17 февраля в 21-00 по Москве
Дни науки в Skyeng:
Теория Игр - математика конфликтов
GAME THEORY
What it is about?
Decision making in conflict and cooperation,
including conflict of interests
Decision-makers are rational and intelligent
VOCABULAR & STRUCTURE
• Players, which are finitely many,
• Choose strategies, finitely many for each player,
• Got payoffs, dependent of the choice of strategies
• The result can be given as table (normal form)
I, II LEFT strategy RIGHT strategy
UP strategy Payoff, Payoff Payoff, Payoff
DOWN strategy Payoff, Payoff Payoff, Payoff
PRISONERS DILEMMA
GULITY NOT GULITY
GULITY -5, -5 0, -10
NOT GULITY -10, 0 -1, -1
NASH EQUILIBRIUM
A CHOICE OF STRATEGIES
SUCH THAT NO PLAYER
INCREASES HIS/HER PAYOFF
WHEN CHANGING HIS/HER STRATEGY
WHILE OTHERS KEEP THEIR
FRIEND OR FANCY
FRIEND FANCY
FANCY 4, 3 1, 1
FRIEND 0, 0 3, 4
MIXED EQUILIBRIUM
Assume that Player I chooses their fancy with frequency p
Assume that Player II chooses their fancy with frequency q
Payoff = 4p(1-q) + pq + 3(1-p)q = p(4 – 4q + q – 3q) +3q = p(4-6q) + 3q
Payoff = q(4-6p) + 3p
ANALYSIS
q>⅔ q<⅔
p>⅔ ↓, ↓ ⅔, ⅔ ↑, ↓ 1, 0
p<⅔ ↓, ↑ 0, 1 ↑, ↑ ⅔, ⅔
ASYMMETRIC GAME: ULTIMATUM
ACCEPT REJECT
FAIR 0.5, 0.5 0, 0
UNFAIR 0.8, 0.2 0, 0
ULTIMATUM: OTHER APPROACH
Let p be the share Player I proposes to keep for himself
Let q the maximal share Player II is ready to give up
Payoff = p, (1-p) if p ≤ q and 0, 0 otherwise
Equilibriums: p=q and p=1, q=0.
ZERO-SUM GAME: STRONGHOLD
LIGHT COLUMN HEAVY
COLUMN
LIGHT COLUMN 0.1, -0.1 0.6, -0.6
HEAVY
COLUMN
1, -1 0.5, -0.5
MIXED EQUILIBRIUM
Assume that Player I and Player II choose light column
with frequencies p, q
Payoff = 0.1pq + 0.6p(1-q) + (1-p)q + 0.5 (1-p) (1-q)
= p(0.1q + 0.6(1–q) - q – 0.5(1-q) ) +q + 0.5(1-q)
= p(0.1-q) + 0.5(q +1)
Payoff = - p(0.1-q) - 0.5(q +1) = q(p – 0.5) – 0.1p – 0.5
ANALYSIS
q>0.1 q<0.1
p>0.5 ↓, ↑ 0.5, 1 ↑, ↑ 1, 0.1
p<0.5 ↓, ↓ 0, 0.1 ↑, ↓ 0.5, 0
4
• 760 преподавателей
• 8000 учеников
• 629 000 проведенных уроков
3
1. Удобный формат занятий
2. Преподаватель мечты
3. Уникальная платформа для занятий
4. Мобильное приложение для изучения
слов
Виртуальный класс,
в котором проходят занятия
32
Запишитесь на вводный урок и введите
промокод GAME THEORY при оплате
Акция действует до 3 марта!
http://skyeng.ru
33
Наши группы в соц.сетях: Читайте нас в почте:
http://school.skyeng.ru/mailing/
Смотрите нас на YouTube
https://www.youtube.com/user/skyengschool
https://vk.com/skyeng
https://facebook.com/SkyEngSch
ool/
https://plus.google.com/+Skyeng
Ru
https://telegram.me/skyeng/
Учите слова в приложении aWord
http://skyeng.ru/go/awordweb

Дни науки в Skyeng: Теория игр — математика конфликтов

  • 1.
    17 февраля в21-00 по Москве Дни науки в Skyeng: Теория Игр - математика конфликтов
  • 2.
  • 3.
    What it isabout? Decision making in conflict and cooperation, including conflict of interests Decision-makers are rational and intelligent
  • 4.
    VOCABULAR & STRUCTURE •Players, which are finitely many, • Choose strategies, finitely many for each player, • Got payoffs, dependent of the choice of strategies • The result can be given as table (normal form) I, II LEFT strategy RIGHT strategy UP strategy Payoff, Payoff Payoff, Payoff DOWN strategy Payoff, Payoff Payoff, Payoff
  • 5.
    PRISONERS DILEMMA GULITY NOTGULITY GULITY -5, -5 0, -10 NOT GULITY -10, 0 -1, -1
  • 6.
    NASH EQUILIBRIUM A CHOICEOF STRATEGIES SUCH THAT NO PLAYER INCREASES HIS/HER PAYOFF WHEN CHANGING HIS/HER STRATEGY WHILE OTHERS KEEP THEIR
  • 7.
    FRIEND OR FANCY FRIENDFANCY FANCY 4, 3 1, 1 FRIEND 0, 0 3, 4
  • 8.
    MIXED EQUILIBRIUM Assume thatPlayer I chooses their fancy with frequency p Assume that Player II chooses their fancy with frequency q Payoff = 4p(1-q) + pq + 3(1-p)q = p(4 – 4q + q – 3q) +3q = p(4-6q) + 3q Payoff = q(4-6p) + 3p
  • 9.
    ANALYSIS q>⅔ q<⅔ p>⅔ ↓,↓ ⅔, ⅔ ↑, ↓ 1, 0 p<⅔ ↓, ↑ 0, 1 ↑, ↑ ⅔, ⅔
  • 10.
    ASYMMETRIC GAME: ULTIMATUM ACCEPTREJECT FAIR 0.5, 0.5 0, 0 UNFAIR 0.8, 0.2 0, 0
  • 11.
    ULTIMATUM: OTHER APPROACH Letp be the share Player I proposes to keep for himself Let q the maximal share Player II is ready to give up Payoff = p, (1-p) if p ≤ q and 0, 0 otherwise Equilibriums: p=q and p=1, q=0.
  • 12.
    ZERO-SUM GAME: STRONGHOLD LIGHTCOLUMN HEAVY COLUMN LIGHT COLUMN 0.1, -0.1 0.6, -0.6 HEAVY COLUMN 1, -1 0.5, -0.5
  • 13.
    MIXED EQUILIBRIUM Assume thatPlayer I and Player II choose light column with frequencies p, q Payoff = 0.1pq + 0.6p(1-q) + (1-p)q + 0.5 (1-p) (1-q) = p(0.1q + 0.6(1–q) - q – 0.5(1-q) ) +q + 0.5(1-q) = p(0.1-q) + 0.5(q +1) Payoff = - p(0.1-q) - 0.5(q +1) = q(p – 0.5) – 0.1p – 0.5
  • 14.
    ANALYSIS q>0.1 q<0.1 p>0.5 ↓,↑ 0.5, 1 ↑, ↑ 1, 0.1 p<0.5 ↓, ↓ 0, 0.1 ↑, ↓ 0.5, 0
  • 15.
    4 • 760 преподавателей •8000 учеников • 629 000 проведенных уроков
  • 16.
    3 1. Удобный форматзанятий 2. Преподаватель мечты 3. Уникальная платформа для занятий 4. Мобильное приложение для изучения слов
  • 17.
  • 22.
    32 Запишитесь на вводныйурок и введите промокод GAME THEORY при оплате Акция действует до 3 марта! http://skyeng.ru
  • 23.
    33 Наши группы всоц.сетях: Читайте нас в почте: http://school.skyeng.ru/mailing/ Смотрите нас на YouTube https://www.youtube.com/user/skyengschool https://vk.com/skyeng https://facebook.com/SkyEngSch ool/ https://plus.google.com/+Skyeng Ru https://telegram.me/skyeng/ Учите слова в приложении aWord http://skyeng.ru/go/awordweb