SlideShare a Scribd company logo
1 of 171
SBAS-DInSAR processing on the ESA
Geohazard Exploitation Platform
Claudio De Luca
deluca.c@irea.cnr.it
Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA)
Consiglio Nazionale delle Ricerche (CNR),
Via Diocleziano, 328, 80124 Napoli
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Agenda
n  Part 1: Introduction to Differential SAR Interferometry
n  Part 2: ESA Platforms for Automatic Web Processing
n  Part 3: New frontiers in Earth Observation research
n  Open Discussion
n  Part 1: Introduction to Differential SAR Interferometry
n  Part 2: ESA Platforms for Automatic Web Processing
n  Part 3: New frontiers in Earth Observation research
n  Open Discussion
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
•  Active sensors
•  Microwave sensors
•  Coherent sensors
Key points of Radar (SAR) Imaging from space
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
•  Passive sensors use solar radiation (light) or the one emitted by the
observed object as source of illumination. Typically they operate in the
optical or infrared.
•  Active sensors have their own source of illumination. Typically they
operate in the microwave.
Capability to "observe" during day and night
Key points of Radar (SAR) Imaging from space
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Optical image Radar (SAR) image
same moment of acquisition
Capability to "observe" even in presence of clouds
Key points of Radar (SAR) Imaging from space
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Coherent sensors
SAR image
Synthetic Aperture
Key points of Radar (SAR) Imaging from space
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Baseline
S(t1)
S(t2)
Interferogram
Differential SAR Interferometry (DInSAR)
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Campi Flegrei (3-7/2000)
π -π
2
2 _
λ
πϕ ≈→= losdd l
Centimetric displacements (in
some cases even sub-centimetric)
can be measured in “coherent”
areas!
losdd l _
4
λ
π
ϕ ≈
Differential SAR Interferometry (DInSAR)
LOS: Line Of Sight
ERS wavelenght: 5.6 cm
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
0 2.8
cm
40°30’ N
Astroni
Solfatara
Arco Felice
Agnano
Bagnoli
3/2000-7/2000
Differential SAR Interferometry (DInSAR)
φm
Phase Unwrapping
Operation
φ = φm + 2π k
Wrapped Phase (-π, π)
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
δϕ = −
4π
λ
r2
− r1( )= −
4π
λ
r − r1( )−
4π
λ
r2
− r( )≈ −
4π
λ
bsin !ϑ − β( )−
4π
λ
ld _los
=ϕt
+ϕd
Observations are done at different epochs and from different orbital positions
(real case)
Topographic Phase Deformation Phase
LOS: Line Of Sight
Differential SAR Interferometry (DInSAR)
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
DInSAR
Interferogram
Generation
(Flattening)
Coherence
Map
Topographic
Interferogram
(DEM & orbital
information are
needed)
15042009_20052009_bperp=20m
Differential SAR Interferometry (DInSAR)
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Small baseline DInSAR interferograms are less affected by noise effects
(decorrelation).
ERS1_01/05/1996 - ERS2_15/08/1996
baseline=950 m
ERS2_31/08/1995 - ERS2_ 15/08/1996
baseline=10 m
Napoli Bay (ERS Multi-look image)
Why Small Baseline?
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Spatial Decorrelation Effects depend on the perpendicular baseline of the
used SAR data pairs. To reduce such effects the use of small spatial baseline
couples is required.
Temporal Decorrelation Effects are due to temporal reflectivity changes of
the imaged scene. To reduce such effects the use of small temporal baseline
couples is required.
Different Atmospheric
Conditions from one image to
another lead to artifacts in the
generated interferograms. Such
effects can be reduced by
properly averaging independent
interferograms (stacking).
DInSAR Limitations
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
VOLCANICSEISMIC
URBAN LANDSLIDES
DInSAR can play a key role in many contexts
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
L’AQUILA
Monday 06/04/2009,
01:00 UTC, Mw=6.3
L’Aquila 2009 earthquake: scenario
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
06.04
Timeline
10.04 12.04 15.04 16.0408.04
ENVISAT (ASCENDING)
COSMO-SkyMED
(DESCENDING)
TerraSAR-X
(ASCENDING)
ENVISAT (DESCENDING)
L’ Aquila
Earthquake
Mw=6.3
L’Aquila 2009 earthquake: DInSAR analysis
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
ENVISAT (Desc.) ENVISAT (Asc.)COSMO (Asc.)
ALOS (Asc.)
Co-seismic deformation analysis
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Length=12.2 ±0.4km, Width=14.1 ±0.7km
Top depth= 1.9 ±0.2km , slip 0.56 ±0.02m
rake -103°±2
47° ±1 dip
North
133°±2 strike
Source parameters: Atzori et al. 2009, GRL
Results of co-seismic interferograms modelling
Lanari et al. 2010, GRL
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
ERS-1
JERS
ERS-2
RADARSAT
ENVISAT
ALOS1
COSMO-SkyMed
TerraSAR-X
Sentinel-1A
Sentinel-1B
ALOS2
swath	width:	≈	100	km	
revisit	2me:	≈	monthly	
swath	width:	≈	40	km	
revisit	2me:	4	-	11	days	
swath	width:	≈	250	km	
revisit	2me:	12	-	6	days	
Temporal evolution of radar satellites for EO
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
ERS data availability: Napoli bay (Italy) example
Data Set Distribution
PerpendicularBaseline[m]
Time [year]
single deformation events generation of displacement time-series
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
PS SB
Persistent Scatterers (PS) vs. Small Baseline (SB)
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
To produce deformation times-series from a SAR data sequence:
Ÿ  using interferograms characterized by a “small baseline” in order to mitigate
noise (decorrelation) phenomena;
Ÿ  properly “linking” possible interferometric SAR data subset separated by large
baselines. In particular, for each coherent pixel, the deformation time-series is
computed by searching for an LS solution with a minimum norm constraint (the
SVD method is applied).
Time
Perpendicular
Baseline
Subset 2
Subset 1
Original SBAS algorithm: key idea
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
⎥
⎦
⎤
⎢
⎣
⎡
−
=
−
==
21
21
1
01
01
1v
M-M-
M-M-
M-
T
tt
)(t)-(t
v,, ....
tt
)(t)-(t
v
φφφφ
δφ=vB
by solving the linear system
wherein δφ is the interferometric phase vector, B the coefficient matrix
and M the number of SAR images.
To solve the linear system, we apply the SVD-method1.
Following the unwrapping operation we evaluate (for each pixel) the
displacement velocity vector v
Berardino, P., Fornaro, G., Lanari, R., Sansosti, E., 2002. A new algorithm for surface deformation monitoring based on small
baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing 40 (11), 2375–2383.
Mathematical framework of the SBAS algorithm
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Interferograms
Mean deformation velocity [cm/yr]
> 0.75<- 0.75
Mt. Vesuvio
Campi Flegrei
Ischia
The SBAS algorithm rationale
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
LOS Mean Velocity (mm/yr)
> 15<-15
Ascending Orbit
ERS-1/2, T129, F747
Descending Orbit
ERS-1/2, T222, F2853
Lundgren et al. 2004, GRL
Asc.Desc.
Mt. Etna (Italy): 1992-2000 deformation analysis
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Vertical East-West
[mm/yr]
> 15<-15
Down Up [mm/yr]
> 20<-20
West East
Mt. Etna (Italy): 1992-2000 deformation analysis
Lundgren et al. 2004, GRL
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Meanvelocity[mm/yr]
> 20
<-20
Fernandina
Isabela
Sierra Negra
Wolf
ENVISAT Ascending (2003-2007)
Galápagos
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
> 30<-30
Mean Velocity (mm/yr)
ENVISAT descending (2002-2009)
σ ~ 1 cm
Δ: SAR
* : GPS
Kilauea
Mauna Loa
Mauna Loa and Kilauea Volcanoes (Hawaii)
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Mean velocity (mm/yr)
< -10 0 > 10
Santa Ana
Basin
Pomona
Newport –
Inglewood
fault
GPS Network
(SCIGN)
N
Los Angeles Bay
Lanari et al. 2004, GRL
ERS-1/2 Descending data
(1995-2002)
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Mean velocity (mm/yr)
< -10 0 > 10
c
d
e
Santa Ana Basin: DInSAR vs. GPS
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
San Francisco Bay
Meanvelocity[mm/yr]
> 6
<-6
ERS-1/2 Descending (1992-2000)
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
EGU General Assembly 2011
April 03-08, 2011 Vienna, Austria
Mean velocity (mm/yr)
< -6 0 > 6
Hayward fault
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Creep event (Feb 1996)
* = Alignment arrays
Average boxes both sides
Difference to relative
motion
Lanari et al. 2007, RSE
Hayward fault: deformation time series
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Ÿ  exploiting interferograms characterized by a “small
baseline” in order to limit the noise (decorrelation)
phenomena, thus maximizing the number of
investigated pixels;
Ÿ  using no a priori model on the investigated
deformation signal.
The SBAS approach allows to produce “long term”
deformation times-series by:
SBAS approach: key points
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
SBAS vs. Alignment array:
San Francisco Bay
SBAS vs. GPS: Los Angeles
LOS
<-10
> 10
mm/year
SBAS vs. Leveling: Napoli Bay
σdispl ~ 5-10 mm
σvel ~ 1-2 mm/year
SBAS-DInSAR result accuracy
Casu et al. 2006, RSE
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Agenda
n  Part 1: Introduction to Differential SAR Interferometry
n  Part 2: ESA Platforms for Automatic Web Processing
n  Part 3: New frontiers in Earth Observation research
n  Open Discussion
n  Part 1: Introduction to Differential SAR Interferometry
n  Part 2: ESA Platforms for Automatic Web Processing
n  Part 3: New frontiers in Earth Observation research
n  Open Discussion
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
The Thematic Exploitation Platforms goals are:
à  Facilitate use & processing of large datasets (including non-space data) by a
large number of users (science and non-science).
à  Processing services, software (e.g. toolboxes, etc.) and computing
resources.
à  Provide an environment for services development, integration and
exploitation.
à  Federate user communities around common scientific & thematic objectives.
à  Promote shared science objectives & better use of satellite EO.
à  Collaboration tools (e.g. knowledge base, open publications, social
networking).
The Thematic Exploitation Platform (TEP)
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Data	Archives	
- ERS
- ENVISAT
- Sentinels
- CSK
- TSX
- ALOS
SBAS, NSBAS, ROI_PAC, StaMPS, DIAPASON, DORIS, …
-  G-POD
-  Cloud
-  Federated
resources
ESA Geohazard Exploitation Platform (GEP)
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
ESA Geohazard Exploitation Platform (GEP)
G-POD (legacy platform, from SSEP):
-  Tool integration need interaction with “integration” team
-  GRID based, even if could be instantiated on Cloud
GEP (under development/validation, pre-operations start in
2017):
-  Tool integration easier (Cloud sandboxes)
-  Cloud based and cost-effective resource provisioning
-  Contains several Pilot Projects providing Geohazards and InSAR-
related services (e.g. SBAS, DIAPASON, StaMPS, …)
-  Allows results, sharing, publication (e.g. via Zenodo, DOI),
reproducibility, discovery and other collaboration services
-  Interested users (Early Adopters) should submit an User
Request Form (URF) to ESA for evaluation
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
http://gpod.eo.esa.int - eo-gpod@esa.int
G-POD Home Page
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
http://gpod.eo.esa.int - eo-gpod@esa.int
G-POD Home Page
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
EO-SSO credentials
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
G-POD Services
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
G-POD Services
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
G-POD Web Portal of SBAS service
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Selection of the area to be processed
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Selection of the area to be processed
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Reference Point Selection
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Reference Point Selection
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Reference Point Selection
Reference point must be on land and possibly in
an expected stable area
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Selection of the time span
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Archive Querying and Data Selection
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Archive Querying and Data Selection
G-POD Archive
VA4 Archive
VA4 - Only for Processing
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Archive Querying and Data Selection
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Keep the same illumination geometry:
select the same Track!!!
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Archive Querying and Data Selection
Some acquisitions could be acquired the same
day but at slightly different times
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Processed Area
Area of Interest (AOI)
The algorithm merges adjacent frames of the same track to totally cover
the selected AoI.
Data Selection and Optimization
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Processed Area
Area of Interest (AOI)
Large Raw Data are cut around the Area of Interest
Data Selection and Optimization
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Processed Area
Area of Interest (AOI)
Automatic data rejection of acquisitions that do not cover the AoI
Data Rejected
Data Selection and Optimization
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Final settings and Job submission
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Final settings and Job submission
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
To be modified by expert users.
We warmly suggest to keep them unchanged!
Final settings and Job submission
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Processing Parameter Selection
•  Noise Filtering
•  Temporal and Spatial
Baseline
•  Doppler centroid
parameters
•  Time Series Generation
Spatial Network
•  Atmospheric Filtering
•  Multi-temporal/
interferogram analysis
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Baseline Constrain Selection
•  Temporal and Spatial
Baselines have as default
values 1500 days and
400 m, respectively.
•  These two parameters
have a strong impact
when multi-temporal
analysis is performed.
•  Too small values have the
consequence to reduce
the SAR dataset, too big
values limit the success
of Phase Unwrapping
procedure.
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Interferometric Pair Selection
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Interf. Pair Selection: Delaunay Triangulation
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Interf. Pair Selection: Large Baseline Removing
Maximum Spatial Baseline: 300 m
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Interf. Pair Selection: Large Baseline Removing
Maximum Spatial Baseline: 50 m
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
G.P.D. and Doppler Selection
•  Ground Pixel dimension is
the value used for the
spatial multilook of the
interferograms generated
with ERS and ENV sensors
•  Max Allowed Delta-Doppler
is the minimum azimuth
b a n d w i d t h o v e r l a p
between master and slave
images .
•  Max Allowed Doppler
Centroid has a strong
impact for ERS-2 images
acquired after February
2000.
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Common Band Filtering Selection
Common Band Filtering
f e a t u r e s i s a i m e d a t
increase the interferograms
coherence.
This filter removes the
u n c o r r e l a t e d s p e c t r a l
contributions to perform
the interferogram using the
c o m m o n b a n d w i d t h
between master and slave
images
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Coherence threshold
•  This parameter permits to
identify the (spatial)
network of points that are
subsequently unwrapped.
•  It is strongly related to
the algorithm used for
Phase Unwrapping:
Extended Minimum Cost
Flow (EMCF).
•  Default value of 0.7 is
suitable for a large part
of case studies.
•  This in not a threshold to
select the final spatial
distribution of points
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
SBAS Phase unwrapping: the Extended-MCF
Algorithm
The EMCF algorithm (Pepe at al, 2006, TGRS) allows to unwrap a sequence
of M multi-temporal differential interferograms that generate a triangulation
in the Temporal/Perpendicular Baseline Plane.
Time [year]
PerpendicularBaseline[m]
1992 1999 2007
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
A Delaunay triangulation involving the coherent points in the Azimuth/Range
domain is subsequently built.
Aziumth
Range
The i-th edge of the triangulation corresponds to the i-th differential
interferogram:
( ) ( ), 1,..., ,i z ga r i M a r A RΦ = ∈ ×
Extended-MCF Algorithm: Rationale
“Temporal” network “Spatial” network
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
A Delaunay triangulation involving the coherent points in the Azimuth/Range
domain is subsequently built. The spatial network can be defined
through one of the inputs of the GUI.
Aziumth
Range
The i-th edge of the triangulation corresponds to the i-th differential
interferogram:
( ) ( ), 1,..., ,i z ga r i M a r A RΦ = ∈ ×
Extended-MCF Algorithm: Rationale
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Coherence Threshold Selection
Coh: 0.7Coh: 0.8
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
•  APS Smoothing Time
Window represents the
window of the temporal
filter in the APS removing
procedure.
•  Larger values generate
more smoothed time
series.
•  Default value is 200
days; useful values lie in
the range 100 to 400
days.
Displacement Time Series Generation and
APS Filtering
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Hawaii T200 case study
>6<-6
cm/yr
Mauna Loa
Kilauea
Est Rift
zone
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Final settings and Job submission
To be modified by expert users.
We warmly suggest to keep them unchanged!
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Submitted Job status check
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Job Submission
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Submitted Job status check
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Submitted Job status check
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Advanced Features
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Noise Filtering Feature
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Noise Filtering Feature
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
On a pixel by pixel basis, the SBAS algorithm allows the generation of the
surface deformation time-series
[ ]10, ,..., NΦ ≡ Φ Φ
Subsequently, once the deformation time-series are retrieved, the quality
of the inversion is checked by comparing the original interferograms to the
ones reconstructed from the obtained time-series, by means of the so-
called Temporal Coherence factor:
( )1
exp i i
M
i IM IS
i
M
=
⎡ ⎤ΔΦ − Φ − Φ
⎣ ⎦
Γ =
∑
Small Baseline Subset SBAS algorithm
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Temporal Coherence is a quality index of our phase reconstruction; two
different aspects may lead to a decrease of the temporal coherence
values:
Ø Time-Inconsistent Phase Unwrapping Errors;
Ø Time-inconsistencies among the generated multilook (wrapped)
interferograms, due to the fact that multi-look operations are
independently carried out on each single SAR data pair.
INDEED …
Temporal Coherence Factor
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
April 27,
2008
July 26,
2009
April 12, 2009
ΔΦ 1
ΔΦ 1
Azimuth
Range
ΔΦ 2 ΔΦ 3
ΔΦ 2
ΔΦ 3
Azimuth
Range
Azimuth
Range
Multi-look (Wrapped) Phase Time-Inconsistency
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
April 27,
2008
July 26,
2009
April 12, 2009
ΔΦ 1
ΔΦ 2
ΔΦ 3
Accordingly, multilook (wrapped) interferograms are not time-consistent. It means
that phase acquisitions are not known while a redundant set of M multi-look
interferograms is generated.
We extend the temporal coherence idea to wrapped interferograms, to have time-
consistent noise filtered SB multilook interferograms before any phase
unwrapping operation.
Azimuth
Range
1 2 3 0.r ≡ ΔΦ + ΔΦ + ΔΦ ≠
π
-π
Multi-look (Wrapped) Phase Time-Inconsistency
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
We search for the solution of the following maximization problem:
( )
1
1
exp
arg max
k k
M
k k IM IS
k
M
k
k
jξ
ξ
=
Φ
=
⎧ ⎫
⎡ ⎤⎪ ⎪ΔΦ − Φ + Φ
⎣ ⎦⎪ ⎪⎪ ⎪
Φ = ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭
∑
∑
)
Basically, we maximize a weighted version of the temporal coherence
factor; the weights, representing our confidence on the phase stability of
the generated M multilook DInSAR phases, are set by using the pixel
spatial coherence
( )( )
( )
2 2
2 2
1
exp , 1,...,
1 1
A R
A R
N N
k k
A R h N p N
j x h y p k M
N N
ξ
=− =−
⎡ ⎤= ΔΦ + + ∀ =⎣ ⎦+ + ∑ ∑
Phase Inversion Algorithm
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
We search for the solution of the following maximization problem:
( )
1
1
exp
arg max
k k
M
k k IM IS
k
M
k
k
jξ
ξ
=
Φ
=
⎧ ⎫
⎡ ⎤⎪ ⎪ΔΦ − Φ + Φ
⎣ ⎦⎪ ⎪⎪ ⎪
Φ = ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭
∑
∑
)
Basically, we maximize a weighted version of the temporal coherence
factor; the weights, representing our confidence on the phase stability of
the generated M multilook DInSAR phases, are set by using the pixel
spatial coherence
( )( )
( )
2 2
2 2
1
exp , 1,...,
1 1
A R
A R
N N
k k
A R h N p N
j x h y p k M
N N
ξ
=− =−
⎡ ⎤= ΔΦ + + ∀ =⎣ ⎦+ + ∑ ∑
Phase Inversion Algorithm
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Improved SBAS Inversion
Ø  Once the phase acquisitions are retrieved, a noise-filtered version of
the original interferograms is generated.
Note that Space Adaptive Multilook operations could be also
preliminarly applied to the original interferograms at the
expenses of the overall computation time
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Azimuth
Range
February 1, 2009 – August 15, 2010
Perpendicular Baseline ~300 m
The Abruzzi area case-study
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Azimuth
Range
May 8, 2005 – April 12, 2009
Perpendicular Baseline ~800 m
The Abruzzi area case-study
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Long Valley Caldera case-study
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Long Valley Caldera case-study IMPROVEMENT
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Buthan case-study
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Buthan case-study IMPROVEMENT
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Outputs of the SBAS-InSAR processing chain
MetaData
Data
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Metadata Field
<Metadata tag> : <Metadata value>
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Metadata Field
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Pixel Identifier
Data Field
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Latitude and Longitude [deg]
Data Field
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Topography [m] = Elevation + Residual Topography
Data Field
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Deformation Velocity [cm/yr]
Data Field
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Temporal Coherence
Data Field
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
LOS Unit Vectors
Data Field
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Deformation Time series [cm]
Data Field
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Ask for an Account to:
eo-gpod@esa.int
sbas-help@irea.cnr.it
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
eo-gpod@esa.int
EO-SSO ID: eduusr03
Password: Educational_03
EO-SSO ID: eduusr05
Password: Educational_05
EO-SSO ID: eduusr06
Password: Educational_06
G-POD Educational Account Credentials
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Agenda
n  Part 1: Introduction to Differential SAR Interferometry
n  Part 2: ESA Platforms for Automatic Web Processing
n  Part 3: New frontiers in Earth Observation research
n  Open Discussion
n  Part 1: Introduction to Differential SAR Interferometry
n  Part 2: ESA Platforms for Automatic Web Processing
n  Part 3: New frontiers in Earth Observation research
n  Open Discussion
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
SAR	Data	Scenario:	Satellites	
1992	1994	1996	1998	2000	2002	2004	2006	2008	2010	2012	2014	2016	2018	2020	
ERS-1	
JERS	
ERS-2	
RADARSAT	
ENVISAT	
ALOS	
COSMO-SkyMed	
TerraSAR-X	
Sen2nel-1A	
Sen2nel-1B	
Swath	Width	≈	100	km	
Revisit	2me	≈	monthly	
Swath	Width≈	40	km	
Revisit	Time:	4	-	11	days	
Swath	Width	≈	250	km	
Revisit	Time:	12	-	6	days	
TerraSAR-X
COSMO-SkyMed
ALOS-2
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
SENTINEL1-A	
ENVISAT	
CSK	
40	km	
100	km	
250	km	
SAR Data Scenario: Coverage Comparison
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Sen3nel-1:	~	6	TByte	data	per	day	
ERS	&	ENVISAT	data	over	world	tectonic	regions:	70+	Tera	on	line;	about	10	days	of	S1-A	acquisi2ons!	
Sentinel-1 monthly coverage
Towards	a	Big	Data	scenario
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Sentinel-1: Small Baseline System
1995 2000 2005 2010 2015
Time [year]
-1.0
-0.5
0.0
0.5
1.0
PerpendicularBaseline[km]
ERS and ENVISAT
Perpendicular baseline distribution
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Sentinel-1: Small Baseline System
Perpendicular baseline distribution
ERS and ENVISAT
1995 2000 2005 2010 2015
Time [year]
-1.0
-0.5
0.0
0.5
1.0
PerpendicularBaseline[km]
Sentinel-1
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
ESA’s GEP web site
https://geohazards-tep.eo.esa.int
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
TEP Scenario 1 – EO Data Exploitation,​which allows a user to discover/select
data and pre-existing processing service; process data; and visualize/analyse or
select and apply data manipulation tools to the result.
TEP Scenario 2 – New EO Service Development,​ which allows a user to
discover/select a data sample and software components; engineer (or upload)
and validate an application (such as a processor); and deploy the application on
the platform for use also by other users.
TEP Scenario 3 – New EO Product Development,​ which allows a user to
Authenticate; alternatively upload and deploy a new processor; discover/select
data; process the data; and eventually publish the resulting product. Note that
this scenario implies the implementation of effective, scalable, and cost-
optimized strategies for infrastructure provisioning for processing of very big
datasets.
GEP Pilot Project Scenarios
geohazards-tep@esa.int
If interested in submitting a Pilot Project according to the 3 depicted scenarios, contact:
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
ESA’s GEP web site
https://geohazards-tep.eo.esa.int
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: data selection
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: data selection
productType
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: data selection
PlatformName
OrbitDirection
44	
OrbitTrack
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: data selection
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: data selection
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: data selection
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: saving a Data Package
S1A_T44_Naples
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: saving a Data Package
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: saving a Data Package
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: saving a Data Package
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: Processing Services
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: InSAR SBAS - data
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: InSAR SBAS - data
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: InSAR SBAS - parameters
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: InSAR SBAS - processing
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: InSAR SBAS - processing
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: InSAR SBAS - Results
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: InSAR SBAS - Results
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: InSAR SBAS - Results
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: saving a Data Package
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: InSAR SBAS - Results
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: My Jobs
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: My Jobs
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: My Jobs
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: My Jobs
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
GEP Geo-portal: Community Jobs
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
TEP Scenario 1 – EO Data Exploitation,​which allows a user to discover/select
data and pre-existing processing service; process data; and visualize/analyse or
select and apply data manipulation tools to the result.
TEP Scenario 2 – New EO Service Development,​ which allows a user to
discover/select a data sample and software components; engineer (or upload)
and validate an application (such as a processor); and deploy the application on
the platform for use also by other users.
TEP Scenario 3 – New EO Product Development,​ which allows a user to
Authenticate; alternatively upload and deploy a new processor; discover/select
data; process the data; and eventually publish the resulting product. Note that
this scenario implies the implementation of effective, scalable, and cost-
optimized strategies for infrastructure provisioning for processing of very big
datasets.
GEP Pilot Project Scenarios
geohazards-tep@esa.int
If interested in submitting a Pilot Project according to the 3 depicted scenarios, contact:
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
ESA’s GEP web site
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Cloud Dashboard
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Developer Cloud Sandbox
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Developer Cloud Sandbox
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Developer Cloud Sandbox
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Developer Cloud Sandbox
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Developer Cloud Sandbox
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Developer Cloud Sandbox
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
cm/year
>6<-6
Campi Flegrei Caldera
Systematic
S1 P-SBAS
processing
Sen2nel-1	
12/6	days	
repeat	cycle	
Community	Geoportal	
2015 2016
Time [year]
-2
0
2
4
6
8
10
Displacement[cm]
2015 2016
Time [year]
-2
0
2
4
6
8
10
Displacement[cm]
2015 2016
Time [year]
-2
0
2
4
6
8
10
Displacement[cm]
2015 2016
Time [year]
-2
0
2
4
6
8
10
Displacement[cm]
GEP: Sentinel-1 P-SBAS systematic processing
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Sentinel-1 P-SBAS results at large scale
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
cm/year
>6<-6
Time	Interval:	October	2014	–	March	2016	
Sentinel-1 P-SBAS results at large scale
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
cm/year
>6<-6
Time	Interval:	October	2014	–	March	2016	
Sentinel-1 P-SBAS results at large scale
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
cm/year
>6<-6
Time	Interval:	October	2014	–	March	2016	
Sentinel-1 P-SBAS results at large scale
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Campi	Flegrei	caldera	
2015 2016
Time [year]
-2
0
2
4
6
8
10
Displacement[cm]
Sentinel-1 P-SBAS results at large scale
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Gargano	Region	
Sentinel-1 P-SBAS results at large scale
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Gargano	Region	
2015 2016
Time [year]
-6
-4
-2
0
2
Displacement[cm]
2015 2016
Time [year]
-6
-4
-2
0
2
Displacement[cm]
Sentinel-1 P-SBAS results at large scale
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
cm/year
>6<-6
2015 2016
Time [year]
-2
0
2
4
6
Displacement[cm]
2015 2016
Time [year]
-10
-8
-6
-4
-2
0
2
4
Displacement[cm]
Etna	Volcano	
Sentinel-1 P-SBAS results at large scale
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Ask for an Account to:
geohazards-tep@esa.int
sbas-help@irea.cnr.it
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
Credits
CNR-IREA
M. Bonano, F. Casu, C. De Luca, R. Lanari, M. Manunta, I. Zinno,
M. Manzo, A. Pepe
ESA RSS
R. Cuccu, J.M. Delgado Blasco, G. Rivolta
ESA
H. Laur, S. Loekken, P. Bally, S. Pinto, A. Marin, A. Cuomo
Terradue
F. Brito, F. Pacini, E. Mathot,, H. Caumont
SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
12-days	Interferometric	
Coherence	map	of	almost	
the	en3re	Europe		
	
	
300	slices	
	
June-July	2015	
	
Coverage:	3,200,000	km2.	
In	coopera2on	with	ESA	G-POD
Thank	you!	
geohazards-tep@esa.int

More Related Content

What's hot

Change detection techniques
Change detection techniquesChange detection techniques
Change detection techniquesFemi Opaleye
 
Remote Sensing: Change Detection
Remote Sensing: Change DetectionRemote Sensing: Change Detection
Remote Sensing: Change DetectionKamlesh Kumar
 
Geo Stationary Earth Orbit imaging satellite
Geo Stationary Earth Orbit imaging satelliteGeo Stationary Earth Orbit imaging satellite
Geo Stationary Earth Orbit imaging satelliteDivya Lal
 
Spot 7 satellite
Spot 7 satelliteSpot 7 satellite
Spot 7 satelliteNimra Butt
 
Landsat 8 OLI (Operational Land Imager)
Landsat 8 OLI (Operational Land Imager)Landsat 8 OLI (Operational Land Imager)
Landsat 8 OLI (Operational Land Imager)Haris Khan
 
LiDAR Technology and Geospatial Services
LiDAR Technology and Geospatial Services LiDAR Technology and Geospatial Services
LiDAR Technology and Geospatial Services MattBethel1
 
Band ratioing presentation
Band ratioing presentationBand ratioing presentation
Band ratioing presentationsk asadul haque
 
How to better understand SAR, interpret SAR products and realize the limitations
How to better understand SAR, interpret SAR products and realize the limitationsHow to better understand SAR, interpret SAR products and realize the limitations
How to better understand SAR, interpret SAR products and realize the limitationsNopphawanTamkuan
 
Microwave remote sensing
Microwave remote sensingMicrowave remote sensing
Microwave remote sensingMohsin Siddique
 
Introduction to LiDAR presentation.
Introduction to LiDAR presentation.Introduction to LiDAR presentation.
Introduction to LiDAR presentation.Bob Champoux
 
Understanding Coordinate Systems and Projections for ArcGIS
Understanding Coordinate Systems and Projections for ArcGISUnderstanding Coordinate Systems and Projections for ArcGIS
Understanding Coordinate Systems and Projections for ArcGISJohn Schaeffer
 
Synthetic Aperture Radar (SAR) Basics.pptx
Synthetic Aperture Radar (SAR) Basics.pptxSynthetic Aperture Radar (SAR) Basics.pptx
Synthetic Aperture Radar (SAR) Basics.pptxsapna kinattinkara
 
Sentinel 2
Sentinel 2Sentinel 2
Sentinel 2Openmaps
 

What's hot (20)

Change detection techniques
Change detection techniquesChange detection techniques
Change detection techniques
 
Remote Sensing: Change Detection
Remote Sensing: Change DetectionRemote Sensing: Change Detection
Remote Sensing: Change Detection
 
GPS
GPSGPS
GPS
 
Lidar
LidarLidar
Lidar
 
Geo Stationary Earth Orbit imaging satellite
Geo Stationary Earth Orbit imaging satelliteGeo Stationary Earth Orbit imaging satellite
Geo Stationary Earth Orbit imaging satellite
 
Spot 7 satellite
Spot 7 satelliteSpot 7 satellite
Spot 7 satellite
 
Digital photogrammetry
Digital photogrammetryDigital photogrammetry
Digital photogrammetry
 
Microwave remote sensing
Microwave remote sensingMicrowave remote sensing
Microwave remote sensing
 
Landsat.pptx
Landsat.pptxLandsat.pptx
Landsat.pptx
 
Landsat 8 OLI (Operational Land Imager)
Landsat 8 OLI (Operational Land Imager)Landsat 8 OLI (Operational Land Imager)
Landsat 8 OLI (Operational Land Imager)
 
LiDAR Technology and Geospatial Services
LiDAR Technology and Geospatial Services LiDAR Technology and Geospatial Services
LiDAR Technology and Geospatial Services
 
Band ratioing presentation
Band ratioing presentationBand ratioing presentation
Band ratioing presentation
 
How to better understand SAR, interpret SAR products and realize the limitations
How to better understand SAR, interpret SAR products and realize the limitationsHow to better understand SAR, interpret SAR products and realize the limitations
How to better understand SAR, interpret SAR products and realize the limitations
 
Microwave remote sensing
Microwave remote sensingMicrowave remote sensing
Microwave remote sensing
 
Introduction to LiDAR presentation.
Introduction to LiDAR presentation.Introduction to LiDAR presentation.
Introduction to LiDAR presentation.
 
Understanding Coordinate Systems and Projections for ArcGIS
Understanding Coordinate Systems and Projections for ArcGISUnderstanding Coordinate Systems and Projections for ArcGIS
Understanding Coordinate Systems and Projections for ArcGIS
 
Landsat seminar
Landsat seminarLandsat seminar
Landsat seminar
 
Synthetic Aperture Radar (SAR) Basics.pptx
Synthetic Aperture Radar (SAR) Basics.pptxSynthetic Aperture Radar (SAR) Basics.pptx
Synthetic Aperture Radar (SAR) Basics.pptx
 
Sentinel 2
Sentinel 2Sentinel 2
Sentinel 2
 
Remote sensing
Remote sensingRemote sensing
Remote sensing
 

Similar to SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform

Keeping a Sentinel Eye on the Volcanoes – from Space!
Keeping a Sentinel Eye on the Volcanoes – from Space!Keeping a Sentinel Eye on the Volcanoes – from Space!
Keeping a Sentinel Eye on the Volcanoes – from Space!Advanced-Concepts-Team
 
FR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.pptFR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.pptgrssieee
 
FR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.pptFR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.pptgrssieee
 
WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS
WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONSWE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS
WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONSgrssieee
 
IGARSS_2011_final.ppt
IGARSS_2011_final.pptIGARSS_2011_final.ppt
IGARSS_2011_final.pptgrssieee
 
THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdf
THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdfTHE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdf
THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdfMuhammadMuhaimin54
 
IGARSS11_takaku_dsm_report.ppt
IGARSS11_takaku_dsm_report.pptIGARSS11_takaku_dsm_report.ppt
IGARSS11_takaku_dsm_report.pptgrssieee
 
Platforms of Remote sensing and GIS
Platforms of Remote sensing and GISPlatforms of Remote sensing and GIS
Platforms of Remote sensing and GISMouna Guru
 
TH1.L09 - ADVANCES IN THE GENERATION OF DEFORMATION TIME SERIES FROM SAR DATA...
TH1.L09 - ADVANCES IN THE GENERATION OF DEFORMATION TIME SERIES FROM SAR DATA...TH1.L09 - ADVANCES IN THE GENERATION OF DEFORMATION TIME SERIES FROM SAR DATA...
TH1.L09 - ADVANCES IN THE GENERATION OF DEFORMATION TIME SERIES FROM SAR DATA...grssieee
 
Characteristicsofastergdemversion2 110728002048-phpapp02
Characteristicsofastergdemversion2 110728002048-phpapp02Characteristicsofastergdemversion2 110728002048-phpapp02
Characteristicsofastergdemversion2 110728002048-phpapp02Ryotaro Takeda
 
CHARACTERISTICSOFASTERGDEMVERSION2.pptx
CHARACTERISTICSOFASTERGDEMVERSION2.pptxCHARACTERISTICSOFASTERGDEMVERSION2.pptx
CHARACTERISTICSOFASTERGDEMVERSION2.pptxgrssieee
 
PR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptx
PR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptxPR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptx
PR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptxgrssieee
 
Lecture for landsat
Lecture for landsatLecture for landsat
Lecture for landsatGeoMedeelel
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORSIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORgrssieee
 
Internal-multiple attenuation on Encana data - Qiang Fu and Arthur B. Weglein
Internal-multiple attenuation on Encana data - Qiang Fu and Arthur B. WegleinInternal-multiple attenuation on Encana data - Qiang Fu and Arthur B. Weglein
Internal-multiple attenuation on Encana data - Qiang Fu and Arthur B. WegleinArthur Weglein
 
igarss11swot-vadon-callahan-psc-s3.110725.pptx
igarss11swot-vadon-callahan-psc-s3.110725.pptxigarss11swot-vadon-callahan-psc-s3.110725.pptx
igarss11swot-vadon-callahan-psc-s3.110725.pptxgrssieee
 
IGARSS_2011_ScanSAR_new.pptx
IGARSS_2011_ScanSAR_new.pptxIGARSS_2011_ScanSAR_new.pptx
IGARSS_2011_ScanSAR_new.pptxgrssieee
 
MO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATION
MO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATIONMO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATION
MO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATIONgrssieee
 

Similar to SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform (20)

Keeping a Sentinel Eye on the Volcanoes – from Space!
Keeping a Sentinel Eye on the Volcanoes – from Space!Keeping a Sentinel Eye on the Volcanoes – from Space!
Keeping a Sentinel Eye on the Volcanoes – from Space!
 
FR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.pptFR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.ppt
 
FR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.pptFR01_01_GlezetalIGARSS2011.ppt
FR01_01_GlezetalIGARSS2011.ppt
 
WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS
WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONSWE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS
WE2.L09 - DESDYNI LIDAR FOR SOLID EARTH APPLICATIONS
 
C011121114
C011121114C011121114
C011121114
 
Rocca.ppt
Rocca.pptRocca.ppt
Rocca.ppt
 
IGARSS_2011_final.ppt
IGARSS_2011_final.pptIGARSS_2011_final.ppt
IGARSS_2011_final.ppt
 
THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdf
THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdfTHE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdf
THE THERMAL INFRARED SENSOR ON THE LANDSAT DATA CONTINUITY MISSION.pdf
 
IGARSS11_takaku_dsm_report.ppt
IGARSS11_takaku_dsm_report.pptIGARSS11_takaku_dsm_report.ppt
IGARSS11_takaku_dsm_report.ppt
 
Platforms of Remote sensing and GIS
Platforms of Remote sensing and GISPlatforms of Remote sensing and GIS
Platforms of Remote sensing and GIS
 
TH1.L09 - ADVANCES IN THE GENERATION OF DEFORMATION TIME SERIES FROM SAR DATA...
TH1.L09 - ADVANCES IN THE GENERATION OF DEFORMATION TIME SERIES FROM SAR DATA...TH1.L09 - ADVANCES IN THE GENERATION OF DEFORMATION TIME SERIES FROM SAR DATA...
TH1.L09 - ADVANCES IN THE GENERATION OF DEFORMATION TIME SERIES FROM SAR DATA...
 
Characteristicsofastergdemversion2 110728002048-phpapp02
Characteristicsofastergdemversion2 110728002048-phpapp02Characteristicsofastergdemversion2 110728002048-phpapp02
Characteristicsofastergdemversion2 110728002048-phpapp02
 
CHARACTERISTICSOFASTERGDEMVERSION2.pptx
CHARACTERISTICSOFASTERGDEMVERSION2.pptxCHARACTERISTICSOFASTERGDEMVERSION2.pptx
CHARACTERISTICSOFASTERGDEMVERSION2.pptx
 
PR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptx
PR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptxPR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptx
PR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptx
 
Lecture for landsat
Lecture for landsatLecture for landsat
Lecture for landsat
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORSIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
 
Internal-multiple attenuation on Encana data - Qiang Fu and Arthur B. Weglein
Internal-multiple attenuation on Encana data - Qiang Fu and Arthur B. WegleinInternal-multiple attenuation on Encana data - Qiang Fu and Arthur B. Weglein
Internal-multiple attenuation on Encana data - Qiang Fu and Arthur B. Weglein
 
igarss11swot-vadon-callahan-psc-s3.110725.pptx
igarss11swot-vadon-callahan-psc-s3.110725.pptxigarss11swot-vadon-callahan-psc-s3.110725.pptx
igarss11swot-vadon-callahan-psc-s3.110725.pptx
 
IGARSS_2011_ScanSAR_new.pptx
IGARSS_2011_ScanSAR_new.pptxIGARSS_2011_ScanSAR_new.pptx
IGARSS_2011_ScanSAR_new.pptx
 
MO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATION
MO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATIONMO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATION
MO4.L09 - DIGITAL BEAMFORMING SAR (DBSAR) FOR BIOMASS ESTIMATION
 

Recently uploaded

Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptxkhadijarafiq2012
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 

Recently uploaded (20)

Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptx
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 

SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform

  • 1. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Claudio De Luca deluca.c@irea.cnr.it Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA) Consiglio Nazionale delle Ricerche (CNR), Via Diocleziano, 328, 80124 Napoli
  • 2. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Agenda n  Part 1: Introduction to Differential SAR Interferometry n  Part 2: ESA Platforms for Automatic Web Processing n  Part 3: New frontiers in Earth Observation research n  Open Discussion n  Part 1: Introduction to Differential SAR Interferometry n  Part 2: ESA Platforms for Automatic Web Processing n  Part 3: New frontiers in Earth Observation research n  Open Discussion
  • 3. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform •  Active sensors •  Microwave sensors •  Coherent sensors Key points of Radar (SAR) Imaging from space
  • 4. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform •  Passive sensors use solar radiation (light) or the one emitted by the observed object as source of illumination. Typically they operate in the optical or infrared. •  Active sensors have their own source of illumination. Typically they operate in the microwave. Capability to "observe" during day and night Key points of Radar (SAR) Imaging from space
  • 5. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Optical image Radar (SAR) image same moment of acquisition Capability to "observe" even in presence of clouds Key points of Radar (SAR) Imaging from space
  • 6. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Coherent sensors SAR image Synthetic Aperture Key points of Radar (SAR) Imaging from space
  • 7. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Baseline S(t1) S(t2) Interferogram Differential SAR Interferometry (DInSAR)
  • 8. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Campi Flegrei (3-7/2000) π -π 2 2 _ λ πϕ ≈→= losdd l Centimetric displacements (in some cases even sub-centimetric) can be measured in “coherent” areas! losdd l _ 4 λ π ϕ ≈ Differential SAR Interferometry (DInSAR) LOS: Line Of Sight ERS wavelenght: 5.6 cm
  • 9. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform 0 2.8 cm 40°30’ N Astroni Solfatara Arco Felice Agnano Bagnoli 3/2000-7/2000 Differential SAR Interferometry (DInSAR) φm Phase Unwrapping Operation φ = φm + 2π k Wrapped Phase (-π, π)
  • 10. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform δϕ = − 4π λ r2 − r1( )= − 4π λ r − r1( )− 4π λ r2 − r( )≈ − 4π λ bsin !ϑ − β( )− 4π λ ld _los =ϕt +ϕd Observations are done at different epochs and from different orbital positions (real case) Topographic Phase Deformation Phase LOS: Line Of Sight Differential SAR Interferometry (DInSAR)
  • 11. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform DInSAR Interferogram Generation (Flattening) Coherence Map Topographic Interferogram (DEM & orbital information are needed) 15042009_20052009_bperp=20m Differential SAR Interferometry (DInSAR)
  • 12. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Small baseline DInSAR interferograms are less affected by noise effects (decorrelation). ERS1_01/05/1996 - ERS2_15/08/1996 baseline=950 m ERS2_31/08/1995 - ERS2_ 15/08/1996 baseline=10 m Napoli Bay (ERS Multi-look image) Why Small Baseline?
  • 13. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Spatial Decorrelation Effects depend on the perpendicular baseline of the used SAR data pairs. To reduce such effects the use of small spatial baseline couples is required. Temporal Decorrelation Effects are due to temporal reflectivity changes of the imaged scene. To reduce such effects the use of small temporal baseline couples is required. Different Atmospheric Conditions from one image to another lead to artifacts in the generated interferograms. Such effects can be reduced by properly averaging independent interferograms (stacking). DInSAR Limitations
  • 14. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform VOLCANICSEISMIC URBAN LANDSLIDES DInSAR can play a key role in many contexts
  • 15. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform L’AQUILA Monday 06/04/2009, 01:00 UTC, Mw=6.3 L’Aquila 2009 earthquake: scenario
  • 16. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform 06.04 Timeline 10.04 12.04 15.04 16.0408.04 ENVISAT (ASCENDING) COSMO-SkyMED (DESCENDING) TerraSAR-X (ASCENDING) ENVISAT (DESCENDING) L’ Aquila Earthquake Mw=6.3 L’Aquila 2009 earthquake: DInSAR analysis
  • 17. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform ENVISAT (Desc.) ENVISAT (Asc.)COSMO (Asc.) ALOS (Asc.) Co-seismic deformation analysis
  • 18. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Length=12.2 ±0.4km, Width=14.1 ±0.7km Top depth= 1.9 ±0.2km , slip 0.56 ±0.02m rake -103°±2 47° ±1 dip North 133°±2 strike Source parameters: Atzori et al. 2009, GRL Results of co-seismic interferograms modelling Lanari et al. 2010, GRL
  • 19. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 ERS-1 JERS ERS-2 RADARSAT ENVISAT ALOS1 COSMO-SkyMed TerraSAR-X Sentinel-1A Sentinel-1B ALOS2 swath width: ≈ 100 km revisit 2me: ≈ monthly swath width: ≈ 40 km revisit 2me: 4 - 11 days swath width: ≈ 250 km revisit 2me: 12 - 6 days Temporal evolution of radar satellites for EO
  • 20. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform ERS data availability: Napoli bay (Italy) example Data Set Distribution PerpendicularBaseline[m] Time [year] single deformation events generation of displacement time-series
  • 21. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform PS SB Persistent Scatterers (PS) vs. Small Baseline (SB)
  • 22. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform To produce deformation times-series from a SAR data sequence: Ÿ  using interferograms characterized by a “small baseline” in order to mitigate noise (decorrelation) phenomena; Ÿ  properly “linking” possible interferometric SAR data subset separated by large baselines. In particular, for each coherent pixel, the deformation time-series is computed by searching for an LS solution with a minimum norm constraint (the SVD method is applied). Time Perpendicular Baseline Subset 2 Subset 1 Original SBAS algorithm: key idea
  • 23. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ − = − == 21 21 1 01 01 1v M-M- M-M- M- T tt )(t)-(t v,, .... tt )(t)-(t v φφφφ δφ=vB by solving the linear system wherein δφ is the interferometric phase vector, B the coefficient matrix and M the number of SAR images. To solve the linear system, we apply the SVD-method1. Following the unwrapping operation we evaluate (for each pixel) the displacement velocity vector v Berardino, P., Fornaro, G., Lanari, R., Sansosti, E., 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing 40 (11), 2375–2383. Mathematical framework of the SBAS algorithm
  • 24. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Interferograms Mean deformation velocity [cm/yr] > 0.75<- 0.75 Mt. Vesuvio Campi Flegrei Ischia The SBAS algorithm rationale
  • 25. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform LOS Mean Velocity (mm/yr) > 15<-15 Ascending Orbit ERS-1/2, T129, F747 Descending Orbit ERS-1/2, T222, F2853 Lundgren et al. 2004, GRL Asc.Desc. Mt. Etna (Italy): 1992-2000 deformation analysis
  • 26. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Vertical East-West [mm/yr] > 15<-15 Down Up [mm/yr] > 20<-20 West East Mt. Etna (Italy): 1992-2000 deformation analysis Lundgren et al. 2004, GRL
  • 27. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Meanvelocity[mm/yr] > 20 <-20 Fernandina Isabela Sierra Negra Wolf ENVISAT Ascending (2003-2007) Galápagos
  • 28. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform > 30<-30 Mean Velocity (mm/yr) ENVISAT descending (2002-2009) σ ~ 1 cm Δ: SAR * : GPS Kilauea Mauna Loa Mauna Loa and Kilauea Volcanoes (Hawaii)
  • 29. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Mean velocity (mm/yr) < -10 0 > 10 Santa Ana Basin Pomona Newport – Inglewood fault GPS Network (SCIGN) N Los Angeles Bay Lanari et al. 2004, GRL ERS-1/2 Descending data (1995-2002)
  • 30. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Mean velocity (mm/yr) < -10 0 > 10 c d e Santa Ana Basin: DInSAR vs. GPS
  • 31. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform San Francisco Bay Meanvelocity[mm/yr] > 6 <-6 ERS-1/2 Descending (1992-2000)
  • 32. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform EGU General Assembly 2011 April 03-08, 2011 Vienna, Austria Mean velocity (mm/yr) < -6 0 > 6 Hayward fault
  • 33. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Creep event (Feb 1996) * = Alignment arrays Average boxes both sides Difference to relative motion Lanari et al. 2007, RSE Hayward fault: deformation time series
  • 34. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Ÿ  exploiting interferograms characterized by a “small baseline” in order to limit the noise (decorrelation) phenomena, thus maximizing the number of investigated pixels; Ÿ  using no a priori model on the investigated deformation signal. The SBAS approach allows to produce “long term” deformation times-series by: SBAS approach: key points
  • 35. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform SBAS vs. Alignment array: San Francisco Bay SBAS vs. GPS: Los Angeles LOS <-10 > 10 mm/year SBAS vs. Leveling: Napoli Bay σdispl ~ 5-10 mm σvel ~ 1-2 mm/year SBAS-DInSAR result accuracy Casu et al. 2006, RSE
  • 36. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Agenda n  Part 1: Introduction to Differential SAR Interferometry n  Part 2: ESA Platforms for Automatic Web Processing n  Part 3: New frontiers in Earth Observation research n  Open Discussion n  Part 1: Introduction to Differential SAR Interferometry n  Part 2: ESA Platforms for Automatic Web Processing n  Part 3: New frontiers in Earth Observation research n  Open Discussion
  • 37. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform The Thematic Exploitation Platforms goals are: à  Facilitate use & processing of large datasets (including non-space data) by a large number of users (science and non-science). à  Processing services, software (e.g. toolboxes, etc.) and computing resources. à  Provide an environment for services development, integration and exploitation. à  Federate user communities around common scientific & thematic objectives. à  Promote shared science objectives & better use of satellite EO. à  Collaboration tools (e.g. knowledge base, open publications, social networking). The Thematic Exploitation Platform (TEP)
  • 38. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Data Archives - ERS - ENVISAT - Sentinels - CSK - TSX - ALOS SBAS, NSBAS, ROI_PAC, StaMPS, DIAPASON, DORIS, … -  G-POD -  Cloud -  Federated resources ESA Geohazard Exploitation Platform (GEP)
  • 39. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform ESA Geohazard Exploitation Platform (GEP) G-POD (legacy platform, from SSEP): -  Tool integration need interaction with “integration” team -  GRID based, even if could be instantiated on Cloud GEP (under development/validation, pre-operations start in 2017): -  Tool integration easier (Cloud sandboxes) -  Cloud based and cost-effective resource provisioning -  Contains several Pilot Projects providing Geohazards and InSAR- related services (e.g. SBAS, DIAPASON, StaMPS, …) -  Allows results, sharing, publication (e.g. via Zenodo, DOI), reproducibility, discovery and other collaboration services -  Interested users (Early Adopters) should submit an User Request Form (URF) to ESA for evaluation
  • 40. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform http://gpod.eo.esa.int - eo-gpod@esa.int G-POD Home Page
  • 41. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform http://gpod.eo.esa.int - eo-gpod@esa.int G-POD Home Page
  • 42. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform EO-SSO credentials
  • 43. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform G-POD Services
  • 44. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform G-POD Services
  • 45. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform G-POD Web Portal of SBAS service
  • 46. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Selection of the area to be processed
  • 47. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Selection of the area to be processed
  • 48. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Reference Point Selection
  • 49. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Reference Point Selection
  • 50. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Reference Point Selection Reference point must be on land and possibly in an expected stable area
  • 51. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Selection of the time span
  • 52. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Archive Querying and Data Selection
  • 53. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Archive Querying and Data Selection G-POD Archive VA4 Archive VA4 - Only for Processing
  • 54. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Archive Querying and Data Selection
  • 55. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Keep the same illumination geometry: select the same Track!!!
  • 56. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
  • 57. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
  • 58. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
  • 59. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Archive Querying and Data Selection Some acquisitions could be acquired the same day but at slightly different times
  • 60. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Processed Area Area of Interest (AOI) The algorithm merges adjacent frames of the same track to totally cover the selected AoI. Data Selection and Optimization
  • 61. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Processed Area Area of Interest (AOI) Large Raw Data are cut around the Area of Interest Data Selection and Optimization
  • 62. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Processed Area Area of Interest (AOI) Automatic data rejection of acquisitions that do not cover the AoI Data Rejected Data Selection and Optimization
  • 63. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Final settings and Job submission
  • 64. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Final settings and Job submission
  • 65. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform To be modified by expert users. We warmly suggest to keep them unchanged! Final settings and Job submission
  • 66. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Processing Parameter Selection •  Noise Filtering •  Temporal and Spatial Baseline •  Doppler centroid parameters •  Time Series Generation Spatial Network •  Atmospheric Filtering •  Multi-temporal/ interferogram analysis
  • 67. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Baseline Constrain Selection •  Temporal and Spatial Baselines have as default values 1500 days and 400 m, respectively. •  These two parameters have a strong impact when multi-temporal analysis is performed. •  Too small values have the consequence to reduce the SAR dataset, too big values limit the success of Phase Unwrapping procedure.
  • 68. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Interferometric Pair Selection
  • 69. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Interf. Pair Selection: Delaunay Triangulation
  • 70. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Interf. Pair Selection: Large Baseline Removing Maximum Spatial Baseline: 300 m
  • 71. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Interf. Pair Selection: Large Baseline Removing Maximum Spatial Baseline: 50 m
  • 72. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform G.P.D. and Doppler Selection •  Ground Pixel dimension is the value used for the spatial multilook of the interferograms generated with ERS and ENV sensors •  Max Allowed Delta-Doppler is the minimum azimuth b a n d w i d t h o v e r l a p between master and slave images . •  Max Allowed Doppler Centroid has a strong impact for ERS-2 images acquired after February 2000.
  • 73. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Common Band Filtering Selection Common Band Filtering f e a t u r e s i s a i m e d a t increase the interferograms coherence. This filter removes the u n c o r r e l a t e d s p e c t r a l contributions to perform the interferogram using the c o m m o n b a n d w i d t h between master and slave images
  • 74. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Coherence threshold •  This parameter permits to identify the (spatial) network of points that are subsequently unwrapped. •  It is strongly related to the algorithm used for Phase Unwrapping: Extended Minimum Cost Flow (EMCF). •  Default value of 0.7 is suitable for a large part of case studies. •  This in not a threshold to select the final spatial distribution of points
  • 75. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform SBAS Phase unwrapping: the Extended-MCF Algorithm The EMCF algorithm (Pepe at al, 2006, TGRS) allows to unwrap a sequence of M multi-temporal differential interferograms that generate a triangulation in the Temporal/Perpendicular Baseline Plane. Time [year] PerpendicularBaseline[m] 1992 1999 2007
  • 76. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform A Delaunay triangulation involving the coherent points in the Azimuth/Range domain is subsequently built. Aziumth Range The i-th edge of the triangulation corresponds to the i-th differential interferogram: ( ) ( ), 1,..., ,i z ga r i M a r A RΦ = ∈ × Extended-MCF Algorithm: Rationale “Temporal” network “Spatial” network
  • 77. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform A Delaunay triangulation involving the coherent points in the Azimuth/Range domain is subsequently built. The spatial network can be defined through one of the inputs of the GUI. Aziumth Range The i-th edge of the triangulation corresponds to the i-th differential interferogram: ( ) ( ), 1,..., ,i z ga r i M a r A RΦ = ∈ × Extended-MCF Algorithm: Rationale
  • 78. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Coherence Threshold Selection Coh: 0.7Coh: 0.8
  • 79. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform •  APS Smoothing Time Window represents the window of the temporal filter in the APS removing procedure. •  Larger values generate more smoothed time series. •  Default value is 200 days; useful values lie in the range 100 to 400 days. Displacement Time Series Generation and APS Filtering
  • 80. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Hawaii T200 case study >6<-6 cm/yr Mauna Loa Kilauea Est Rift zone
  • 81. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Final settings and Job submission To be modified by expert users. We warmly suggest to keep them unchanged!
  • 82. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Submitted Job status check
  • 83. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Job Submission
  • 84. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Submitted Job status check
  • 85. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform
  • 86. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Submitted Job status check
  • 87. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Advanced Features
  • 88. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Noise Filtering Feature
  • 89. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Noise Filtering Feature
  • 90. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform On a pixel by pixel basis, the SBAS algorithm allows the generation of the surface deformation time-series [ ]10, ,..., NΦ ≡ Φ Φ Subsequently, once the deformation time-series are retrieved, the quality of the inversion is checked by comparing the original interferograms to the ones reconstructed from the obtained time-series, by means of the so- called Temporal Coherence factor: ( )1 exp i i M i IM IS i M = ⎡ ⎤ΔΦ − Φ − Φ ⎣ ⎦ Γ = ∑ Small Baseline Subset SBAS algorithm
  • 91. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Temporal Coherence is a quality index of our phase reconstruction; two different aspects may lead to a decrease of the temporal coherence values: Ø Time-Inconsistent Phase Unwrapping Errors; Ø Time-inconsistencies among the generated multilook (wrapped) interferograms, due to the fact that multi-look operations are independently carried out on each single SAR data pair. INDEED … Temporal Coherence Factor
  • 92. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform April 27, 2008 July 26, 2009 April 12, 2009 ΔΦ 1 ΔΦ 1 Azimuth Range ΔΦ 2 ΔΦ 3 ΔΦ 2 ΔΦ 3 Azimuth Range Azimuth Range Multi-look (Wrapped) Phase Time-Inconsistency
  • 93. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform April 27, 2008 July 26, 2009 April 12, 2009 ΔΦ 1 ΔΦ 2 ΔΦ 3 Accordingly, multilook (wrapped) interferograms are not time-consistent. It means that phase acquisitions are not known while a redundant set of M multi-look interferograms is generated. We extend the temporal coherence idea to wrapped interferograms, to have time- consistent noise filtered SB multilook interferograms before any phase unwrapping operation. Azimuth Range 1 2 3 0.r ≡ ΔΦ + ΔΦ + ΔΦ ≠ π -π Multi-look (Wrapped) Phase Time-Inconsistency
  • 94. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform We search for the solution of the following maximization problem: ( ) 1 1 exp arg max k k M k k IM IS k M k k jξ ξ = Φ = ⎧ ⎫ ⎡ ⎤⎪ ⎪ΔΦ − Φ + Φ ⎣ ⎦⎪ ⎪⎪ ⎪ Φ = ⎨ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ∑ ∑ ) Basically, we maximize a weighted version of the temporal coherence factor; the weights, representing our confidence on the phase stability of the generated M multilook DInSAR phases, are set by using the pixel spatial coherence ( )( ) ( ) 2 2 2 2 1 exp , 1,..., 1 1 A R A R N N k k A R h N p N j x h y p k M N N ξ =− =− ⎡ ⎤= ΔΦ + + ∀ =⎣ ⎦+ + ∑ ∑ Phase Inversion Algorithm
  • 95. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform We search for the solution of the following maximization problem: ( ) 1 1 exp arg max k k M k k IM IS k M k k jξ ξ = Φ = ⎧ ⎫ ⎡ ⎤⎪ ⎪ΔΦ − Φ + Φ ⎣ ⎦⎪ ⎪⎪ ⎪ Φ = ⎨ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ∑ ∑ ) Basically, we maximize a weighted version of the temporal coherence factor; the weights, representing our confidence on the phase stability of the generated M multilook DInSAR phases, are set by using the pixel spatial coherence ( )( ) ( ) 2 2 2 2 1 exp , 1,..., 1 1 A R A R N N k k A R h N p N j x h y p k M N N ξ =− =− ⎡ ⎤= ΔΦ + + ∀ =⎣ ⎦+ + ∑ ∑ Phase Inversion Algorithm
  • 96. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Improved SBAS Inversion Ø  Once the phase acquisitions are retrieved, a noise-filtered version of the original interferograms is generated. Note that Space Adaptive Multilook operations could be also preliminarly applied to the original interferograms at the expenses of the overall computation time
  • 97. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Azimuth Range February 1, 2009 – August 15, 2010 Perpendicular Baseline ~300 m The Abruzzi area case-study
  • 98. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Azimuth Range May 8, 2005 – April 12, 2009 Perpendicular Baseline ~800 m The Abruzzi area case-study
  • 99. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Long Valley Caldera case-study
  • 100. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Long Valley Caldera case-study IMPROVEMENT
  • 101. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Buthan case-study
  • 102. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Buthan case-study IMPROVEMENT
  • 103. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Outputs of the SBAS-InSAR processing chain MetaData Data
  • 104. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Metadata Field <Metadata tag> : <Metadata value>
  • 105. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Metadata Field
  • 106. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pixel Identifier Data Field
  • 107. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Latitude and Longitude [deg] Data Field
  • 108. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Topography [m] = Elevation + Residual Topography Data Field
  • 109. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Deformation Velocity [cm/yr] Data Field
  • 110. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temporal Coherence Data Field
  • 111. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LOS Unit Vectors Data Field
  • 112. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Deformation Time series [cm] Data Field
  • 113. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Ask for an Account to: eo-gpod@esa.int sbas-help@irea.cnr.it
  • 114. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform eo-gpod@esa.int EO-SSO ID: eduusr03 Password: Educational_03 EO-SSO ID: eduusr05 Password: Educational_05 EO-SSO ID: eduusr06 Password: Educational_06 G-POD Educational Account Credentials
  • 115. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Agenda n  Part 1: Introduction to Differential SAR Interferometry n  Part 2: ESA Platforms for Automatic Web Processing n  Part 3: New frontiers in Earth Observation research n  Open Discussion n  Part 1: Introduction to Differential SAR Interferometry n  Part 2: ESA Platforms for Automatic Web Processing n  Part 3: New frontiers in Earth Observation research n  Open Discussion
  • 116. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform SAR Data Scenario: Satellites 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 ERS-1 JERS ERS-2 RADARSAT ENVISAT ALOS COSMO-SkyMed TerraSAR-X Sen2nel-1A Sen2nel-1B Swath Width ≈ 100 km Revisit 2me ≈ monthly Swath Width≈ 40 km Revisit Time: 4 - 11 days Swath Width ≈ 250 km Revisit Time: 12 - 6 days TerraSAR-X COSMO-SkyMed ALOS-2
  • 117. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform SENTINEL1-A ENVISAT CSK 40 km 100 km 250 km SAR Data Scenario: Coverage Comparison
  • 118. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Sen3nel-1: ~ 6 TByte data per day ERS & ENVISAT data over world tectonic regions: 70+ Tera on line; about 10 days of S1-A acquisi2ons! Sentinel-1 monthly coverage Towards a Big Data scenario
  • 119. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Sentinel-1: Small Baseline System 1995 2000 2005 2010 2015 Time [year] -1.0 -0.5 0.0 0.5 1.0 PerpendicularBaseline[km] ERS and ENVISAT Perpendicular baseline distribution
  • 120. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Sentinel-1: Small Baseline System Perpendicular baseline distribution ERS and ENVISAT 1995 2000 2005 2010 2015 Time [year] -1.0 -0.5 0.0 0.5 1.0 PerpendicularBaseline[km] Sentinel-1
  • 121. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform ESA’s GEP web site https://geohazards-tep.eo.esa.int
  • 122. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform TEP Scenario 1 – EO Data Exploitation,​which allows a user to discover/select data and pre-existing processing service; process data; and visualize/analyse or select and apply data manipulation tools to the result. TEP Scenario 2 – New EO Service Development,​ which allows a user to discover/select a data sample and software components; engineer (or upload) and validate an application (such as a processor); and deploy the application on the platform for use also by other users. TEP Scenario 3 – New EO Product Development,​ which allows a user to Authenticate; alternatively upload and deploy a new processor; discover/select data; process the data; and eventually publish the resulting product. Note that this scenario implies the implementation of effective, scalable, and cost- optimized strategies for infrastructure provisioning for processing of very big datasets. GEP Pilot Project Scenarios geohazards-tep@esa.int If interested in submitting a Pilot Project according to the 3 depicted scenarios, contact:
  • 123. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform ESA’s GEP web site https://geohazards-tep.eo.esa.int
  • 124. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal
  • 125. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: data selection
  • 126. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: data selection productType
  • 127. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: data selection PlatformName OrbitDirection 44 OrbitTrack
  • 128. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: data selection
  • 129. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: data selection
  • 130. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: data selection
  • 131. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: saving a Data Package S1A_T44_Naples
  • 132. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: saving a Data Package
  • 133. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: saving a Data Package
  • 134. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: saving a Data Package
  • 135. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: Processing Services
  • 136. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: InSAR SBAS - data
  • 137. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: InSAR SBAS - data
  • 138. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: InSAR SBAS - parameters
  • 139. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: InSAR SBAS - processing
  • 140. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: InSAR SBAS - processing
  • 141. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: InSAR SBAS - Results
  • 142. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: InSAR SBAS - Results
  • 143. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: InSAR SBAS - Results
  • 144. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: saving a Data Package
  • 145. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: InSAR SBAS - Results
  • 146. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: My Jobs
  • 147. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: My Jobs
  • 148. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: My Jobs
  • 149. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: My Jobs
  • 150. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform GEP Geo-portal: Community Jobs
  • 151. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform TEP Scenario 1 – EO Data Exploitation,​which allows a user to discover/select data and pre-existing processing service; process data; and visualize/analyse or select and apply data manipulation tools to the result. TEP Scenario 2 – New EO Service Development,​ which allows a user to discover/select a data sample and software components; engineer (or upload) and validate an application (such as a processor); and deploy the application on the platform for use also by other users. TEP Scenario 3 – New EO Product Development,​ which allows a user to Authenticate; alternatively upload and deploy a new processor; discover/select data; process the data; and eventually publish the resulting product. Note that this scenario implies the implementation of effective, scalable, and cost- optimized strategies for infrastructure provisioning for processing of very big datasets. GEP Pilot Project Scenarios geohazards-tep@esa.int If interested in submitting a Pilot Project according to the 3 depicted scenarios, contact:
  • 152. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform ESA’s GEP web site
  • 153. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Cloud Dashboard
  • 154. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Developer Cloud Sandbox
  • 155. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Developer Cloud Sandbox
  • 156. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Developer Cloud Sandbox
  • 157. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Developer Cloud Sandbox
  • 158. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Developer Cloud Sandbox
  • 159. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Developer Cloud Sandbox
  • 160. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform cm/year >6<-6 Campi Flegrei Caldera Systematic S1 P-SBAS processing Sen2nel-1 12/6 days repeat cycle Community Geoportal 2015 2016 Time [year] -2 0 2 4 6 8 10 Displacement[cm] 2015 2016 Time [year] -2 0 2 4 6 8 10 Displacement[cm] 2015 2016 Time [year] -2 0 2 4 6 8 10 Displacement[cm] 2015 2016 Time [year] -2 0 2 4 6 8 10 Displacement[cm] GEP: Sentinel-1 P-SBAS systematic processing
  • 161. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Sentinel-1 P-SBAS results at large scale
  • 162. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform cm/year >6<-6 Time Interval: October 2014 – March 2016 Sentinel-1 P-SBAS results at large scale
  • 163. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform cm/year >6<-6 Time Interval: October 2014 – March 2016 Sentinel-1 P-SBAS results at large scale
  • 164. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform cm/year >6<-6 Time Interval: October 2014 – March 2016 Sentinel-1 P-SBAS results at large scale
  • 165. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Campi Flegrei caldera 2015 2016 Time [year] -2 0 2 4 6 8 10 Displacement[cm] Sentinel-1 P-SBAS results at large scale
  • 166. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Gargano Region Sentinel-1 P-SBAS results at large scale
  • 167. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Gargano Region 2015 2016 Time [year] -6 -4 -2 0 2 Displacement[cm] 2015 2016 Time [year] -6 -4 -2 0 2 Displacement[cm] Sentinel-1 P-SBAS results at large scale
  • 168. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform cm/year >6<-6 2015 2016 Time [year] -2 0 2 4 6 Displacement[cm] 2015 2016 Time [year] -10 -8 -6 -4 -2 0 2 4 Displacement[cm] Etna Volcano Sentinel-1 P-SBAS results at large scale
  • 169. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Ask for an Account to: geohazards-tep@esa.int sbas-help@irea.cnr.it
  • 170. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform Credits CNR-IREA M. Bonano, F. Casu, C. De Luca, R. Lanari, M. Manunta, I. Zinno, M. Manzo, A. Pepe ESA RSS R. Cuccu, J.M. Delgado Blasco, G. Rivolta ESA H. Laur, S. Loekken, P. Bally, S. Pinto, A. Marin, A. Cuomo Terradue F. Brito, F. Pacini, E. Mathot,, H. Caumont
  • 171. SBAS-DInSAR processing on the ESA Geohazard Exploitation Platform 12-days Interferometric Coherence map of almost the en3re Europe 300 slices June-July 2015 Coverage: 3,200,000 km2. In coopera2on with ESA G-POD Thank you! geohazards-tep@esa.int