SlideShare a Scribd company logo
1 of 50
Download to read offline
Aswasan Joshi
Stanley Depth of Monomial Ideals:
A Computational Investigation
3x 5−πx 3+3x+ √7
Coefficients
3x 5−πx 3+3x+ √7
½	
  
⅓
-⅔
¼	
  ¾	
  
-⅕	
  
⅖	
  
⅗	
  
⅘	
  
⅙	
  
⅚	
  
⅛
-⅜	
  
⅝
½	
  
⅕	
  ⅘	
  
⅓
⅖	
  
⅘	
  
½	
  
⅜	
  
⅝
-⅜	
  
⅝ ⅘	
  ⅔
-⅘	
  
⅜	
  
½	
  
⅓
½	
  
⅓
⅘	
  
-⅕	
  
-⅘	
  -⅗	
  
Field
Addition, Subtraction, Multiplication & Division
by nonzero numbers in the collection are all defined
-⅝
-⅘	
  
½	
  
⅓
-⅔
¼	
  ¾	
  
-⅕	
  
⅖	
  
⅗	
  
⅘	
  
⅙	
  
⅛
-⅜	
  
⅝
½	
  
⅕	
  ⅘	
  
⅓
⅖	
  
⅘	
  
½	
  
⅜	
  
⅝
-⅜	
  
⅝ ⅘	
  ⅔
-⅘	
  
⅜	
  
½	
  
⅓
½	
  
⅓
⅘	
  
-⅕	
  
-⅘	
  -⅗	
  
Field
Addition, Subtraction, Multiplication & Division
by nonzero numbers in the collection are all defined
-⅝
-⅘	
  
✓	
   ✗	
  
Rational, Real
Complex numbers Integers⅚	
  
If K is a field,
the polynomial ring in n variables,
denoted K [ x1,...,xn ],
consists of all polynomials
where the coefficients come
from the field K
and the variables x1,x2,...,xn
are all allowed to appear.
K is the rational numbers
½x1
3x2 −3x3 +7x1
&
⅝x1
100 −5x3 +6
examples of polynomials in
K [x1,x2,x3]
Squarefree monomial ideals
•  A monomial is called
squarefree if each ai is 0 or 1.
✓ x5x8x9 ✗ x5
4x8
2x9
•  A monomial ideal is called squarefree if it
is generated by squarefree monomials.
Stanley Depth
!!
!!
!!
!!
⋯!!!
!!
Source: Richard P. Stanley
How to compute the Stanley depth of a
monomial ideal
HERZOG, J., VLADOIU, M., AND ZHENG, X
Journal of Algebra
11/2009
•  Possible to compute the Stanley depth of a
squarefree monomial ideal using only
techniques from discrete mathematics
•  It is enough to look at some of the subsets of
{ x1, ..., xn }, which is equivalent to considering
subsets of {1, 2, ..., n}
	
  
Our goal is then to partition this
collection C of sets into intervals
that do not collide and cover the
whole poset. 	
  
	
  
1 2 3 4
12 13 23 14 24 34
123 124 134 234
1234
n = 4
nonempty subsets
If A and B are subsets of {1, 2, . . . , n},
the interval [A, B] contains every set T such that
A is a subset of T and T is a subset of B.
(We call B the upper bound of the interval.)
[ {1, 2}, {1, 2, 4, 6} ]
	
  
{1, 2}, {1, 2, 4}, {1, 2, 6}, {1, 2, 4, 6}
{1, 2, 5} and {2, 4, 6} is not in this interval
	
  
Two intervals collide if they have
at least a set in common.
[{1, 6}, {1, 6, 2, 3}] [{1, 3}, {1, 3, 6, 9}]
{1, 3, 6}
Collision
{1, 6}
{1,6,2}
{1, 6, 2, 3}	
   {1, 3} {1,3,9}
{1, 3, 6, 9}	
  
Our goal is then to partition this
collection C of sets into intervals
that do not collide and cover the
whole poset. 	
  
	
  
1 2 3 4
12 13 23 14 24 34
123 124 134 234
1234
n = 4
nonempty subsets
n = 4
nonempty subsets
1 2 3
12 3123
123
4
14 24 34
124 134 234
1234
sdepth!! =!max
!
!!!sdepth!!
!!!!!!!!!!!!!!!!!!!=!max
!
min
!,!!!! ∈!
|!|
P    –  Poset
Q  –  Partition
Interval partitions and Stanley depth 	
  	
  
BIRO	
  ́	
  , CS., HOWARD, D. M., KELLER, M. T.,
TROTTER, W. T., AND YOUNG, S. J.
J. Combin. Theory Ser. A
5/2010
For the case where all nonempty subsets of
{1,2,...,n} are considered, it is possible to find a
partition in which every interval’s upper bound
has size at least n/2.
	
  
What happens for
all subsets of {1, 2,…, n}
of size at least 2?
sdepth!! = ⌈! + 4
3
⌉!
On the Stanley depth of squarefree Veronese Ideals.
KELLER, M. T., SHEN, Y.-H., STREIB, N., AND YOUNG, S. J.
J. Alg. Combin. (2011)
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{ }
{3}
{4}
{6}
{7}
{8}
{3, 4}
{3, 6}
{3, 7}
{3, 8}
{4, 6}
{4, 7}
{4, 8}
{6, 7}
{6, 8}
{7, 8}
{3, 4, 6}
{3, 4, 7}
{3, 4, 8}
{3, 6, 7}
{3, 6, 8}
{3, 7, 8}
{4, 6, 7}
{4, 6, 8}
{4, 7, 8}
{6, 7, 8}
{3, 4, 6, 7}
{3, 4, 6, 8}
{3, 4, 7, 8}
{3, 6, 7, 8}
{4, 6, 7, 8}
{3,4,6,7,8}
Powerset of {3, 4, 6, 7, 8}
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{ }
{3}
{4}
{6}
{7}
{8}
{3, 4}
{3, 6}
{3, 7}
{3, 8}
{4, 6}
{4, 7}
{4, 8}
{6, 7}
{6, 8}
{7, 8}
{3, 4, 6}
{3, 4, 7}
{3, 4, 8}
{3, 6, 7}
{3, 6, 8}
{3, 7, 8}
{4, 6, 7}
{4, 6, 8}
{4, 7, 8}
{6, 7, 8}
{3, 4, 6, 7}
{3, 4, 6, 8}
{3, 4, 7, 8}
{3, 6, 7, 8}
{4, 6, 7, 8}
{3,4,6,7,8}
Powerset of {3, 4, 6, 7, 8}
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4,	
  6,	
  7}	
  	
  {3,	
  4,	
  6,	
  8}	
  	
   {3,	
  4,	
  7,	
  6}	
  
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4,	
  6,	
  7}	
  	
  {3,	
  4,	
  6,	
  8}	
  	
   {3,	
  4,	
  7,	
  6} 	
  	
  
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4,	
  6,	
  7}	
  	
  {3,	
  4,	
  6,	
  8}	
  	
   {3,	
  4,	
  7,	
  6} 	
  {3,	
  4,	
  7,	
  8}	
  	
  
	
  	
  
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
{3,	
  4,	
  8,	
  6}	
  
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4,	
  6,	
  7}	
  	
  {3,	
  4,	
  6,	
  8}	
  	
   {3,	
  4,	
  7,	
  6} 	
  {3,	
  4,	
  7,	
  8}	
  	
  
	
  	
  
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
{3,	
  4,	
  8,	
  6}	
  {3,	
  4,	
  8,	
  7}	
  	
  
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4,	
  6,	
  7}	
  	
  {3,	
  4,	
  6,	
  8}	
  	
   {3,	
  4,	
  7,	
  6} 	
  {3,	
  4,	
  7,	
  8}	
  	
  
	
  	
  
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
{3,	
  4,	
  8,	
  6}	
  {3,	
  4,	
  8,	
  7}	
  	
  
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4,	
  6,	
  7}	
  	
  {3,	
  4,	
  6,	
  8}	
  	
   {3,	
  4,	
  7,	
  6} 	
  {3,	
  4,	
  7,	
  8}	
  	
  
	
  	
  
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
{3,	
  4,	
  8,	
  6}	
  {3,	
  4,	
  8,	
  7}	
  	
  
{3,	
  4,	
  6,	
  7,	
  8}	
   	
  	
  B
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4,	
  6,	
  7}	
  	
  {3,	
  4,	
  6,	
  8}	
  	
   {3,	
  4,	
  7,	
  6} 	
  {3,	
  4,	
  7,	
  8}	
  	
  
	
  	
  
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
{3,	
  4,	
  8,	
  6}	
  {3,	
  4,	
  8,	
  7}	
  	
  
{3,	
  4,	
  6,	
  7,	
  8}	
   	
  	
  B
find_partition
Input: n = 8
Output: [[[1, 2], [1, 2, 3, 4]], [[2, 3], [2, 3, 4, 5]], [[3, 4], [3, 4,
5, 6]], [[4, 5], [4, 5, 6, 7]], [[5, 6], [5, 6, 7, 8]], [[6, 7], [6, 7, 8, 1]],
[[7, 8], [7, 8, 1, 2]], [[8, 1], [8, 1, 2, 3]], [[1, 3], [1, 3, 4, 5]], [[2, 4],
[2, 4, 5, 6]], [[3, 5], [3, 5, 6, 7]], [[4, 6], [4, 6, 7, 8]], [[5, 7], [5, 7,
8, 1]], [[6, 8], [6, 8, 1, 2]], [[7, 1], [7, 1, 2, 3]], [[8, 2], [8, 2, 3, 4]],
[[1, 4], [1, 4, 5, 6]], [[2, 5], [2, 5, 6, 7]], [[3, 6], [3, 6, 7, 8]], [[4, 7],
[4, 7, 8, 1]], [[5, 8], [5, 8, 1, 2]], [[6, 1], [6, 1, 2, 3]], [[7, 2], [7, 2,
3, 4]], [[8, 3], [8, 3, 4, 5]], [[1, 5], [1, 5, 2, 6]], [[2, 6], [2, 6, 3, 7]],
[[3, 7], [3, 7, 4, 8]], [[4, 8], [4, 8, 5, 1]]]
•  No Collision
•  Covers the whole Poset
Randomized Algorithm
Randomized Algorithm
Collision
Randomized Algorithm
Backtracking Algorithm
Backtracking Algorithm
After every pick, check to see
if there is a collision
Backtracking Algorithm
Collision
Backtracking Algorithm
If there is a collision, pick another ball.
Backtracking Algorithm
After every pick check to see
if there is a collision
For	
  n	
  =	
  11	
  
6.845 * 10105
1078 – 1082
atoms
in the observable,
known universe
For	
  n	
  =	
  14	
  
1.618 * 10245
6.247	
  *	
  10238	
  possible	
  par<<ons	
  per	
  second	
  
Ring Diagram to make Intervals
1
2
3
4
5
6
7
8
[{1,2},{1,2,3,4}]	
  
[A,	
   	
   	
  B]	
  
n = 8
=	
  A
+	
   =	
  B
1
2
3
4
5
6
7
8
A single rotation
clockwise
n = 8
[{2,3},{2,3,4,5}]	
  
ring_to_interval
Input: [1,1,2,2,0,0,0,0]
Output: [[[1, 2], [1, 2, 3, 4]], [[2, 3], [2, 3, 4, 5]], [[3, 4],
[3, 4, 5, 6]], [[4, 5], [4, 5, 6, 7]], [[5, 6], [5, 6, 7, 8]],
[[6, 7], [6, 7, 8, 1]], [[7, 8], [7, 8, 1, 2]], [[8, 1],
[8, 1, 2,3]]]
1
1
	
  
2	
  
2	
  
0	
  
0	
  
	
  
0	
  
0	
  
1
2
3
4
5
6
7
8
n = 8
n = 8
1 - 2 config. 1 - 3 config.
1 - 4 config. 1 - 5 config.
n = 14
1 - 2 config. 1 – 3 config.
1 - 4 config. 1 - 5 config. 1 - 6 config.
1 - 7 config. 1 - 8 config.
Acknowledgments
•  Professor Mitchel T. Keller
•  Summer Research Scholars Program
•  W&L Mathematics Department

More Related Content

What's hot

Fixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spacesFixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spacesAlexander Decker
 
Fixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spacesFixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spacesAlexander Decker
 
Some properties of gi closed sets in topological space.docx
Some properties of gi  closed sets in topological space.docxSome properties of gi  closed sets in topological space.docx
Some properties of gi closed sets in topological space.docxAlexander Decker
 
Domain and range of a RELATION
Domain and range of a RELATIONDomain and range of a RELATION
Domain and range of a RELATIONJanak Singh saud
 
Comp decomp worked
Comp decomp workedComp decomp worked
Comp decomp workedJonna Ramsey
 
R Activity in Biostatistics
R Activity in BiostatisticsR Activity in Biostatistics
R Activity in BiostatisticsLarry Sultiz
 
1h. Pedagogy of Mathematics (Part II) - Set language Activities and exercise
1h. Pedagogy of Mathematics (Part II) - Set language Activities and exercise1h. Pedagogy of Mathematics (Part II) - Set language Activities and exercise
1h. Pedagogy of Mathematics (Part II) - Set language Activities and exerciseDr. I. Uma Maheswari Maheswari
 
Geometry Section 2-8
Geometry Section 2-8Geometry Section 2-8
Geometry Section 2-8Jimbo Lamb
 
16 dot product angles-projection
16 dot product angles-projection16 dot product angles-projection
16 dot product angles-projectionmath260
 
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」Junpei Tsuji
 
Дараалал ба цуваа
Дараалал ба цуваа Дараалал ба цуваа
Дараалал ба цуваа Март
 
Application of subQuan to Algebra: 3rd-8th grade and beyond...
Application of subQuan to Algebra: 3rd-8th grade and beyond...Application of subQuan to Algebra: 3rd-8th grade and beyond...
Application of subQuan to Algebra: 3rd-8th grade and beyond...Dream Realizations
 
Distributive Property 8th
Distributive Property 8th Distributive Property 8th
Distributive Property 8th jscafidi7
 

What's hot (20)

Biseccion
BiseccionBiseccion
Biseccion
 
Portofolio mtk
Portofolio mtkPortofolio mtk
Portofolio mtk
 
Fixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spacesFixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spaces
 
Fixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spacesFixed point theorems for random variables in complete metric spaces
Fixed point theorems for random variables in complete metric spaces
 
Some properties of gi closed sets in topological space.docx
Some properties of gi  closed sets in topological space.docxSome properties of gi  closed sets in topological space.docx
Some properties of gi closed sets in topological space.docx
 
Domain and range of a RELATION
Domain and range of a RELATIONDomain and range of a RELATION
Domain and range of a RELATION
 
Types of RELATIONS
Types of RELATIONSTypes of RELATIONS
Types of RELATIONS
 
Comp decomp worked
Comp decomp workedComp decomp worked
Comp decomp worked
 
R Activity in Biostatistics
R Activity in BiostatisticsR Activity in Biostatistics
R Activity in Biostatistics
 
Grokking regex
Grokking regexGrokking regex
Grokking regex
 
Ακολουθίες - Α.Π - Γ.Π 2021
Ακολουθίες - Α.Π - Γ.Π 2021Ακολουθίες - Α.Π - Γ.Π 2021
Ακολουθίες - Α.Π - Γ.Π 2021
 
X maths 1
X maths 1X maths 1
X maths 1
 
1h. Pedagogy of Mathematics (Part II) - Set language Activities and exercise
1h. Pedagogy of Mathematics (Part II) - Set language Activities and exercise1h. Pedagogy of Mathematics (Part II) - Set language Activities and exercise
1h. Pedagogy of Mathematics (Part II) - Set language Activities and exercise
 
Geometry Section 2-8
Geometry Section 2-8Geometry Section 2-8
Geometry Section 2-8
 
16 dot product angles-projection
16 dot product angles-projection16 dot product angles-projection
16 dot product angles-projection
 
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
 
Probability QA 4
Probability QA 4Probability QA 4
Probability QA 4
 
Дараалал ба цуваа
Дараалал ба цуваа Дараалал ба цуваа
Дараалал ба цуваа
 
Application of subQuan to Algebra: 3rd-8th grade and beyond...
Application of subQuan to Algebra: 3rd-8th grade and beyond...Application of subQuan to Algebra: 3rd-8th grade and beyond...
Application of subQuan to Algebra: 3rd-8th grade and beyond...
 
Distributive Property 8th
Distributive Property 8th Distributive Property 8th
Distributive Property 8th
 

Similar to SRS presentation - Stanley Depth

แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริงแบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริงNittaya Noinan
 
Numeros reales, inecuaciones y desigualdades
Numeros reales, inecuaciones y desigualdadesNumeros reales, inecuaciones y desigualdades
Numeros reales, inecuaciones y desigualdadesDanielaAngulo25
 
Chapter 2 2022.pdf
Chapter 2 2022.pdfChapter 2 2022.pdf
Chapter 2 2022.pdfMohamed Ali
 
Intoduction to numpy
Intoduction to numpyIntoduction to numpy
Intoduction to numpyFaraz Ahmed
 
Breaking a Stick to form a Pentagon with Positive Integers using Programming ...
Breaking a Stick to form a Pentagon with Positive Integers using Programming ...Breaking a Stick to form a Pentagon with Positive Integers using Programming ...
Breaking a Stick to form a Pentagon with Positive Integers using Programming ...IRJET Journal
 
A NEW OPERATION ON HEXAGONAL FUZZY NUMBER
A NEW OPERATION ON HEXAGONAL FUZZY NUMBERA NEW OPERATION ON HEXAGONAL FUZZY NUMBER
A NEW OPERATION ON HEXAGONAL FUZZY NUMBERijfls
 
Conjuntos e intervalos-1.pptx
Conjuntos e intervalos-1.pptxConjuntos e intervalos-1.pptx
Conjuntos e intervalos-1.pptxYehileenMoreira
 
Unit 1 Set Theory-Engineering Mathematics.pptx
Unit 1 Set Theory-Engineering Mathematics.pptxUnit 1 Set Theory-Engineering Mathematics.pptx
Unit 1 Set Theory-Engineering Mathematics.pptxG2018ChoudhariNikita
 
Maximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of BeetleMaximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of BeetleLiang Kai Hu
 

Similar to SRS presentation - Stanley Depth (20)

แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริงแบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
 
Numeros reales, inecuaciones y desigualdades
Numeros reales, inecuaciones y desigualdadesNumeros reales, inecuaciones y desigualdades
Numeros reales, inecuaciones y desigualdades
 
Probability theory.pptx
Probability theory.pptxProbability theory.pptx
Probability theory.pptx
 
PRP - Unit 1.pptx
PRP - Unit 1.pptxPRP - Unit 1.pptx
PRP - Unit 1.pptx
 
Data types
Data typesData types
Data types
 
Chapter 2 2022.pdf
Chapter 2 2022.pdfChapter 2 2022.pdf
Chapter 2 2022.pdf
 
Data Types
Data TypesData Types
Data Types
 
Intoduction to numpy
Intoduction to numpyIntoduction to numpy
Intoduction to numpy
 
X std maths - Relations and functions (ex 1.1)
X std maths - Relations and functions  (ex 1.1)X std maths - Relations and functions  (ex 1.1)
X std maths - Relations and functions (ex 1.1)
 
Breaking a Stick to form a Pentagon with Positive Integers using Programming ...
Breaking a Stick to form a Pentagon with Positive Integers using Programming ...Breaking a Stick to form a Pentagon with Positive Integers using Programming ...
Breaking a Stick to form a Pentagon with Positive Integers using Programming ...
 
Probability
ProbabilityProbability
Probability
 
A NEW OPERATION ON HEXAGONAL FUZZY NUMBER
A NEW OPERATION ON HEXAGONAL FUZZY NUMBERA NEW OPERATION ON HEXAGONAL FUZZY NUMBER
A NEW OPERATION ON HEXAGONAL FUZZY NUMBER
 
Conjuntos e intervalos-1.pptx
Conjuntos e intervalos-1.pptxConjuntos e intervalos-1.pptx
Conjuntos e intervalos-1.pptx
 
Unit 1 Set Theory-Engineering Mathematics.pptx
Unit 1 Set Theory-Engineering Mathematics.pptxUnit 1 Set Theory-Engineering Mathematics.pptx
Unit 1 Set Theory-Engineering Mathematics.pptx
 
Maximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of BeetleMaximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of Beetle
 
set theory --.pptx
set theory --.pptxset theory --.pptx
set theory --.pptx
 
Sets
SetsSets
Sets
 
Backpropagation
BackpropagationBackpropagation
Backpropagation
 
Report.pptx
Report.pptxReport.pptx
Report.pptx
 
Dmxchart
DmxchartDmxchart
Dmxchart
 

SRS presentation - Stanley Depth

  • 1. Aswasan Joshi Stanley Depth of Monomial Ideals: A Computational Investigation
  • 4. ½   ⅓ -⅔ ¼  ¾   -⅕   ⅖   ⅗   ⅘   ⅙   ⅚   ⅛ -⅜   ⅝ ½   ⅕  ⅘   ⅓ ⅖   ⅘   ½   ⅜   ⅝ -⅜   ⅝ ⅘  ⅔ -⅘   ⅜   ½   ⅓ ½   ⅓ ⅘   -⅕   -⅘  -⅗   Field Addition, Subtraction, Multiplication & Division by nonzero numbers in the collection are all defined -⅝ -⅘  
  • 5. ½   ⅓ -⅔ ¼  ¾   -⅕   ⅖   ⅗   ⅘   ⅙   ⅛ -⅜   ⅝ ½   ⅕  ⅘   ⅓ ⅖   ⅘   ½   ⅜   ⅝ -⅜   ⅝ ⅘  ⅔ -⅘   ⅜   ½   ⅓ ½   ⅓ ⅘   -⅕   -⅘  -⅗   Field Addition, Subtraction, Multiplication & Division by nonzero numbers in the collection are all defined -⅝ -⅘   ✓   ✗   Rational, Real Complex numbers Integers⅚  
  • 6. If K is a field, the polynomial ring in n variables, denoted K [ x1,...,xn ], consists of all polynomials where the coefficients come from the field K and the variables x1,x2,...,xn are all allowed to appear.
  • 7. K is the rational numbers ½x1 3x2 −3x3 +7x1 & ⅝x1 100 −5x3 +6 examples of polynomials in K [x1,x2,x3]
  • 8. Squarefree monomial ideals •  A monomial is called squarefree if each ai is 0 or 1. ✓ x5x8x9 ✗ x5 4x8 2x9 •  A monomial ideal is called squarefree if it is generated by squarefree monomials. Stanley Depth !! !! !! !! ⋯!!! !!
  • 10. How to compute the Stanley depth of a monomial ideal HERZOG, J., VLADOIU, M., AND ZHENG, X Journal of Algebra 11/2009 •  Possible to compute the Stanley depth of a squarefree monomial ideal using only techniques from discrete mathematics •  It is enough to look at some of the subsets of { x1, ..., xn }, which is equivalent to considering subsets of {1, 2, ..., n}  
  • 11. Our goal is then to partition this collection C of sets into intervals that do not collide and cover the whole poset.     1 2 3 4 12 13 23 14 24 34 123 124 134 234 1234 n = 4 nonempty subsets
  • 12. If A and B are subsets of {1, 2, . . . , n}, the interval [A, B] contains every set T such that A is a subset of T and T is a subset of B. (We call B the upper bound of the interval.) [ {1, 2}, {1, 2, 4, 6} ]   {1, 2}, {1, 2, 4}, {1, 2, 6}, {1, 2, 4, 6} {1, 2, 5} and {2, 4, 6} is not in this interval  
  • 13. Two intervals collide if they have at least a set in common. [{1, 6}, {1, 6, 2, 3}] [{1, 3}, {1, 3, 6, 9}] {1, 3, 6} Collision {1, 6} {1,6,2} {1, 6, 2, 3}   {1, 3} {1,3,9} {1, 3, 6, 9}  
  • 14. Our goal is then to partition this collection C of sets into intervals that do not collide and cover the whole poset.     1 2 3 4 12 13 23 14 24 34 123 124 134 234 1234 n = 4 nonempty subsets
  • 15. n = 4 nonempty subsets 1 2 3 12 3123 123 4 14 24 34 124 134 234 1234
  • 17. Interval partitions and Stanley depth     BIRO  ́  , CS., HOWARD, D. M., KELLER, M. T., TROTTER, W. T., AND YOUNG, S. J. J. Combin. Theory Ser. A 5/2010 For the case where all nonempty subsets of {1,2,...,n} are considered, it is possible to find a partition in which every interval’s upper bound has size at least n/2.  
  • 18. What happens for all subsets of {1, 2,…, n} of size at least 2? sdepth!! = ⌈! + 4 3 ⌉! On the Stanley depth of squarefree Veronese Ideals. KELLER, M. T., SHEN, Y.-H., STREIB, N., AND YOUNG, S. J. J. Alg. Combin. (2011)
  • 19. expand_interval Input: [{3, 4}, {3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
  • 20. expand_interval Input: [{3, 4}, {3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} { } {3} {4} {6} {7} {8} {3, 4} {3, 6} {3, 7} {3, 8} {4, 6} {4, 7} {4, 8} {6, 7} {6, 8} {7, 8} {3, 4, 6} {3, 4, 7} {3, 4, 8} {3, 6, 7} {3, 6, 8} {3, 7, 8} {4, 6, 7} {4, 6, 8} {4, 7, 8} {6, 7, 8} {3, 4, 6, 7} {3, 4, 6, 8} {3, 4, 7, 8} {3, 6, 7, 8} {4, 6, 7, 8} {3,4,6,7,8} Powerset of {3, 4, 6, 7, 8}
  • 21. expand_interval Input: [{3, 4}, {3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} { } {3} {4} {6} {7} {8} {3, 4} {3, 6} {3, 7} {3, 8} {4, 6} {4, 7} {4, 8} {6, 7} {6, 8} {7, 8} {3, 4, 6} {3, 4, 7} {3, 4, 8} {3, 6, 7} {3, 6, 8} {3, 7, 8} {4, 6, 7} {4, 6, 8} {4, 7, 8} {6, 7, 8} {3, 4, 6, 7} {3, 4, 6, 8} {3, 4, 7, 8} {3, 6, 7, 8} {4, 6, 7, 8} {3,4,6,7,8} Powerset of {3, 4, 6, 7, 8}
  • 22. expand_interval Input: [{3, 4}, {3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A
  • 23. expand_interval Input: [{3, 4}, {3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4,  6,  7}    {3,  4,  6,  8}     {3,  4,  7,  6}   {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A
  • 24. expand_interval Input: [{3, 4}, {3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4,  6,  7}    {3,  4,  6,  8}     {3,  4,  7,  6}     {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A
  • 25. expand_interval Input: [{3, 4}, {3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4,  6,  7}    {3,  4,  6,  8}     {3,  4,  7,  6}  {3,  4,  7,  8}         {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A {3,  4,  8,  6}  
  • 26. expand_interval Input: [{3, 4}, {3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4,  6,  7}    {3,  4,  6,  8}     {3,  4,  7,  6}  {3,  4,  7,  8}         {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A {3,  4,  8,  6}  {3,  4,  8,  7}    
  • 27. expand_interval Input: [{3, 4}, {3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4,  6,  7}    {3,  4,  6,  8}     {3,  4,  7,  6}  {3,  4,  7,  8}         {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A {3,  4,  8,  6}  {3,  4,  8,  7}    
  • 28. expand_interval Input: [{3, 4}, {3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4,  6,  7}    {3,  4,  6,  8}     {3,  4,  7,  6}  {3,  4,  7,  8}         {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A {3,  4,  8,  6}  {3,  4,  8,  7}     {3,  4,  6,  7,  8}      B
  • 29. expand_interval Input: [{3, 4}, {3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4,  6,  7}    {3,  4,  6,  8}     {3,  4,  7,  6}  {3,  4,  7,  8}         {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A {3,  4,  8,  6}  {3,  4,  8,  7}     {3,  4,  6,  7,  8}      B
  • 30. find_partition Input: n = 8 Output: [[[1, 2], [1, 2, 3, 4]], [[2, 3], [2, 3, 4, 5]], [[3, 4], [3, 4, 5, 6]], [[4, 5], [4, 5, 6, 7]], [[5, 6], [5, 6, 7, 8]], [[6, 7], [6, 7, 8, 1]], [[7, 8], [7, 8, 1, 2]], [[8, 1], [8, 1, 2, 3]], [[1, 3], [1, 3, 4, 5]], [[2, 4], [2, 4, 5, 6]], [[3, 5], [3, 5, 6, 7]], [[4, 6], [4, 6, 7, 8]], [[5, 7], [5, 7, 8, 1]], [[6, 8], [6, 8, 1, 2]], [[7, 1], [7, 1, 2, 3]], [[8, 2], [8, 2, 3, 4]], [[1, 4], [1, 4, 5, 6]], [[2, 5], [2, 5, 6, 7]], [[3, 6], [3, 6, 7, 8]], [[4, 7], [4, 7, 8, 1]], [[5, 8], [5, 8, 1, 2]], [[6, 1], [6, 1, 2, 3]], [[7, 2], [7, 2, 3, 4]], [[8, 3], [8, 3, 4, 5]], [[1, 5], [1, 5, 2, 6]], [[2, 6], [2, 6, 3, 7]], [[3, 7], [3, 7, 4, 8]], [[4, 8], [4, 8, 5, 1]]] •  No Collision •  Covers the whole Poset
  • 31.
  • 35.
  • 37. Backtracking Algorithm After every pick, check to see if there is a collision
  • 39. Backtracking Algorithm If there is a collision, pick another ball.
  • 40. Backtracking Algorithm After every pick check to see if there is a collision
  • 41. For  n  =  11   6.845 * 10105
  • 42. 1078 – 1082 atoms in the observable, known universe
  • 43. For  n  =  14   1.618 * 10245 6.247  *  10238  possible  par<<ons  per  second  
  • 44. Ring Diagram to make Intervals 1 2 3 4 5 6 7 8 [{1,2},{1,2,3,4}]   [A,      B]   n = 8 =  A +   =  B
  • 46.
  • 47. ring_to_interval Input: [1,1,2,2,0,0,0,0] Output: [[[1, 2], [1, 2, 3, 4]], [[2, 3], [2, 3, 4, 5]], [[3, 4], [3, 4, 5, 6]], [[4, 5], [4, 5, 6, 7]], [[5, 6], [5, 6, 7, 8]], [[6, 7], [6, 7, 8, 1]], [[7, 8], [7, 8, 1, 2]], [[8, 1], [8, 1, 2,3]]] 1 1   2   2   0   0     0   0   1 2 3 4 5 6 7 8 n = 8
  • 48. n = 8 1 - 2 config. 1 - 3 config. 1 - 4 config. 1 - 5 config.
  • 49. n = 14 1 - 2 config. 1 – 3 config. 1 - 4 config. 1 - 5 config. 1 - 6 config. 1 - 7 config. 1 - 8 config.
  • 50. Acknowledgments •  Professor Mitchel T. Keller •  Summer Research Scholars Program •  W&L Mathematics Department