King Fahd University of Petroleum & Minerals
Mechanical Engineering
Dynamics ME 201
BY
Dr. Meyassar N. Al-Haddad
Lecture # 28
Examples of relative motions “motion of one part lead to the
motion of other parts” (pin-connected rigid body)
Relative-Motion Analysis :
A
B
A
B /
r
x
v
v 


Relative Velocity
A
B
A
B /
2
B/A r
r
a
a 
 



Relative Acceleration
Instantaneous Center of Zero Velocity
IC
B
B /
r

 
Examples of Non-Relative-Motions
)sliding connections and has two independent motion)
A
B
A
B /
r
r
r 

















on
accelerati
angular
velocity
angular
Position
Rotating axes
Velocity
dt
d
dt
d
dt
d A
B
A
B /
r
r
r


dt
d A
B
A
B
/
r
v
v 

xyz
A
B
A
B
A
B )
v
(
r
x
v
v /
/ 



Rotating axes & translating object
r + v
Velocity
xyz
O
C
O
C
O
C )
v
(
r
x
v
v /
/ 



VC = Velocity of the Collar, measured from
the X, Y, Z reference
VO = Velocity of the origin O of the x,y,z reference
measured from the X,Y,Z reference
(VC/O)xyz = relative velocity of “C with respect to O”
observer attached to the rotating x,y,z reference
 = angular velocity of the x,y,z reference, measured
from the X,Y,Z reference
rC/O = relative position of “C with respect to O”
Acceleration
xyz
A
B
A
B
A
B )
v
(
r
x
v
v /
/ 



dt
d
dt
d
dt
d
dt
dt
d xyz
A
B
A
B
A
B
A
B
)
v
(
r
x
r
x
dv
v /
/
/ 





Acceleration is the time derivative of velocity
xyz
A
B
A
B
A
B
A
B
dt
d
)
a
(
r
x
r
x
a
a /
/
/ 




 
Rotating axes & translating object
(r + v)
xyz
A
B
A
B
A
B
A
B
dt
d
)
a
(
r
x
r
x
a
a /
/
/ 




 
Rotating axes & translating object
(r + v)
xyz
A
B
xyz
A
B
A
B
A
B
A
B )
a
(
)
v
(
x
2
)
r
x
(
x
r
x
a
a /
/
/
/ 







 
 r
Tangential acceleration
2 r
Normal acceleration Coriolis acceleration
Acceleration of the
object
Acceleration of
origin
r



2
Coriolis acceleration
Whenever a point is moving on a path and the
path is rotating, there is an extra component
of the acceleration due to coupling between
the motion of the point on the path and the
rotation of the path. This component is
called Coriolis acceleration.
First measured by the French engineer G.C. Coriolis
Important in studying the effect “force and acceleration” of earth
rotation on the rockets and long-range projectiles
xyz
O
C
xyz
O
C
O
C
O
C
O
C )
a
(
)
v
(
x
2
)
r
x
(
x
r
x
a
a /
/
/
/ 







 
0
a 
O
2
/ /
4
.
0
)
2
.
0
(
2
x s
m
r
r
a O
C
t 



 

2
2
/
2
/
8
.
1
2
.
0
)
3
(
)
r
x
(
x s
m
r
a O
C
n 




 
2
/ /
3
)
a
( s
m
xyz
O
C 
2
/ /
12
)
2
)(
3
(
2
)
(
x
2
2 s
m
v
r
a xyz
O
C
Cor 



 


2
/
2
.
1
8
.
1
3 s
m
axes
x 



2
/
4
.
12
12
4
.
0 s
m
axes
y 





xyz
O
C
xyz
O
C
O
C
O
C
O
C )
a
(
)
v
(
x
2
)
r
x
(
x
r
x
a
a /
/
/
/ 







 
r
C a
a 
 
a
Recall cylindrical coordinate
2



 r
r
ar 







 r
r
a 2


r
r
r
r
aC






 


 

 2
2
Compare !
Rearrange
xyz
O
C
xyz
O
C
O
C
O
C
O
C )
a
(
)
v
(
x
2
)
r
x
(
x
r
x
a
a /
/
/
/ 







 
xyz
O
C
O
C
O
C )
v
(
r
x
v
v /
/ 



}
k
2
{
}
k
3
{
0
a
0
v









O
O
2
/
/
/
/
}
i
3
{
)
(
/
}
i
2
{
)
v
(
}
i
2
.
0
{
r
s
m
a
s
m
m
rel
O
C
rel
O
C
O
C



i
2
)
i
2
.
0
(
x
)
k
3
(
0
v
)
v
(
r
x
v
v /
/








C
xyz
O
C
O
C
O
C
}
j
6
.
0
i
2
{
v 

C
xyz
O
C
xyz
O
C
O
C
O
C
O
C )
a
(
)
v
(
x
2
)
r
x
(
x
r
x
a
a /
/
/
/ 







 
i
3
)
i
2
(
x
)
k
3
(
2
)]
i
2
.
0
(
[(-3k)x
x
)
k
3
(
)
i
2
.
0
(
x
)
k
2
(
0
a 







C
2
m/s
12.4j}
-
{1.2i
a
i
3
j
12
i
80
.
1
j
4
.
0
0
a






C
C
Recall – Cylindrical coordinate
2



 r
r
ar 







 r
r
a 2


2
2
/
2
.
1
2
.
0
)
3
(
3 s
m
ar 


2
/
4
.
12
)
3
)(
2
(
2
)
2
(
2
.
0 s
m
a 



Coriolis acceleration
Example 16-20
xyz
D
C
D
C
D
C )
v
(
r
x
v
v /
/ 



xyz
D
C
xyz
D
C
D
C
D
C
D
C )
a
(
)
v
(
x
2
)
r
x
(
x
r
x
a
a /
/
/
/ 







 
k
k
0
a
0
v
DE
DE
D
D










 2
/
/
/
/
/
/
i
)
(
/
i
)
v
(
}
i
4
.
0
{
r
s
m
a
a
s
m
m
D
C
xyz
D
C
D
C
xyz
D
C
D
C




s
m
r A
C
AB
C /
}
j
2
.
1
i
2
.
1
{
)
j
4
.
0
i
4
.
0
x(
)
k
3
(
x
v / 





2
2
/
2
/ /
}
j
2
.
5
i
2
{
)
j
4
.
0
i
4
.
0
(
)
3
(
)
j
4
.
0
i
4
.
0
x(
)
k
4
(
x
a s
m
r
r A
C
AB
A
C
AB
C 








 

xyz
D
C
D
C
D
C )
v
(
r
x
v
v /
/ 



i
)
(
)
i
4
.
0
(
x
)
k
(
0
j
2
.
1
i
2
.
1 / xyz
D
C
DE 
 




s
m
xyz
D
C /
2
.
1
)
( / 

s
rad
DE /
3


xyz
D
C
xyz
D
C
D
C
D
C
D
C )
a
(
)
v
(
x
2
)
r
x
(
x
r
x
a
a /
/
/
/ 







 
i
)
i
2
.
1
x(
)
k
3
(
2
)]
i
4
.
0
(
x
)
k
3
[(
x
)
k
3
(
)
i
4
.
0
(
x
)
k
(
0
j
2
.
5
i
2 / D
C
DE a










 
2
/ /
6
.
1 s
m
a D
C  


 2
2
/
5
/
5 s
rad
s
rad
DE

aC/D = ?
DE = ?
DE= ?
Rotating axis.ppt

Rotating axis.ppt

  • 1.
    King Fahd Universityof Petroleum & Minerals Mechanical Engineering Dynamics ME 201 BY Dr. Meyassar N. Al-Haddad Lecture # 28
  • 2.
    Examples of relativemotions “motion of one part lead to the motion of other parts” (pin-connected rigid body)
  • 3.
    Relative-Motion Analysis : A B A B/ r x v v    Relative Velocity A B A B / 2 B/A r r a a       Relative Acceleration Instantaneous Center of Zero Velocity IC B B / r   
  • 4.
    Examples of Non-Relative-Motions )slidingconnections and has two independent motion)
  • 5.
  • 6.
    Velocity dt d dt d dt d A B A B / r r r   dt dA B A B / r v v   xyz A B A B A B ) v ( r x v v / /     Rotating axes & translating object r + v
  • 7.
    Velocity xyz O C O C O C ) v ( r x v v / /    VC = Velocity of the Collar, measured from the X, Y, Z reference VO = Velocity of the origin O of the x,y,z reference measured from the X,Y,Z reference (VC/O)xyz = relative velocity of “C with respect to O” observer attached to the rotating x,y,z reference  = angular velocity of the x,y,z reference, measured from the X,Y,Z reference rC/O = relative position of “C with respect to O”
  • 8.
    Acceleration xyz A B A B A B ) v ( r x v v / /    dt d dt d dt d dt dt d xyz A B A B A B A B ) v ( r x r x dv v / / /       Acceleration is the time derivative of velocity xyz A B A B A B A B dt d ) a ( r x r x a a / / /        Rotating axes & translating object (r + v)
  • 9.
    xyz A B A B A B A B dt d ) a ( r x r x a a / / /       Rotating axes & translating object (r + v) xyz A B xyz A B A B A B A B ) a ( ) v ( x 2 ) r x ( x r x a a / / / /            r Tangential acceleration 2 r Normal acceleration Coriolis acceleration Acceleration of the object Acceleration of origin r    2
  • 10.
    Coriolis acceleration Whenever apoint is moving on a path and the path is rotating, there is an extra component of the acceleration due to coupling between the motion of the point on the path and the rotation of the path. This component is called Coriolis acceleration. First measured by the French engineer G.C. Coriolis Important in studying the effect “force and acceleration” of earth rotation on the rockets and long-range projectiles
  • 11.
    xyz O C xyz O C O C O C O C ) a ( ) v ( x 2 ) r x ( x r x a a / / / /          0 a  O 2 / / 4 . 0 ) 2 . 0 ( 2 x s m r r a O C t        2 2 / 2 / 8 . 1 2 . 0 ) 3 ( ) r x ( x s m r a O C n        2 / / 3 ) a ( s m xyz O C  2 / / 12 ) 2 )( 3 ( 2 ) ( x 2 2 s m v r a xyz O C Cor         2 / 2 . 1 8 . 1 3 s m axes x     2 / 4 . 12 12 4 . 0 s m axes y      
  • 12.
    xyz O C xyz O C O C O C O C ) a ( ) v ( x 2 ) r x ( x r x a a / / / /          r C a a    a Recall cylindrical coordinate 2     r r ar          r r a 2   r r r r aC               2 2 Compare ! Rearrange
  • 13.
    xyz O C xyz O C O C O C O C ) a ( ) v ( x 2 ) r x ( x r x a a / / / /          xyz O C O C O C ) v ( r x v v / /     } k 2 { } k 3 { 0 a 0 v          O O 2 / / / / } i 3 { ) ( / } i 2 { ) v ( } i 2 . 0 { r s m a s m m rel O C rel O C O C    i 2 ) i 2 . 0 ( x ) k 3 ( 0 v ) v ( r x v v / /         C xyz O C O C O C } j 6 . 0 i 2 { v   C xyz O C xyz O C O C O C O C ) a ( ) v ( x 2 ) r x ( x r x a a / / / /           i 3 ) i 2 ( x ) k 3 ( 2 )] i 2 . 0 ( [(-3k)x x ) k 3 ( ) i 2 . 0 ( x ) k 2 ( 0 a         C 2 m/s 12.4j} - {1.2i a i 3 j 12 i 80 . 1 j 4 . 0 0 a       C C
  • 14.
    Recall – Cylindricalcoordinate 2     r r ar          r r a 2   2 2 / 2 . 1 2 . 0 ) 3 ( 3 s m ar    2 / 4 . 12 ) 3 )( 2 ( 2 ) 2 ( 2 . 0 s m a     Coriolis acceleration
  • 15.
    Example 16-20 xyz D C D C D C ) v ( r x v v/ /     xyz D C xyz D C D C D C D C ) a ( ) v ( x 2 ) r x ( x r x a a / / / /           k k 0 a 0 v DE DE D D            2 / / / / / / i ) ( / i ) v ( } i 4 . 0 { r s m a a s m m D C xyz D C D C xyz D C D C     s m r A C AB C / } j 2 . 1 i 2 . 1 { ) j 4 . 0 i 4 . 0 x( ) k 3 ( x v /       2 2 / 2 / / } j 2 . 5 i 2 { ) j 4 . 0 i 4 . 0 ( ) 3 ( ) j 4 . 0 i 4 . 0 x( ) k 4 ( x a s m r r A C AB A C AB C             xyz D C D C D C ) v ( r x v v / /     i ) ( ) i 4 . 0 ( x ) k ( 0 j 2 . 1 i 2 . 1 / xyz D C DE        s m xyz D C / 2 . 1 ) ( /   s rad DE / 3   xyz D C xyz D C D C D C D C ) a ( ) v ( x 2 ) r x ( x r x a a / / / /           i ) i 2 . 1 x( ) k 3 ( 2 )] i 4 . 0 ( x ) k 3 [( x ) k 3 ( ) i 4 . 0 ( x ) k ( 0 j 2 . 5 i 2 / D C DE a             2 / / 6 . 1 s m a D C      2 2 / 5 / 5 s rad s rad DE  aC/D = ? DE = ? DE= ?