proposed Method for Safe Disposal of Consumed Photovoltaic ModulesA Proposed Method for Safe Disposal of Consumed Photovoltaic Modules
A Proposed Method for Safe Disposal of Consumed Photovoltaic Modules
IJERA Editor
 
POWER CONSUMING SYSTEM USING WSN IN HEMS
POWER CONSUMING SYSTEM USING WSN IN HEMSPOWER CONSUMING SYSTEM USING WSN IN HEMS
POWER CONSUMING SYSTEM USING WSN IN HEMS
IJERA Editor
 
FE Simulation Modelling and Exergy Analysis of Conventional Forging Deformati...
FE Simulation Modelling and Exergy Analysis of Conventional Forging Deformati...FE Simulation Modelling and Exergy Analysis of Conventional Forging Deformati...
FE Simulation Modelling and Exergy Analysis of Conventional Forging Deformati...
IJERA Editor
 
A study of Heavy Metal Pollution in Groundwater of Malwa Region of Punjab, In...
A study of Heavy Metal Pollution in Groundwater of Malwa Region of Punjab, In...A study of Heavy Metal Pollution in Groundwater of Malwa Region of Punjab, In...
A study of Heavy Metal Pollution in Groundwater of Malwa Region of Punjab, In...
IJERA Editor
 
Topology Management for Mobile Ad Hoc Networks Scenario
Topology Management for Mobile Ad Hoc Networks ScenarioTopology Management for Mobile Ad Hoc Networks Scenario
Topology Management for Mobile Ad Hoc Networks Scenario
IJERA Editor
 
Direction of Arrival Estimation Based on MUSIC Algorithm Using Uniform and No...
Direction of Arrival Estimation Based on MUSIC Algorithm Using Uniform and No...Direction of Arrival Estimation Based on MUSIC Algorithm Using Uniform and No...
Direction of Arrival Estimation Based on MUSIC Algorithm Using Uniform and No...
IJERA Editor
 
Reducing the Negative Effects of Seasonal Demand Fluctuations: A Proposal Bas...
Reducing the Negative Effects of Seasonal Demand Fluctuations: A Proposal Bas...Reducing the Negative Effects of Seasonal Demand Fluctuations: A Proposal Bas...
Reducing the Negative Effects of Seasonal Demand Fluctuations: A Proposal Bas...
IJERA Editor
 
Moringa Seed, Residual Coffee Powder, and Banana Peel as Biosorbents for Uran...
Moringa Seed, Residual Coffee Powder, and Banana Peel as Biosorbents for Uran...Moringa Seed, Residual Coffee Powder, and Banana Peel as Biosorbents for Uran...
Moringa Seed, Residual Coffee Powder, and Banana Peel as Biosorbents for Uran...
IJERA Editor
 
Comparing Speech Recognition Systems (Microsoft API, Google API And CMU Sphinx)
Comparing Speech Recognition Systems (Microsoft API, Google API And CMU Sphinx)Comparing Speech Recognition Systems (Microsoft API, Google API And CMU Sphinx)
Comparing Speech Recognition Systems (Microsoft API, Google API And CMU Sphinx)
IJERA Editor
 
Performance Evaluation of Two-Level Photovoltaic Voltage Source Inverter Cons...
Performance Evaluation of Two-Level Photovoltaic Voltage Source Inverter Cons...Performance Evaluation of Two-Level Photovoltaic Voltage Source Inverter Cons...
Performance Evaluation of Two-Level Photovoltaic Voltage Source Inverter Cons...
IJERA Editor
 
A Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
A Singular Spectrum Analysis Technique to Electricity Consumption ForecastingA Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
A Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
IJERA Editor
 
Empirical Study of a Key Authentication Scheme in Public Key Cryptography
Empirical Study of a Key Authentication Scheme in Public Key CryptographyEmpirical Study of a Key Authentication Scheme in Public Key Cryptography
Empirical Study of a Key Authentication Scheme in Public Key Cryptography
IJERA Editor
 
“Design and Analysis of a Windmill Blade in Windmill Electric Generation System”
“Design and Analysis of a Windmill Blade in Windmill Electric Generation System”“Design and Analysis of a Windmill Blade in Windmill Electric Generation System”
“Design and Analysis of a Windmill Blade in Windmill Electric Generation System”
IJERA Editor
 
Properties of Concrete Containing Scrap-Tire Rubber
Properties of Concrete Containing Scrap-Tire RubberProperties of Concrete Containing Scrap-Tire Rubber
Properties of Concrete Containing Scrap-Tire Rubber
IJERA Editor
 
Mild balanced Intuitionistic Fuzzy Graphs
Mild balanced Intuitionistic Fuzzy Graphs Mild balanced Intuitionistic Fuzzy Graphs
Mild balanced Intuitionistic Fuzzy Graphs
IJERA Editor
 

Viewers also liked (20)

Study On The External Gas-Assisted Mold Temperature Control For Thin Wall Inj...
Study On The External Gas-Assisted Mold Temperature Control For Thin Wall Inj...Study On The External Gas-Assisted Mold Temperature Control For Thin Wall Inj...
Study On The External Gas-Assisted Mold Temperature Control For Thin Wall Inj...
 
Defects, Root Causes in Casting Process and Their Remedies: Review
Defects, Root Causes in Casting Process and Their Remedies: ReviewDefects, Root Causes in Casting Process and Their Remedies: Review
Defects, Root Causes in Casting Process and Their Remedies: Review
 
Brainstorming: Thinking - Problem Solving Strategy
Brainstorming: Thinking - Problem Solving StrategyBrainstorming: Thinking - Problem Solving Strategy
Brainstorming: Thinking - Problem Solving Strategy
 
Locating Facts Devices in Optimized manner in Power System by Means of Sensit...
Locating Facts Devices in Optimized manner in Power System by Means of Sensit...Locating Facts Devices in Optimized manner in Power System by Means of Sensit...
Locating Facts Devices in Optimized manner in Power System by Means of Sensit...
 
Design of Low Power Vedic Multiplier Based on Reversible Logic
Design of Low Power Vedic Multiplier Based on Reversible LogicDesign of Low Power Vedic Multiplier Based on Reversible Logic
Design of Low Power Vedic Multiplier Based on Reversible Logic
 
A Proposed Method for Safe Disposal of Consumed Photovoltaic Modules
A Proposed Method for Safe Disposal of Consumed Photovoltaic ModulesA Proposed Method for Safe Disposal of Consumed Photovoltaic Modules
A Proposed Method for Safe Disposal of Consumed Photovoltaic Modules
 
POWER CONSUMING SYSTEM USING WSN IN HEMS
POWER CONSUMING SYSTEM USING WSN IN HEMSPOWER CONSUMING SYSTEM USING WSN IN HEMS
POWER CONSUMING SYSTEM USING WSN IN HEMS
 
FE Simulation Modelling and Exergy Analysis of Conventional Forging Deformati...
FE Simulation Modelling and Exergy Analysis of Conventional Forging Deformati...FE Simulation Modelling and Exergy Analysis of Conventional Forging Deformati...
FE Simulation Modelling and Exergy Analysis of Conventional Forging Deformati...
 
A study of Heavy Metal Pollution in Groundwater of Malwa Region of Punjab, In...
A study of Heavy Metal Pollution in Groundwater of Malwa Region of Punjab, In...A study of Heavy Metal Pollution in Groundwater of Malwa Region of Punjab, In...
A study of Heavy Metal Pollution in Groundwater of Malwa Region of Punjab, In...
 
Topology Management for Mobile Ad Hoc Networks Scenario
Topology Management for Mobile Ad Hoc Networks ScenarioTopology Management for Mobile Ad Hoc Networks Scenario
Topology Management for Mobile Ad Hoc Networks Scenario
 
Direction of Arrival Estimation Based on MUSIC Algorithm Using Uniform and No...
Direction of Arrival Estimation Based on MUSIC Algorithm Using Uniform and No...Direction of Arrival Estimation Based on MUSIC Algorithm Using Uniform and No...
Direction of Arrival Estimation Based on MUSIC Algorithm Using Uniform and No...
 
Reducing the Negative Effects of Seasonal Demand Fluctuations: A Proposal Bas...
Reducing the Negative Effects of Seasonal Demand Fluctuations: A Proposal Bas...Reducing the Negative Effects of Seasonal Demand Fluctuations: A Proposal Bas...
Reducing the Negative Effects of Seasonal Demand Fluctuations: A Proposal Bas...
 
Moringa Seed, Residual Coffee Powder, and Banana Peel as Biosorbents for Uran...
Moringa Seed, Residual Coffee Powder, and Banana Peel as Biosorbents for Uran...Moringa Seed, Residual Coffee Powder, and Banana Peel as Biosorbents for Uran...
Moringa Seed, Residual Coffee Powder, and Banana Peel as Biosorbents for Uran...
 
Comparing Speech Recognition Systems (Microsoft API, Google API And CMU Sphinx)
Comparing Speech Recognition Systems (Microsoft API, Google API And CMU Sphinx)Comparing Speech Recognition Systems (Microsoft API, Google API And CMU Sphinx)
Comparing Speech Recognition Systems (Microsoft API, Google API And CMU Sphinx)
 
Performance Evaluation of Two-Level Photovoltaic Voltage Source Inverter Cons...
Performance Evaluation of Two-Level Photovoltaic Voltage Source Inverter Cons...Performance Evaluation of Two-Level Photovoltaic Voltage Source Inverter Cons...
Performance Evaluation of Two-Level Photovoltaic Voltage Source Inverter Cons...
 
A Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
A Singular Spectrum Analysis Technique to Electricity Consumption ForecastingA Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
A Singular Spectrum Analysis Technique to Electricity Consumption Forecasting
 
Empirical Study of a Key Authentication Scheme in Public Key Cryptography
Empirical Study of a Key Authentication Scheme in Public Key CryptographyEmpirical Study of a Key Authentication Scheme in Public Key Cryptography
Empirical Study of a Key Authentication Scheme in Public Key Cryptography
 
“Design and Analysis of a Windmill Blade in Windmill Electric Generation System”
“Design and Analysis of a Windmill Blade in Windmill Electric Generation System”“Design and Analysis of a Windmill Blade in Windmill Electric Generation System”
“Design and Analysis of a Windmill Blade in Windmill Electric Generation System”
 
Properties of Concrete Containing Scrap-Tire Rubber
Properties of Concrete Containing Scrap-Tire RubberProperties of Concrete Containing Scrap-Tire Rubber
Properties of Concrete Containing Scrap-Tire Rubber
 
Mild balanced Intuitionistic Fuzzy Graphs
Mild balanced Intuitionistic Fuzzy Graphs Mild balanced Intuitionistic Fuzzy Graphs
Mild balanced Intuitionistic Fuzzy Graphs
 

Similar to Some common Fixed Point Theorems for compatible  - contractions in G-metric Spaces

Common fixed point theorems with continuously subcompatible mappings in fuzz...
 Common fixed point theorems with continuously subcompatible mappings in fuzz... Common fixed point theorems with continuously subcompatible mappings in fuzz...
Common fixed point theorems with continuously subcompatible mappings in fuzz...
Alexander Decker
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
irjes
 
D242228
D242228D242228
D242228irjes
 
Fixed Point Theorems for Weak K-Quasi Contractions on a Generalized Metric Sp...
Fixed Point Theorems for Weak K-Quasi Contractions on a Generalized Metric Sp...Fixed Point Theorems for Weak K-Quasi Contractions on a Generalized Metric Sp...
Fixed Point Theorems for Weak K-Quasi Contractions on a Generalized Metric Sp...
IJERA Editor
 
A common fixed point of integral type contraction in generalized metric spacess
A  common fixed point of integral type contraction in generalized metric spacessA  common fixed point of integral type contraction in generalized metric spacess
A common fixed point of integral type contraction in generalized metric spacess
Alexander Decker
 
Fixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric SpaceFixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric Space
IJERA Editor
 
Fixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spacesFixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spacesAlexander Decker
 
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert space
Alexander Decker
 
INTUITIONISTIC S-FUZZY SOFT NORMAL SUBGROUPS
INTUITIONISTIC S-FUZZY SOFT NORMAL SUBGROUPSINTUITIONISTIC S-FUZZY SOFT NORMAL SUBGROUPS
A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...
A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...
A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...
ijscmcj
 
Some New Fixed Point Theorems on S Metric Spaces
Some New Fixed Point Theorems on S Metric SpacesSome New Fixed Point Theorems on S Metric Spaces
Some New Fixed Point Theorems on S Metric Spaces
ijtsrd
 
Best Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed SpacesBest Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed Spaces
IOSR Journals
 
Em34852854
Em34852854Em34852854
Em34852854
IJERA Editor
 
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...
IRJET Journal
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
Alexander Decker
 
A05920109
A05920109A05920109
A05920109
IOSR-JEN
 
A common fixed point theorem for six mappings in g banach space with weak-com...
A common fixed point theorem for six mappings in g banach space with weak-com...A common fixed point theorem for six mappings in g banach space with weak-com...
A common fixed point theorem for six mappings in g banach space with weak-com...
Alexander Decker
 
B043007014
B043007014B043007014
B043007014
inventy
 
B043007014
B043007014B043007014
B043007014
inventy
 
B043007014
B043007014B043007014
B043007014
inventy
 

Similar to Some common Fixed Point Theorems for compatible  - contractions in G-metric Spaces (20)

Common fixed point theorems with continuously subcompatible mappings in fuzz...
 Common fixed point theorems with continuously subcompatible mappings in fuzz... Common fixed point theorems with continuously subcompatible mappings in fuzz...
Common fixed point theorems with continuously subcompatible mappings in fuzz...
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
D242228
D242228D242228
D242228
 
Fixed Point Theorems for Weak K-Quasi Contractions on a Generalized Metric Sp...
Fixed Point Theorems for Weak K-Quasi Contractions on a Generalized Metric Sp...Fixed Point Theorems for Weak K-Quasi Contractions on a Generalized Metric Sp...
Fixed Point Theorems for Weak K-Quasi Contractions on a Generalized Metric Sp...
 
A common fixed point of integral type contraction in generalized metric spacess
A  common fixed point of integral type contraction in generalized metric spacessA  common fixed point of integral type contraction in generalized metric spacess
A common fixed point of integral type contraction in generalized metric spacess
 
Fixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric SpaceFixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric Space
 
Fixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spacesFixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spaces
 
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert space
 
INTUITIONISTIC S-FUZZY SOFT NORMAL SUBGROUPS
INTUITIONISTIC S-FUZZY SOFT NORMAL SUBGROUPSINTUITIONISTIC S-FUZZY SOFT NORMAL SUBGROUPS
INTUITIONISTIC S-FUZZY SOFT NORMAL SUBGROUPS
 
A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...
A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...
A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...
 
Some New Fixed Point Theorems on S Metric Spaces
Some New Fixed Point Theorems on S Metric SpacesSome New Fixed Point Theorems on S Metric Spaces
Some New Fixed Point Theorems on S Metric Spaces
 
Best Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed SpacesBest Approximation in Real Linear 2-Normed Spaces
Best Approximation in Real Linear 2-Normed Spaces
 
Em34852854
Em34852854Em34852854
Em34852854
 
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...
Fixed Point Theorem of Compatible of Type (R) Using Implicit Relation in Fuzz...
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
 
A05920109
A05920109A05920109
A05920109
 
A common fixed point theorem for six mappings in g banach space with weak-com...
A common fixed point theorem for six mappings in g banach space with weak-com...A common fixed point theorem for six mappings in g banach space with weak-com...
A common fixed point theorem for six mappings in g banach space with weak-com...
 
B043007014
B043007014B043007014
B043007014
 
B043007014
B043007014B043007014
B043007014
 
B043007014
B043007014B043007014
B043007014
 

Recently uploaded

一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 

Recently uploaded (20)

一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 

Some common Fixed Point Theorems for compatible  - contractions in G-metric Spaces

  • 1. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 21 | P a g e Some common Fixed Point Theorems for compatible - contractions in G-metric Spaces 1 B. Ramu Naidu, 2. K.P.R. Sastry , 3 G. Appala Naidu , 4. Ch. Srinivasa Rao, 1,2,3,4 Faculty in Mathematics, AU campus, Vizianagaram -535003 INDIA. ABSTRACT We prove some common fixed point theorems for compatible self mappings satisfying some kind of contractive type conditions on complete G-metric spaces and obtain results of Kumara Swamy and Phaneendra[6] and Sushanta Kumar Mohanta[16] as corollaries. 2010 Mathematics Subject Classification.47H10, 54H25 Keywords:- G-metric space, Compatible self-maps, G-Cauchy sequence, Common fixed point, -contractions. I. INTRODUCTION The study of metric fixed point theory plays an important role because the study finds applications in many important areas as diverse as differential equations, operation research, mathematical economics and the like. Different generalizations of the usual notion of a metric space were proposed by several mathematicians such as Gahler [3,4] (called 2-metric spaces) and Dhage [1,2] (called D-metric spaces). K.S.Ha et al. [5] have pointed out that the results cited by Gahler are independent, rather than generalizations, of the corresponding results in metric spaces. Moreover, it was shown that Dhage’s notion of D-metric space is flawed by errors and most of the results established by him and others are invalid. These facts determined Mustafa and Sims [11] to introduce a new concept in the area, called G- metric space. Recently, Mustafa et al. studied many fixed point theorems for mappings satisfying various contractive conditions on complete G- metric spaces; see [8-13]. Subsequently, some authors like Renu Chugh et al.[14], W.Shatanawi [15] have generalized some results of Mustafa et al. [7-8] and studied some fixed point results for self- mappings in a complete G-metric space under some contractive conditions related to a non-decreasing        : 0, 0, w ith lim 0 for all 0, . n n t t             Kumara Swamy and Phaneendra[6] and Sushanta Kumar Mohanta[16] proved some fixed point theorems for self-mappings on complete G-metric spaces. In this paper we introduce  -contractions in G-metric spaces, prove fixed point results for such maps and obtain results of Kumara Swamy and Phaneendra [6]. II. PRELIMINARIES We begin by briefly recalling some basic definitions and results for G-metric spaces that will be needed in the sequel. Definition 2.1 :-(Mustafa and Sims [7]) Let X be a non–empty set, and let :G X X X R     be a function satisfying the following axioms:                                1 , , 0 if , 2 0 < , , , fo r all , , w ith , 3 , , , , , fo r all , , , w ith , 4 , , , , w h ere is a p erm u tatio n in , , , 5 , , , , , , , fo r all , , , , r G G x y z x y z G G x x y x y X x y G G x x y G x y z x y z X z y G G x y z G x z y x y z G G x y z G x a a G a y z x y z a X                ectan g le in eq u ality . RESEARCH ARTICLE OPEN ACCESS
  • 2. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 22 | P a g e Then the function G is called a generalized metric, or, more specifically a G- metric on X , and the pair  ,X G is called a G-metric space. Example 2.2:- (Mustafa and Sims [7]) Let R be the set of all real numbers define. :G R R R R     by  , , , for all , , .G x y z x y y z z x x y z X       Then it is clear that  ,R G is a G-metric space. We use the following proposition in the Sequel without explicit mention. Proposition 2.3:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space. Then for any , , , an d ,x y z a X it follows that                                                  1 if , , 0 th en , 2 , , , , , , , 3 , , 2 , , , 2 .3 .1 4 , , , , , , , 2 5 , , , , , , , , , 3 6 , , , , , , , , . G x y z x y z G x y z G x x y G x x z G x y y G y x x G x y z G x a z G a y z G x y z G x y a G x a z G a y z G x y z G x a a G y a a G z a a                 Definition 2.4: (Mustafa and Sims [7]) Let  ,X G be a G-metric space, let  n x be a sequence of points of X , we say that  n x is G-convergent to x       0 , 0 if lim , , 0; th at is, fo r an y 0, th ere ex ists su ch th at , , , fo r all , , . W e refer to as th e lim it o f th e seq u en ce an d w rite . n m n m n m n n G x x x n N G x x x n m n x x x x            The following proposition is used in the section 3. Proposition 2.5:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space. Then, the following are equivalent:                 1 is G -co n verg en t to . 2 , , 0, as . 3 , , 0, as . 4 , , 0, as , . n n n n m n x x G x x x n G x x x n G x x x m n          Definition 2.6:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space, sequence n x is called G- Cauchy if given 0 0, th ere is n N   such that   0 , , , for all , ,n m l G x x x n m l n  that is if  , , 0 as , , .n m l G x x x n m l  
  • 3. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 23 | P a g e Proposition 2.7:- (Mustafa and Sims [7]) In a G-metric space  ,X G , the following are equivalent: (1) The sequence  n x is G-Cauchy. (2) For every  0 0 0, there exists such that , , for all , .n m m n N G x x x n m n     Definition 2.8:- (Mustafa and Sims [7]) Let  ,X G and  ,X G  be G-metric spaces and let    : , ,f X G X G  be a function, then f is said to be G-continuous at a point if given 0, there exists > 0a X            such that , ; , , im plies , , < .x y X G a x y G f a f x f y    A function f is G-continuous on X if and only if it is G-continuous at all .a X Proposition 2.9:- (Mustafa and Sims [7]) Let  ,X G and  ,X G  be G-metric spaces, then a function :f X X  is G-continuous at a point x X if and only if it is G-sequentially continuous at x ; that is, whenever n x is G-convergent to   , n x f x is G-convergent to  f x . Proposition 2.10:- (Mustafa and Sims [7]) Let  ,X G be a G-metric space. Then, the function  , ,G x y z is continuous in all variables. Definition 2.11:- (Mustafa and Sims [7]) A G-metric space  ,X G is said to be G-complete (or a complete G-metric space) if every G-Cauchy sequence in  ,X G is G-convergent in  ,X G . Definition 2.12:- Two self-maps f and g on a G-metric space  ,X G are said to be compatible if  lim , , 0n n n G fgx gfx gfx n    whenever  n x is a sequence in X such that lim lim fo r so m e .n n fx g x p p X n n        3. Main Result:- Notation:-       1 : 0, 0, / is increasing, continuous and for 0 . n n t t                   We observe that  0 0  and   .t t  (see Sastry,KPR et al.[15]) We also observe that, if we define   for 0, w here 0 1 then .t k t t k       Lemma 3.1:- Suppose 1,  and        : 0, 0, is in creasin g an d 3 .1 .1 t t         . Suppose  n  is a sequence of non-negative real numbers such that    1 1 a b 3.1.2n n n          Where a,b are positive real numbers such that a+b=  .
  • 4. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 24 | P a g e Then 1 n n       and 0 as , .k m m n k n       Proof:- First we observe that   fo r 1, 2, 3, .... n n t t n n    Now        1 1 1 1 1 1 1 1 a + b a + b a + b a+ b .H en ce , n n n n n n n n n n n n                                 a contradiction.                       1 1 1 1 0 1 1 0 1 0 . T h u s is a d ecreasin g seq u en ce a+ ba b sin ce is in creasin g ........ . sin ce 1 1 1 H en ce 0 as , . n n n nn n n n n n n n n n n n k n n n m n                                                                    1 m k   Notation:- Let 1.  Write      : 0, 0, / is in creasin g , co n tin u o u u s an d . t t                   We observe that            1 0 sin ce T h u s fo r > 1 H ere , 1, 2, ... w ith n n n n t t t t n t t                           We prove the following common fixed point theorem. Theorem 3.2:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that                            a b c o r is co n tin u o u s, d , , m ax , , , , , , , , , , , , , , f X g X f g G fx fy fz G g x fx fx G g y fy fy G g z fz fz G g x fy fy G g y fx fx G g z fy fy G                     , , , , , , fo r all , , ............................ 3 .2 .1 e an d are co m p atib le. T h en an d h ave a u n iq u e co m m o n fix ed p o in t. g x fz fz G g y fz fz G g z fx fx x y z X f g f g   
  • 5. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 25 | P a g e Proof:- Let 0 x X . In view of (a), we can choose points                1 2 1 1 1 1 1 1 1 1 1 , , ..., ... su ch th at fo r 1, 2, ..... 3 .2 .2 . W ritin g an d in 3 .2 .1 an d th en u sin g 3 .2 .2 , w e h ave , , m ax , , , , , , , n n n n n n n n n n n n n n n n n x x x fx g x n x x y z x G fx fx fx G fx fx fx G fx fx fx G fx fx fx                       1 1 1 1 1 , , , , , , ,n n n n n n n n n G fx fx fx G fx fx fx G fx fx fx                  1 1 1 1 1 1 1 1 , , , , , , m ax , , 2 , , , n n n n n n n n n n n n n n n G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx                  1 1 1 1 1 , , , , 3 .2 .3n n n n n n G fx fx fx G fx fx fx                         5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 F ro m G , w e h ave , , , , + , , F ro m 2 .3 .1 w e g et , , + , , , , + , , n n n n n n n n n n n n n n n n n n n n n G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx                     1 1 1 1 + , , = , , + 2 , , n n n n n n n n n G fx fx fx G fx fx fx G fx fx fx       1 3 .2 .4                 1 1 1 1 1 1 1 1 F ro m 3 .2 .3 an d 3 .2 .4 w e h ave , , m ax , , 2 , , , , , 2 , , = n n n n n n n n n n n n n n n n G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx                              1 1 1 1 1 1 , , 2 , , 3 .2 .5 W rite , , . T h en fro m 3 .2 .5 , w e h ave 2 3 .2 .6 n n n n n n n n n n n n fx fx G fx fx fx G fx fx fx n                  By taking 3, a 1 and b 2    in lemma 2.1 it follows that 1 n n       and hence 0 as , .k m m n k n                           5 1 1 1 1 1 1 1 2 2 2 N o w , b y , , , , , , , P u t , , , , , , , , , , , , n m m n m m n n m m n n n n m m n n n n n n n m m G G fx fx fx G fx w w G w fx fx w fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx                   
  • 6. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 26 | P a g e         1 1 1 1 B y in d u ctio n , 1 , , , , 0 1 0 as , b y lem m a 3 .1 0 , , 0 as , an d h en ce , n m m n i n i n i n i n m m n m n G fx fx fx G fx fx fx i m n m n i G fx fx fx m n G g x g                             1 1 , 0 as ,m m x g x m n        1 1 T h u s is C au ch y an d is C au ch y. S in ce is G -co m p lete, w e can fin d a p o in t su ch th at lim lim . 3 .2 .7 S u p p o se th at is co n tin u o u s. T h en lim lim n n n n n n g x fx X p X fx g x p n n g g fx g g x g p n n                      . 3 .2 .8 S in ce an d are co m p atib le, lim , , 0 w h ich im p lies th at, lim lim . 3 .2 .9 n n n n n f g G fg x g fx g fx n g fx fg x g p n n                        1 B u t , fro m 3 .2 .1 , w e see th at , , , , m ax , , , , , , , , , n n n n n n n n n n n n n n n n n n n G fg x fx fx G ffx fx fx G g fx ffx ffx G g x fx fx G g x fx fx G g fx fx fx G g x                 , , , , , , , , , , n n n n n n n n n n n n n n ffx ffx G g x fx fx G g fx fx fx G g fx fx fx G g x ffx ffx    On taking the limit as n   , in view of (3.2.7),(3.2.8) and (3.2.9), it follow that                     , , m ax , , , , , , , , , , , , , , , , , , , , G g p p p G g p g p g p G p p p G p p p G g p p p G p g p g p G p p p G g p p p G p p p G p g p g p                           2 , , , , , , 2 , , fro m 2 .3 .1 3 , , , , 0 fro m G is a fix ed p o in t o f g . G g p p p G p g p g p G g p p p G g p p p G g p p p G g p p p g p p p             
  • 7. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 27 | P a g e                     N o w , , , m ax , , , , , , , , , , , , , , , , , , , , P n n n n n n n n n n G fx fp fp G g x fx fx G g p fp fp G g p fp fp G g x fp fp G g p fx fx G g p fp fp G g x fp fp G g p fp fp G g p fx fx                           ro ceed in g to th e lim it as , w e g et , , m ax , , , , , , , , , , , , , , , , , , n G p fp fp G p p p G g p fp fp G g p fp fp G p fp fp G g p p p G g p fp fp G p fp fp G g p fp fp G g                             2 , , m ax 0, 2 , , , 2 , , , 2 , , 2 , , 2 2 3 . , , , , 3 3 , , = 0 . B y G , p p p G p fp fp G p fp fp G p fp fp G p fp fp G p fp fp G p fp fp G p fp fp fp p                is a co m m o n fix ed p o in t o f a n d .p f g Suppose p and q are common fixed points of f and g . so that and .fp qp p fq gq q    Now from (3.2.1), we have                 , , , , m ax , , , , , , , , , , , , , , , G p q q G fp fq fq G g p fp fp G g q fq fq G g q fq fq G g p fq fq G g q fp fp G g q fq fq G g p fq                         , , , , , m ax , , , , , , , , , , , , , , fq G g q fq fq G g q fp fp G p p p G q q q G q q q G p q q G q p p G q q q                       , , , , , , m ax 0 0 0, , , , , 0, , , 0 , , G p q q G q q q G q p p G p q q G q p p G p q q G q p p                            , , , , , , 2 , , fro m 2 .3 .1 3 , , G p q q G q p p G p q q G q q p G p q q                 , , 3 , , , , 0 . . T h u s an d h a ve u n iq u e co m m o n G p q q G p q q G p q q p q f g       fix ed p o in t.
  • 8. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 28 | P a g e From theorem (3.2), we obtain the following result of K.Kumara Swamy and T.Phaneendra [6] as corollary. Theorem 3.3:- (K.Kumara swamy and T.Phaneendra [6]) Suppose that f and g are self-maps on a complete G- metric space  ,X G such that                          a 1 b o r is co n tin u o u s, an d 0 . 3 c an d are co m p atib le. S u p p o se , , m ax , , , , , , , , , , , , , , f X g X f g k f g G fx fy fz k G g x fx fx G g y fy fy G g z fz fz G g x fy fy G g y fx fx G g z fy fy                 , , , , , , fo r all , , ............................ 3 .3 .1 G g x fz fz G g y fz fz G g z fx fx x y z X    Proof:- Take   1 w h ere 0 . 3 t kt k    The following result of Sushanta Kumar Mohanta([16], Theorem 3.9)follows as a corollary of theorem 3.2, by taking   .t kt  Theorem 3.4:- (Sushanta Kumar Mohanta([16], Theorem 3.9)) Let  ,X G be a complete G-metric space, and let :T X X be a mapping which satisfies the following condition                                                     , , m ax , , , , , , , , , , , , , , , , , , , , G T x T y T z k G x T y T y G y T x T x G z T z T z G y T z T z G z T y T y G x T x T x G z T x T x G x T z T z G y T y T y          1 , , , an d 0 . 3 T h en h as a u n iq u e fix ed p o in t in . P ro o f:- T ak e an d in th eo rem 3 .2 . x y z X k T X f g T t kt        Theorem 3.5:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that                        a b c o r is co n tin u o u s, d , , m ax , , , , , , , , , , , fo r all , , .. f X g X f g G fx fy fz G g x g y g z G g x fx fx G g y fy fy G g z fz fz x y z X            .......................... 3 .5 .1 e an d are co m p atib le. T h en an d h ave a u n iq u e co m m o n fi x ed p o in t. f g f g
  • 9. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 29 | P a g e Proof:- Let 0 x X . In view of (a), we can choose points              1 2 1 1 1 1 1 1 1 1 1 , , ..., ... su ch th at , 0,1, 2, ... W rite an d in 3 .5 .1 w e g et , , m ax , , , , , , , , , n n n n n n n n n n n n n n n n n n x x x f x g x n x x y z x G fx fx fx G g x g x g x G g x fx fx G g x fx fx G g x                   1 1 1 , ,n n fx fx                          1 1 1 1 1 1 1 1 1 1 1 1 1 m ax , , , , , , , , , , , m ax , , , , , m ax , , w h ere , , m ax , 3 n n n n n n n n n n n n n n n n n n n n n n n n n n n G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx                                               1 1 1 .5 .2 N o w a co n trad ictio n . . T h u s is a d ecreasin g seq u en ce an d fro m 3 .5 .2 S u p p o se . T h u s n n n n n n n n n n n r r                                         1 1 0 0 1 1 0 0 . S in ce , b y in d u ctio n w e h ave H en ce S o th at fo r , 0 as , 3 .5 .3 S u p p o se . P u t , in 3 .5 .1 n n n n n n n n m n n i i n m n r r r n m n m n m x x y z x                                               We get, by(G5)                   1 1 1 1 1 1 1 2 2 2 , , , , , , P u t , , , , , , , , , , , , n m m n m m n n m m n n n n m m n n n n n n n m m G fx fx fx G fx w w G w fx fx w fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx G fx fx fx                             1 1 1 1 B y in d u ctio n , 1 , , , , 0 1 0 as , fro m 3 .5 .3 0 , , 0 as , an d h en ce , n m m n i n i n i n i n m m n m m n G fx fx fx G fx fx fx i m n m n i G fx fx fx m n G g x g x                              1 1 , 0 as ,m g x m n   
  • 10. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 30 | P a g e               1 B u t , fro m 3 .5 .1 , w e see th at , , , , m ax , , , , , , , , , , , m ax n n n n n n n n n n n n n n n n n n G fg x fx fx G ffx fx fx G g fx g x g x G g fx fx fx G g x fx fx G g x fx fx G g               1 1 1 1 , , , , , , , , , , , . n n n n n n n n n n n n fx fx fx G g fx fx fx G fx fx fx G fx fx fx                        O n lettin g , , , m ax , , , , , , , , , , , . , , , , , , 0 . is a fix ed p o in t o f . n G g p p p G g p p p G g p g p g p G p p p G g p g p g p G g p p p G g p p p G g p p p g p p p g                                                 N o w , , , m ax , , , , , , , , , , , . O n lettin g , w e g et , , m ax , , , , , , , , , , , m ax , , , , , , , , , , , , , n n n n n n G fx fp fp G g x fp fp G g x fx fx G g p fp fp G fx g p g p n G p fp fp G p fp fp G p p p G g p fp fp G p g p g p G p fp fp G p p p G p fp fp G p p p G p fp fp               , , , , 0 is a co m m o n fix ed p o in t o f an d . G p fp fp G p fp fp fp p p f g                     S u p p o se an d are co m m o n fix ed p o in t o f an d so th at an d N o w fro m 3 .5 .1 , w e h ave , , , , , , m ax , , , , , , , , , p q f g fp g p p fq g q q G p p p p G p fq fq G fp fq fq G g p g q g q G g p fp fp G g q fq fq                    , , m ax , , , , , , , , , , , G g q fq fq G p q q G p p p G q q q G q q q          m ax , , , , , , 0 . T h u s an d h ave u n i G p q q G p q q G p q q p q f g         q u e co m m o n fix ed p o in t.
  • 11. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 31 | P a g e Corollary 3.6:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that                       a b 0 1 c o r is co n tin u o u s, d , , m ax , , , , , , , , , , , fo r all , , f X g X k f g G fx fy fz k G g x g y g z G g x fx fx G g y fy fy G g z fz fz x y z X          ............................ 3 .5 .1 e an d are co m p atib le. T h en an d h ave a u n iq u e co m m o n fix ed p o in t. f g f g Proof:- Take   in T heorem 3.5t kt  Theorem 3.7:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that                       a b c o r is co n tin u o u s, d , , m ax , , , , , , , , , , , fo r all , , .. f X g X f g G fx fy fz G g x g y g z G g x fx fx G g y fy fy G g z fz fz x y z X            .......................... 3 .7 .1 e an d are co m p atib le. T h en an d h ave a u n iq u e co m m o n fix ed p o in t. f g f g Proof:- The proof of the theorem is similar to that of 3.5 Corollary 3.8:- Suppose that f and g are self-maps on a complete G-metric space  ,X G such that                       a b 0 1 . c o r is co n tin u o u s, d , , m ax , , , , , , , , , , , fo r all , , f X g X k f g G fx fy fz k G g x g y g z G g x fx fx G g y fy fy G g z fz fz x y z          ............................ 3 .8 .1 e an d are co m p atib le. T h en an d h ave a u n iq u e co m m o n fix ed p o in t. X f g f g
  • 12. B. Ramu Naidu et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.21-32 www.ijera.com DOI: 10.9790/9622- 0703032132 32 | P a g e Proof:- Take   in T heorem 3.7t kt  ACKNOWLEDGEMENT Fourth Author B.Ramu Naidu is grateful to Special officer, AU.P.G.Centre, Vizianagaram for providing necessary permissions and facilities to carry on this research. REFERENCES [1]. Dhage, B.C., Generalized Metric Space and Mapping with Fixed Point, Bull. Cal. Math. Soc. 84, (1992), 329-336. [2]. Dhage, B.C., Generalized Metric Space and Topological Structure I , An. Stiint. Univ. Al. I . Cuza Iasi. Mat (N.S), 46, (2000), 3- 24. [3]. Gahler,s., 2-metriche raume und ihre topologische, Math. Nachr. 26, 1963, 115- 148. [4]. Gahler,s., Zur geometric raume, Reevue Roumaine de Math. Pures et Appl., XI, 1966, 664-669. [5]. HA. Et al,KI.S,CHO,Y.J and White. A Strictly convex and 2-convex 2-normed spaces,Math. Japonica, 33(3), (1988), 375- 384. [6]. Kumara Swamy.K and Phaneendra.T., FIXED POINT THEOREM FOR TWO SELF- MAPS IN A G-METRIC SPACE. Bulletin of Mathematics and Statistics Research, vol.4.S1.2016.ISSN:2348-0580.Pages 23-25. [7]. Mustafa Z., and Sims, B., A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2006), 289-297. [8]. Mustafa Z., and Sims, B., Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory and Applications, Vol. 2009, Article ID917175, 10 pages. [9]. Mustafa Z., Obiedat H., Awawdeh F., Some fixed point theorems for mappings on complete G-metric spaces, Fixed Point Theory and Applications, Vol. 2008, Article ID18970, 12 pages. [10]. Mustafa Z., Shatanawi W., Bataineh M., Existence of fixed point results in G-metric spaces, International Journal of Mathematics and Mathematical Sciences, Vol. 2009, Article ID283028 10 pages. [11]. Mustafa Z.and Sims, B., Some Remarks Concerning D-Metric Spaces, Proceedings of the Internatinal Conference on Fixed Point Theory and Applications, Yokohama Publishers, Valencia, Spain, July 13-19, 2004, 189-198. [12]. Mustafa Z., Obiedat H., A fixed point theorem of Reich in G-metric space, Cubo a Mathematics Journal, 12(01)(2010), 83-93. [13]. Mustafa Z., Awawdeh F., Shatanawi W., Fixed point theorem for expansive mapping in G-metric space, Int.J.Contemp Math. Sciences, 5(50)(2010), 2463-2472. [14]. Renu.Chugh, T.Kadian, A.Rani, and B.E.Rhoades, Property P in G-metric spaces, Fixed Point Theory and Applications, vol.2010, Article ID 401684, 12pages, 2010. [15]. Sastry,K.P.R.,G.A.Naidu.,Ch.Srinivasa Rao.,B.Ramu naidu Fixed point theorem for contractions  on a G-metric space and consequences, Volume 8, Issue 2, February 2017 Edition. [16]. Shatanawi W., Fixed point theory for contractive mapping satisfying Ø- maps in G-metric spaces, Fixed Point Theory and Applications, Vol. 2010, Article ID181650, 9 pages. [17]. Sushanta Kumar Mohanta., SOME FIXED POINT THEOREMS IN G-METRIC SPACE, An.st.UNIV. Ovidius Constanta vol.20(1).2012.285-306 [18]. VATS, R.K., S.Kumar and V.Sihag., FIXED POINT THEOREMS IN COMPLETE G- METRIC SPACE.,FASCICULI MATHEMATICI, Nr.17(2011),127-139.