SlideShare a Scribd company logo
Department of Computer Eng.
Sharif University of Technology
Discrete-time signal processing
Chapter 3:
THE Z-TRANSFORM
Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer and Buck, ©1999-2000 Prentice Hall Inc.
3.1 The Z-Transform
• Counterpart of the Laplace transform for discrete-time signals
• Generalization of the Fourier Transform
Fourier Transform does not exist for all signals
• Definition:
• Compare to DTFT definition:
• z is a complex variable that can be represented as z=r ej
• Substituting z=ej will reduce the z-transform to DTFT
Chapter 3: The Z-Transform 1
   






n
n
z
n
x
z
X
    n
j
n
j
e
n
x
e
X 
 





 
   
 
 

j
n
n
z
n
n
re
z
z
n
x
z
X
z
X
n
x
z
X
z
n
x
n
x
















0
)
(
)
(
)
(
r
:
‫اندازه‬
:
‫فاز‬ 
‫تبدیل‬
z
‫طرفه‬‫یک‬
‫تبدیل‬
z
‫طرفه‬‫دو‬
3.1 The Z-Transform
The z-transform and the DTFT
• Convenient to describe on the complex z-plane
• If we plot z=ej for =0 to 2 we get the unit circle
Chapter 3: The Z-Transform 3
Re
Im
Unit Circle

r=1
0
2 0 2
 

j
e
X
Convergence of the z-Transform
• DTFT does not always converge
Example: x[n] = anu[n] for |a|>1 does not have a DTFT
• Complex variable z can be written as r ej so the z-
transform
convert to the DTFT of x[n] multiplied with exponential
sequence r –n
• For certain choices of r the sum
maybe made finite
Chapter 3: The Z-Transform 4
      
 














n
n
j
n
n
n
j
j
e
n
x
e
n
x
re
X 


r
r
    n
j
n
j
e
n
x
e
X 
 





  





n
n
x r n
-
Region of Convergence (ROC)
• ROC: The set of values of z for which the z-transform converges
• The region of convergence is made of circles
Chapter 3: The Z-Transform 5
Re
Im
• Example: z-transform converges for
values of 0.5<r<2
ROC is shown on the left
In this example the ROC includes the unit circle,
so DTFT exists
• Example:
Doesn't converge for any r.
DTFT exists.
It has finite energy.
DTFT converges in a mean square sense.
• Example:
Doesn't converge for any r.
It doesn’t have even finite energy.
But we define a useful DTFT with
impulse function.
   
n
n
x o

cos

 
sin c n
x n
n



Region of Convergence (ROC)
Example 1: Right-Sided Exponential Sequence
• For Convergence we require
• Hence the ROC is defined as
• Inside the ROC series converges to
Chapter 3: The Z-Transform 7
         













0
n
n
1
n
n
n
n
az
z
n
u
a
z
X
n
u
a
n
x






0
n
n
1
az
a
z
1
az
n
1




    a
z
z
az
1
1
az
z
X
0
n
1
n
1




 




Re
Im
a 1
o x
• Region outside the circle of
radius a is the ROC
• Right-sided sequence ROCs
extend outside a circle
(
‫ا‬‫ر‬‫چپگ‬‫دنباله‬
)
   
   
 
a
z
z
az
z
a
z
X
a
z
z
a
z
a
ROC
z
a
z
a
z
a
z
n
u
a
z
X
n
n
n n
n
n
n
n
n
n
n
n












































 


1
1
1
0
1
1 0
1
1
1
1
1
1
1
1
1
:
1
1
   
1



 n
u
a
n
x n
Example 2: Left-Sided Exponential Sequence
Example 3: Two-Sided Exponential Sequence
Chapter 3: The Z-Transform 9
     
1
-
n
-
u
2
1
-
n
u
3
1
n
x
n
n














1
1
1
0
1
0
1
3
1
1
1
3
1
1
3
1
3
1
3
1



































z
z
z
z
z
n
n
1
1
0
1
1
1
n
n
1
z
2
1
1
1
z
2
1
1
z
2
1
z
2
1
z
2
1


































z
3
1
1
z
3
1
:
ROC 1


 
z
2
1
1
z
2
1
:
ROC 1



 




























2
1
z
3
1
z
12
1
z
z
2
z
2
1
1
1
z
3
1
1
1
z
X
1
1
Im
2
1
oo
12
1
x
x
3
1

Example 4: Finite Length Sequence
Chapter 3: The Z-Transform 10
 


 



otherwise
0
1
0 N
n
a
n
x
n
N=16
Pole-zero plot
     
 
N
n
u
n
u
a
n
x n



   
0
:
1
1
1
)
(
1
0
1
1
1
1
1
1
0
1
1
0
































z
az
az
ROC
a
z
a
z
z
az
az
az
z
a
z
X
N
n
n
N
N
N
N
N
n
n
N
n
n
n
Some common Z-transform pairs
Chapter 3: The Z-Transform 11
SEQUENCE TRANSFORM ROC
1

z
 
 
0
m
if
or
0
m
if
0
except
z
All



1

z
1
1
1

 z
1
1
1

 z
m
z
 
 
 
 
m
n
n
u
n
u
n






1
1 z
ALL
Some common Z-transform pairs
 
 
 
 
 
 
     
 
1
:
cos
2
1
cos
1
cos
:
1
1
:
1
:
1
1
1
:
1
1
2
1
0
1
0
0
2
1
1
2
1
1
1
1




































z
ROC
z
z
z
n
u
n
a
z
ROC
az
az
n
u
na
a
z
ROC
az
az
n
u
na
a
z
ROC
az
n
u
a
a
z
ROC
az
n
u
a
Z
Z
n
Z
n
Z
n
Z
n



Some common Z-transform pairs
     
 
0
:
1
1
0
1
0
:
cos
2
1
sin
sin
1
2
2
1
0
1
0
0







 












z
ROC
az
z
a
otherwise
N
n
a
r
z
ROC
z
r
z
r
z
r
n
u
n
r
N
N
Z
n
Z
n



     
 
     
 
r
z
ROC
z
r
z
r
z
r
n
u
n
r
z
ROC
z
z
z
n
u
n
Z
n
Z

















:
cos
2
1
cos
1
cos
1
:
cos
2
1
sin
sin
2
2
1
0
1
0
0
2
1
0
1
0
0






Some common Z-transform pairs
3.2 Properties of The ROC of Z-Transform
• The ROC is a ring or disk centered at the origin
• DTFT exists if and only if the ROC includes the unit circle
• The ROC cannot contain any poles
• The ROC for finite-length sequence is the entire z-plane
except possibly z=0 and z=
• The ROC for a right-handed sequence extends outward from the
outermost pole possibly including z= 
• The ROC for a left-handed sequence extends inward from the
innermost pole possibly including z=0
• The ROC of a two-sided sequence is a ring bounded by poles
• The ROC must be a connected region
• A z-transform does not uniquely determine a sequence without
specifying the ROC
Chapter 3: The Z-Transform 15
Stability, Causality, and the ROC
• Consider a system with impulse response h[n]
• The z-transform H(z) and the pole-zero plot shown below
• Without any other information h[n] is not uniquely determined
|z|>2 or |z|<½ or ½<|z|<2
• If system stable ROC must include unit-circle: ½<|z|<2
• If system is causal must be right sided: |z|>2
Chapter 3: The Z-Transform 16
3.4 Z-Transform Properties: Linearity
• Notation
• Linearity
– Note that the ROC of combined sequence may be larger than either ROC
– This would happen if some pole/zero cancellation occurs
– Example:
•Both sequences are right-sided
•Both sequences have a pole z=a
•Both have a ROC defined as |z|>|a|
•In the combined sequence the pole at z=a cancels with a zero at z=a
•The combined ROC is the entire z plane except z=0
Chapter 3: The Z-Transform 17
    x
Z
R
ROC
z
X
n
x 

 

        2
1 x
x
2
1
Z
2
1 R
R
ROC
z
bX
z
aX
n
bx
n
ax 



 


     
N
-
n
u
a
-
n
u
a
n
x n
n

Z-Transform Properties: Time Shifting
• Here no is an integer
– If positive the sequence is shifted right
– If negative the sequence is shifted left
• The ROC can change
– The new term may add or remove poles at z=0 or z=
• Example
Chapter 3: The Z-Transform 18
    x
n
Z
o R
ROC
z
X
z
n
n
x o


 

 
 
4
1
z
z
4
1
1
1
z
z
X
1
1

















   
1
-
n
u
4
1
n
x
1
-
n







Z-Transform Properties: Multiplication by
Exponential
• ROC is scaled by |zo|
• All pole/zero locations are scaled
• If zo is a positive real number: z-plane shrinks or expands
• If zo is a complex number with unit magnitude it rotates
• Example: We know the z-transform pair
• Let’s find the z-transform of
Chapter 3: The Z-Transform 19
    x
o
o
Z
n
o R
z
ROC
z
/
z
X
n
x
z 

 

  1
z
:
ROC
z
-
1
1
n
u 1
-
Z


 

             
n
u
re
2
1
n
u
re
2
1
n
u
n
cos
r
n
x
n
j
n
j
o
n o
o 






  r
z
z
re
1
2
/
1
z
re
1
2
/
1
z
X 1
j
1
j o
o




 




Z-Transform Properties: Differentiation
• Example: We want the inverse z-transform of
• Let’s differentiate to obtain rational expression
• Making use of z-transform properties and ROC
Chapter 3: The Z-Transform 20
   
x
Z
R
ROC
dz
z
dX
z
n
nx 


 

    a
z
az
1
log
z
X 1


 
   
1
1
1
2
az
1
1
az
dz
z
dX
z
az
1
az
dz
z
dX











     
1
n
u
a
a
n
nx
1
n




     
1
n
u
n
a
1
n
x
n
1
n




Z-Transform Properties: Conjugation
Chapter 3: The Z-Transform 21
    x
*
*
Z
*
R
ROC
z
X
n
x 

 

   
     
         
 
n
n
n n
n n
n n
n n
X z x n z
X z x n z x n z
X z x n z x n z Z x n




 
  
 
 

     
 

 
 
 
 
  

 
 
Z-Transform Properties: Time Reversal
• ROC is inverted
• Example:
• Time reversed version of
Chapter 3: The Z-Transform 22
   
x
Z
R
1
ROC
z
/
1
X
n
x 

 


   
n
u
a
n
x n

 
 
n
u
an
  1
1
1
-
1
-1
a
z
z
a
-
1
z
a
-
az
1
1
z
X 






Z-Transform Properties: Convolution
• Convolution in time domain is multiplication in z-domain
• Example: Let’s calculate the convolution of
• Multiplications of z-transforms is
• ROC: if |a|<1 ROC is |z|>1 if |a|>1 ROC is |z|>|a|
• Partial fractional expansion of Y(z)
Chapter 3: The Z-Transform 23
        2
x
1
x
2
1
Z
2
1 R
R
:
ROC
z
X
z
X
n
x
n
x 

 


       
n
u
n
x
and
n
u
a
n
x 2
n
1 

  a
z
:
ROC
az
1
1
z
X 1
1 

 
  1
z
:
ROC
z
1
1
z
X 1
2 

 
     
  
1
1
2
1
z
1
az
1
1
z
X
z
X
z
Y 





  1
z
:
ROC
assume
1
1
1
1
1
1
1











 

az
a
z
a
z
Y      
 
n
u
a
n
u
a
1
1
n
y 1
n



Some Z-transform properties
Chapter 3: The Z-Transform 24
3.3 The Inverse Z-Transform
• Formal inverse z-transform is based on a Cauchy integral
• Less formal ways sufficient most of the time
– Inspection method
– Partial fraction expansion
– Power series expansion
• Inspection Method
Make use of known z-transform pairs such as
Example: The inverse z-transform of
Chapter 3: The Z-Transform 25
  a
z
az
1
1
n
u
a 1
Z
n



 
 
     
n
u
2
1
n
x
2
1
z
z
2
1
1
1
z
X
n
1












Inverse Z-Transform by Partial Fraction
Expansion
• Assume that a given z-transform can be expressed as
• Apply partial fractional expansion
• First term exist only if M>N
– Br is obtained by long division
• Second term represents all first order poles
• Third term represents an order s pole
– There will be a similar term for every high-order pole
• Each term can be inverse transformed by inspection
Chapter 3: The Z-Transform 26
 






 N
0
k
k
k
M
0
k
k
k
z
a
z
b
z
X
 
 


 












s
1
m
m
1
i
m
N
i
k
,
1
k
1
k
k
N
M
0
r
r
r
z
d
1
C
z
d
1
A
z
B
z
X
Inverse Z-Transform by Partial Fraction
Expansion
• Coefficients are given as
• Easier to understand with examples
Chapter 3: The Z-Transform 27
 
 


 












s
1
m
m
1
i
m
N
i
k
,
1
k
1
k
k
N
M
0
r
r
r
z
d
1
C
z
d
1
A
z
B
z
X
    k
d
z
1
k
k z
X
z
d
1
A 



   
   
  1
i
d
w
1
s
i
m
s
m
s
m
s
i
m w
X
w
d
1
dw
d
d
!
m
s
1
C
















Example 5: 2nd Order Z-Transform
Chapter 3: The Z-Transform 28
 
2
1
z
:
ROC
z
2
1
1
z
4
1
1
1
z
X
1
1


















 

















 1
2
1
1
z
2
1
1
A
z
4
1
1
A
z
X
  1
4
1
2
1
1
1
z
X
z
4
1
1
A 1
4
1
z
1
1 
























 


  2
2
1
4
1
1
1
z
X
z
2
1
1
A 1
2
1
z
1
2 























 


Example 5 Continued
• ROC extends to infinity
– Indicates right sided sequence
Chapter 3: The Z-Transform 29
 
2
1
z
z
2
1
1
2
z
4
1
1
1
z
X
1
1




















     
n
u
4
1
-
n
u
2
1
2
n
x
n
n













Example 6
• Long division to obtain Bo
Chapter 3: The Z-Transform 30
   
 
1
z
z
1
z
2
1
1
z
1
z
2
1
z
2
3
1
z
z
2
1
z
X
1
1
2
1
2
1
2
1























1
z
5
2
z
3
z
2
1
z
2
z
1
z
2
3
z
2
1
1
1
2
1
2
1
2














 
 
1
1
1
z
1
z
2
1
1
z
5
1
2
z
X















  1
2
1
1
z
1
A
z
2
1
1
A
2
z
X 
 




  9
z
X
z
2
1
1
A
2
1
z
1
1 











    8
z
X
z
1
A
1
z
1
2 




Example 5 Continued
• ROC extends to infinity
– Indicates right-sided sequence
Chapter 3: The Z-Transform 31
  1
z
z
1
8
z
2
1
1
9
2
z
X 1
1





 

       
n
8u
-
n
u
2
1
9
n
2
n
x
n









Inverse Z-Transform by Power Series
Expansion
• The z-transform is power series
• In expanded form
• Z-transforms of this form can generally be inversed easily
• Especially useful for finite-length series
Chapter 3: The Z-Transform 32
   






n
n
z
n
x
z
X
            
 







 
 2
1
1
2
2
1
0
1
2 z
x
z
x
x
z
x
z
x
z
X
    
1
2
1
1
1
2
z
2
1
1
z
2
1
z
z
1
z
1
z
2
1
1
z
z
X


















         
1
n
2
1
n
1
n
2
1
2
n
n
x 










 



















2
n
0
1
n
2
1
0
n
1
1
n
2
1
2
n
1
n
x
Example 6

More Related Content

Similar to Signals and systems3 ppt

ADSP (17 Nov).ppt
ADSP (17 Nov).pptADSP (17 Nov).ppt
ADSP (17 Nov).ppt
HarisMasood20
 
Z transform
Z transformZ transform
Z transform
Taram Nabeel
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
Amr E. Mohamed
 
lecture8.ppt
lecture8.pptlecture8.ppt
lecture8.ppt
SameerParmar14
 
ch3-4
ch3-4ch3-4
Z TRRANSFORM
Z  TRRANSFORMZ  TRRANSFORM
Z TRRANSFORM
Isra Abdul Razack
 
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Waqas Afzal
 
Z transform
Z transformZ transform
Z transform
SwathiSundari
 
Region of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-planeRegion of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-plane
venkatasuman1983
 
Digital Signal Processing and the z-transform
Digital Signal Processing and the  z-transformDigital Signal Processing and the  z-transform
Digital Signal Processing and the z-transform
RowenaDulay1
 
dsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointdsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power point
AnujKumar734472
 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
SWATI MISHRA
 
Z trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlabZ trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlab
Hasnain Yaseen
 
z transform.pptx
z transform.pptxz transform.pptx
z transform.pptx
RahulAgarwal505237
 
Z Transform
Z TransformZ Transform
Z Transform
Darshan Bhatt
 
Unit 7 &amp; 8 z-transform
Unit 7 &amp; 8  z-transformUnit 7 &amp; 8  z-transform
Unit 7 &amp; 8 z-transform
Ramesh Rangaswamy
 
Z Transform
Z TransformZ Transform
Z Transform
Waqas Afzal
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
taha25
 

Similar to Signals and systems3 ppt (20)

ADSP (17 Nov).ppt
ADSP (17 Nov).pptADSP (17 Nov).ppt
ADSP (17 Nov).ppt
 
Z transform
Z transformZ transform
Z transform
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
 
lecture8.ppt
lecture8.pptlecture8.ppt
lecture8.ppt
 
ch3-4
ch3-4ch3-4
ch3-4
 
Z TRRANSFORM
Z  TRRANSFORMZ  TRRANSFORM
Z TRRANSFORM
 
Z transform
Z transformZ transform
Z transform
 
Z transform
Z transformZ transform
Z transform
 
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
 
Z transform
Z transformZ transform
Z transform
 
Region of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-planeRegion of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-plane
 
Digital Signal Processing and the z-transform
Digital Signal Processing and the  z-transformDigital Signal Processing and the  z-transform
Digital Signal Processing and the z-transform
 
dsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointdsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power point
 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
 
Z trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlabZ trasnform & Inverse Z-transform in matlab
Z trasnform & Inverse Z-transform in matlab
 
z transform.pptx
z transform.pptxz transform.pptx
z transform.pptx
 
Z Transform
Z TransformZ Transform
Z Transform
 
Unit 7 &amp; 8 z-transform
Unit 7 &amp; 8  z-transformUnit 7 &amp; 8  z-transform
Unit 7 &amp; 8 z-transform
 
Z Transform
Z TransformZ Transform
Z Transform
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
 

More from Engr umar

RES Lecture 18 Hydro.pptx
RES Lecture 18 Hydro.pptxRES Lecture 18 Hydro.pptx
RES Lecture 18 Hydro.pptx
Engr umar
 
renewable-energy-resources-by-john-twidell-tony-weir.pdf
renewable-energy-resources-by-john-twidell-tony-weir.pdfrenewable-energy-resources-by-john-twidell-tony-weir.pdf
renewable-energy-resources-by-john-twidell-tony-weir.pdf
Engr umar
 
Chapter 06_Pdu.pptx
Chapter 06_Pdu.pptxChapter 06_Pdu.pptx
Chapter 06_Pdu.pptx
Engr umar
 
Electric Welding 7.ppt
Electric Welding  7.pptElectric Welding  7.ppt
Electric Welding 7.ppt
Engr umar
 
Ps all examples
Ps all examplesPs all examples
Ps all examples
Engr umar
 
Probability chap 1 note.
Probability chap 1 note.Probability chap 1 note.
Probability chap 1 note.
Engr umar
 
Linear algebra (summer) lec 12 (1)
Linear algebra (summer) lec 12 (1)Linear algebra (summer) lec 12 (1)
Linear algebra (summer) lec 12 (1)
Engr umar
 
Linear algebra (summer) lec 11
Linear algebra (summer) lec 11Linear algebra (summer) lec 11
Linear algebra (summer) lec 11
Engr umar
 
Linear algebra (summer) lec 9
Linear algebra (summer) lec 9Linear algebra (summer) lec 9
Linear algebra (summer) lec 9
Engr umar
 
Linear algebra (summer) lec 7
Linear algebra (summer) lec 7Linear algebra (summer) lec 7
Linear algebra (summer) lec 7
Engr umar
 
Linear algebra (summer) lec 6
Linear algebra (summer) lec 6Linear algebra (summer) lec 6
Linear algebra (summer) lec 6
Engr umar
 
Linear algebra (summer) lec 5
Linear algebra (summer) lec 5Linear algebra (summer) lec 5
Linear algebra (summer) lec 5
Engr umar
 
Linear algebra (summer) lec 4
Linear algebra (summer) lec 4Linear algebra (summer) lec 4
Linear algebra (summer) lec 4
Engr umar
 
Linear algebra (summer) lec 3
Linear algebra (summer) lec 3Linear algebra (summer) lec 3
Linear algebra (summer) lec 3
Engr umar
 
Linear algebra (summer) lec 1
Linear algebra (summer) lec 1Linear algebra (summer) lec 1
Linear algebra (summer) lec 1
Engr umar
 
Ems project
Ems project Ems project
Ems project
Engr umar
 
Cs project ppt
Cs project pptCs project ppt
Cs project ppt
Engr umar
 
Project presentation of engineering subject
Project presentation   of engineering  subjectProject presentation   of engineering  subject
Project presentation of engineering subject
Engr umar
 
Amperes law and_it_application
Amperes law and_it_applicationAmperes law and_it_application
Amperes law and_it_application
Engr umar
 
Lecture week 5
Lecture week 5Lecture week 5
Lecture week 5
Engr umar
 

More from Engr umar (20)

RES Lecture 18 Hydro.pptx
RES Lecture 18 Hydro.pptxRES Lecture 18 Hydro.pptx
RES Lecture 18 Hydro.pptx
 
renewable-energy-resources-by-john-twidell-tony-weir.pdf
renewable-energy-resources-by-john-twidell-tony-weir.pdfrenewable-energy-resources-by-john-twidell-tony-weir.pdf
renewable-energy-resources-by-john-twidell-tony-weir.pdf
 
Chapter 06_Pdu.pptx
Chapter 06_Pdu.pptxChapter 06_Pdu.pptx
Chapter 06_Pdu.pptx
 
Electric Welding 7.ppt
Electric Welding  7.pptElectric Welding  7.ppt
Electric Welding 7.ppt
 
Ps all examples
Ps all examplesPs all examples
Ps all examples
 
Probability chap 1 note.
Probability chap 1 note.Probability chap 1 note.
Probability chap 1 note.
 
Linear algebra (summer) lec 12 (1)
Linear algebra (summer) lec 12 (1)Linear algebra (summer) lec 12 (1)
Linear algebra (summer) lec 12 (1)
 
Linear algebra (summer) lec 11
Linear algebra (summer) lec 11Linear algebra (summer) lec 11
Linear algebra (summer) lec 11
 
Linear algebra (summer) lec 9
Linear algebra (summer) lec 9Linear algebra (summer) lec 9
Linear algebra (summer) lec 9
 
Linear algebra (summer) lec 7
Linear algebra (summer) lec 7Linear algebra (summer) lec 7
Linear algebra (summer) lec 7
 
Linear algebra (summer) lec 6
Linear algebra (summer) lec 6Linear algebra (summer) lec 6
Linear algebra (summer) lec 6
 
Linear algebra (summer) lec 5
Linear algebra (summer) lec 5Linear algebra (summer) lec 5
Linear algebra (summer) lec 5
 
Linear algebra (summer) lec 4
Linear algebra (summer) lec 4Linear algebra (summer) lec 4
Linear algebra (summer) lec 4
 
Linear algebra (summer) lec 3
Linear algebra (summer) lec 3Linear algebra (summer) lec 3
Linear algebra (summer) lec 3
 
Linear algebra (summer) lec 1
Linear algebra (summer) lec 1Linear algebra (summer) lec 1
Linear algebra (summer) lec 1
 
Ems project
Ems project Ems project
Ems project
 
Cs project ppt
Cs project pptCs project ppt
Cs project ppt
 
Project presentation of engineering subject
Project presentation   of engineering  subjectProject presentation   of engineering  subject
Project presentation of engineering subject
 
Amperes law and_it_application
Amperes law and_it_applicationAmperes law and_it_application
Amperes law and_it_application
 
Lecture week 5
Lecture week 5Lecture week 5
Lecture week 5
 

Recently uploaded

Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
Intella Parts
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 

Recently uploaded (20)

Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
Forklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella PartsForklift Classes Overview by Intella Parts
Forklift Classes Overview by Intella Parts
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 

Signals and systems3 ppt

  • 1. Department of Computer Eng. Sharif University of Technology Discrete-time signal processing Chapter 3: THE Z-TRANSFORM Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer and Buck, ©1999-2000 Prentice Hall Inc.
  • 2. 3.1 The Z-Transform • Counterpart of the Laplace transform for discrete-time signals • Generalization of the Fourier Transform Fourier Transform does not exist for all signals • Definition: • Compare to DTFT definition: • z is a complex variable that can be represented as z=r ej • Substituting z=ej will reduce the z-transform to DTFT Chapter 3: The Z-Transform 1           n n z n x z X     n j n j e n x e X        
  • 3.            j n n z n n re z z n x z X z X n x z X z n x n x                 0 ) ( ) ( ) ( r : ‫اندازه‬ : ‫فاز‬  ‫تبدیل‬ z ‫طرفه‬‫یک‬ ‫تبدیل‬ z ‫طرفه‬‫دو‬ 3.1 The Z-Transform
  • 4. The z-transform and the DTFT • Convenient to describe on the complex z-plane • If we plot z=ej for =0 to 2 we get the unit circle Chapter 3: The Z-Transform 3 Re Im Unit Circle  r=1 0 2 0 2    j e X
  • 5. Convergence of the z-Transform • DTFT does not always converge Example: x[n] = anu[n] for |a|>1 does not have a DTFT • Complex variable z can be written as r ej so the z- transform convert to the DTFT of x[n] multiplied with exponential sequence r –n • For certain choices of r the sum maybe made finite Chapter 3: The Z-Transform 4                        n n j n n n j j e n x e n x re X    r r     n j n j e n x e X                 n n x r n -
  • 6. Region of Convergence (ROC) • ROC: The set of values of z for which the z-transform converges • The region of convergence is made of circles Chapter 3: The Z-Transform 5 Re Im • Example: z-transform converges for values of 0.5<r<2 ROC is shown on the left In this example the ROC includes the unit circle, so DTFT exists
  • 7. • Example: Doesn't converge for any r. DTFT exists. It has finite energy. DTFT converges in a mean square sense. • Example: Doesn't converge for any r. It doesn’t have even finite energy. But we define a useful DTFT with impulse function.     n n x o  cos    sin c n x n n    Region of Convergence (ROC)
  • 8. Example 1: Right-Sided Exponential Sequence • For Convergence we require • Hence the ROC is defined as • Inside the ROC series converges to Chapter 3: The Z-Transform 7                        0 n n 1 n n n n az z n u a z X n u a n x       0 n n 1 az a z 1 az n 1         a z z az 1 1 az z X 0 n 1 n 1           Re Im a 1 o x • Region outside the circle of radius a is the ROC • Right-sided sequence ROCs extend outside a circle
  • 9. ( ‫ا‬‫ر‬‫چپگ‬‫دنباله‬ )           a z z az z a z X a z z a z a ROC z a z a z a z n u a z X n n n n n n n n n n n n                                                 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 : 1 1     1     n u a n x n Example 2: Left-Sided Exponential Sequence
  • 10. Example 3: Two-Sided Exponential Sequence Chapter 3: The Z-Transform 9       1 - n - u 2 1 - n u 3 1 n x n n               1 1 1 0 1 0 1 3 1 1 1 3 1 1 3 1 3 1 3 1                                    z z z z z n n 1 1 0 1 1 1 n n 1 z 2 1 1 1 z 2 1 1 z 2 1 z 2 1 z 2 1                                   z 3 1 1 z 3 1 : ROC 1     z 2 1 1 z 2 1 : ROC 1                                  2 1 z 3 1 z 12 1 z z 2 z 2 1 1 1 z 3 1 1 1 z X 1 1 Im 2 1 oo 12 1 x x 3 1 
  • 11. Example 4: Finite Length Sequence Chapter 3: The Z-Transform 10          otherwise 0 1 0 N n a n x n N=16 Pole-zero plot         N n u n u a n x n        0 : 1 1 1 ) ( 1 0 1 1 1 1 1 1 0 1 1 0                                 z az az ROC a z a z z az az az z a z X N n n N N N N N n n N n n n
  • 12. Some common Z-transform pairs Chapter 3: The Z-Transform 11
  • 13. SEQUENCE TRANSFORM ROC 1  z     0 m if or 0 m if 0 except z All    1  z 1 1 1   z 1 1 1   z m z         m n n u n u n       1 1 z ALL Some common Z-transform pairs
  • 14.                     1 : cos 2 1 cos 1 cos : 1 1 : 1 : 1 1 1 : 1 1 2 1 0 1 0 0 2 1 1 2 1 1 1 1                                     z ROC z z z n u n a z ROC az az n u na a z ROC az az n u na a z ROC az n u a a z ROC az n u a Z Z n Z n Z n Z n    Some common Z-transform pairs
  • 15.         0 : 1 1 0 1 0 : cos 2 1 sin sin 1 2 2 1 0 1 0 0                      z ROC az z a otherwise N n a r z ROC z r z r z r n u n r N N Z n Z n                    r z ROC z r z r z r n u n r z ROC z z z n u n Z n Z                  : cos 2 1 cos 1 cos 1 : cos 2 1 sin sin 2 2 1 0 1 0 0 2 1 0 1 0 0       Some common Z-transform pairs
  • 16. 3.2 Properties of The ROC of Z-Transform • The ROC is a ring or disk centered at the origin • DTFT exists if and only if the ROC includes the unit circle • The ROC cannot contain any poles • The ROC for finite-length sequence is the entire z-plane except possibly z=0 and z= • The ROC for a right-handed sequence extends outward from the outermost pole possibly including z=  • The ROC for a left-handed sequence extends inward from the innermost pole possibly including z=0 • The ROC of a two-sided sequence is a ring bounded by poles • The ROC must be a connected region • A z-transform does not uniquely determine a sequence without specifying the ROC Chapter 3: The Z-Transform 15
  • 17. Stability, Causality, and the ROC • Consider a system with impulse response h[n] • The z-transform H(z) and the pole-zero plot shown below • Without any other information h[n] is not uniquely determined |z|>2 or |z|<½ or ½<|z|<2 • If system stable ROC must include unit-circle: ½<|z|<2 • If system is causal must be right sided: |z|>2 Chapter 3: The Z-Transform 16
  • 18. 3.4 Z-Transform Properties: Linearity • Notation • Linearity – Note that the ROC of combined sequence may be larger than either ROC – This would happen if some pole/zero cancellation occurs – Example: •Both sequences are right-sided •Both sequences have a pole z=a •Both have a ROC defined as |z|>|a| •In the combined sequence the pole at z=a cancels with a zero at z=a •The combined ROC is the entire z plane except z=0 Chapter 3: The Z-Transform 17     x Z R ROC z X n x              2 1 x x 2 1 Z 2 1 R R ROC z bX z aX n bx n ax               N - n u a - n u a n x n n 
  • 19. Z-Transform Properties: Time Shifting • Here no is an integer – If positive the sequence is shifted right – If negative the sequence is shifted left • The ROC can change – The new term may add or remove poles at z=0 or z= • Example Chapter 3: The Z-Transform 18     x n Z o R ROC z X z n n x o          4 1 z z 4 1 1 1 z z X 1 1                      1 - n u 4 1 n x 1 - n       
  • 20. Z-Transform Properties: Multiplication by Exponential • ROC is scaled by |zo| • All pole/zero locations are scaled • If zo is a positive real number: z-plane shrinks or expands • If zo is a complex number with unit magnitude it rotates • Example: We know the z-transform pair • Let’s find the z-transform of Chapter 3: The Z-Transform 19     x o o Z n o R z ROC z / z X n x z        1 z : ROC z - 1 1 n u 1 - Z                    n u re 2 1 n u re 2 1 n u n cos r n x n j n j o n o o          r z z re 1 2 / 1 z re 1 2 / 1 z X 1 j 1 j o o          
  • 21. Z-Transform Properties: Differentiation • Example: We want the inverse z-transform of • Let’s differentiate to obtain rational expression • Making use of z-transform properties and ROC Chapter 3: The Z-Transform 20     x Z R ROC dz z dX z n nx           a z az 1 log z X 1         1 1 1 2 az 1 1 az dz z dX z az 1 az dz z dX                  1 n u a a n nx 1 n           1 n u n a 1 n x n 1 n    
  • 22. Z-Transform Properties: Conjugation Chapter 3: The Z-Transform 21     x * * Z * R ROC z X n x                            n n n n n n n n n n X z x n z X z x n z x n z X z x n z x n z Z x n                                       
  • 23. Z-Transform Properties: Time Reversal • ROC is inverted • Example: • Time reversed version of Chapter 3: The Z-Transform 22     x Z R 1 ROC z / 1 X n x           n u a n x n      n u an   1 1 1 - 1 -1 a z z a - 1 z a - az 1 1 z X       
  • 24. Z-Transform Properties: Convolution • Convolution in time domain is multiplication in z-domain • Example: Let’s calculate the convolution of • Multiplications of z-transforms is • ROC: if |a|<1 ROC is |z|>1 if |a|>1 ROC is |z|>|a| • Partial fractional expansion of Y(z) Chapter 3: The Z-Transform 23         2 x 1 x 2 1 Z 2 1 R R : ROC z X z X n x n x               n u n x and n u a n x 2 n 1     a z : ROC az 1 1 z X 1 1       1 z : ROC z 1 1 z X 1 2              1 1 2 1 z 1 az 1 1 z X z X z Y         1 z : ROC assume 1 1 1 1 1 1 1               az a z a z Y         n u a n u a 1 1 n y 1 n   
  • 25. Some Z-transform properties Chapter 3: The Z-Transform 24
  • 26. 3.3 The Inverse Z-Transform • Formal inverse z-transform is based on a Cauchy integral • Less formal ways sufficient most of the time – Inspection method – Partial fraction expansion – Power series expansion • Inspection Method Make use of known z-transform pairs such as Example: The inverse z-transform of Chapter 3: The Z-Transform 25   a z az 1 1 n u a 1 Z n              n u 2 1 n x 2 1 z z 2 1 1 1 z X n 1            
  • 27. Inverse Z-Transform by Partial Fraction Expansion • Assume that a given z-transform can be expressed as • Apply partial fractional expansion • First term exist only if M>N – Br is obtained by long division • Second term represents all first order poles • Third term represents an order s pole – There will be a similar term for every high-order pole • Each term can be inverse transformed by inspection Chapter 3: The Z-Transform 26          N 0 k k k M 0 k k k z a z b z X                     s 1 m m 1 i m N i k , 1 k 1 k k N M 0 r r r z d 1 C z d 1 A z B z X
  • 28. Inverse Z-Transform by Partial Fraction Expansion • Coefficients are given as • Easier to understand with examples Chapter 3: The Z-Transform 27                     s 1 m m 1 i m N i k , 1 k 1 k k N M 0 r r r z d 1 C z d 1 A z B z X     k d z 1 k k z X z d 1 A               1 i d w 1 s i m s m s m s i m w X w d 1 dw d d ! m s 1 C                
  • 29. Example 5: 2nd Order Z-Transform Chapter 3: The Z-Transform 28   2 1 z : ROC z 2 1 1 z 4 1 1 1 z X 1 1                                       1 2 1 1 z 2 1 1 A z 4 1 1 A z X   1 4 1 2 1 1 1 z X z 4 1 1 A 1 4 1 z 1 1                                2 2 1 4 1 1 1 z X z 2 1 1 A 1 2 1 z 1 2                            
  • 30. Example 5 Continued • ROC extends to infinity – Indicates right sided sequence Chapter 3: The Z-Transform 29   2 1 z z 2 1 1 2 z 4 1 1 1 z X 1 1                           n u 4 1 - n u 2 1 2 n x n n             
  • 31. Example 6 • Long division to obtain Bo Chapter 3: The Z-Transform 30       1 z z 1 z 2 1 1 z 1 z 2 1 z 2 3 1 z z 2 1 z X 1 1 2 1 2 1 2 1                        1 z 5 2 z 3 z 2 1 z 2 z 1 z 2 3 z 2 1 1 1 2 1 2 1 2                   1 1 1 z 1 z 2 1 1 z 5 1 2 z X                  1 2 1 1 z 1 A z 2 1 1 A 2 z X          9 z X z 2 1 1 A 2 1 z 1 1                 8 z X z 1 A 1 z 1 2     
  • 32. Example 5 Continued • ROC extends to infinity – Indicates right-sided sequence Chapter 3: The Z-Transform 31   1 z z 1 8 z 2 1 1 9 2 z X 1 1                 n 8u - n u 2 1 9 n 2 n x n         
  • 33. Inverse Z-Transform by Power Series Expansion • The z-transform is power series • In expanded form • Z-transforms of this form can generally be inversed easily • Especially useful for finite-length series Chapter 3: The Z-Transform 32           n n z n x z X                          2 1 1 2 2 1 0 1 2 z x z x x z x z x z X
  • 34.      1 2 1 1 1 2 z 2 1 1 z 2 1 z z 1 z 1 z 2 1 1 z z X                             1 n 2 1 n 1 n 2 1 2 n n x                                 2 n 0 1 n 2 1 0 n 1 1 n 2 1 2 n 1 n x Example 6