Singular Matrix
If the determinant of a matrix is zero, then the matrix is called a singular
matrix, otherwise non-singular matrix.
Example-8:
If
4 8 6
2 5 3
2 4 3
A =
 
 
 
  
find A
Solution:
4 8 6
2 5 3
2 4 3
A =
A
5 3 2 3 2 5
4 8 6
4 3 2 3 2 4
= − +
4(15 12) 8(6 6) 6(8 10)A = − − − + −
A 4(3) 8(0) 6( 2)= − + −
A =12 – 0 – 12
A = 12 – 12
A = 0
The given matrix is a singular matrix.
Example-9:
5 5
a singular matrix then find the value of x
2
IF A is
x
 
=  
 
Solution:
5 5
2
10 5
0 10 5
5 10
10
5
2
A
x
A x
x
x
x
x
=
= −
= −
=
=
=

Singular matrix

  • 2.
    Singular Matrix If thedeterminant of a matrix is zero, then the matrix is called a singular matrix, otherwise non-singular matrix. Example-8: If 4 8 6 2 5 3 2 4 3 A =          find A Solution: 4 8 6 2 5 3 2 4 3 A = A 5 3 2 3 2 5 4 8 6 4 3 2 3 2 4 = − + 4(15 12) 8(6 6) 6(8 10)A = − − − + − A 4(3) 8(0) 6( 2)= − + − A =12 – 0 – 12 A = 12 – 12 A = 0 The given matrix is a singular matrix.
  • 3.
    Example-9: 5 5 a singularmatrix then find the value of x 2 IF A is x   =     Solution: 5 5 2 10 5 0 10 5 5 10 10 5 2 A x A x x x x x = = − = − = = =