Mr. Keshav M. Jadhav
Introduction to Roots of
Equation
Roots of Equation
2
Roots of Equation
Mr. Keshav M. Jadhav
)
(x
f
y 
1 2 3 4 5 6
-5
-10
0
10
5
-1
Root
x=0, y=5
x=1, y=-4
x=3, y=-10
5
11
2 2


 x
x
x
y
Analytical Method for Finding Roots of Equation
3
Roots of Equation
Mr. Keshav M. Jadhav
5
11
2
)
( 2



 x
x
x
f
y
 Factoring Method
0
5
11
2 2


 x
x
0
5
10
2 2



 x
x
x
0
)
5
(
)
5
(
2 


 x
x
x
0
)
1
2
)(
5
( 

 x
x
5
0
)
5
( 


 x
x
5
.
0
0
)
1
2
( 


 x
x
1 2 3 4 5
-5
-10
0
10
5 Roots
x=0, y=5
x=1, y=-4
x=3, y=-10
x=5, y=0
x
x 
10
Analytical Method for Finding Roots of Quadratic
Equation
4
Roots of Equation
Mr. Keshav M. Jadhav
5
11
2
)
( 2



 x
x
x
f
y
a
ac
b
b
xr
2
4
2




c
bx
ax
x
f
y 


 2
)
(
Here, a=2, b= -11 and c= 5
Example:
2
2
5
2
4
)
11
(
)
11
( 2









r
x
4
9
11

r
x 5
.
0
and
5 
 r
r x
x
Roots of Equation 5
c
bx
ax
x
f
y 


 2
)
(
Roots of Quadratic Equation
(1)If b2 −4ac < 0, there are no real roots (2) If b2 −4ac = 0, there is one real root
Mr. Keshav M. Jadhav
Roots of Equation 6
c
bx
ax
x
f
y 


 2
)
(
Roots of Quadratic Equation
(3) If b2 −4ac > 0, there are two real roots
Mr. Keshav M. Jadhav
Limitations of Analytical Method for Finding Roots
of Equation
7
Roots of Equation
Mr. Keshav M. Jadhav
Algebraic Equation
900
3632
)
( 5
.
1

 x
x
f
2
5
9
)
( x
x
x
f 

Transcendental Equation
2
2
)
( 

 x
e
x
f x
0
)
log(
)
sin(
5
.
0
)
( 


 x
x
x
x
f 
Numerical Methods to Find Root of Algebraic and
Transcendental Equations
1. Bisection Method or Half Interval Method
2. Regula-Falsi Method or False Position Method
3. Secant Method
4. Newton-Raphson Method
5. Successive Approximation Method
THANK YOU
9
Roots of Equation
Mr. Keshav M. Jadhav

Roots of equation

  • 1.
    Mr. Keshav M.Jadhav Introduction to Roots of Equation
  • 2.
    Roots of Equation 2 Rootsof Equation Mr. Keshav M. Jadhav ) (x f y  1 2 3 4 5 6 -5 -10 0 10 5 -1 Root x=0, y=5 x=1, y=-4 x=3, y=-10 5 11 2 2    x x x y
  • 3.
    Analytical Method forFinding Roots of Equation 3 Roots of Equation Mr. Keshav M. Jadhav 5 11 2 ) ( 2     x x x f y  Factoring Method 0 5 11 2 2    x x 0 5 10 2 2     x x x 0 ) 5 ( ) 5 ( 2     x x x 0 ) 1 2 )( 5 (    x x 5 0 ) 5 (     x x 5 . 0 0 ) 1 2 (     x x 1 2 3 4 5 -5 -10 0 10 5 Roots x=0, y=5 x=1, y=-4 x=3, y=-10 x=5, y=0 x x  10
  • 4.
    Analytical Method forFinding Roots of Quadratic Equation 4 Roots of Equation Mr. Keshav M. Jadhav 5 11 2 ) ( 2     x x x f y a ac b b xr 2 4 2     c bx ax x f y     2 ) ( Here, a=2, b= -11 and c= 5 Example: 2 2 5 2 4 ) 11 ( ) 11 ( 2          r x 4 9 11  r x 5 . 0 and 5   r r x x
  • 5.
    Roots of Equation5 c bx ax x f y     2 ) ( Roots of Quadratic Equation (1)If b2 −4ac < 0, there are no real roots (2) If b2 −4ac = 0, there is one real root Mr. Keshav M. Jadhav
  • 6.
    Roots of Equation6 c bx ax x f y     2 ) ( Roots of Quadratic Equation (3) If b2 −4ac > 0, there are two real roots Mr. Keshav M. Jadhav
  • 7.
    Limitations of AnalyticalMethod for Finding Roots of Equation 7 Roots of Equation Mr. Keshav M. Jadhav Algebraic Equation 900 3632 ) ( 5 . 1   x x f 2 5 9 ) ( x x x f   Transcendental Equation 2 2 ) (    x e x f x 0 ) log( ) sin( 5 . 0 ) (     x x x x f 
  • 8.
    Numerical Methods toFind Root of Algebraic and Transcendental Equations 1. Bisection Method or Half Interval Method 2. Regula-Falsi Method or False Position Method 3. Secant Method 4. Newton-Raphson Method 5. Successive Approximation Method
  • 9.
    THANK YOU 9 Roots ofEquation Mr. Keshav M. Jadhav