Aswasan Joshi
Stanley Depth of Monomial Ideals:
A Computational Investigation
3x 5−πx 3+3x+ √7
Coefficients
3x 5−πx 3+3x+ √7
½	
  
⅓
-⅔
¼	
  ¾	
  
-⅕	
  
⅖	
  
⅗	
  
⅘	
  
⅙	
  
⅚	
  
⅛
-⅜	
  
⅝
½	
  
⅕	
  ⅘	
  
⅓
⅖	
  
⅘	
  
½	
  
⅜	
  
⅝
-⅜	
  
⅝ ⅘	
  ⅔
-⅘	
  
⅜	
  
½	
  
⅓
½	
  
⅓
⅘	
  
-⅕	
  
-⅘	
  -⅗	
  
Field
Addition, Subtraction, Multiplication & Division
by nonzero numbers in the collection are all defined
-⅝
-⅘	
  
½	
  
⅓
-⅔
¼	
  ¾	
  
-⅕	
  
⅖	
  
⅗	
  
⅘	
  
⅙	
  
⅛
-⅜	
  
⅝
½	
  
⅕	
  ⅘	
  
⅓
⅖	
  
⅘	
  
½	
  
⅜	
  
⅝
-⅜	
  
⅝ ⅘	
  ⅔
-⅘	
  
⅜	
  
½	
  
⅓
½	
  
⅓
⅘	
  
-⅕	
  
-⅘	
  -⅗	
  
Field
Addition, Subtraction, Multiplication & Division
by nonzero numbers in the collection are all defined
-⅝
-⅘	
  
✓	
   ✗	
  
Rational, Real
Complex numbers Integers⅚	
  
If K is a field,
the polynomial ring in n variables,
denoted K [ x1,...,xn ],
consists of all polynomials
where the coefficients come
from the field K
and the variables x1,x2,...,xn
are all allowed to appear.
K is the rational numbers
½x1
3x2 −3x3 +7x1
&
⅝x1
100 −5x3 +6
examples of polynomials in
K [x1,x2,x3]
Squarefree monomial ideals
•  A monomial is called
squarefree if each ai is 0 or 1.
✓ x5x8x9 ✗ x5
4x8
2x9
•  A monomial ideal is called squarefree if it
is generated by squarefree monomials.
Stanley Depth
!!
!!
!!
!!
⋯!!!
!!
Source: Richard P. Stanley
How to compute the Stanley depth of a
monomial ideal
HERZOG, J., VLADOIU, M., AND ZHENG, X
Journal of Algebra
11/2009
•  Possible to compute the Stanley depth of a
squarefree monomial ideal using only
techniques from discrete mathematics
•  It is enough to look at some of the subsets of
{ x1, ..., xn }, which is equivalent to considering
subsets of {1, 2, ..., n}
	
  
Our goal is then to partition this
collection C of sets into intervals
that do not collide and cover the
whole poset. 	
  
	
  
1 2 3 4
12 13 23 14 24 34
123 124 134 234
1234
n = 4
nonempty subsets
If A and B are subsets of {1, 2, . . . , n},
the interval [A, B] contains every set T such that
A is a subset of T and T is a subset of B.
(We call B the upper bound of the interval.)
[ {1, 2}, {1, 2, 4, 6} ]
	
  
{1, 2}, {1, 2, 4}, {1, 2, 6}, {1, 2, 4, 6}
{1, 2, 5} and {2, 4, 6} is not in this interval
	
  
Two intervals collide if they have
at least a set in common.
[{1, 6}, {1, 6, 2, 3}] [{1, 3}, {1, 3, 6, 9}]
{1, 3, 6}
Collision
{1, 6}
{1,6,2}
{1, 6, 2, 3}	
   {1, 3} {1,3,9}
{1, 3, 6, 9}	
  
Our goal is then to partition this
collection C of sets into intervals
that do not collide and cover the
whole poset. 	
  
	
  
1 2 3 4
12 13 23 14 24 34
123 124 134 234
1234
n = 4
nonempty subsets
n = 4
nonempty subsets
1 2 3
12 3123
123
4
14 24 34
124 134 234
1234
sdepth!! =!max
!
!!!sdepth!!
!!!!!!!!!!!!!!!!!!!=!max
!
min
!,!!!! ∈!
|!|
P    –  Poset
Q  –  Partition
Interval partitions and Stanley depth 	
  	
  
BIRO	
  ́	
  , CS., HOWARD, D. M., KELLER, M. T.,
TROTTER, W. T., AND YOUNG, S. J.
J. Combin. Theory Ser. A
5/2010
For the case where all nonempty subsets of
{1,2,...,n} are considered, it is possible to find a
partition in which every interval’s upper bound
has size at least n/2.
	
  
What happens for
all subsets of {1, 2,…, n}
of size at least 2?
sdepth!! = ⌈! + 4
3
⌉!
On the Stanley depth of squarefree Veronese Ideals.
KELLER, M. T., SHEN, Y.-H., STREIB, N., AND YOUNG, S. J.
J. Alg. Combin. (2011)
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{ }
{3}
{4}
{6}
{7}
{8}
{3, 4}
{3, 6}
{3, 7}
{3, 8}
{4, 6}
{4, 7}
{4, 8}
{6, 7}
{6, 8}
{7, 8}
{3, 4, 6}
{3, 4, 7}
{3, 4, 8}
{3, 6, 7}
{3, 6, 8}
{3, 7, 8}
{4, 6, 7}
{4, 6, 8}
{4, 7, 8}
{6, 7, 8}
{3, 4, 6, 7}
{3, 4, 6, 8}
{3, 4, 7, 8}
{3, 6, 7, 8}
{4, 6, 7, 8}
{3,4,6,7,8}
Powerset of {3, 4, 6, 7, 8}
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{ }
{3}
{4}
{6}
{7}
{8}
{3, 4}
{3, 6}
{3, 7}
{3, 8}
{4, 6}
{4, 7}
{4, 8}
{6, 7}
{6, 8}
{7, 8}
{3, 4, 6}
{3, 4, 7}
{3, 4, 8}
{3, 6, 7}
{3, 6, 8}
{3, 7, 8}
{4, 6, 7}
{4, 6, 8}
{4, 7, 8}
{6, 7, 8}
{3, 4, 6, 7}
{3, 4, 6, 8}
{3, 4, 7, 8}
{3, 6, 7, 8}
{4, 6, 7, 8}
{3,4,6,7,8}
Powerset of {3, 4, 6, 7, 8}
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4,	
  6,	
  7}	
  	
  {3,	
  4,	
  6,	
  8}	
  	
   {3,	
  4,	
  7,	
  6}	
  
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4,	
  6,	
  7}	
  	
  {3,	
  4,	
  6,	
  8}	
  	
   {3,	
  4,	
  7,	
  6} 	
  	
  
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4,	
  6,	
  7}	
  	
  {3,	
  4,	
  6,	
  8}	
  	
   {3,	
  4,	
  7,	
  6} 	
  {3,	
  4,	
  7,	
  8}	
  	
  
	
  	
  
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
{3,	
  4,	
  8,	
  6}	
  
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4,	
  6,	
  7}	
  	
  {3,	
  4,	
  6,	
  8}	
  	
   {3,	
  4,	
  7,	
  6} 	
  {3,	
  4,	
  7,	
  8}	
  	
  
	
  	
  
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
{3,	
  4,	
  8,	
  6}	
  {3,	
  4,	
  8,	
  7}	
  	
  
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4,	
  6,	
  7}	
  	
  {3,	
  4,	
  6,	
  8}	
  	
   {3,	
  4,	
  7,	
  6} 	
  {3,	
  4,	
  7,	
  8}	
  	
  
	
  	
  
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
{3,	
  4,	
  8,	
  6}	
  {3,	
  4,	
  8,	
  7}	
  	
  
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4,	
  6,	
  7}	
  	
  {3,	
  4,	
  6,	
  8}	
  	
   {3,	
  4,	
  7,	
  6} 	
  {3,	
  4,	
  7,	
  8}	
  	
  
	
  	
  
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
{3,	
  4,	
  8,	
  6}	
  {3,	
  4,	
  8,	
  7}	
  	
  
{3,	
  4,	
  6,	
  7,	
  8}	
   	
  	
  B
expand_interval
Input: [{3, 4}, {3, 4, 6, 7, 8}]
Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7},
{3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
{3,	
  4,	
  6,	
  7}	
  	
  {3,	
  4,	
  6,	
  8}	
  	
   {3,	
  4,	
  7,	
  6} 	
  {3,	
  4,	
  7,	
  8}	
  	
  
	
  	
  
{3,	
  4}	
  
	
  	
  	
  	
  	
  {3,	
  4,	
  6}	
   	
  {3,	
  4,	
  7}	
  	
   	
  {3,	
  4,	
  8}	
  
A
{3,	
  4,	
  8,	
  6}	
  {3,	
  4,	
  8,	
  7}	
  	
  
{3,	
  4,	
  6,	
  7,	
  8}	
   	
  	
  B
find_partition
Input: n = 8
Output: [[[1, 2], [1, 2, 3, 4]], [[2, 3], [2, 3, 4, 5]], [[3, 4], [3, 4,
5, 6]], [[4, 5], [4, 5, 6, 7]], [[5, 6], [5, 6, 7, 8]], [[6, 7], [6, 7, 8, 1]],
[[7, 8], [7, 8, 1, 2]], [[8, 1], [8, 1, 2, 3]], [[1, 3], [1, 3, 4, 5]], [[2, 4],
[2, 4, 5, 6]], [[3, 5], [3, 5, 6, 7]], [[4, 6], [4, 6, 7, 8]], [[5, 7], [5, 7,
8, 1]], [[6, 8], [6, 8, 1, 2]], [[7, 1], [7, 1, 2, 3]], [[8, 2], [8, 2, 3, 4]],
[[1, 4], [1, 4, 5, 6]], [[2, 5], [2, 5, 6, 7]], [[3, 6], [3, 6, 7, 8]], [[4, 7],
[4, 7, 8, 1]], [[5, 8], [5, 8, 1, 2]], [[6, 1], [6, 1, 2, 3]], [[7, 2], [7, 2,
3, 4]], [[8, 3], [8, 3, 4, 5]], [[1, 5], [1, 5, 2, 6]], [[2, 6], [2, 6, 3, 7]],
[[3, 7], [3, 7, 4, 8]], [[4, 8], [4, 8, 5, 1]]]
•  No Collision
•  Covers the whole Poset
Randomized Algorithm
Randomized Algorithm
Collision
Randomized Algorithm
Backtracking Algorithm
Backtracking Algorithm
After every pick, check to see
if there is a collision
Backtracking Algorithm
Collision
Backtracking Algorithm
If there is a collision, pick another ball.
Backtracking Algorithm
After every pick check to see
if there is a collision
For	
  n	
  =	
  11	
  
6.845 * 10105
1078 – 1082
atoms
in the observable,
known universe
For	
  n	
  =	
  14	
  
1.618 * 10245
6.247	
  *	
  10238	
  possible	
  par<<ons	
  per	
  second	
  
Ring Diagram to make Intervals
1
2
3
4
5
6
7
8
[{1,2},{1,2,3,4}]	
  
[A,	
   	
   	
  B]	
  
n = 8
=	
  A
+	
   =	
  B
1
2
3
4
5
6
7
8
A single rotation
clockwise
n = 8
[{2,3},{2,3,4,5}]	
  
ring_to_interval
Input: [1,1,2,2,0,0,0,0]
Output: [[[1, 2], [1, 2, 3, 4]], [[2, 3], [2, 3, 4, 5]], [[3, 4],
[3, 4, 5, 6]], [[4, 5], [4, 5, 6, 7]], [[5, 6], [5, 6, 7, 8]],
[[6, 7], [6, 7, 8, 1]], [[7, 8], [7, 8, 1, 2]], [[8, 1],
[8, 1, 2,3]]]
1
1
	
  
2	
  
2	
  
0	
  
0	
  
	
  
0	
  
0	
  
1
2
3
4
5
6
7
8
n = 8
n = 8
1 - 2 config. 1 - 3 config.
1 - 4 config. 1 - 5 config.
n = 14
1 - 2 config. 1 – 3 config.
1 - 4 config. 1 - 5 config. 1 - 6 config.
1 - 7 config. 1 - 8 config.
Acknowledgments
•  Professor Mitchel T. Keller
•  Summer Research Scholars Program
•  W&L Mathematics Department

SRS presentation - Stanley Depth

  • 1.
    Aswasan Joshi Stanley Depthof Monomial Ideals: A Computational Investigation
  • 2.
  • 3.
  • 4.
    ½   ⅓ -⅔ ¼  ¾   -⅕   ⅖   ⅗   ⅘   ⅙   ⅚   ⅛ -⅜   ⅝ ½   ⅕  ⅘   ⅓ ⅖   ⅘   ½   ⅜   ⅝ -⅜   ⅝ ⅘  ⅔ -⅘   ⅜   ½   ⅓ ½   ⅓ ⅘   -⅕   -⅘  -⅗   Field Addition, Subtraction, Multiplication & Division by nonzero numbers in the collection are all defined -⅝ -⅘  
  • 5.
    ½   ⅓ -⅔ ¼  ¾   -⅕   ⅖   ⅗   ⅘   ⅙   ⅛ -⅜   ⅝ ½   ⅕  ⅘   ⅓ ⅖   ⅘   ½   ⅜   ⅝ -⅜   ⅝ ⅘  ⅔ -⅘   ⅜   ½   ⅓ ½   ⅓ ⅘   -⅕   -⅘  -⅗   Field Addition, Subtraction, Multiplication & Division by nonzero numbers in the collection are all defined -⅝ -⅘   ✓   ✗   Rational, Real Complex numbers Integers⅚  
  • 6.
    If K isa field, the polynomial ring in n variables, denoted K [ x1,...,xn ], consists of all polynomials where the coefficients come from the field K and the variables x1,x2,...,xn are all allowed to appear.
  • 7.
    K is therational numbers ½x1 3x2 −3x3 +7x1 & ⅝x1 100 −5x3 +6 examples of polynomials in K [x1,x2,x3]
  • 8.
    Squarefree monomial ideals • A monomial is called squarefree if each ai is 0 or 1. ✓ x5x8x9 ✗ x5 4x8 2x9 •  A monomial ideal is called squarefree if it is generated by squarefree monomials. Stanley Depth !! !! !! !! ⋯!!! !!
  • 9.
  • 10.
    How to computethe Stanley depth of a monomial ideal HERZOG, J., VLADOIU, M., AND ZHENG, X Journal of Algebra 11/2009 •  Possible to compute the Stanley depth of a squarefree monomial ideal using only techniques from discrete mathematics •  It is enough to look at some of the subsets of { x1, ..., xn }, which is equivalent to considering subsets of {1, 2, ..., n}  
  • 11.
    Our goal isthen to partition this collection C of sets into intervals that do not collide and cover the whole poset.     1 2 3 4 12 13 23 14 24 34 123 124 134 234 1234 n = 4 nonempty subsets
  • 12.
    If A andB are subsets of {1, 2, . . . , n}, the interval [A, B] contains every set T such that A is a subset of T and T is a subset of B. (We call B the upper bound of the interval.) [ {1, 2}, {1, 2, 4, 6} ]   {1, 2}, {1, 2, 4}, {1, 2, 6}, {1, 2, 4, 6} {1, 2, 5} and {2, 4, 6} is not in this interval  
  • 13.
    Two intervals collideif they have at least a set in common. [{1, 6}, {1, 6, 2, 3}] [{1, 3}, {1, 3, 6, 9}] {1, 3, 6} Collision {1, 6} {1,6,2} {1, 6, 2, 3}   {1, 3} {1,3,9} {1, 3, 6, 9}  
  • 14.
    Our goal isthen to partition this collection C of sets into intervals that do not collide and cover the whole poset.     1 2 3 4 12 13 23 14 24 34 123 124 134 234 1234 n = 4 nonempty subsets
  • 15.
    n = 4 nonemptysubsets 1 2 3 12 3123 123 4 14 24 34 124 134 234 1234
  • 16.
  • 17.
    Interval partitions andStanley depth     BIRO  ́  , CS., HOWARD, D. M., KELLER, M. T., TROTTER, W. T., AND YOUNG, S. J. J. Combin. Theory Ser. A 5/2010 For the case where all nonempty subsets of {1,2,...,n} are considered, it is possible to find a partition in which every interval’s upper bound has size at least n/2.  
  • 18.
    What happens for allsubsets of {1, 2,…, n} of size at least 2? sdepth!! = ⌈! + 4 3 ⌉! On the Stanley depth of squarefree Veronese Ideals. KELLER, M. T., SHEN, Y.-H., STREIB, N., AND YOUNG, S. J. J. Alg. Combin. (2011)
  • 19.
    expand_interval Input: [{3, 4},{3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}}
  • 20.
    expand_interval Input: [{3, 4},{3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} { } {3} {4} {6} {7} {8} {3, 4} {3, 6} {3, 7} {3, 8} {4, 6} {4, 7} {4, 8} {6, 7} {6, 8} {7, 8} {3, 4, 6} {3, 4, 7} {3, 4, 8} {3, 6, 7} {3, 6, 8} {3, 7, 8} {4, 6, 7} {4, 6, 8} {4, 7, 8} {6, 7, 8} {3, 4, 6, 7} {3, 4, 6, 8} {3, 4, 7, 8} {3, 6, 7, 8} {4, 6, 7, 8} {3,4,6,7,8} Powerset of {3, 4, 6, 7, 8}
  • 21.
    expand_interval Input: [{3, 4},{3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} { } {3} {4} {6} {7} {8} {3, 4} {3, 6} {3, 7} {3, 8} {4, 6} {4, 7} {4, 8} {6, 7} {6, 8} {7, 8} {3, 4, 6} {3, 4, 7} {3, 4, 8} {3, 6, 7} {3, 6, 8} {3, 7, 8} {4, 6, 7} {4, 6, 8} {4, 7, 8} {6, 7, 8} {3, 4, 6, 7} {3, 4, 6, 8} {3, 4, 7, 8} {3, 6, 7, 8} {4, 6, 7, 8} {3,4,6,7,8} Powerset of {3, 4, 6, 7, 8}
  • 22.
    expand_interval Input: [{3, 4},{3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A
  • 23.
    expand_interval Input: [{3, 4},{3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4,  6,  7}    {3,  4,  6,  8}     {3,  4,  7,  6}   {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A
  • 24.
    expand_interval Input: [{3, 4},{3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4,  6,  7}    {3,  4,  6,  8}     {3,  4,  7,  6}     {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A
  • 25.
    expand_interval Input: [{3, 4},{3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4,  6,  7}    {3,  4,  6,  8}     {3,  4,  7,  6}  {3,  4,  7,  8}         {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A {3,  4,  8,  6}  
  • 26.
    expand_interval Input: [{3, 4},{3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4,  6,  7}    {3,  4,  6,  8}     {3,  4,  7,  6}  {3,  4,  7,  8}         {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A {3,  4,  8,  6}  {3,  4,  8,  7}    
  • 27.
    expand_interval Input: [{3, 4},{3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4,  6,  7}    {3,  4,  6,  8}     {3,  4,  7,  6}  {3,  4,  7,  8}         {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A {3,  4,  8,  6}  {3,  4,  8,  7}    
  • 28.
    expand_interval Input: [{3, 4},{3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4,  6,  7}    {3,  4,  6,  8}     {3,  4,  7,  6}  {3,  4,  7,  8}         {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A {3,  4,  8,  6}  {3,  4,  8,  7}     {3,  4,  6,  7,  8}      B
  • 29.
    expand_interval Input: [{3, 4},{3, 4, 6, 7, 8}] Output: {{3,4}, {3,4,6}, {3,4,7}, {3,4,8}, {3,4,6,7}, {3,4,6,8}, {3,4,7,8}, {3,4,6,7,8}} {3,  4,  6,  7}    {3,  4,  6,  8}     {3,  4,  7,  6}  {3,  4,  7,  8}         {3,  4}            {3,  4,  6}    {3,  4,  7}      {3,  4,  8}   A {3,  4,  8,  6}  {3,  4,  8,  7}     {3,  4,  6,  7,  8}      B
  • 30.
    find_partition Input: n =8 Output: [[[1, 2], [1, 2, 3, 4]], [[2, 3], [2, 3, 4, 5]], [[3, 4], [3, 4, 5, 6]], [[4, 5], [4, 5, 6, 7]], [[5, 6], [5, 6, 7, 8]], [[6, 7], [6, 7, 8, 1]], [[7, 8], [7, 8, 1, 2]], [[8, 1], [8, 1, 2, 3]], [[1, 3], [1, 3, 4, 5]], [[2, 4], [2, 4, 5, 6]], [[3, 5], [3, 5, 6, 7]], [[4, 6], [4, 6, 7, 8]], [[5, 7], [5, 7, 8, 1]], [[6, 8], [6, 8, 1, 2]], [[7, 1], [7, 1, 2, 3]], [[8, 2], [8, 2, 3, 4]], [[1, 4], [1, 4, 5, 6]], [[2, 5], [2, 5, 6, 7]], [[3, 6], [3, 6, 7, 8]], [[4, 7], [4, 7, 8, 1]], [[5, 8], [5, 8, 1, 2]], [[6, 1], [6, 1, 2, 3]], [[7, 2], [7, 2, 3, 4]], [[8, 3], [8, 3, 4, 5]], [[1, 5], [1, 5, 2, 6]], [[2, 6], [2, 6, 3, 7]], [[3, 7], [3, 7, 4, 8]], [[4, 8], [4, 8, 5, 1]]] •  No Collision •  Covers the whole Poset
  • 32.
  • 33.
  • 34.
  • 36.
  • 37.
    Backtracking Algorithm After everypick, check to see if there is a collision
  • 38.
  • 39.
    Backtracking Algorithm If thereis a collision, pick another ball.
  • 40.
    Backtracking Algorithm After everypick check to see if there is a collision
  • 41.
    For  n  =  11   6.845 * 10105
  • 42.
    1078 – 1082 atoms inthe observable, known universe
  • 43.
    For  n  =  14   1.618 * 10245 6.247  *  10238  possible  par<<ons  per  second  
  • 44.
    Ring Diagram tomake Intervals 1 2 3 4 5 6 7 8 [{1,2},{1,2,3,4}]   [A,      B]   n = 8 =  A +   =  B
  • 45.
  • 47.
    ring_to_interval Input: [1,1,2,2,0,0,0,0] Output: [[[1,2], [1, 2, 3, 4]], [[2, 3], [2, 3, 4, 5]], [[3, 4], [3, 4, 5, 6]], [[4, 5], [4, 5, 6, 7]], [[5, 6], [5, 6, 7, 8]], [[6, 7], [6, 7, 8, 1]], [[7, 8], [7, 8, 1, 2]], [[8, 1], [8, 1, 2,3]]] 1 1   2   2   0   0     0   0   1 2 3 4 5 6 7 8 n = 8
  • 48.
    n = 8 1- 2 config. 1 - 3 config. 1 - 4 config. 1 - 5 config.
  • 49.
    n = 14 1- 2 config. 1 – 3 config. 1 - 4 config. 1 - 5 config. 1 - 6 config. 1 - 7 config. 1 - 8 config.
  • 50.
    Acknowledgments •  Professor MitchelT. Keller •  Summer Research Scholars Program •  W&L Mathematics Department