SlideShare a Scribd company logo
PRELIMINARY	
  STUDY	
  OF	
  A	
  NEW	
  GAMMA	
  IMAGER	
  FOR	
  ON-­‐LINE	
  
MONITORING	
  PROMPT-­‐GAMMA	
  EMISSION	
  DURING	
  PROTON	
  
RADIOTHERAPY
PAOLO	
  BENNATI	
  
KTH	
  -­‐ SCHOOL	
  OF	
  TECHNOLOGY	
  AND	
  HEALTH	
  
STOCKHOLM,	
  SWEDEN
14th	
  Topical	
  Seminar	
  on	
  Innovative	
  Particle	
  and	
  Radiation	
  Detectors
(IPRD16)	
  3	
  -­‐ 6	
  October	
  2016	
   Siena,	
  Italy
COLLABORATION	
  
• Royal	
  Institute	
  of	
  Technology	
  – KTH,	
  Stockhom Sweden
• Skandion Clinik,	
  Uppsala	
  Sweden
• La	
  Sapienza	
  University,	
  Roma	
  Italy
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
PROTON	
  THERAPY
• Better	
  dose	
  delivery	
  than	
  X-­‐ray	
  could	
  spares	
  
healthy	
  tissue
• An	
  online	
  imaging	
  system	
  is	
  strongly	
  requested	
  
to	
  improve	
  verification	
  of	
  range	
  in	
  tissue:
Ø Prompt-­‐gamma	
  imager
Ø IN-­‐BEAM	
  PET	
  scanner	
  (Beta+	
  emission)
Ø Compton	
  camera	
  
Images	
  from	
  “Proton-­‐beam	
  therapy”	
  S.Yjanik,	
  Springer	
  (2013)
• Requirements:	
  
• on-­‐line	
  with	
  the	
  treatment
• 2	
  mm	
  spatial	
  resolution
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
SYSTEM	
  CHARACTERISTICS
• Compact	
  gamma	
  camera	
  equipped	
  with	
  THIN
scintillation	
  crystal
• Knife-­‐edge	
  collimator	
  *
I. 2	
  mm	
  and	
  30° aperture.	
  
II. Magnification	
  2:1
*	
  Perali I,	
  et	
  al.	
  Phys	
  Med	
  Biol (2014) 59(19)
Gamma	
  camera	
  developed	
  at	
  La	
  
Sapienza	
  University,	
  Rome	
  Italy
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
DETECTOR	
  SPECIFICATIONS
Specifications pro cons
Crystal Two new	
  crystal:
• Cry019	
  – 6	
  mm
• LFS*	
  – 2mm	
  thickness
• Fast	
  and	
  high-­‐Z crystal
• Free image	
  digitization
• Negligible	
  Compton	
  
reabsorption
Negligible efficiency	
  at	
  2-­‐6	
  
MeV	
  photons
Phototodetector Hamamatsu	
  H8500-­‐100	
  
multianodes-­‐PMT	
  
• super	
  bialkaly catode
(QE	
  -­‐35%)
• 50x50	
  mm2 area
Metal	
  channel	
  dynodes	
  and	
  
the	
  new	
  super-­‐bialkaly
photocatode offer high	
  
performances	
  and	
  reduced	
  
anode	
  signal
-­‐
Electronics	
  ($) • FPGA	
  based
• 64-­‐independent	
  
channels	
  read-­‐out
• 100KHz clock
• About	
  20’000-­‐30’000	
  
max	
  count	
  rate
• low	
  noise
• Single	
  photon	
  detection
• Limited	
  count-­‐rate	
  
capability (for	
  proton	
  
therapy!)
• No	
  trigger
*Luthetium fine	
  silicate
($)	
  A.Fabbri et.al Nuclear	
  Physics	
  B-­‐Proceedings	
  Supplements	
  215	
  (1),	
  328-­‐332,	
  2011
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
GATE*	
  MC	
  SIMULATION
-­‐ 100,	
  150,	
  200	
  MeV	
  Proton	
  Energy
-­‐ PMMA	
  Phantom	
  – 16cm	
  diam.	
  x	
  24cm	
  
length
-­‐ Knife-­‐edge	
  collimator	
  and	
  a	
  gamma	
  camera	
  
with	
  an	
  ideal	
  LYSO	
  crystal	
  
-­‐ Detector	
  at	
  90° respect	
  the	
  proton	
  beam
-­‐ NO	
  magnification
The	
  simulation	
  was	
  divided	
  in	
  two	
  phases:	
  first,	
  
the	
  interaction	
  of	
  protons	
  in	
  the	
  phantom.	
  
Second,	
  the	
  imaging	
  system	
  was	
  modeled	
  and	
  
the	
  first	
  simulation	
  was	
  used	
  as	
  imput.
*Gate	
  7.1	
  with	
  QGSP-­‐BIC-­‐HP-­‐EMZ	
  reference	
  physics	
  list
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
GATE	
  MC	
  RESULTS
• We	
  verify	
  a	
  correlation	
  between	
  the	
  
inflection	
  point	
  and	
  the	
  position	
  of	
  the	
  Bragg-­‐
peak	
  as	
  for	
  Janssen	
  et	
  al.,	
  which	
  resulted	
  
about	
  9mm	
  at	
  100,	
  150	
  and	
  200	
  MeV
• MC	
  shows	
  that	
  our	
  detector	
  could	
  be	
  able	
  to	
  
identify	
  the	
  gamma	
  profile.	
  The	
  gap	
  with	
  BP	
  
rise	
  to	
  12mm.
Inflection	
  point
Prompt	
  gamma	
  imaged	
  by	
  knife-­‐edge	
  gamma	
  system
Prompt	
  gamma	
  from	
  150MeV	
  protons	
  detected	
  with	
  no	
  
energy	
  selection
Gustaf Lönn,	
  KTH	
   Master Degree Thesis,	
  ref:diva2:937846
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
THE	
  PROTON	
  FACILITY	
  @	
  UPPSALA
• The	
  Skandion Clinic	
  is	
  the	
  first	
  clinical	
  centre for	
  
proton	
  therapy	
  in	
  Scandinavia	
  joint	
  investment	
  
of	
  several	
  university	
  hospitals.
• The	
  clinic	
  is	
  planned	
  to	
  treat	
  between	
  1000	
  and	
  
2500	
  patients	
  annually,	
  each	
  with	
  an	
  average	
  of	
  
15	
  fractions	
  (individual	
  treatments).
• Two	
  treatment	
  room	
  (a	
  third	
  one	
  is	
  planned)	
  
and	
  a	
  research	
  room	
  will	
  use	
  protons	
  
accelerated	
  up	
  to	
  260	
  MeV	
  energy	
  (at	
  60%	
  of	
  
speed	
  of	
  light).
Treatment	
  room
Aerial	
  view	
  of	
  the	
  clinic
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
(from	
  http://www.skandionkliniken.se)
EXPERIMENTAL	
  SETUP:	
  THE	
  PROTON	
  ROOM
Proton	
  noddle
Patient	
  bed
gantry
10	
  cm	
  FoV and
centered	
  at	
  12.5	
  cm
2.0 liters Water
Phantomdetector
Lead	
  brick
Proton	
  beam
Detector	
  was	
  installed	
  on	
  the	
  patient	
  
bed.	
  Lasers	
  were	
  used	
  to	
  align	
  the	
  
phantom	
  with	
  the	
  beam	
  and	
  the	
  
collimator
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
SUMMARY	
  OF	
  THE	
  MEASUREMENTS
Crystal	
  used	
  for
the	
  test
Thickness Efficiency at	
  4	
  
MeV*
Phantom tested Proton	
  
energy	
  
range
1ST test CRY019
50mm diameter
6	
  mm 15% Water	
  Phantom:	
  
2liter	
  bottle	
  -­‐ 12cm
diameter)
110	
  >	
  145	
  
MEV
2ND test LFS crystal
50	
  × 50	
  mm2
2	
  mm >5% PMMA	
  Phantom
16	
  cm	
  diameter	
  X	
  24	
  cm	
  
length
100	
  >	
  160	
  
MeV
3rd test LFS	
  crystal +5mm	
  step	
  shifting of the	
  
phantom	
  (fixed	
  energy)
150	
  MeV
*Value	
  for	
  LSO	
  crystal	
  >>	
  photofraction =	
  2%	
  
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
Calibration:	
  Luthetium natural	
  radioactivity	
  
Pulse	
  height	
  spectrum	
  from	
  
Lu177	
  self-­‐activityc
Lu176	
  natural	
  abundance	
  (2.6%	
  of	
  Lu)	
  is	
  responsible	
  of	
  
about	
  2800	
  cps	
  detector	
  count-­‐rate.
NB:	
  In	
  case	
  of	
  self-­‐activity,	
  the	
  spectrum	
  is	
  the	
  results	
  of	
  convolution	
  of	
  
beta-­‐ continuous	
  spectrum	
  (always)	
  with	
  1,	
  or	
  plus,	
  gamma-­‐rays
(modulated	
  by	
  the	
  sensitivity	
  of	
  that	
  energies)
Correction	
  for	
  image	
  non-­‐uniformity
Images	
  shows	
  less	
  non-­‐uniformity	
  at	
  the	
  edges
Light	
  field	
  image	
  and	
  image	
  profile
CRY019	
  IMAGE	
  CALIBRATION	
  @511KEV
Methods:	
  	
  1	
  mm	
  diameter	
  Na22	
  free	
  source	
  was	
  used	
  to	
  
measure	
  spatial	
  resolution	
  (SR)	
  and	
  position	
  linearity
-­‐ Linearity	
  =	
  1cm	
  step	
  scanning	
  results	
  in	
  about	
  (2.5-­‐3)	
  pixels	
  
-­‐ Field	
  of	
  view:	
  about	
  60	
  mm	
  (far	
  less	
  that	
  what	
  expected!)
1	
  cm	
  step	
  scanning
Results:	
  Na22	
  source	
  
imaged	
  as	
  a	
  line	
  source
ER%	
  =	
  1/5.4	
  =	
  
18%	
  @	
  511keV
Na22	
  measured	
  pulse	
  height	
  spectrum
511keV	
  -­‐
(15-­‐20)%	
  ERFWHM
NB.Since the	
  very	
  low	
  activity,	
  PH	
  spectrum	
  and	
  images	
  were	
  
obtained	
  by	
  subtraction	
  of	
  an	
  equivalent	
  background.
#1
#2
#3
#4
#5
CRY019	
  CRYSTAL:	
  WATER	
  PHANTOM	
  EXPERIMENT
Proton	
  energy	
  
(MeV)
WATER:
BP	
  depth	
  (cm)
PMMA:
BP	
  depth
130 12.6 10.7
135 13.5 11.4
145 15.3 12.9
Collimator	
  aligned	
  
to	
  “see”	
  at	
  “12.5	
  cm	
  depth”
Proton&
beam
expected&BP
Detector&
“plane”
phantom
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
Results:	
  Proton	
  beam	
  monitoring
As	
  function	
  of	
  proton	
  Energy
12
Proton&
beam
expected&BP
Detector&
“plane”
phantom
Note:	
  
inverse	
  
projection
uFoV of	
  the	
  
gamma	
  
camera
Centered	
  at	
  
12.5	
  cm	
  deep
IMAGE	
  PROFILE	
  AT	
  135MEV
Proton	
  beam
60x60	
  image	
  digit.,
Peak	
  of	
  gamma	
  at	
  
pixel=29±1,	
  that	
  
correspond	
  to	
  the	
  
center	
  of	
  the	
  FoV
that	
  was	
  set	
  at	
  12.5	
  cm
Polynomial	
  fit	
  to	
  identify	
  the	
  maximum
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
NEW	
  EXPERIMENT:	
  
50X50	
  LFS	
  CRYSTAL	
  – PMMA	
  PHANTOM
Proton	
  
energy	
  (MeV)
WATER:
BP	
  depth
PMMA:
BP	
  depth	
  
(cm)
130 12.6 10.7
135 13.5 11.4
140 14.4 12.2
145 15.3 12.9
150 16.2 13.7
155 17.2 14.5
160 18.1 15.4
Collimator	
  centered	
  
To	
  “see”	
  at	
  “13	
  cm	
  depth”
Proton&
beam
expected&BP
Detector&
“plane”
phantom
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
LFS	
  IMAGE	
  CALIBRATION
Methods:	
  	
  1mm	
  diameter	
  Co57	
  collimated	
  
source	
  3mm	
  scanning	
  step	
  scanning	
  to	
  measure	
  
spatial	
  resolution	
  (SR)	
  and	
  linearity
LFS	
  natural	
  background	
  	
  (from	
  Lu178	
  decay)
3	
  mm	
  
New	
  image	
  digit	
  60x60,	
  1.2mm	
  =1px.	
  When	
  using	
  the	
  knife-­‐edge	
  
collimator,	
  this	
  number	
  become	
  1px=2.4mm	
  (M=2:1)
50	
  >	
  200	
  FoV with	
  #13	
  spot
which	
  corresponds	
  to	
  about	
  40mm	
  linearity:
Digit	
  250x250	
  >>	
  	
  250um	
  =	
  1px
GAMMA	
  
PROMPT	
  IN	
  
PMMA	
  
PHANTOM
Polynomial	
  fit	
  to	
  identify	
  the	
  peak	
  of	
  the	
  emission
Centered	
  at	
  
12.5	
  cm	
  deep
Image	
  profile	
  of	
  the	
  central	
  FoV
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
E
(MeV)
Expected  
BP  “deep”  
(cm)
“Estimated  gamma  
peak”  (cm)*
Estimated  BP  
position  in  cm  
(+12  mm  of  
column  #3)
140 12.2  cm 13-­‐2.1	
  =	
  10.9± 0.3 12.1  ± 0.3
150 13.7  cm 13-­0.7  = 12.3± 0.3 13.5  ± 0.3
160 15.4  cm 13+0.7  =  13.7± 0.3 14.9  ± 0.3
*From	
  the	
  polynomial	
  fit
Comparison	
  at	
  150MeV:	
  profile	
  of	
  gamma	
  and
Profile	
  obtained	
  by	
  closing	
  the	
  collimator	
  
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
3RD EXPERIMENT:	
  TRANSLATE	
  THE	
  PHANTOM	
  AT	
  FIXED	
  
PROTON	
  ENERGY	
  	
  
Metod:
Ø 5	
  mm	
  step	
  translation	
  of	
  the	
  
phantom
Ø Collimator	
  aligned	
  at	
  13	
  cm
Ø Proton	
  energy	
  150MeV	
  –>	
  exp.	
  
BP	
  at	
  13.7	
  cm
Result:	
  
The	
  profile	
  of	
  gamma	
  “moves”
As	
  function	
  of	
  the	
  translation	
  of	
  
the	
  Phantom.
Polinomial fit	
  IPRD16	
  -­‐ Siena,	
  3-­‐6/October
#
Energies
(MeV)
Collimator	
  
configuration
Expected	
  BP	
  
position	
  (cm)
Measured	
  BP
Count-­‐
rate	
  (cps)
notes
2 110 Knife edge 9.1 Out	
  of	
  FoV ⋍21’000 0.3	
  nA
3 120 ‘’ 10.7 na ⋍25’000
4 135* ‘’ 13.1 13.0	
  cm ⋍33’000 Critical	
  count-­‐rate
5 145 ‘’ 14.9 na ⋍39’000 Critical	
  count-­‐rate
6 230 ‘’ >20 na ⋍47’000
(!)	
  Excess	
  of	
  
count/rate
#
Energies
(MeV)
Collimator	
  
config.
Expected	
  BP	
  
position	
  (cm)
Extimated BP
(cm)
Count-­‐
rate	
  (cps)
notes
2 130 Knife edge 10.7 Out	
  of	
  FoV ⋍18’000 0.5	
  nA
3 135 ‘’ 11.4 na ⋍19’700
4 140* ‘’ 12.2 12.1 ⋍20’000
5 145 ‘’ 12.9 ⋍22’000
6 150* ‘’ 13.7 13.5 ⋍23’000
7 155 ‘’ 14.5 ⋍24’000
8 160* “ 15.4 14.9 ⋍25’000
LFS	
  crystal	
  &	
  
PMMA	
  phantom
Cry019	
  crystal	
  &	
  
Water	
  phantom
*	
  Measurement	
  was	
  also	
  performed	
  by	
  closing	
  the	
  collimator
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
CONCLUSION
• Results	
  seems	
  promising	
  to	
  realize	
  an	
  imaging	
  device	
  for	
  online	
  
monitoring	
  proton	
  therapy,	
  even	
  though	
  count-­‐rate	
  remain	
  a	
  
critical	
  point	
  (max	
  current	
  is	
  far	
  from	
  the	
  clinical	
  dose	
  rate).
• Cry019	
  shows	
  higher	
  image	
  contrast	
  than	
  LFS,	
  but	
  is	
  limited	
  in	
  FoV
and	
  sensitivity
Future	
  works	
  (among	
  others):
• More	
  and	
  more	
  simulation	
  >>	
  to	
  assess	
  the	
  accuracy	
  of	
  the	
  results
• Design	
  an	
  improved	
  imaging	
  system	
  (collimator,	
  detector	
  and	
  
geometry)
• Image	
  and	
  spectral	
  analysis	
  >>	
  remove	
  double	
  hit	
  and	
  improve	
  
positioning
IPRD16	
  -­‐ Siena,	
  3-­‐6/October
ACKNOWLEDGEMENTS
• Skandion Cliniken,	
  Uppsala	
  Sweden
• Alexandru Dasu
• KTH	
  STH	
  group,	
  Stockholm
• Massimiliano	
  Colarieti Tosti
• Gustaf Lönn
• David	
  Larsson
• La	
  Sapienza	
  University,	
  Rome	
  Italy
• Roberto	
  Pani
• Roma	
  Tre	
  University,	
  Rome	
  Italy
• Andrea	
  Fabbri
• Francesco	
  De	
  Notaristefani
Work	
  supported	
  by	
  Stockholm	
  Country	
  Council	
  (SLL)
IPRD16	
  -­‐ Siena,	
  3-­‐6/October

More Related Content

What's hot

Nuclear imaging, PET CT MEDICAL PHYSICS
Nuclear imaging, PET CT MEDICAL PHYSICSNuclear imaging, PET CT MEDICAL PHYSICS
Nuclear imaging, PET CT MEDICAL PHYSICS
Shahid Younas
 
Result exp 6
Result exp 6Result exp 6
Result exp 6
Izzuddin Azhar
 
Moshtagh new-approach-ieee-2006
Moshtagh new-approach-ieee-2006Moshtagh new-approach-ieee-2006
Moshtagh new-approach-ieee-2006
imeneii
 
N0262086089
N0262086089N0262086089
N0262086089
inventionjournals
 
TPS modeling and Beam commissioning at UIHC Radiation Oncology
TPS modeling and Beam commissioning at UIHC Radiation OncologyTPS modeling and Beam commissioning at UIHC Radiation Oncology
TPS modeling and Beam commissioning at UIHC Radiation Oncology
Miami Cancer Institute
 
Thesis_powerpoint
Thesis_powerpointThesis_powerpoint
Thesis_powerpoint
Tim Costa
 
Lecture 12
Lecture 12Lecture 12
Lecture 12
Shahid Younas
 
Hacking cddvd blu ray for fun and scientific research
Hacking cddvd blu ray for fun and scientific researchHacking cddvd blu ray for fun and scientific research
Hacking cddvd blu ray for fun and scientific research
En-Te Hwu
 

What's hot (8)

Nuclear imaging, PET CT MEDICAL PHYSICS
Nuclear imaging, PET CT MEDICAL PHYSICSNuclear imaging, PET CT MEDICAL PHYSICS
Nuclear imaging, PET CT MEDICAL PHYSICS
 
Result exp 6
Result exp 6Result exp 6
Result exp 6
 
Moshtagh new-approach-ieee-2006
Moshtagh new-approach-ieee-2006Moshtagh new-approach-ieee-2006
Moshtagh new-approach-ieee-2006
 
N0262086089
N0262086089N0262086089
N0262086089
 
TPS modeling and Beam commissioning at UIHC Radiation Oncology
TPS modeling and Beam commissioning at UIHC Radiation OncologyTPS modeling and Beam commissioning at UIHC Radiation Oncology
TPS modeling and Beam commissioning at UIHC Radiation Oncology
 
Thesis_powerpoint
Thesis_powerpointThesis_powerpoint
Thesis_powerpoint
 
Lecture 12
Lecture 12Lecture 12
Lecture 12
 
Hacking cddvd blu ray for fun and scientific research
Hacking cddvd blu ray for fun and scientific researchHacking cddvd blu ray for fun and scientific research
Hacking cddvd blu ray for fun and scientific research
 

Similar to Siena16_Bennati

次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
Toshihiro FUJII
 
Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2
Dennis Dang
 
Nuclear imaging
Nuclear imagingNuclear imaging
Nuclear imaging
Shahid Younas
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
Toshihiro FUJII
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
Toshihiro FUJII
 
Ready-Dissertation-29June2016
Ready-Dissertation-29June2016Ready-Dissertation-29June2016
Ready-Dissertation-29June2016
John Ready
 
Physical society presentation ashik.pptx
Physical society presentation ashik.pptxPhysical society presentation ashik.pptx
Physical society presentation ashik.pptx
AshikurRahman204838
 
EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016
EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016
EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016
YinaGuo
 
Development of a prototype for Fluorescence detector Array of Single-pixel Te...
Development of a prototype for Fluorescence detector Array of Single-pixel Te...Development of a prototype for Fluorescence detector Array of Single-pixel Te...
Development of a prototype for Fluorescence detector Array of Single-pixel Te...
Toshihiro FUJII
 
AFM talk ASAS 10dec2015 Jenny to publish.pptx
AFM talk ASAS 10dec2015 Jenny to publish.pptxAFM talk ASAS 10dec2015 Jenny to publish.pptx
AFM talk ASAS 10dec2015 Jenny to publish.pptx
PonrajVijayan1
 
Single Electron Spin Detection Slides For Uno Interview
Single Electron Spin Detection Slides For Uno InterviewSingle Electron Spin Detection Slides For Uno Interview
Single Electron Spin Detection Slides For Uno Interview
chenhm
 
N0262086089
N0262086089N0262086089
N0262086089
inventionjournals
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
inventionjournals
 
GAMmA cajjjjjjjjjjjujjjjjjjjjjjjjjjjjjjjjjjjmera old.pptx
GAMmA cajjjjjjjjjjjujjjjjjjjjjjjjjjjjjjjjjjjmera old.pptxGAMmA cajjjjjjjjjjjujjjjjjjjjjjjjjjjjjjjjjjjmera old.pptx
GAMmA cajjjjjjjjjjjujjjjjjjjjjjjjjjjjjjjjjjjmera old.pptx
TaushifulHoque
 
Luigi Giubbolini | Time/Space-Probing Interferometer for Plasma Diagnostics
Luigi Giubbolini  | Time/Space-Probing Interferometer for Plasma DiagnosticsLuigi Giubbolini  | Time/Space-Probing Interferometer for Plasma Diagnostics
Luigi Giubbolini | Time/Space-Probing Interferometer for Plasma Diagnostics
Luigi Giubbolini
 
Phd defense of xin you
Phd defense of xin youPhd defense of xin you
Phd defense of xin you
Xin YOU
 
AXIS pop paper
AXIS pop paperAXIS pop paper
AXIS pop paper
Alex Lumbard
 
Behalf Of Pamela Collaboration
Behalf Of Pamela CollaborationBehalf Of Pamela Collaboration
Behalf Of Pamela Collaboration
ahmad bassiouny
 
Biology Applications Nanonics
Biology Applications   NanonicsBiology Applications   Nanonics
Biology Applications Nanonics
David Lewis
 
Nanoscale cascaded plasmonic logic gates for non-boolean wave computation
Nanoscale cascaded plasmonic logic gates for non-boolean wave computationNanoscale cascaded plasmonic logic gates for non-boolean wave computation
Nanoscale cascaded plasmonic logic gates for non-boolean wave computation
Facultad de Informática UCM
 

Similar to Siena16_Bennati (20)

次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
 
Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2
 
Nuclear imaging
Nuclear imagingNuclear imaging
Nuclear imaging
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
 
Ready-Dissertation-29June2016
Ready-Dissertation-29June2016Ready-Dissertation-29June2016
Ready-Dissertation-29June2016
 
Physical society presentation ashik.pptx
Physical society presentation ashik.pptxPhysical society presentation ashik.pptx
Physical society presentation ashik.pptx
 
EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016
EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016
EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016
 
Development of a prototype for Fluorescence detector Array of Single-pixel Te...
Development of a prototype for Fluorescence detector Array of Single-pixel Te...Development of a prototype for Fluorescence detector Array of Single-pixel Te...
Development of a prototype for Fluorescence detector Array of Single-pixel Te...
 
AFM talk ASAS 10dec2015 Jenny to publish.pptx
AFM talk ASAS 10dec2015 Jenny to publish.pptxAFM talk ASAS 10dec2015 Jenny to publish.pptx
AFM talk ASAS 10dec2015 Jenny to publish.pptx
 
Single Electron Spin Detection Slides For Uno Interview
Single Electron Spin Detection Slides For Uno InterviewSingle Electron Spin Detection Slides For Uno Interview
Single Electron Spin Detection Slides For Uno Interview
 
N0262086089
N0262086089N0262086089
N0262086089
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
GAMmA cajjjjjjjjjjjujjjjjjjjjjjjjjjjjjjjjjjjmera old.pptx
GAMmA cajjjjjjjjjjjujjjjjjjjjjjjjjjjjjjjjjjjmera old.pptxGAMmA cajjjjjjjjjjjujjjjjjjjjjjjjjjjjjjjjjjjmera old.pptx
GAMmA cajjjjjjjjjjjujjjjjjjjjjjjjjjjjjjjjjjjmera old.pptx
 
Luigi Giubbolini | Time/Space-Probing Interferometer for Plasma Diagnostics
Luigi Giubbolini  | Time/Space-Probing Interferometer for Plasma DiagnosticsLuigi Giubbolini  | Time/Space-Probing Interferometer for Plasma Diagnostics
Luigi Giubbolini | Time/Space-Probing Interferometer for Plasma Diagnostics
 
Phd defense of xin you
Phd defense of xin youPhd defense of xin you
Phd defense of xin you
 
AXIS pop paper
AXIS pop paperAXIS pop paper
AXIS pop paper
 
Behalf Of Pamela Collaboration
Behalf Of Pamela CollaborationBehalf Of Pamela Collaboration
Behalf Of Pamela Collaboration
 
Biology Applications Nanonics
Biology Applications   NanonicsBiology Applications   Nanonics
Biology Applications Nanonics
 
Nanoscale cascaded plasmonic logic gates for non-boolean wave computation
Nanoscale cascaded plasmonic logic gates for non-boolean wave computationNanoscale cascaded plasmonic logic gates for non-boolean wave computation
Nanoscale cascaded plasmonic logic gates for non-boolean wave computation
 

Siena16_Bennati

  • 1. PRELIMINARY  STUDY  OF  A  NEW  GAMMA  IMAGER  FOR  ON-­‐LINE   MONITORING  PROMPT-­‐GAMMA  EMISSION  DURING  PROTON   RADIOTHERAPY PAOLO  BENNATI   KTH  -­‐ SCHOOL  OF  TECHNOLOGY  AND  HEALTH   STOCKHOLM,  SWEDEN 14th  Topical  Seminar  on  Innovative  Particle  and  Radiation  Detectors (IPRD16)  3  -­‐ 6  October  2016   Siena,  Italy
  • 2. COLLABORATION   • Royal  Institute  of  Technology  – KTH,  Stockhom Sweden • Skandion Clinik,  Uppsala  Sweden • La  Sapienza  University,  Roma  Italy IPRD16  -­‐ Siena,  3-­‐6/October
  • 3. PROTON  THERAPY • Better  dose  delivery  than  X-­‐ray  could  spares   healthy  tissue • An  online  imaging  system  is  strongly  requested   to  improve  verification  of  range  in  tissue: Ø Prompt-­‐gamma  imager Ø IN-­‐BEAM  PET  scanner  (Beta+  emission) Ø Compton  camera   Images  from  “Proton-­‐beam  therapy”  S.Yjanik,  Springer  (2013) • Requirements:   • on-­‐line  with  the  treatment • 2  mm  spatial  resolution IPRD16  -­‐ Siena,  3-­‐6/October
  • 4. SYSTEM  CHARACTERISTICS • Compact  gamma  camera  equipped  with  THIN scintillation  crystal • Knife-­‐edge  collimator  * I. 2  mm  and  30° aperture.   II. Magnification  2:1 *  Perali I,  et  al.  Phys  Med  Biol (2014) 59(19) Gamma  camera  developed  at  La   Sapienza  University,  Rome  Italy IPRD16  -­‐ Siena,  3-­‐6/October
  • 5. DETECTOR  SPECIFICATIONS Specifications pro cons Crystal Two new  crystal: • Cry019  – 6  mm • LFS*  – 2mm  thickness • Fast  and  high-­‐Z crystal • Free image  digitization • Negligible  Compton   reabsorption Negligible efficiency  at  2-­‐6   MeV  photons Phototodetector Hamamatsu  H8500-­‐100   multianodes-­‐PMT   • super  bialkaly catode (QE  -­‐35%) • 50x50  mm2 area Metal  channel  dynodes  and   the  new  super-­‐bialkaly photocatode offer high   performances  and  reduced   anode  signal -­‐ Electronics  ($) • FPGA  based • 64-­‐independent   channels  read-­‐out • 100KHz clock • About  20’000-­‐30’000   max  count  rate • low  noise • Single  photon  detection • Limited  count-­‐rate   capability (for  proton   therapy!) • No  trigger *Luthetium fine  silicate ($)  A.Fabbri et.al Nuclear  Physics  B-­‐Proceedings  Supplements  215  (1),  328-­‐332,  2011 IPRD16  -­‐ Siena,  3-­‐6/October
  • 6. GATE*  MC  SIMULATION -­‐ 100,  150,  200  MeV  Proton  Energy -­‐ PMMA  Phantom  – 16cm  diam.  x  24cm   length -­‐ Knife-­‐edge  collimator  and  a  gamma  camera   with  an  ideal  LYSO  crystal   -­‐ Detector  at  90° respect  the  proton  beam -­‐ NO  magnification The  simulation  was  divided  in  two  phases:  first,   the  interaction  of  protons  in  the  phantom.   Second,  the  imaging  system  was  modeled  and   the  first  simulation  was  used  as  imput. *Gate  7.1  with  QGSP-­‐BIC-­‐HP-­‐EMZ  reference  physics  list IPRD16  -­‐ Siena,  3-­‐6/October
  • 7. GATE  MC  RESULTS • We  verify  a  correlation  between  the   inflection  point  and  the  position  of  the  Bragg-­‐ peak  as  for  Janssen  et  al.,  which  resulted   about  9mm  at  100,  150  and  200  MeV • MC  shows  that  our  detector  could  be  able  to   identify  the  gamma  profile.  The  gap  with  BP   rise  to  12mm. Inflection  point Prompt  gamma  imaged  by  knife-­‐edge  gamma  system Prompt  gamma  from  150MeV  protons  detected  with  no   energy  selection Gustaf Lönn,  KTH   Master Degree Thesis,  ref:diva2:937846 IPRD16  -­‐ Siena,  3-­‐6/October
  • 8. THE  PROTON  FACILITY  @  UPPSALA • The  Skandion Clinic  is  the  first  clinical  centre for   proton  therapy  in  Scandinavia  joint  investment   of  several  university  hospitals. • The  clinic  is  planned  to  treat  between  1000  and   2500  patients  annually,  each  with  an  average  of   15  fractions  (individual  treatments). • Two  treatment  room  (a  third  one  is  planned)   and  a  research  room  will  use  protons   accelerated  up  to  260  MeV  energy  (at  60%  of   speed  of  light). Treatment  room Aerial  view  of  the  clinic IPRD16  -­‐ Siena,  3-­‐6/October (from  http://www.skandionkliniken.se)
  • 9. EXPERIMENTAL  SETUP:  THE  PROTON  ROOM Proton  noddle Patient  bed gantry 10  cm  FoV and centered  at  12.5  cm 2.0 liters Water Phantomdetector Lead  brick Proton  beam Detector  was  installed  on  the  patient   bed.  Lasers  were  used  to  align  the   phantom  with  the  beam  and  the   collimator IPRD16  -­‐ Siena,  3-­‐6/October
  • 10. SUMMARY  OF  THE  MEASUREMENTS Crystal  used  for the  test Thickness Efficiency at  4   MeV* Phantom tested Proton   energy   range 1ST test CRY019 50mm diameter 6  mm 15% Water  Phantom:   2liter  bottle  -­‐ 12cm diameter) 110  >  145   MEV 2ND test LFS crystal 50  × 50  mm2 2  mm >5% PMMA  Phantom 16  cm  diameter  X  24  cm   length 100  >  160   MeV 3rd test LFS  crystal +5mm  step  shifting of the   phantom  (fixed  energy) 150  MeV *Value  for  LSO  crystal  >>  photofraction =  2%   IPRD16  -­‐ Siena,  3-­‐6/October
  • 11. Calibration:  Luthetium natural  radioactivity   Pulse  height  spectrum  from   Lu177  self-­‐activityc Lu176  natural  abundance  (2.6%  of  Lu)  is  responsible  of   about  2800  cps  detector  count-­‐rate. NB:  In  case  of  self-­‐activity,  the  spectrum  is  the  results  of  convolution  of   beta-­‐ continuous  spectrum  (always)  with  1,  or  plus,  gamma-­‐rays (modulated  by  the  sensitivity  of  that  energies) Correction  for  image  non-­‐uniformity Images  shows  less  non-­‐uniformity  at  the  edges Light  field  image  and  image  profile
  • 12. CRY019  IMAGE  CALIBRATION  @511KEV Methods:    1  mm  diameter  Na22  free  source  was  used  to   measure  spatial  resolution  (SR)  and  position  linearity -­‐ Linearity  =  1cm  step  scanning  results  in  about  (2.5-­‐3)  pixels   -­‐ Field  of  view:  about  60  mm  (far  less  that  what  expected!) 1  cm  step  scanning Results:  Na22  source   imaged  as  a  line  source ER%  =  1/5.4  =   18%  @  511keV Na22  measured  pulse  height  spectrum 511keV  -­‐ (15-­‐20)%  ERFWHM NB.Since the  very  low  activity,  PH  spectrum  and  images  were   obtained  by  subtraction  of  an  equivalent  background. #1 #2 #3 #4 #5
  • 13. CRY019  CRYSTAL:  WATER  PHANTOM  EXPERIMENT Proton  energy   (MeV) WATER: BP  depth  (cm) PMMA: BP  depth 130 12.6 10.7 135 13.5 11.4 145 15.3 12.9 Collimator  aligned   to  “see”  at  “12.5  cm  depth” Proton& beam expected&BP Detector& “plane” phantom IPRD16  -­‐ Siena,  3-­‐6/October
  • 14. Results:  Proton  beam  monitoring As  function  of  proton  Energy 12 Proton& beam expected&BP Detector& “plane” phantom Note:   inverse   projection
  • 15. uFoV of  the   gamma   camera Centered  at   12.5  cm  deep IMAGE  PROFILE  AT  135MEV Proton  beam 60x60  image  digit., Peak  of  gamma  at   pixel=29±1,  that   correspond  to  the   center  of  the  FoV that  was  set  at  12.5  cm Polynomial  fit  to  identify  the  maximum IPRD16  -­‐ Siena,  3-­‐6/October
  • 16. NEW  EXPERIMENT:   50X50  LFS  CRYSTAL  – PMMA  PHANTOM Proton   energy  (MeV) WATER: BP  depth PMMA: BP  depth   (cm) 130 12.6 10.7 135 13.5 11.4 140 14.4 12.2 145 15.3 12.9 150 16.2 13.7 155 17.2 14.5 160 18.1 15.4 Collimator  centered   To  “see”  at  “13  cm  depth” Proton& beam expected&BP Detector& “plane” phantom IPRD16  -­‐ Siena,  3-­‐6/October
  • 17. LFS  IMAGE  CALIBRATION Methods:    1mm  diameter  Co57  collimated   source  3mm  scanning  step  scanning  to  measure   spatial  resolution  (SR)  and  linearity LFS  natural  background    (from  Lu178  decay) 3  mm   New  image  digit  60x60,  1.2mm  =1px.  When  using  the  knife-­‐edge   collimator,  this  number  become  1px=2.4mm  (M=2:1) 50  >  200  FoV with  #13  spot which  corresponds  to  about  40mm  linearity: Digit  250x250  >>    250um  =  1px
  • 18. GAMMA   PROMPT  IN   PMMA   PHANTOM Polynomial  fit  to  identify  the  peak  of  the  emission Centered  at   12.5  cm  deep Image  profile  of  the  central  FoV IPRD16  -­‐ Siena,  3-­‐6/October
  • 19. E (MeV) Expected   BP  “deep”   (cm) “Estimated  gamma   peak”  (cm)* Estimated  BP   position  in  cm   (+12  mm  of   column  #3) 140 12.2  cm 13-­‐2.1  =  10.9± 0.3 12.1  ± 0.3 150 13.7  cm 13-­0.7  = 12.3± 0.3 13.5  ± 0.3 160 15.4  cm 13+0.7  =  13.7± 0.3 14.9  ± 0.3 *From  the  polynomial  fit Comparison  at  150MeV:  profile  of  gamma  and Profile  obtained  by  closing  the  collimator   IPRD16  -­‐ Siena,  3-­‐6/October
  • 20. 3RD EXPERIMENT:  TRANSLATE  THE  PHANTOM  AT  FIXED   PROTON  ENERGY     Metod: Ø 5  mm  step  translation  of  the   phantom Ø Collimator  aligned  at  13  cm Ø Proton  energy  150MeV  –>  exp.   BP  at  13.7  cm Result:   The  profile  of  gamma  “moves” As  function  of  the  translation  of   the  Phantom. Polinomial fit  IPRD16  -­‐ Siena,  3-­‐6/October
  • 21. # Energies (MeV) Collimator   configuration Expected  BP   position  (cm) Measured  BP Count-­‐ rate  (cps) notes 2 110 Knife edge 9.1 Out  of  FoV ⋍21’000 0.3  nA 3 120 ‘’ 10.7 na ⋍25’000 4 135* ‘’ 13.1 13.0  cm ⋍33’000 Critical  count-­‐rate 5 145 ‘’ 14.9 na ⋍39’000 Critical  count-­‐rate 6 230 ‘’ >20 na ⋍47’000 (!)  Excess  of   count/rate # Energies (MeV) Collimator   config. Expected  BP   position  (cm) Extimated BP (cm) Count-­‐ rate  (cps) notes 2 130 Knife edge 10.7 Out  of  FoV ⋍18’000 0.5  nA 3 135 ‘’ 11.4 na ⋍19’700 4 140* ‘’ 12.2 12.1 ⋍20’000 5 145 ‘’ 12.9 ⋍22’000 6 150* ‘’ 13.7 13.5 ⋍23’000 7 155 ‘’ 14.5 ⋍24’000 8 160* “ 15.4 14.9 ⋍25’000 LFS  crystal  &   PMMA  phantom Cry019  crystal  &   Water  phantom *  Measurement  was  also  performed  by  closing  the  collimator IPRD16  -­‐ Siena,  3-­‐6/October
  • 22. CONCLUSION • Results  seems  promising  to  realize  an  imaging  device  for  online   monitoring  proton  therapy,  even  though  count-­‐rate  remain  a   critical  point  (max  current  is  far  from  the  clinical  dose  rate). • Cry019  shows  higher  image  contrast  than  LFS,  but  is  limited  in  FoV and  sensitivity Future  works  (among  others): • More  and  more  simulation  >>  to  assess  the  accuracy  of  the  results • Design  an  improved  imaging  system  (collimator,  detector  and   geometry) • Image  and  spectral  analysis  >>  remove  double  hit  and  improve   positioning IPRD16  -­‐ Siena,  3-­‐6/October
  • 23. ACKNOWLEDGEMENTS • Skandion Cliniken,  Uppsala  Sweden • Alexandru Dasu • KTH  STH  group,  Stockholm • Massimiliano  Colarieti Tosti • Gustaf Lönn • David  Larsson • La  Sapienza  University,  Rome  Italy • Roberto  Pani • Roma  Tre  University,  Rome  Italy • Andrea  Fabbri • Francesco  De  Notaristefani Work  supported  by  Stockholm  Country  Council  (SLL) IPRD16  -­‐ Siena,  3-­‐6/October