SlideShare a Scribd company logo
1 of 72
SPEAKER:
RUSHANG U. KANDOLIYA
(2010116060)
M.Sc. (Agri.) Soil Science
College of Agriculture, JAU – Junagadh
CONTENTS
(A) Introduction:
• Balanced fertilization, Organic Sources
(B) Role of Organics in Balanced fertilization and crop production
• Yield
• Quality
(C) Role of Organics in soil health
• Soil Physical Properties
• Soil Chemical Properties
• Soil Biological Properties
(D) Conclusion
(E) Future needs
 Balanced nutrition takes into account the availability of
nutrients already present in the soil, crop requirement and
other factors.
 It is not a state but a dynamic concept.
 Balanced nutrition is required for normal growth, physiological
functions as well as reproduction
BALANCED NUTRITION
5
 Crops need many essential nutrients for optimum growth, yield and
quality.
 Nitrogen (N), Phosphorus (P), Potassium (K), Sulphur and Zinc
(Zn) are some of the essential plant nutrients. Crops need N, P and
K in large amounts; hence these are applied through fertilizers.
 Application of plant nutrients in optimum ratio and adequate
amounts is called “Balanced Fertilization”. Balanced Fertilization is
the proper supply of all nutrients (macros and micros) throughout
the growth of a crop.
6
Why Balanced Nutrition ?
 Multiple nutrient deficiencies.
 Higher productivity & cropping intensity in irrigated areas.
 Organic sources insufficient for nutritional needs of HYVs.
 Organic sources with mineral fertilizers become necessary.
 Organic sources – No. of animals a farmer posses.
 50% of dung used as a fuel.
 Alternative source of energy for farmers.
 Green manuring – loose one crop.
 Lake of soil moisture for its decomposition.
 FYM, Green manuring, Crop residues, N – fixing bacteria, BGA etc
Organic sources supplement plant nutrients needs.
7
Important plant nutrients and its functionBasicnutrients
Carbon It is the basic molecular component of carbohydrates, protein, lipids and nucleic acid
Oxygen It occur in all the organic compounds of living organisms.
Hydrogen
This element plays a central role in plant metabolism. It is very important in ionic balance,
as the main reducing agent, and plays a key role In energy relation of cells.
Primarymacronutrients
Nitrogen It makes plant dark green & succulent. It promotes vegetative growth.
Phosphorus
It stimulates root development, increases the number of tillers, gives strength to straw
and prevents lodging. It hastens ripening of plants and counteracts the effects of
excessive nitrogen. It improves the quality and yield of grain. It increases disease
resistance, enhances the activity of rhizobia and increases the formation of root nodules
in legumes.
Potassium
Vigour and disease resistance to plants. It increases efficiency of the leaf in
manufacturing sugars and starch. It helps to produce stiff straw in cereals and reduces
lodging
Cont...8
Secondarymacro
Calcium
Increases stiffness of straw and promotes early root development and growth. It
encourages seed production
Magnesium
It is essential for all green plants. Helps in uptake of phosphorus and regulates
uptake of other nutrients.
Sulphur It stimulates root growth, seed formation and nodule formation.
Essentialmicronutrients
Iron
Essential for formation of chlorophyll and synthesis of proteins and several
metabolic reactions.
Manganese It helps in chlorophyll formation.
Zinc It helps information of growth hormones and chlorophyll.
Copper It regulates respiratory activities in plants.
Boron
helps in uptake of calcium and its efficient use by plants. helps in absorption of
nitrogen and is necessary in cell division.
Molybdenum It is essential for nitrogen fixing organisms both symbiotic and non-symbiotic.
Chlorine It is considered essential for photosynthetic process.
Nickel
It is a component of some plant enzymes, most notably urease, which
metabolizes urea nitrogen into useable ammonia within the plant.
9
Major Sources of Nutrients
Component Desirable effect Other effect
Fertilizer Concentrated source Concentrated source
Concentrated Organic source
Less nutrients but improves
soil physical properties
Immediate crop need not
met
Green manure
Source of N from the
atmosphere
Crop competition
Crop residues
Source of K. Mulching has
+ve effect on soil properties
Immobilization of nutrients,
more fertilizer needed.
Crop rotation (other crop-
Legume)
N fixed by legumes, improves
soil permeability
Little N fixed available to the
rotation crop
Rhizobium, Azospirillum &
BGA
Mycorrhiza & P solubilizer
N fixers
P solibilizer
Small amount of N fixation
Small amount P solubilized
10
Major Sources
of Organics
11
Chemical compositions of different Organics
Properties
Garden
compost
Vermicom
post
Poultry
Manure
Pressmud
Coir pith
Sludge FYM
Composte
d
Sujit Adhikary (2012)
Mohamed
et al.
(2010)
Patil et al.
(2000)
Bagavati
& Durai
(2001)
Udavaso
orian et
al. (2002)
ICAR
pH - - - 6.44 - 7.07 -
O.C. (%) 12.2 9.8-13.4 - 34 - 28.28 -
N (%) 0.8 0.51-1.61 2.40 - 3.60 1.63 1.06 0.34 0.50
P2O5 (%) 0.35 0.19-1.02 1.56 - 2.80 2.52 0.06 0.05 0.25
K20 (%) 0.48 0.15-0.73 1.40 - 2.31 0.55 0.20 0.42 0.40
Ca (%) 2.27 1.18-7.61 0.86-1.11 4.74 - 1.76 0.08
Cont...12
Properties
Garden
compost
Vermicom
post
Poultry
Manure
Pressmud
Coir pith
(Composted)
Sludge FYM
Sujit Adhikary (2012)
Mohamed
et al. (2010)
Patil et al.
(2000)
Bagavati &
Durai
(2001)
Udavaso
orian et
al. (2002)
ICAR
Fe (ppm) 11690
2050-
13313
970-1370 - - 752 4500
Mn (ppm) 414 105-2038 190-350 - - 131 70
Zn (ppm) 12 42-1100 160-315 - - 290 40
Mg (%) 0.57
0.093-
0.568
- - - 0.33 -
S (%) - - - - - - -
C:N ratio - - 9.4 – 11.5 20.8 24.1 83.1 1-20
13
 To maintain crop productivity on sustainable basis
 To maintain or enhance soil productivity through balanced use
of mineral fertilizers combined with organic and biological
sources of plant nutrients.
 To reduce the gap between nutrients used and nutrient
harvested
 To improve physical, chemical and biological properties of soil
15
 To make soil healthy by providing balanced nutrition
 To overcome or to reduce the ill effects of continuous use
of only major nutrients
 To increase the fertilizer use efficiency and improve
economical status of farmers
 To improve the stock of plant nutrients in the soil.
 To improve efficiency of plant nutrients, thus limiting
losses to the environment
16
Treatment
T1 50% NPK
T2 100% NPK
T3 150% NPK
T4 100% NPK + ZnSO4 (once in a 3 year) to Groundnut & 100% NPK to Wheat
T5 NPK as per soil test
T6 100% NP
T7 100% N
T8 50% NPK + 10 t ha-1 FYM to Groundnut & 100% NPK to Wheat
T9 Only FYM 25 t ha-1 to Groundnut only
T10 50% NPK + Rhizobium + PSM Groundnut & 100% NPK to Wheat
T11 100% NPK (P as SSP)
T12 Control
Conti…
Table 1: Mean yield (kg ha-1) of groundnut (kharif 2015) and wheat (Rabi 2015-16) in
Groundnut-Wheat cropping sequence on LTFE basis.
18
Treatment
Groundnut (kg ha-1) Wheat (kg ha-1)
Pod Haulm Grain Stover
T1 808 1848 2296 2702
T2 946 2191 3013 3637
T3 1028 2259 3266 3679
T4 954 2202 3183 3535
T5 989 2097 3168 3138
T6 787 1779 2597 3088
T7 626 1523 1612 1984
T8 1203 2364 3853 4261
T9 1118 2261 3656 3832
T10 868 2013 2840 3065
T11 881 2079 3119 3185
T12 707 1678 1826 2220
S. Em. (±) 51 92 136 169
C. D. at 5% 148 265 390 481
JAU-Junagadh 19 Anon. (2017)
Table 1: Mean yield (kg ha-1) of groundnut (kharif 2015) and wheat (Rabi 2015-16) in Groundnut-Wheat
cropping sequence on LTFE basis.
Table 2: Response of nutrients in long- term fertilizer experiment under soybean -
wheat sequence (1972- 2000)
Treatment
Average grain yield
(t ha-1)
Per cent response
over 100 % NPK
Soybean Wheat Soybean Wheat
T1 100 % NPK 2.17 4.25 - -
T2 100 % NPK+ Zn 2.04 4.28 -5.99 0.71
T3 100 % NPK+FYM 2.34 4.63 7.83 8.94
T4 100 % NPK+ S 2.04 4.00 -5.99 -5.88
RDF – Wheat 120: 80: 40, Soybean 20: 80: 40 FYM @ 15 t ha-1
Jabalpur 20 Tiwari et al., (2002)
Table 3: Effect of INM on yield and yield attributes on Garlic.
Tr.
No.
Treatments
Yield (kg ha-1) Yield Attributes
Bulb Straw
Plant
height
(cm)
Bulb
girth
(cm)
Bulb
height
(cm)
No. of
cloves per
bulb
Bulb
TSS
T1 Control (Ab) 2511 861 32.8 2.64 2.54 10.8 39.0
T2 100% RDF (50:50:50) 3982 915 38.2 3.06 2.87 11.2 41.2
T3 100% RDF + FYM 5 t ha-1 4462 939 37.8 3.13 2.87 11.3 40.8
T4 50% RDF + FYM 10 t ha-1 4839 970 38.4 3.18 2.82 12.2 41.5
T5 100% RDF + PM 2 t ha-1 4158 921 39.9 2.98 2.79 10.9 39.4
T6 50% RDF + PM 4 t ha-1 4504 967 40.0 3.36 3.03 11.9 41.5
T7 FYM @ 10 t ha-1 3318 920 34.9 2.87 2.75 11.3 39.8
T8 PM @ 4 t ha-1 3696 869 37.0 3.21 2.91 11.0 39.6
S. Em. (±) 144.7 27.2 1.88 0.11 0.10 0.20 1.00
C. D. at 5% 425.6 NS NS 0.33 NS 0.59 NS
Mahuva, JAU 21 Anon. (2013)
Table 4 : Effect of different organic manures on maize and wheat yield (q ha-1)
Organic manures
Fallow Cowpea Dhaincha Guar Moong FYM
Maize (Main)
14.1 27.4 29.5 18.6 27.6 25.7
Wheat (Residual)
46.6 50.4 53.6 51.0 52.4 56.4
C.D. at 5%
Maize Wheat
4.3 5.6
Average over N levels
Ludhiana 22 Thind et al., (2002)
Treatments
Bajri yield (kg/ha)
Cabbage yield (q/ha)
Grain Straw
1. Control (NPK) 1468 3854 225.7
2. 10 t FYM 1751 4915 245.4
3. 10 t FYM + 2.5 t SS 1882 5160 267.3
4. 10 t FYM + 5.0 t SS 1955 5396 257.8
5. 10 t FYM + 10 t SS 2029 5591 277.3
6. 2.5 t SS 1580 4478 253.2
7. 5.0 t SS 1589 4335 258.4
8. 10.0 t SS 1648 4589 245.5
9. 20.0 t S S 1671 4412 244.4
C.D. at 5% 210 664 27.2
Table 5: Yield of bajri and cabbage as affected by application of sewage sludge (SS)
and FYM (Pooled: 2001-05)
Anand 23 Patel and George (2005)
Beneficial effects
of sludge on growth
of pearl millet
Application of FYM @ 10 t ha-
1 + treated sewage sludge
@ 2.5 t ha-1 to bajri is
beneficial for higher crop
yields under bajri-cabbage
sequence.
Cont.
.
24
Table 6: Effect of integrated nutrient management on fruit yield, fruit weight, fruit
size and Fruit volume of sweet orange cv. Mosambi.
Treatments
Fruit
yield
(kg/tree)
Fruit
weight
(g)
Fruit
length
(cm)
Fruit
breadth
(cm)
Fruit
volume
(cm3)
T1 (Control)- 250:150:180 gm NPK of RDF + 15 kg FYM 1.58 93.77 5.15 5.05 137.53
T2 75% N of RDF + 25 % OM (VC) 2.22 141.36 5.43 5.45 170.65
T3 60% N of RDF + 40 % OM (FYM) 2.68 152.81 6.33 6.15 250.67
T4 60% N of RDF + 40% OM (VC) 1.87 98.59 5.28 5.15 146.77
T5 50% N of RDF + 50 % OM (FYM) 1.50 119.01 5.63 5.65 188.16
T6 50% N of RDF + 50 % OM (VC) 1.36 100.31 5.45 5.58 178.02
T7 75 % N of RDF +25% OM (FYM) 2.10 124.00 6.10 5.48 192.18
SE (d) 0.20 7.40 0.13 0.14 10.75
C.D. at 5% 0.43 15.66 0.28 0.30 22.77
Pauri Garhwal, Uttarakhand 25 Gaurav et al., (2017)
Table 7 : Effect of integrated nutrient management practices on yield of pigeonpea,
pearl millet in pigeonpea + pearl millet (2: 2 ) intercropping system
Treatment
Grain yield (q ha-1)
Pigeonpea Pearl millet
1 50 % RDF 15.71 12.71
2 100 % RDF 17.92 15.86
3 FYM @ 5 t ha-1 15.39 15.52
4 50 % RDF+ FYM @ 5 t ha-1 17.15 14.87
5 50 % RDF+ VC @ 3 t ha-1 16.86 14.22
6 50 % RDF + Biofertilizer 15.89 13.33
7 50 % RDF+ FYM @ 5 t ha-1 +Biofertilizer 18.17 16.32
8 50 % RDF+ VC@ 3 t ha-1 +Biofertilizer 19.16 16.61
CD at 5% 1.36 1.08
RDF: Pigeonpea: 25:50:0 and pearl millet 60:30:30
Rahuri (MH) 26 Gholve et al., (2005)
Table 8: Effect of long- term INM on pod yield and Sustainability yield index of
groundnut (1985-2000)
Treatments
Pod yield
(kg ha-1)
(SYI)
Per cent
Increase over
control
T1 Control 832 -
T2 RDF 1023 23
T3 Half of RDF 985 18
T4 FYM @ 4 t ha-1 971 17
T5 Half of RDF + FYM @ 4 t ha-1 1041 25
T6 T2+ZnSO4 @ 50 kg ha-1 (Once in 3 Year) 1028 24
CD at 5% 65 -
RDF=20-17.5-33 kg NPK ha-1
Anantapur (A.P.) 27 Balaguravaiah et al., (2005)
Table 9: Effect of integrated use of fertilizer, organics and green manures on crop
yield under pearl millet- pigeonpea cropping system
Treatments
Pearl millet Pigeonpea
Grain (kg ha-1)
1 RDF 1721 559
2 50% N through VC + 50 % RDF 1600 593
3 50% N through FYM+ 50 % RDF 1744 683
4 50% N through Subabul + 50 % RDF 1656 801
5 50 % RDF 1577 605
6 Control 1245 439
CD at 5% 35 120
RDF for Pearl millet: 50-25-0 and Pigeon pea: 25-50-0 NPK ha-1
Bijapur 28 Tolanur and Badanur (2003)
T1 – Control
T2 – 100% RDF
T3 – FYM @ 10 t/ha
T4 – Castor cake @ 1 t/ha
T5 – Vermicompost @ 3 t/ha
T6 – FYM @ 5 t/ha + castor cake @ 500 kg/ha
T7 – FYM @ 5 t/ha + vermicompost @ 1500 kg/ha
T8 – Castor cake @ 500 kg/ha + vermicompost @ 1500 kg/ha
T9 – FYM @ 7.5 t/ha + castor cake @ 250 kg/ha
T10 – FYM @ 7.5 t/ha + vermicompost @ 750 kg/ha
T11 – FYM @ 5 t/ha + castor cake @ 250 kg/ha + vermicompost @ 750 kg/ha
T12 – FYM @ 2.5 t/ha + castor cake @ 500 kg/ha+ vermicompost @ 750 kg/ha
Table 11: Effect of varying sources of nitrogen on yield attributes & quality parameters in
Sesame.
Conti…29
Treatments
No. of capsule
per plant
No. of seed per
capsule
Seed yield
(kg/ha)
Stalk yield
(kg/ha)
Oil content
(%)
T1 38.67 46.67 501 916 36.33
T2 50.00 58.00 638 1226 42.00
T3 48.33 56.33 639 1420 46.48
T4 47.00 55.00 642 1246 44.77
T5 47.50 54.83 764 1240 45.79
T6 52.00 60.00 664 1446 47.13
T7 55.00 63.00 680 1420 45.00
T8 52.67 60.67 692 1460 47.14
T9 54.00 62.67 706 1240 41.85
T10 57.00 65.00 746 1394 44.57
T11 66.33 73.00 824 1604 51.54
T12 64.33 71.67 801 1480 49.14
S.Em.± 2.60 2.59 14 76 1.48
C.D. at 5 % 7.63 7.60 41 223 4.33
Junagadh 30 Takar et al., (2017)
Table 11: Effect of varying sources of nitrogen on yield attributes & quality parameters in Sesame.
Treatments
Length of
spike
(cm)
Length of
Spikelet
(cm)
Number of
spikelet
per spike
Grain yield
per plant
(g)
Stover yield
per plant
(g)
Grain yield
(kg ha-1)
Stover yield
(kg ha-1)
Test
weight
(g)
M0: No manure 36.2 18.3 46.9 8.4 16.5 1506 2775 0.50
M1: FYM @
6t/ha
39.3 19.0 51.4 9.3 18.1 1701 3303 0.53
M2:Vermicompo
st @ 0.5t/ha
38.1 18.7 50.8 9.3 17.9 1664 3252 0.52
S.Em.± 0.80 0.40 0.45 0.07 0.17 9.67 51.97 0.004
C.D. at 5% 2.40 NS 1.33 0.22 0.49 28.43 151.69 0.01
C.V.% 8.70 8.70 3.69 3.39 3.91 7.80 7.23 3.38
Table-12: Effect of Organic Manures on growth parameter, yield Attributes and test
weight of Amaranthus (Amaranthus paniculatus L.)
Junagadh 31 Solanki et al., (2017)
0
5
10
15
20
25
30
35
F0 F1 F0 F1 F0 F1
Mustard Pearlmillet Cowpeafodder
Values
Fig. 13: Long term effect of FYM on bio-chemical parameters of crops
Protein (%) Oil (%)
Bhopal 33 Singh (2006)
Table 14: Effect of integrated nutrient management on biochemical parameter and
leaf content of nitrogen, phosphorus and potassium in papaya
T1 RDF (200:200:250 g/pl) + FYM @10 kg/pl
T2 Vermicompost @ 20 Kg/pl)
T3 Castor cake @ 4 kg/pl
T4 Azotobactor @ 50 g/pl + PSB @ 2.5 g/m2
T5 Jivamrut @ 500 litre/ha
T6 1/2 RDF +1/2 Vermicompost
T7 1/2 RDF + 1/2 castor cake
T8 1/2 RDF + Azotobactor @ 50g/plant + PSB @ 2.5 g/m2
T9 1/2 RDF + 1/2 Jivamrut
T10 1/4 RDF + 3/4 Vermicompost
T11 1/4 RDF + 3/4 castor cake
T12 1/4 RDF + Azotobactor @ 50 g/pl+ PSB @ 2.5 g/m2
T13 1/4 RDF + 3/4 Jivamrut
T14 control (RDF)
Conti…34
Treatments
Reducing
sugars (%)
Non-Reducing
sugars (%)
Total sugar
(%)
TSS
(0B)
N content
(%)
P content
(%)
K content
(%)
T1 8.25 0.76 10.91 12.29 1.21 0.182 2.46
T2 7.90 0.93 8.83 11.85 1.23 0.179 2.52
T3 8.76 1.01 9.77 13.06 1.24 0.178 2.45
T4 9.34 0.60 9.93 12.13 1.19 0.178 2.40
T5 9.92 1.00 10.92 11.00 1.19 0.183 2.53
T6 10.18 1.20 11.38 11.99 1.22 0.178 2.57
T7 9.92 0.92 10.83 13.81 1.25 0.181 2.44
T8 11.10 2.43 13.58 15.47 1.37 0.186 2.72
T9 10.19 1.42 11.61 11.67 1.25 0.178 2.62
T10 8.03 1.16 9.20 12.51 1.25 0.177 2.39
T11 9.35 0.70 10.05 11.82 1.18 0.176 2.45
T12 9.82 1.03 10.84 12.97 1.16 0.180 2.52
T13 10.37 2.22 12.59 13.16 1.30 0.177 2.64
T14 7.33 0.45 7.78 9.19 1.11 0.165 2.35
S.E..± 0.467 0.351 0.611 0.759 0.030 0.001 0.073
C.D. at 5% 1.33 1.05 1.74 2.17 0.08 0.05 0.21
C.V. % 8.69 5.53 10.00 10.65 4.36 1.86 5.09
Junagadh 35 Singh & Varu (2013)
Table 14: Effect of integrated nutrient management on biochemical parameter and NPK content in papaya
T1 – Control
T2 – 100% RDF
T3 – FYM @ 10 t/ha
T4 – Castor cake @ 1 t/ha
T5 – Vermicompost @ 3 t/ha
T6 – FYM @ 5 t/ha + castor cake @ 500 kg/ha
T7 – FYM @ 5 t/ha + vermicompost @ 1500 kg/ha
T8 – Castor cake @ 500 kg/ha + vermicompost @ 1500 kg/ha
T9 – FYM @ 7.5 t/ha + castor cake @ 250 kg/ha
T10 – FYM @ 7.5 t/ha + vermicompost @ 750 kg/ha
T11 – FYM @ 5 t/ha + castor cake @ 250 kg/ha + vermicompost @ 750 kg/ha
T12 – FYM @ 2.5 t/ha + castor cake @ 500 kg/ha+ vermicompost @ 750 kg/ha
Table 15: Effect of varying sources of Nutrients on nutrient content in seed and stalk of sesame
Conti…36
Treatments
Nutrient content in seed (%) Nutrient content in stalk (%)
N P K N P K
T1 2.88 0.38 0.66 0.59 1.14 0.30
T2 3.23 0.43 0.73 0.68 1.58 0.42
T3 3.27 0.43 0.75 0.70 1.48 0.46
T4 3.29 0.43 0.66 0.66 1.35 0.41
T5 3.29 0.44 0.71 0.66 1.37 0.40
T6 3.30 0.44 0.70 0.65 1.36 0.39
T7 3.36 0.48 0.79 0.74 1.60 0.46
T8 3.39 0.45 0.75 0.70 1.57 0.44
T9 3.40 0.46 0.76 0.71 1.60 0.45
T10 3.42 0.47 0.77 0.72 1.61 0.47
T11 4.35 0.57 0.91 0.86 1.85 0.55
T12 3.49 0.51 0.81 0.76 1.66 0.50
S.Em.± 0.08 0.01 0.02 0.02 0.06 0.01
C.D. at 5 % 0.25 0.04 0.06 0.06 0.18 0.03
Junagadh 37 Takar et al., (2017)
Table 15: Effect of varying sources of Nutrients on nutrient content in seed and stalk of sesame
Table-16: N,P and K content and Uptake by Grain and Stover of Amaranthus
(Amaranthus paniculatus L.)
Treatments
Nutrient Content (kg ha-1) Nutrient Uptake (kg ha-1)
N P K N P K
Organic Manures Grain Stover Grain Stover Grain Stover Grain Stover Grain Stover Grain
Stove
r
M0: No manure 2.53 0.90 1.31 0.30 1.00 0.27 38.56 25.34 19.89 8.66 15.93 8.26
M1: FYM @ 6t ha-1 2.64 1.00 1.32 0.31 1.11 0.32 44.00 34.92 22.16 10.18 18.00 10.05
M2:Vermicompost @ 0.5t ha-1 2.63 0.97 1.31 0.30 1.07 0.30 43.03 31.86 21.80 9.87 17.47 9.74
S.Em.± 0.01 0.01 0.004 0.002 0.01 0.006 0.68 1.05 0.42 0.21 0.19 0.21
C.D. at 5% 0.05 0.04 0.01 0.008 0.04 0.02 2.00 3.06 1.24 0.62 0.57 0.62
C.V.% 2.88 6.01 1.43 3.54 5.27 9.70 5.31 13.69 5.31 9.01 4.30 9.20
Junagadh 38 Solanki et al., (2017)
T1 FYM @ 10 kg/plant + Neem Cake @ 1.25 kg/plant + Vermicompost @ 5 kg/plant and Wood ash @ 1.75 kg/plant
T2 FYM @ 10 kg/plant + Neem Cake @ 1.25 kg/plant + Vermicompost @ 5 kg/plant and Wood ash @ 3.75 kg/plant
T3 FYM @ 15 kg/plant + Neem Cake @ 1.875 kg/plant + Vermicompost @ 7.5 kg/plant and Wood ash @ 625 g/plant
T4 FYM @ 15 kg/plant + Neem Cake @ 1.875 kg/plant + Vermicompost @ 7.5 kg/plant and Wood ash @ 2.625
kg/plant
T5 Control - absence of organic and inorganic sources
T6 Triple green manuring with sunhemp + Cow pea + Cow pea as inter - crop
T7 Arbuscular Mycorrhizae @ 25 g/plant + Azospirillum @ 50 g/plant + PSB @ 50 g and Trichoderma harzianum @ 50
g/plant
T8 T1 + T6
T9 T1 + T7
T10 T1 + T6 + T7
T11 300 : 100 : 300 g NPK /plant
T12 110 : 35 : 330 g NPK /plant
Table 17: Effect of organic manures and amendments on quality and post harvest
characteristics of banana cv. Grand Naine
Conti…39
Treatments
TSS
(%)
Acidity
(%)
Ascorbic
acid
(mg. 100 g-1)
Non-
reducing
sugars (%)
Reducing
sugars (%)
Total
sugars (%)
PLW (%)
Shelf life
(days)
T1 21.49 0.83 12.04 5.36 9.08 14.44 9.64 13.18
T2 21.83 0.84 11.56 5.51 8.69 14.20 9.32 12.74
T3 21.89 0.82 12.43 5.85 8.90 14.75 9.45 12.97
T4 21.58 0.84 12.37 5.82 8.72 14.54 10.37 13.84
T5 20.56 0.84 11.06 4.45 7.03 11.48 12.05 9.73
T6 21.45 0.84 11.96 5.25 7.63 12.88 13.22 11.07
T7 21.72 0.83 12.65 5.66 8.23 13.89 8.85 13.27
T8 21.63 0.83 12.24 5.73 7.93 13.66 9.36 13.93
T9 22.47 0.84 12.46 5.95 9.10 15.05 7.84 13.87
T10 23.23 0.82 12.92 6.06 8.86 14.92 7.44 14.03
T11 21.93 0.83 11.91 5.15 8.41 13.56 11.84 10.26
T12 22.08 0.84 12.33 5.45 8.37 13.82 11.28 10.87
Sed 0.24 NS 0.14 0.06 0.07 0.19 0.14 0.14
CD at 5% 0.49 NS 0.29 0.12 0.14 0.40 0.29 0.28
TNAU, Coimbtore 40 Vanilarasu & Balakrishnamurthy (2014)
Table 17: Effect of organic manures and amendments on quality and post harvest characteristics of banana.
Table 18: Diameter and shelf life of Marigold cv. Pusa Narangi as influenced by INM
Conti…
(T1) 200kg N ha-1 + 100kg P2O5 ha-1 + 100kg K2O ha-1 (control)
(T2) 200kg N ha -1 + 100kg P2O5 ha -1 + 100kg K2O ha -1 + 15 t ha -1 FYM (RDF)
(T3) 70% RDF + 2 t ha -1 vermicompost + Azotobacter + PSB
(T4) 70% RDF+ 2 t ha-1 vermicompost + Azospirillium + PSB
(T5) 70% RDF + 2 t ha -1 vermicompost + Azotobacter + Azospirillium + PSB
(T6) 60% RDF + 3 t ha -1 vermicompost + Azotobacter + PSB
(T7) 60% RDF + 3 t ha -1 vermicompost + Azospirillium + PSB
(T8) 60% RDF + 3 t ha -1 vermicompost + Azotobacter + Azospirillium + PSB
(T9) 50% RDF+4 t ha-1 vermicompost + Azotobacter + PSB
(T10) 50% RDF + 4 t ha -1 vermicompost + Azospirillium + PSB
(T11) 50% RDF+4 t ha-1 vermicompost + Azotobacter + Azospirillium + PSB
RDF = 200kg N ha-1 + 100kg P2O5 ha-1 + 100kg K2O ha-1 + 15 t ha-1 FYM
41
Treatment
Yield (g/plant) Diameter (cm) Shelf life (days)
2011 2012 Pooled 2011 2012 Pooled 2011 2012 Pooled
T1 214.92 201.62 208.20 5.33 5.10 5.22 3.20 3.20 3.20
T2 273.14 262.19 267.62 5.67 5.33 5.50 5.00 4.90 4.95
T3 283.18 277.73 282.40 6.33 6.53 6.43 3.87 3.83 3.85
T4 310.44 294.06 302.22 5.84 6.07 5.96 3.92 3.88 3.90
T5 379.61 373.02 376.50 7.10 7.50 7.30 4.40 4.40 4.40
T6 295.74 286.99 291.30 6.20 6.33 6.27 3.65 3.55 3.55
T7 311.06 295.15 303.32 6.25 6.45 6.35 3.99 3.88 3.94
T8 358.25 337.69 347.90 6.98 6.86 6.92 4.00 4.00 4.00
T9 188.05 181.97 185.00 5.03 5.10 5.07 3.37 3.23 3.30
T10 211.90 196.49 204.1 5.27 5.07 5.17 3.03 2.90 2.97
T11 329.88 333.12 331.5 6.67 6.89 6.78 4.65 4.54 4.60
S.E. + 21.06 24.09 16.00 0.26 0.31 0.20 0.28 0.27 0.19
C.D. at 5 62.14 71.07 45.73 0.76 0.92 0.58 0.82 0.78 0.55
CV% 13.14 15.64 14.40 7.41 8.87 8.18 12.35 12.06 12.21
Junagadh 42 Thumar et al., (2013)
Table 19: Effect of different INM treatments on quality parameters of wheat in black
calcareous soil.
Junagadh 43 Vinotha & Parmar (2016)
Treatments
Protein
content
(%)
Protein
yield
(kg ha-1)
Test weight
(1000
grains) (g)
T1 Absolute control 9.98 223 40.64
T2 RDF (120:60:60 kg N: P2O5: K2O ha-1) 10.09 302 41.14
T3 T2 + 40 kg S ha-1 10.97 330 42.85
T4 T3 + ZnSO4 @ 25 kg ha-1 11.86 399 43.70
T5 T4 + FYM @ 5 t ha-1 12.41 441 44.37
T6
75% N + full PK of RDF + S + ZnSO4 + FYM + Azatobacter
@ 10 ml kg-1 seed
12.90 500 45.21
T7
75% NP + full K of RDF + S + ZnSO4 + FYM + Azatobacter
+ PSB @ 10 ml kg-1 seed
13.30 550 47.57
T8
75% NPK of RDF + S + ZnSO4 + FYM + Azatobacter + PSB
+ KSB @ 10 ml kg-1 seed
13.96 527 46.36
CD at 5% 1.44 109 4.23
SOIL HEALTH
PLANT HEALTH
HUMAN HEALTH
45
Role of Soil Organics
PHYSICAL
Dark brown to black
color
Granulation & aggregate
stability
Reduced plasticity,
cohesion & stickiness
Increase infiltration and
water holding capacity
Climate buffering
CHEMICAL
Increased CEC
pH buffering
Slow release of NPS &
Micronutrients
Chelation of Fe, Cu, Zn &
Mn
Decrease Al toxicity via
binding in acid soils
BIOLOGICAL
Organism food
Increased activity
Increased biomass
Increased biodiversity
46
Treatment
Organic
matter (g/kg)
Available
water %
Bulk
density
(Mg m-3)
1 100 % NPK 2.61 14.5 1.32
2 100 % NPK+ Zn 2.80 14.7 1.31
3 100 % NPK+ FYM 2.92 19.0 1.30
4 100 % NPK+ S 2.55 14.3 1.33
Control 2.32 17.9 1.33
Table 20: Changes in soil bulk density and water retention due to continuous
cropping and fertilization (after 9 years)
Rice - Wheat - Cowpea cropping sequence, Initial OM% = 2.5
Nainital 48 Bharadwaj and Omanwar (1992)
Table 21: Long term effect of organics and inorganic on physical properties of soil (0
– 15 cm) under ragi-maize- cowpea cropping sequence
Treatment BD ( g cc-1) TP (%) WHC HC
1 50 % NPK 1.48 50.69 46.00 0.80
2 100 % NPK 1.51 52.81 45.50 0.77
3 150 % NPK 1.52 54.59 47.50 0.78
4 100 % NPK+ FYM 1.47 57.59 48.75 2.06
Control 1.58 53.21 42.00 0.68
Coimbatore 49 Sheeba and Chellamuthu (1996)
Table 22: The physical properties of the soil as influenced by different manure
fertilizer schedules in rice
Treatments BD (g cc-1) Pore space (%) WHC (%)
Control (NPK) 1.25 46.0 41.1
NPK + FYM 1.18 51.5 47.2
NPK + GLM 1.21 47.8 43.9
NPK + UC 1.20 51.0 44.6
CD at 5% 0.10 0.6 0.9
GLM – Green leaf manure, UC- Urban compost , Green manure @ 12 t ha-1,120-60-60 NPK kg ha-1
Madurai 50 Sheeba and Kumarasamy (2001)
Treatment
Bulk density
(g cc-1)
Particle density
(g cc-1)
% pore space
T1 – Absolute control 1.48 2.40 40.0
T2 – RD of inorganic fertilizer 1.54 3.08 49.8
T3 – FYM 1.44 2.40 43.3
T4 – Vermicompost 1.44 2.16 35.7
T5 – RD of inorganic fertilizers + FYM 1.48 2.40 40.0
T6– RD of inorganic fertilizers+
Vermicompost
1.44 2.71 54.1
S.Em. 0.003 0.02 0.5
CD at 5% 0.01 0.05 1.0
Table 23.: Effect of integrated nutrient management practices on physical properties
of soil in Maize
Pollachi (Tamil Nadu) 51 Lalit et al., (2013)
Treatment
Combination
BD
(g cc-1)
PD
(g cc-1)
Pore
space (%)
T0 = L0F0 0% NPK & S + 0% FYM 1.27 2.65 39.76
T1 = L0F1 0% NPK & S + 50% FYM 1.25 2.76 42.70
T2 = L0F2 0% NPK & S + 100% FYM 1.20 2.65 40.83
T3 = L1F0 50% NPK & S + 0% FYM 1.30 2.55 39.36
T4 = L1F1 50% NPK & S + 50% FYM 1.17 2.45 42.80
T5 = L1F2 50% NPK & S + 100% FYM 1.19 2.55 41.20
T6 = L2F0 100% NPK & S + 0% FYM 1.22 2.62 42.20
T7 = L2F1 100% NPK & S + 50% FYM 1.30 2.63 40.20
T8 = L2F2 100% NPK & S + 100% FYM 1.22 2.75 39.70
S. Em () 0.01 0.01 0.36
C. D. at 5% 0.02 0.03 0.76
Table 24: Response of inorganic fertilizers and FYM on post harvest properties of soil
of Yellow Mustard (Brassica campestris L.) cv. Ulhas.
Allahabad (UP) 52 Akash et al., (2017)
Table 25: Changes in available nutrient and organic carbon status of soil after wheat
Treatment
OC
(g/kg)
Available Nutrient (kg ha-1)
N P K S
100 % NPK 8.0 258 30.57 290 27.70
100 % NPK+ Zn 7.6 272 30.25 275 24.90
100 % NPK+FYM 9.6 290 39.40 310 38.15
100 % NPK+ S 7.3 258 29.65 255 12.15
Control 6.1 209 10.20 225 11.85
CD at 5% 1.0 31 4.6 34 3.7
Initial (1972) 5.7 193 7.6 370 16.00
RDF- Soybean- 20:80: 20 and Wheat- 120:80:40, FYM @ 15 t h-1 and Zn: @ 20 kg ZnSO4
Jabalpur 54 Tiwari et al., (2002)
Table 26 : Influence of long- term use of fertilizers and manures in groundnut on important soil
properties and available nutrients of soil ( Average of 18 years)
Treatments
pH
OC
(g kg-1)
Available nutrients
(kg ha-1)
N P K
T1 Control 6.9 1.9 112 14 103
T2 RDF 6.4 2.3 110 54 140
T3 Half of RDF 6.6 2.0 101 41 106
T4 FYM @ 4 t ha-1 7.6 2.5 120 18 188
T5 Half of RDF + FYM @ 4 t ha-1 7.4 3.4 128 45 174
T6 RDF + ZnSO4 @ 50 kg ha-1 (once in 3 Year) 6.3 2.6 102 58 108
CD at 5% 0.57 0.1 NS 8.4 43
Initial (1985) 6.6 2.5 139 20 155
RDF=20-17.5-33 kg NPK ha-1
Anantapur (A.P.) 55 Balaguravaiah et al., (2005)
Table 27 : Effect of INM practices on available nutrients in Pigeonpea + Pearl Millet
(2:2) intercropping system
Treatment
Available (kg ha-1)
OC (%)
N P K
1 50 % RDF 150.00 14.92 436.10 0.60
2 100 % RDF 160.40 15.67 453.80 0.61
3 50 % RDF+ FYM @ 5 t ha-1 158.80 15.91 453.37 0.61
4 50 % RDF+ VC @ 3 t ha-1 159.83 15.90 454.41 0.62
5 50 % RDF+Biofertilizer 150.20 14.91 447.79 0.59
6 50 % RDF+ FYM @ 5 t ha-1 +Biofertilizer 163.85 17.00 459.40 0.63
7 50 % RDF+ VC @ 3 t ha-1 +Biofertilizer 164.00 17.16 455.00 0.65
CD at 5% 5.94 NS 12.68 0.017
Initial soil status 140.15 15.10 415.90 0.61
RDF: Pigeonpea: 25:50:0 and pearl millet 60:30:30
Rahuri (MH) 56 Gholve et al., (2005)
Table 28: Effect of continuous application of organic manures on chemical properties
of soil in maize-wheat rotation
Characteristics
Organic manures
CD at 5%
Fallow Cowpea Dhaincha Guar FYM
OC (%) 0.38 0.45 0.46 0.45 0.54 0.01
Avail. N
(kg ha-1)
115 146 153 143 156 11.89
Avail. P 39.7 48.2 44.8 47.5 66.3 3.66
Avail. K 147 155 152 168 169 8.45
Zn
( mg kg –1)
1.00 1.95 1.86 1.96 2.25 0.25
Cu 0.41 0.57 0.51 0.60 0.61 0.09
Fe 9.29 11.58 11.79 11.82 13.41 2.05
Mn 14.87 19.85 19.61 20.05 21.93 3.80
Average over N levels
Ludhiana 57 Thind et al., (2002)
Table 28: Effect of different INM treatments on soil available micro nutrients (Fe, Zn, Mn & Cu)
after harvest of wheat in black calcareous soil.
Junagadh 58 Vinotha & Parmar (2016)
Treatments
Avilable soil micronutrients
(mg kg-1)
Fe Zn Mn Cu
Initial 9.94 0.41 16.40 3.64
T1 Absolute control 9.87 0.36 17.16 2.43
T2 RDF (120:60:60 kg N: P2O5: K2O ha-1) 10.40 0.38 17.38 2.46
T3 T2 + 40 kg S ha-1 10.51 0.45 17.65 2.48
T4 T3 + ZnSO4 @ 25 kg ha-1 10.68 0.47 18.32 2.54
T5 T4 + FYM @ 5 t ha-1 11.30 0.52 18.34 2.56
T6
75% N + full PK of RDF + S + ZnSO4 + FYM + Azatobacter @ 10 ml kg-1
seed
11.35 0.56 18.67 2.65
T7
75% NP + full K of RDF + S + ZnSO4 + FYM + Azatobacter + PSB @ 10 ml
kg-1 seed
11.67 0.61 19.46 2.72
T8
75% NPK of RDF + S + ZnSO4 + FYM + Azatobacter + PSB + KSB @ 10 ml
kg-1 seed
11.43 0.59 18.97 2.69
CD at 5% NS 0.09 NS NS
Table 29: Effect if INM in Garlic on soil chemical properties and available nutrient after
Harvest.
Tr.
No.
Treatments
Soil chemical Properties Available nutrient (kg ha-1)
EC
(dS m-1)
pH ESP N P2O5 K2O S
T1 Control (Ab) 2.12 8.2 16.0 210 38.8 475 14.2
T2 100% RDF (50:50:50) 1.98 8.2 15.4 237 43.5 512 16.5
T3 100% RDF + FYM 5 t ha-1 1.70 8.2 14.7 247 78.7 536 19.8
T4 50% RDF + FYM 10 t ha-1 1.65 8.2 14.6 253 86.4 640 21.8
T5 100% RDF + PM 2 t ha-1 1.70 8.2 14.9 219 66.6 628 17.6
T6 50% RDF + PM 4 t ha-1 1.69 8.1 15.2 220 54.4 580 16.6
T7 FYM @ 10 t ha-1 1.48 8.1 14.5 229 64.0 594 17.7
T8 PM @ 4 t ha-1 1.58 8.1 15.0 226 58.9 578 17.2
S. Em. (±) 0.11 0.04 0.24 6.6 4.8 17.9 1.01
C. D. at 5% 0.33 NS 0.72 19.5 14.0 43.8 2.97
Mahuva, JAU 59 Anon. (2013)
Treatments
Available N
(kg/ha)
Available P
(kg/ha)
Available K
(kg/ha)
Soil Depth (cm)
0-15 15-30 0-15 15-30 0-15 15-30
T1 = Control (without Manure and Fertilizer) 142.2 135.4 20.2 19.3 128.2 122.7
T2 = 100% RDF 166.1 155.8 25.6 22.2 143.4 135.3
T3 = 50% RDF + VC @ 2.5 ton/ha 172.4 161.3 26.1 23.7 145.7 137.5
T4= VC @ 5 ton/ha 148.9 142.6 22.8 21.5 138.6 130.6
CD at 5% 5.8 6.2 1.3 0.9 2.7 4.1
Table.30: Available N, P and K contents at two depths of soil profile as influenced by
integrated nutrient management on Gladiolus hybrids.
Nadia (WB) 60 Rubina et al., (2017)
Table 31: Effect of long- term fertilizer use on nitrifers and azotobactor population (x
104 g-1 soil) under soybean- wheat- maize sequence
Treatments
At 50 days incubation period
Nitrosomonas Nitrobactor Azotobactor
100 % NPK 0.46 0.74 65.00
100 % NPK+ Zn 0.53 1.00 72.00
100 % NPK+ FYM 1.00 4.43 110.00
100 % NPK+ S 0.35 1.30 65.00
Control 0.14 0.23 29.00
CD at 5% 0.04 0.12 8.66
FYM @ 15 t ha-1
Jabalpur 62 Jain et al., (2003)
Treatment
Microbial population (0-15 cm)
Fungi
(x 105 g-1)
Actinomycetes
(106g-1)
Bacteria
(106g-1)
100 % NPK 52.7 5.6 2.1
100 % NPK+ Zn 73.1 8.2 1.8
100 % NPK+ FYM 87.3 6.1 2.5
Control 69.2 4.9 1.7
Table 32: Changes in Microbiological population due to under rice – wheat - cowpea
sequence (after 9 years)
Nainital 63 Bharadwaj and Omanwar (1992)
Table 33: Effect of integrated use of lime and organic, inorganic, and biological
nutrient sources on soil microbial indicators.
Treatments
Microbial biomass
C
(mg kg−1)
Microbial biomass
N
(mg kg−1)
Microbial biomass
P
(mg kg−1)
T0 Control without any fertilizer 189.25 16.59 5.56
T1 50% NPK 218.62 22.55 8.68
T2 100% NPK 266.78 38.66 9.12
T3 50% NPK + lime + Biofertilizer 254.26 26.36 7.99
T4 100% NPK + lime + Biofertilizer 291.08 37.58 9.51
T5 50% NPK + lime + FYM 287.00 37.19 9.04
T6 100% NPK + lime + FYM 317.02 45.69 11.47
T7 50% NPK + FYM + Biofertilizer 283.74 40.10 9.50
T8 100% NPK + FYM + Biofertilizer 344.32 45.43 9.92
T9 50% NPK + lime + Biofertilizer + FYM 342.54 43.29 10.43
T10 100% NPK + lime + Biofertilizer + FYM 373.02 49.14 13.82
CD at 5% 9.22 2.02 1.43
Umiam, Meghalaya 64 Saha et al. (2010)
Table 34: Soil microbial population (x 105 g-1) in soil as influenced by FYM under bajri-
mustard- cowpea continuous cropping
Treatment Bacteria Fungi Actinomycetes Total
(0-15 cm)
F0 131 38.6 8.9 179
F1 195 18.8 8.1 197
(15-30 cm)
F0 121 30.6 5.7 160
F1 150 26.6 5.6 172
Anand 65 Patel (2002)
Table 34: Effect of different INM treatments on soil available micro nutrients (Fe, Zn, Mn & Cu)
after harvest of wheat in black calcareous soil.
Junagadh 66 Vinotha & Parmar (2016)
Treatments
Soil Bacterial population
(× 10-7 CFU g-1 soil)
Azatobacter PSB KSB
T1 Absolute control 1.33 2.22 2.27
T2 RDF (120:60:60 kg N: P2O5: K2O ha-1) 2.74 4.31 2.53
T3 T2 + 40 kg S ha-1 1.15 1.57 1.98
T4 T3 + ZnSO4 @ 25 kg ha-1 3.48 2.30 2.30
T5 T4 + FYM @ 5 t ha-1 5.39 8.65 7.81
T6
75% N + full PK of RDF + S + ZnSO4 + FYM + Azatobacter @ 10 ml
kg-1 seed
12.00 7.07 7.09
T7
75% NP + full K of RDF + S + ZnSO4 + FYM + Azatobacter + PSB @
10 ml kg-1 seed
10.67 11.17 8.03
T8
75% NPK of RDF + S + ZnSO4 + FYM + Azatobacter + PSB + KSB @
10 ml kg-1 seed
13.00 10.93 12.28
CD at 5% 1.05 0.90 0.92
T1 : 100% RDF (200:200:200 NPK kg/ha)
T2 : 50% RDF + FYM @ 15 t/ha
T3 : 75% RDF + FYM @ 7.5 t/ha
T4 : 100% RDF + FYM @ 7.5 t/ha
T5 : 50% RDF + FYM @ 15 t/ha + Azotobacter + PSB + KMB
T6 : 75% RDF + FYM @ 7.5 t/ha +Azotobacter + PSB + KMB
T7 : 100% RDF + FYM @ 7.5 t/ha + Azotobacter + PSB + KMB
T8 : T1 + Azotobacter + PSB + KMB
T9 : T1 + 1% foliar spray of Nauroji Novel Organic Liquid Fertilizer
T10 : T7 + 1% foliar spray of Nauroji Novel Organic Liquid Fertilizer
Table.35 Effect of integrated nutrient management on physic- chemical & Bioligical
properties of soil in Gladiolus (Gladiolus grandiflorus L.) cv. American beauty
Conti…67
Treatments
EC
(dSm-1)
Available N, P & K in soil
Organic
carbon (%)
Microbial population
(CFU/g soil)
Colonies × 10-7N (kg/ha) P (kg/ha) K (kg/ha)
T1 1.07 188.27 15.60 256.77 0.50 58.00
T2 1.03 151.00 16.77 259.00 0.60 61.67
T3 0.97 152.27 16.73 260.33 0.63 63.33
T4 0.90 152.83 15.07 268.00 0.67 65.00
T5 0.83 157.00 16.70 270.90 0.70 69.00
T6 0.73 165.70 17.27 304.67 0.63 79.00
T7 0.80 167.85 18.94 307.00 0.73 82.67
T8 0.90 155.53 17.00 272.33 0.60 73.67
T9 1.00 155.10 17.06 266.67 0.57 72.00
T10 0.67 178.73 19.48 314.13 0.80 90.67
S.Em.± 0.05 6.26 0.79 11.65 0.03 5.48
C.D. at 5 % 0.14 18.61 2.34 34.34 0.09 16.29
Navsari 68 Sathyanarayana et al. (2017)
Table.35 Effect of INM on physic- chemical & Biological properties of soil in Gladiolus
Table.36. Effect of different nutrient management changes in biological properties of
soil in Rice based cropping system 2007 08
Treatment
Fungi
(104/g)
Bacteria
(106/g)
Azatobacter
(106/g)
PSB
(106/g)
Actinomycities
(106/g)
Initial 33.7 35.7 17.5 9.7 5.9
100% Organic 49.3 60.0 31.7 20.5 14.5
100% Inorganic 38.8 36.1 20.7 12.4 7.9
50% organic +
50% Inorganic
41.7 44.2 25.4 15.5 11.6
Jabalpur (MP) 69 Rajiv et al., (2014)
From the foregoing results it can be conclude that nether the chemical
fertilizers alone nor the organic sources exclusively can sustain the productivity.
Organics is an important component of INM which helps to restore and
sustain Soil Heath as well as soil fertility and crop productivity. Organics along
with inorganic fertilizers provides balanced nutrition to crops which increases
crop yield and quality. It also improves physical, chemical and biological
properties of soil on sustainable basis. The application of fertilizers in conjunction
with organics in a balanced form is necessary for maintaining soil fertility and
crop productivity under intensive cropping.
CONCLUSION
70
 Need to identify limiting nutrients in a order of priority for important
crops under different agro-ec regions.
 Need for studies on bio- chemical changes due to imbalanced /
balanced nutrition in physiology of different crops.
 Need for development of suitable technology involving different
organics to improve nutrient use efficiency by crops under intensive
cropping.
 Need for development of location and crop specific multi-nutrients
enriched organics for balanced nutrition of different crops.
FUTURE NEEDS
71
Role of organics in balanced fertilization

More Related Content

What's hot

potassium dynamics
potassium dynamicspotassium dynamics
potassium dynamicsDipak Patel
 
L12-Soil-Test-Crop-Response-PPT.pdf
L12-Soil-Test-Crop-Response-PPT.pdfL12-Soil-Test-Crop-Response-PPT.pdf
L12-Soil-Test-Crop-Response-PPT.pdfSayyedAadil1
 
Enhancing NUE through site specific nutrient management and in problematic soils
Enhancing NUE through site specific nutrient management and in problematic soilsEnhancing NUE through site specific nutrient management and in problematic soils
Enhancing NUE through site specific nutrient management and in problematic soilsSangramsingRrajput
 
Site specific nutrient management
Site specific nutrient managementSite specific nutrient management
Site specific nutrient managementPannaga Rao
 
Nitrogen Use Efficiency
Nitrogen Use EfficiencyNitrogen Use Efficiency
Nitrogen Use EfficiencyBiJaY KhAdKa
 
Sustainability in cropping system
Sustainability  in    cropping systemSustainability  in    cropping system
Sustainability in cropping systemkoushalya T.N
 
Nutrient Use Efficiency: Molecular Mechanism and Advances
Nutrient Use Efficiency: Molecular Mechanism and AdvancesNutrient Use Efficiency: Molecular Mechanism and Advances
Nutrient Use Efficiency: Molecular Mechanism and AdvancesAmandeep Kaur
 
Agronomic,Chemical,and Physiological methods of increasing FUE
Agronomic,Chemical,and Physiological methods of increasing FUEAgronomic,Chemical,and Physiological methods of increasing FUE
Agronomic,Chemical,and Physiological methods of increasing FUESUNITA MEHER
 
Role of micronutrient in crops
Role of micronutrient in cropsRole of micronutrient in crops
Role of micronutrient in cropsANKUSH1401
 
Crop response production function
Crop response production functionCrop response production function
Crop response production functionAnkush Singh
 
Evaluation of Cropping system
Evaluation of Cropping systemEvaluation of Cropping system
Evaluation of Cropping systemP RP
 
Role of organic matter in maintenance of soil fertility
Role of organic matter in maintenance of soil fertilityRole of organic matter in maintenance of soil fertility
Role of organic matter in maintenance of soil fertilityDhamodharan Paramasivam
 

What's hot (20)

Crop Residue Management for Soil Health Enhancement
Crop Residue Management for Soil Health EnhancementCrop Residue Management for Soil Health Enhancement
Crop Residue Management for Soil Health Enhancement
 
potassium dynamics
potassium dynamicspotassium dynamics
potassium dynamics
 
L12-Soil-Test-Crop-Response-PPT.pdf
L12-Soil-Test-Crop-Response-PPT.pdfL12-Soil-Test-Crop-Response-PPT.pdf
L12-Soil-Test-Crop-Response-PPT.pdf
 
Enhancing NUE through site specific nutrient management and in problematic soils
Enhancing NUE through site specific nutrient management and in problematic soilsEnhancing NUE through site specific nutrient management and in problematic soils
Enhancing NUE through site specific nutrient management and in problematic soils
 
Site specific nutrient management
Site specific nutrient managementSite specific nutrient management
Site specific nutrient management
 
Nitrogen Use Efficiency
Nitrogen Use EfficiencyNitrogen Use Efficiency
Nitrogen Use Efficiency
 
Sustainability in cropping system
Sustainability  in    cropping systemSustainability  in    cropping system
Sustainability in cropping system
 
Response of maize to biofertilizers
Response of maize to biofertilizersResponse of maize to biofertilizers
Response of maize to biofertilizers
 
Nutrient Use Efficiency: Molecular Mechanism and Advances
Nutrient Use Efficiency: Molecular Mechanism and AdvancesNutrient Use Efficiency: Molecular Mechanism and Advances
Nutrient Use Efficiency: Molecular Mechanism and Advances
 
DRIS
DRISDRIS
DRIS
 
SSNM
SSNMSSNM
SSNM
 
Agronomic,Chemical,and Physiological methods of increasing FUE
Agronomic,Chemical,and Physiological methods of increasing FUEAgronomic,Chemical,and Physiological methods of increasing FUE
Agronomic,Chemical,and Physiological methods of increasing FUE
 
Weed indices ppt lodha
Weed indices ppt lodha Weed indices ppt lodha
Weed indices ppt lodha
 
Role of micronutrient in crops
Role of micronutrient in cropsRole of micronutrient in crops
Role of micronutrient in crops
 
tillage
tillagetillage
tillage
 
Crop response production function
Crop response production functionCrop response production function
Crop response production function
 
INTEGRATED NUTRIENT MANAGEMENT FOR SUSTAINABLE VEGETABLE CROP PRODUCTION
INTEGRATED NUTRIENT MANAGEMENT FOR SUSTAINABLE VEGETABLE CROP PRODUCTION INTEGRATED NUTRIENT MANAGEMENT FOR SUSTAINABLE VEGETABLE CROP PRODUCTION
INTEGRATED NUTRIENT MANAGEMENT FOR SUSTAINABLE VEGETABLE CROP PRODUCTION
 
Evaluation of Cropping system
Evaluation of Cropping systemEvaluation of Cropping system
Evaluation of Cropping system
 
Role of organic matter in maintenance of soil fertility
Role of organic matter in maintenance of soil fertilityRole of organic matter in maintenance of soil fertility
Role of organic matter in maintenance of soil fertility
 
Integrated Nutrient Management
Integrated Nutrient ManagementIntegrated Nutrient Management
Integrated Nutrient Management
 

Similar to Role of organics in balanced fertilization

ORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIES
ORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIESORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIES
ORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIESSHRAVAN KUMAR REDDY
 
Soil Health, the Missing Link in Sustainable Pulse Production in India
Soil Health, the Missing Link in Sustainable Pulse Production in IndiaSoil Health, the Missing Link in Sustainable Pulse Production in India
Soil Health, the Missing Link in Sustainable Pulse Production in IndiaICARDA
 
chethan biofortification.pptx
chethan biofortification.pptxchethan biofortification.pptx
chethan biofortification.pptxCHETHAN BABU R T
 
Impact of nutrient management practices on feasibility of organic farming
Impact of nutrient management practices on feasibility of organic farmingImpact of nutrient management practices on feasibility of organic farming
Impact of nutrient management practices on feasibility of organic farmingAshish Patel
 
Organic Farming.ppt
Organic Farming.pptOrganic Farming.ppt
Organic Farming.pptRohitKarde2
 
integrated nutrient management on productivity and soil fertility in rice bas...
integrated nutrient management on productivity and soil fertility in rice bas...integrated nutrient management on productivity and soil fertility in rice bas...
integrated nutrient management on productivity and soil fertility in rice bas...2436524365
 
11.combined application of organic and inorganic fertilizers to increase yiel...
11.combined application of organic and inorganic fertilizers to increase yiel...11.combined application of organic and inorganic fertilizers to increase yiel...
11.combined application of organic and inorganic fertilizers to increase yiel...Alexander Decker
 
Combined application of organic and inorganic fertilizers to increase yield o...
Combined application of organic and inorganic fertilizers to increase yield o...Combined application of organic and inorganic fertilizers to increase yield o...
Combined application of organic and inorganic fertilizers to increase yield o...Alexander Decker
 
Organic Agriculture
Organic AgricultureOrganic Agriculture
Organic Agriculturehpau_vee
 
Role of organic inputs in maintaining soil health
Role of organic inputs in maintaining soil health Role of organic inputs in maintaining soil health
Role of organic inputs in maintaining soil health Umesh Yadav
 
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient Management
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient ManagementCK Dotaniya= Role of Biofertilizers in Integrated Nutrient Management
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient ManagementC. Dotaniya
 
Effect of Biofertilizers and their Consortium on Horticultural Crops
Effect of Biofertilizers and their Consortium on Horticultural CropsEffect of Biofertilizers and their Consortium on Horticultural Crops
Effect of Biofertilizers and their Consortium on Horticultural CropsSourabhMohite
 

Similar to Role of organics in balanced fertilization (20)

Srn ppt credit seminar final
Srn ppt credit seminar finalSrn ppt credit seminar final
Srn ppt credit seminar final
 
ORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIES
ORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIESORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIES
ORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIES
 
INM in legumes
INM in legumesINM in legumes
INM in legumes
 
Soil Health, the Missing Link in Sustainable Pulse Production in India
Soil Health, the Missing Link in Sustainable Pulse Production in IndiaSoil Health, the Missing Link in Sustainable Pulse Production in India
Soil Health, the Missing Link in Sustainable Pulse Production in India
 
inm in rice
 inm in rice inm in rice
inm in rice
 
chethan biofortification.pptx
chethan biofortification.pptxchethan biofortification.pptx
chethan biofortification.pptx
 
Impact of nutrient management practices on feasibility of organic farming
Impact of nutrient management practices on feasibility of organic farmingImpact of nutrient management practices on feasibility of organic farming
Impact of nutrient management practices on feasibility of organic farming
 
Organic Farming.ppt
Organic Farming.pptOrganic Farming.ppt
Organic Farming.ppt
 
1 integrated nutrient management in various agroecosystems in tropics
1 integrated nutrient management in various agroecosystems in tropics1 integrated nutrient management in various agroecosystems in tropics
1 integrated nutrient management in various agroecosystems in tropics
 
INTEGRATED USE OF BIOINOCULANTS AND FERTILIZERS IN VEGETABLES FOR SUSTAINABLE...
INTEGRATED USE OF BIOINOCULANTS AND FERTILIZERS IN VEGETABLES FOR SUSTAINABLE...INTEGRATED USE OF BIOINOCULANTS AND FERTILIZERS IN VEGETABLES FOR SUSTAINABLE...
INTEGRATED USE OF BIOINOCULANTS AND FERTILIZERS IN VEGETABLES FOR SUSTAINABLE...
 
integrated nutrient management on productivity and soil fertility in rice bas...
integrated nutrient management on productivity and soil fertility in rice bas...integrated nutrient management on productivity and soil fertility in rice bas...
integrated nutrient management on productivity and soil fertility in rice bas...
 
11.combined application of organic and inorganic fertilizers to increase yiel...
11.combined application of organic and inorganic fertilizers to increase yiel...11.combined application of organic and inorganic fertilizers to increase yiel...
11.combined application of organic and inorganic fertilizers to increase yiel...
 
Combined application of organic and inorganic fertilizers to increase yield o...
Combined application of organic and inorganic fertilizers to increase yield o...Combined application of organic and inorganic fertilizers to increase yield o...
Combined application of organic and inorganic fertilizers to increase yield o...
 
Organic Manures
Organic ManuresOrganic Manures
Organic Manures
 
Organic Agriculture
Organic AgricultureOrganic Agriculture
Organic Agriculture
 
Role of organic inputs in maintaining soil health
Role of organic inputs in maintaining soil health Role of organic inputs in maintaining soil health
Role of organic inputs in maintaining soil health
 
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient Management
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient ManagementCK Dotaniya= Role of Biofertilizers in Integrated Nutrient Management
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient Management
 
Phosphorus zinc interaction
Phosphorus zinc interactionPhosphorus zinc interaction
Phosphorus zinc interaction
 
Effect of Biofertilizers and their Consortium on Horticultural Crops
Effect of Biofertilizers and their Consortium on Horticultural CropsEffect of Biofertilizers and their Consortium on Horticultural Crops
Effect of Biofertilizers and their Consortium on Horticultural Crops
 
Response of micronutrient application in soybean under Indian condition
Response of micronutrient application in soybean under Indian conditionResponse of micronutrient application in soybean under Indian condition
Response of micronutrient application in soybean under Indian condition
 

Recently uploaded

TOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptxTOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptxdharshini369nike
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett SquareIsiahStephanRadaza
 
Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsCharlene Llagas
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2John Carlo Rollon
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantadityabhardwaj282
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555kikilily0909
 

Recently uploaded (20)

TOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptxTOTAL CHOLESTEROL (lipid profile test).pptx
TOTAL CHOLESTEROL (lipid profile test).pptx
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett Square
 
Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of Traits
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are important
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555
 

Role of organics in balanced fertilization

  • 1.
  • 2. SPEAKER: RUSHANG U. KANDOLIYA (2010116060) M.Sc. (Agri.) Soil Science College of Agriculture, JAU – Junagadh
  • 3. CONTENTS (A) Introduction: • Balanced fertilization, Organic Sources (B) Role of Organics in Balanced fertilization and crop production • Yield • Quality (C) Role of Organics in soil health • Soil Physical Properties • Soil Chemical Properties • Soil Biological Properties (D) Conclusion (E) Future needs
  • 4.
  • 5.  Balanced nutrition takes into account the availability of nutrients already present in the soil, crop requirement and other factors.  It is not a state but a dynamic concept.  Balanced nutrition is required for normal growth, physiological functions as well as reproduction BALANCED NUTRITION 5
  • 6.  Crops need many essential nutrients for optimum growth, yield and quality.  Nitrogen (N), Phosphorus (P), Potassium (K), Sulphur and Zinc (Zn) are some of the essential plant nutrients. Crops need N, P and K in large amounts; hence these are applied through fertilizers.  Application of plant nutrients in optimum ratio and adequate amounts is called “Balanced Fertilization”. Balanced Fertilization is the proper supply of all nutrients (macros and micros) throughout the growth of a crop. 6
  • 7. Why Balanced Nutrition ?  Multiple nutrient deficiencies.  Higher productivity & cropping intensity in irrigated areas.  Organic sources insufficient for nutritional needs of HYVs.  Organic sources with mineral fertilizers become necessary.  Organic sources – No. of animals a farmer posses.  50% of dung used as a fuel.  Alternative source of energy for farmers.  Green manuring – loose one crop.  Lake of soil moisture for its decomposition.  FYM, Green manuring, Crop residues, N – fixing bacteria, BGA etc Organic sources supplement plant nutrients needs. 7
  • 8. Important plant nutrients and its functionBasicnutrients Carbon It is the basic molecular component of carbohydrates, protein, lipids and nucleic acid Oxygen It occur in all the organic compounds of living organisms. Hydrogen This element plays a central role in plant metabolism. It is very important in ionic balance, as the main reducing agent, and plays a key role In energy relation of cells. Primarymacronutrients Nitrogen It makes plant dark green & succulent. It promotes vegetative growth. Phosphorus It stimulates root development, increases the number of tillers, gives strength to straw and prevents lodging. It hastens ripening of plants and counteracts the effects of excessive nitrogen. It improves the quality and yield of grain. It increases disease resistance, enhances the activity of rhizobia and increases the formation of root nodules in legumes. Potassium Vigour and disease resistance to plants. It increases efficiency of the leaf in manufacturing sugars and starch. It helps to produce stiff straw in cereals and reduces lodging Cont...8
  • 9. Secondarymacro Calcium Increases stiffness of straw and promotes early root development and growth. It encourages seed production Magnesium It is essential for all green plants. Helps in uptake of phosphorus and regulates uptake of other nutrients. Sulphur It stimulates root growth, seed formation and nodule formation. Essentialmicronutrients Iron Essential for formation of chlorophyll and synthesis of proteins and several metabolic reactions. Manganese It helps in chlorophyll formation. Zinc It helps information of growth hormones and chlorophyll. Copper It regulates respiratory activities in plants. Boron helps in uptake of calcium and its efficient use by plants. helps in absorption of nitrogen and is necessary in cell division. Molybdenum It is essential for nitrogen fixing organisms both symbiotic and non-symbiotic. Chlorine It is considered essential for photosynthetic process. Nickel It is a component of some plant enzymes, most notably urease, which metabolizes urea nitrogen into useable ammonia within the plant. 9
  • 10. Major Sources of Nutrients Component Desirable effect Other effect Fertilizer Concentrated source Concentrated source Concentrated Organic source Less nutrients but improves soil physical properties Immediate crop need not met Green manure Source of N from the atmosphere Crop competition Crop residues Source of K. Mulching has +ve effect on soil properties Immobilization of nutrients, more fertilizer needed. Crop rotation (other crop- Legume) N fixed by legumes, improves soil permeability Little N fixed available to the rotation crop Rhizobium, Azospirillum & BGA Mycorrhiza & P solubilizer N fixers P solibilizer Small amount of N fixation Small amount P solubilized 10
  • 12. Chemical compositions of different Organics Properties Garden compost Vermicom post Poultry Manure Pressmud Coir pith Sludge FYM Composte d Sujit Adhikary (2012) Mohamed et al. (2010) Patil et al. (2000) Bagavati & Durai (2001) Udavaso orian et al. (2002) ICAR pH - - - 6.44 - 7.07 - O.C. (%) 12.2 9.8-13.4 - 34 - 28.28 - N (%) 0.8 0.51-1.61 2.40 - 3.60 1.63 1.06 0.34 0.50 P2O5 (%) 0.35 0.19-1.02 1.56 - 2.80 2.52 0.06 0.05 0.25 K20 (%) 0.48 0.15-0.73 1.40 - 2.31 0.55 0.20 0.42 0.40 Ca (%) 2.27 1.18-7.61 0.86-1.11 4.74 - 1.76 0.08 Cont...12
  • 13. Properties Garden compost Vermicom post Poultry Manure Pressmud Coir pith (Composted) Sludge FYM Sujit Adhikary (2012) Mohamed et al. (2010) Patil et al. (2000) Bagavati & Durai (2001) Udavaso orian et al. (2002) ICAR Fe (ppm) 11690 2050- 13313 970-1370 - - 752 4500 Mn (ppm) 414 105-2038 190-350 - - 131 70 Zn (ppm) 12 42-1100 160-315 - - 290 40 Mg (%) 0.57 0.093- 0.568 - - - 0.33 - S (%) - - - - - - - C:N ratio - - 9.4 – 11.5 20.8 24.1 83.1 1-20 13
  • 14.
  • 15.  To maintain crop productivity on sustainable basis  To maintain or enhance soil productivity through balanced use of mineral fertilizers combined with organic and biological sources of plant nutrients.  To reduce the gap between nutrients used and nutrient harvested  To improve physical, chemical and biological properties of soil 15
  • 16.  To make soil healthy by providing balanced nutrition  To overcome or to reduce the ill effects of continuous use of only major nutrients  To increase the fertilizer use efficiency and improve economical status of farmers  To improve the stock of plant nutrients in the soil.  To improve efficiency of plant nutrients, thus limiting losses to the environment 16
  • 17.
  • 18. Treatment T1 50% NPK T2 100% NPK T3 150% NPK T4 100% NPK + ZnSO4 (once in a 3 year) to Groundnut & 100% NPK to Wheat T5 NPK as per soil test T6 100% NP T7 100% N T8 50% NPK + 10 t ha-1 FYM to Groundnut & 100% NPK to Wheat T9 Only FYM 25 t ha-1 to Groundnut only T10 50% NPK + Rhizobium + PSM Groundnut & 100% NPK to Wheat T11 100% NPK (P as SSP) T12 Control Conti… Table 1: Mean yield (kg ha-1) of groundnut (kharif 2015) and wheat (Rabi 2015-16) in Groundnut-Wheat cropping sequence on LTFE basis. 18
  • 19. Treatment Groundnut (kg ha-1) Wheat (kg ha-1) Pod Haulm Grain Stover T1 808 1848 2296 2702 T2 946 2191 3013 3637 T3 1028 2259 3266 3679 T4 954 2202 3183 3535 T5 989 2097 3168 3138 T6 787 1779 2597 3088 T7 626 1523 1612 1984 T8 1203 2364 3853 4261 T9 1118 2261 3656 3832 T10 868 2013 2840 3065 T11 881 2079 3119 3185 T12 707 1678 1826 2220 S. Em. (±) 51 92 136 169 C. D. at 5% 148 265 390 481 JAU-Junagadh 19 Anon. (2017) Table 1: Mean yield (kg ha-1) of groundnut (kharif 2015) and wheat (Rabi 2015-16) in Groundnut-Wheat cropping sequence on LTFE basis.
  • 20. Table 2: Response of nutrients in long- term fertilizer experiment under soybean - wheat sequence (1972- 2000) Treatment Average grain yield (t ha-1) Per cent response over 100 % NPK Soybean Wheat Soybean Wheat T1 100 % NPK 2.17 4.25 - - T2 100 % NPK+ Zn 2.04 4.28 -5.99 0.71 T3 100 % NPK+FYM 2.34 4.63 7.83 8.94 T4 100 % NPK+ S 2.04 4.00 -5.99 -5.88 RDF – Wheat 120: 80: 40, Soybean 20: 80: 40 FYM @ 15 t ha-1 Jabalpur 20 Tiwari et al., (2002)
  • 21. Table 3: Effect of INM on yield and yield attributes on Garlic. Tr. No. Treatments Yield (kg ha-1) Yield Attributes Bulb Straw Plant height (cm) Bulb girth (cm) Bulb height (cm) No. of cloves per bulb Bulb TSS T1 Control (Ab) 2511 861 32.8 2.64 2.54 10.8 39.0 T2 100% RDF (50:50:50) 3982 915 38.2 3.06 2.87 11.2 41.2 T3 100% RDF + FYM 5 t ha-1 4462 939 37.8 3.13 2.87 11.3 40.8 T4 50% RDF + FYM 10 t ha-1 4839 970 38.4 3.18 2.82 12.2 41.5 T5 100% RDF + PM 2 t ha-1 4158 921 39.9 2.98 2.79 10.9 39.4 T6 50% RDF + PM 4 t ha-1 4504 967 40.0 3.36 3.03 11.9 41.5 T7 FYM @ 10 t ha-1 3318 920 34.9 2.87 2.75 11.3 39.8 T8 PM @ 4 t ha-1 3696 869 37.0 3.21 2.91 11.0 39.6 S. Em. (±) 144.7 27.2 1.88 0.11 0.10 0.20 1.00 C. D. at 5% 425.6 NS NS 0.33 NS 0.59 NS Mahuva, JAU 21 Anon. (2013)
  • 22. Table 4 : Effect of different organic manures on maize and wheat yield (q ha-1) Organic manures Fallow Cowpea Dhaincha Guar Moong FYM Maize (Main) 14.1 27.4 29.5 18.6 27.6 25.7 Wheat (Residual) 46.6 50.4 53.6 51.0 52.4 56.4 C.D. at 5% Maize Wheat 4.3 5.6 Average over N levels Ludhiana 22 Thind et al., (2002)
  • 23. Treatments Bajri yield (kg/ha) Cabbage yield (q/ha) Grain Straw 1. Control (NPK) 1468 3854 225.7 2. 10 t FYM 1751 4915 245.4 3. 10 t FYM + 2.5 t SS 1882 5160 267.3 4. 10 t FYM + 5.0 t SS 1955 5396 257.8 5. 10 t FYM + 10 t SS 2029 5591 277.3 6. 2.5 t SS 1580 4478 253.2 7. 5.0 t SS 1589 4335 258.4 8. 10.0 t SS 1648 4589 245.5 9. 20.0 t S S 1671 4412 244.4 C.D. at 5% 210 664 27.2 Table 5: Yield of bajri and cabbage as affected by application of sewage sludge (SS) and FYM (Pooled: 2001-05) Anand 23 Patel and George (2005)
  • 24. Beneficial effects of sludge on growth of pearl millet Application of FYM @ 10 t ha- 1 + treated sewage sludge @ 2.5 t ha-1 to bajri is beneficial for higher crop yields under bajri-cabbage sequence. Cont. . 24
  • 25. Table 6: Effect of integrated nutrient management on fruit yield, fruit weight, fruit size and Fruit volume of sweet orange cv. Mosambi. Treatments Fruit yield (kg/tree) Fruit weight (g) Fruit length (cm) Fruit breadth (cm) Fruit volume (cm3) T1 (Control)- 250:150:180 gm NPK of RDF + 15 kg FYM 1.58 93.77 5.15 5.05 137.53 T2 75% N of RDF + 25 % OM (VC) 2.22 141.36 5.43 5.45 170.65 T3 60% N of RDF + 40 % OM (FYM) 2.68 152.81 6.33 6.15 250.67 T4 60% N of RDF + 40% OM (VC) 1.87 98.59 5.28 5.15 146.77 T5 50% N of RDF + 50 % OM (FYM) 1.50 119.01 5.63 5.65 188.16 T6 50% N of RDF + 50 % OM (VC) 1.36 100.31 5.45 5.58 178.02 T7 75 % N of RDF +25% OM (FYM) 2.10 124.00 6.10 5.48 192.18 SE (d) 0.20 7.40 0.13 0.14 10.75 C.D. at 5% 0.43 15.66 0.28 0.30 22.77 Pauri Garhwal, Uttarakhand 25 Gaurav et al., (2017)
  • 26. Table 7 : Effect of integrated nutrient management practices on yield of pigeonpea, pearl millet in pigeonpea + pearl millet (2: 2 ) intercropping system Treatment Grain yield (q ha-1) Pigeonpea Pearl millet 1 50 % RDF 15.71 12.71 2 100 % RDF 17.92 15.86 3 FYM @ 5 t ha-1 15.39 15.52 4 50 % RDF+ FYM @ 5 t ha-1 17.15 14.87 5 50 % RDF+ VC @ 3 t ha-1 16.86 14.22 6 50 % RDF + Biofertilizer 15.89 13.33 7 50 % RDF+ FYM @ 5 t ha-1 +Biofertilizer 18.17 16.32 8 50 % RDF+ VC@ 3 t ha-1 +Biofertilizer 19.16 16.61 CD at 5% 1.36 1.08 RDF: Pigeonpea: 25:50:0 and pearl millet 60:30:30 Rahuri (MH) 26 Gholve et al., (2005)
  • 27. Table 8: Effect of long- term INM on pod yield and Sustainability yield index of groundnut (1985-2000) Treatments Pod yield (kg ha-1) (SYI) Per cent Increase over control T1 Control 832 - T2 RDF 1023 23 T3 Half of RDF 985 18 T4 FYM @ 4 t ha-1 971 17 T5 Half of RDF + FYM @ 4 t ha-1 1041 25 T6 T2+ZnSO4 @ 50 kg ha-1 (Once in 3 Year) 1028 24 CD at 5% 65 - RDF=20-17.5-33 kg NPK ha-1 Anantapur (A.P.) 27 Balaguravaiah et al., (2005)
  • 28. Table 9: Effect of integrated use of fertilizer, organics and green manures on crop yield under pearl millet- pigeonpea cropping system Treatments Pearl millet Pigeonpea Grain (kg ha-1) 1 RDF 1721 559 2 50% N through VC + 50 % RDF 1600 593 3 50% N through FYM+ 50 % RDF 1744 683 4 50% N through Subabul + 50 % RDF 1656 801 5 50 % RDF 1577 605 6 Control 1245 439 CD at 5% 35 120 RDF for Pearl millet: 50-25-0 and Pigeon pea: 25-50-0 NPK ha-1 Bijapur 28 Tolanur and Badanur (2003)
  • 29. T1 – Control T2 – 100% RDF T3 – FYM @ 10 t/ha T4 – Castor cake @ 1 t/ha T5 – Vermicompost @ 3 t/ha T6 – FYM @ 5 t/ha + castor cake @ 500 kg/ha T7 – FYM @ 5 t/ha + vermicompost @ 1500 kg/ha T8 – Castor cake @ 500 kg/ha + vermicompost @ 1500 kg/ha T9 – FYM @ 7.5 t/ha + castor cake @ 250 kg/ha T10 – FYM @ 7.5 t/ha + vermicompost @ 750 kg/ha T11 – FYM @ 5 t/ha + castor cake @ 250 kg/ha + vermicompost @ 750 kg/ha T12 – FYM @ 2.5 t/ha + castor cake @ 500 kg/ha+ vermicompost @ 750 kg/ha Table 11: Effect of varying sources of nitrogen on yield attributes & quality parameters in Sesame. Conti…29
  • 30. Treatments No. of capsule per plant No. of seed per capsule Seed yield (kg/ha) Stalk yield (kg/ha) Oil content (%) T1 38.67 46.67 501 916 36.33 T2 50.00 58.00 638 1226 42.00 T3 48.33 56.33 639 1420 46.48 T4 47.00 55.00 642 1246 44.77 T5 47.50 54.83 764 1240 45.79 T6 52.00 60.00 664 1446 47.13 T7 55.00 63.00 680 1420 45.00 T8 52.67 60.67 692 1460 47.14 T9 54.00 62.67 706 1240 41.85 T10 57.00 65.00 746 1394 44.57 T11 66.33 73.00 824 1604 51.54 T12 64.33 71.67 801 1480 49.14 S.Em.± 2.60 2.59 14 76 1.48 C.D. at 5 % 7.63 7.60 41 223 4.33 Junagadh 30 Takar et al., (2017) Table 11: Effect of varying sources of nitrogen on yield attributes & quality parameters in Sesame.
  • 31. Treatments Length of spike (cm) Length of Spikelet (cm) Number of spikelet per spike Grain yield per plant (g) Stover yield per plant (g) Grain yield (kg ha-1) Stover yield (kg ha-1) Test weight (g) M0: No manure 36.2 18.3 46.9 8.4 16.5 1506 2775 0.50 M1: FYM @ 6t/ha 39.3 19.0 51.4 9.3 18.1 1701 3303 0.53 M2:Vermicompo st @ 0.5t/ha 38.1 18.7 50.8 9.3 17.9 1664 3252 0.52 S.Em.± 0.80 0.40 0.45 0.07 0.17 9.67 51.97 0.004 C.D. at 5% 2.40 NS 1.33 0.22 0.49 28.43 151.69 0.01 C.V.% 8.70 8.70 3.69 3.39 3.91 7.80 7.23 3.38 Table-12: Effect of Organic Manures on growth parameter, yield Attributes and test weight of Amaranthus (Amaranthus paniculatus L.) Junagadh 31 Solanki et al., (2017)
  • 32.
  • 33. 0 5 10 15 20 25 30 35 F0 F1 F0 F1 F0 F1 Mustard Pearlmillet Cowpeafodder Values Fig. 13: Long term effect of FYM on bio-chemical parameters of crops Protein (%) Oil (%) Bhopal 33 Singh (2006)
  • 34. Table 14: Effect of integrated nutrient management on biochemical parameter and leaf content of nitrogen, phosphorus and potassium in papaya T1 RDF (200:200:250 g/pl) + FYM @10 kg/pl T2 Vermicompost @ 20 Kg/pl) T3 Castor cake @ 4 kg/pl T4 Azotobactor @ 50 g/pl + PSB @ 2.5 g/m2 T5 Jivamrut @ 500 litre/ha T6 1/2 RDF +1/2 Vermicompost T7 1/2 RDF + 1/2 castor cake T8 1/2 RDF + Azotobactor @ 50g/plant + PSB @ 2.5 g/m2 T9 1/2 RDF + 1/2 Jivamrut T10 1/4 RDF + 3/4 Vermicompost T11 1/4 RDF + 3/4 castor cake T12 1/4 RDF + Azotobactor @ 50 g/pl+ PSB @ 2.5 g/m2 T13 1/4 RDF + 3/4 Jivamrut T14 control (RDF) Conti…34
  • 35. Treatments Reducing sugars (%) Non-Reducing sugars (%) Total sugar (%) TSS (0B) N content (%) P content (%) K content (%) T1 8.25 0.76 10.91 12.29 1.21 0.182 2.46 T2 7.90 0.93 8.83 11.85 1.23 0.179 2.52 T3 8.76 1.01 9.77 13.06 1.24 0.178 2.45 T4 9.34 0.60 9.93 12.13 1.19 0.178 2.40 T5 9.92 1.00 10.92 11.00 1.19 0.183 2.53 T6 10.18 1.20 11.38 11.99 1.22 0.178 2.57 T7 9.92 0.92 10.83 13.81 1.25 0.181 2.44 T8 11.10 2.43 13.58 15.47 1.37 0.186 2.72 T9 10.19 1.42 11.61 11.67 1.25 0.178 2.62 T10 8.03 1.16 9.20 12.51 1.25 0.177 2.39 T11 9.35 0.70 10.05 11.82 1.18 0.176 2.45 T12 9.82 1.03 10.84 12.97 1.16 0.180 2.52 T13 10.37 2.22 12.59 13.16 1.30 0.177 2.64 T14 7.33 0.45 7.78 9.19 1.11 0.165 2.35 S.E..± 0.467 0.351 0.611 0.759 0.030 0.001 0.073 C.D. at 5% 1.33 1.05 1.74 2.17 0.08 0.05 0.21 C.V. % 8.69 5.53 10.00 10.65 4.36 1.86 5.09 Junagadh 35 Singh & Varu (2013) Table 14: Effect of integrated nutrient management on biochemical parameter and NPK content in papaya
  • 36. T1 – Control T2 – 100% RDF T3 – FYM @ 10 t/ha T4 – Castor cake @ 1 t/ha T5 – Vermicompost @ 3 t/ha T6 – FYM @ 5 t/ha + castor cake @ 500 kg/ha T7 – FYM @ 5 t/ha + vermicompost @ 1500 kg/ha T8 – Castor cake @ 500 kg/ha + vermicompost @ 1500 kg/ha T9 – FYM @ 7.5 t/ha + castor cake @ 250 kg/ha T10 – FYM @ 7.5 t/ha + vermicompost @ 750 kg/ha T11 – FYM @ 5 t/ha + castor cake @ 250 kg/ha + vermicompost @ 750 kg/ha T12 – FYM @ 2.5 t/ha + castor cake @ 500 kg/ha+ vermicompost @ 750 kg/ha Table 15: Effect of varying sources of Nutrients on nutrient content in seed and stalk of sesame Conti…36
  • 37. Treatments Nutrient content in seed (%) Nutrient content in stalk (%) N P K N P K T1 2.88 0.38 0.66 0.59 1.14 0.30 T2 3.23 0.43 0.73 0.68 1.58 0.42 T3 3.27 0.43 0.75 0.70 1.48 0.46 T4 3.29 0.43 0.66 0.66 1.35 0.41 T5 3.29 0.44 0.71 0.66 1.37 0.40 T6 3.30 0.44 0.70 0.65 1.36 0.39 T7 3.36 0.48 0.79 0.74 1.60 0.46 T8 3.39 0.45 0.75 0.70 1.57 0.44 T9 3.40 0.46 0.76 0.71 1.60 0.45 T10 3.42 0.47 0.77 0.72 1.61 0.47 T11 4.35 0.57 0.91 0.86 1.85 0.55 T12 3.49 0.51 0.81 0.76 1.66 0.50 S.Em.± 0.08 0.01 0.02 0.02 0.06 0.01 C.D. at 5 % 0.25 0.04 0.06 0.06 0.18 0.03 Junagadh 37 Takar et al., (2017) Table 15: Effect of varying sources of Nutrients on nutrient content in seed and stalk of sesame
  • 38. Table-16: N,P and K content and Uptake by Grain and Stover of Amaranthus (Amaranthus paniculatus L.) Treatments Nutrient Content (kg ha-1) Nutrient Uptake (kg ha-1) N P K N P K Organic Manures Grain Stover Grain Stover Grain Stover Grain Stover Grain Stover Grain Stove r M0: No manure 2.53 0.90 1.31 0.30 1.00 0.27 38.56 25.34 19.89 8.66 15.93 8.26 M1: FYM @ 6t ha-1 2.64 1.00 1.32 0.31 1.11 0.32 44.00 34.92 22.16 10.18 18.00 10.05 M2:Vermicompost @ 0.5t ha-1 2.63 0.97 1.31 0.30 1.07 0.30 43.03 31.86 21.80 9.87 17.47 9.74 S.Em.± 0.01 0.01 0.004 0.002 0.01 0.006 0.68 1.05 0.42 0.21 0.19 0.21 C.D. at 5% 0.05 0.04 0.01 0.008 0.04 0.02 2.00 3.06 1.24 0.62 0.57 0.62 C.V.% 2.88 6.01 1.43 3.54 5.27 9.70 5.31 13.69 5.31 9.01 4.30 9.20 Junagadh 38 Solanki et al., (2017)
  • 39. T1 FYM @ 10 kg/plant + Neem Cake @ 1.25 kg/plant + Vermicompost @ 5 kg/plant and Wood ash @ 1.75 kg/plant T2 FYM @ 10 kg/plant + Neem Cake @ 1.25 kg/plant + Vermicompost @ 5 kg/plant and Wood ash @ 3.75 kg/plant T3 FYM @ 15 kg/plant + Neem Cake @ 1.875 kg/plant + Vermicompost @ 7.5 kg/plant and Wood ash @ 625 g/plant T4 FYM @ 15 kg/plant + Neem Cake @ 1.875 kg/plant + Vermicompost @ 7.5 kg/plant and Wood ash @ 2.625 kg/plant T5 Control - absence of organic and inorganic sources T6 Triple green manuring with sunhemp + Cow pea + Cow pea as inter - crop T7 Arbuscular Mycorrhizae @ 25 g/plant + Azospirillum @ 50 g/plant + PSB @ 50 g and Trichoderma harzianum @ 50 g/plant T8 T1 + T6 T9 T1 + T7 T10 T1 + T6 + T7 T11 300 : 100 : 300 g NPK /plant T12 110 : 35 : 330 g NPK /plant Table 17: Effect of organic manures and amendments on quality and post harvest characteristics of banana cv. Grand Naine Conti…39
  • 40. Treatments TSS (%) Acidity (%) Ascorbic acid (mg. 100 g-1) Non- reducing sugars (%) Reducing sugars (%) Total sugars (%) PLW (%) Shelf life (days) T1 21.49 0.83 12.04 5.36 9.08 14.44 9.64 13.18 T2 21.83 0.84 11.56 5.51 8.69 14.20 9.32 12.74 T3 21.89 0.82 12.43 5.85 8.90 14.75 9.45 12.97 T4 21.58 0.84 12.37 5.82 8.72 14.54 10.37 13.84 T5 20.56 0.84 11.06 4.45 7.03 11.48 12.05 9.73 T6 21.45 0.84 11.96 5.25 7.63 12.88 13.22 11.07 T7 21.72 0.83 12.65 5.66 8.23 13.89 8.85 13.27 T8 21.63 0.83 12.24 5.73 7.93 13.66 9.36 13.93 T9 22.47 0.84 12.46 5.95 9.10 15.05 7.84 13.87 T10 23.23 0.82 12.92 6.06 8.86 14.92 7.44 14.03 T11 21.93 0.83 11.91 5.15 8.41 13.56 11.84 10.26 T12 22.08 0.84 12.33 5.45 8.37 13.82 11.28 10.87 Sed 0.24 NS 0.14 0.06 0.07 0.19 0.14 0.14 CD at 5% 0.49 NS 0.29 0.12 0.14 0.40 0.29 0.28 TNAU, Coimbtore 40 Vanilarasu & Balakrishnamurthy (2014) Table 17: Effect of organic manures and amendments on quality and post harvest characteristics of banana.
  • 41. Table 18: Diameter and shelf life of Marigold cv. Pusa Narangi as influenced by INM Conti… (T1) 200kg N ha-1 + 100kg P2O5 ha-1 + 100kg K2O ha-1 (control) (T2) 200kg N ha -1 + 100kg P2O5 ha -1 + 100kg K2O ha -1 + 15 t ha -1 FYM (RDF) (T3) 70% RDF + 2 t ha -1 vermicompost + Azotobacter + PSB (T4) 70% RDF+ 2 t ha-1 vermicompost + Azospirillium + PSB (T5) 70% RDF + 2 t ha -1 vermicompost + Azotobacter + Azospirillium + PSB (T6) 60% RDF + 3 t ha -1 vermicompost + Azotobacter + PSB (T7) 60% RDF + 3 t ha -1 vermicompost + Azospirillium + PSB (T8) 60% RDF + 3 t ha -1 vermicompost + Azotobacter + Azospirillium + PSB (T9) 50% RDF+4 t ha-1 vermicompost + Azotobacter + PSB (T10) 50% RDF + 4 t ha -1 vermicompost + Azospirillium + PSB (T11) 50% RDF+4 t ha-1 vermicompost + Azotobacter + Azospirillium + PSB RDF = 200kg N ha-1 + 100kg P2O5 ha-1 + 100kg K2O ha-1 + 15 t ha-1 FYM 41
  • 42. Treatment Yield (g/plant) Diameter (cm) Shelf life (days) 2011 2012 Pooled 2011 2012 Pooled 2011 2012 Pooled T1 214.92 201.62 208.20 5.33 5.10 5.22 3.20 3.20 3.20 T2 273.14 262.19 267.62 5.67 5.33 5.50 5.00 4.90 4.95 T3 283.18 277.73 282.40 6.33 6.53 6.43 3.87 3.83 3.85 T4 310.44 294.06 302.22 5.84 6.07 5.96 3.92 3.88 3.90 T5 379.61 373.02 376.50 7.10 7.50 7.30 4.40 4.40 4.40 T6 295.74 286.99 291.30 6.20 6.33 6.27 3.65 3.55 3.55 T7 311.06 295.15 303.32 6.25 6.45 6.35 3.99 3.88 3.94 T8 358.25 337.69 347.90 6.98 6.86 6.92 4.00 4.00 4.00 T9 188.05 181.97 185.00 5.03 5.10 5.07 3.37 3.23 3.30 T10 211.90 196.49 204.1 5.27 5.07 5.17 3.03 2.90 2.97 T11 329.88 333.12 331.5 6.67 6.89 6.78 4.65 4.54 4.60 S.E. + 21.06 24.09 16.00 0.26 0.31 0.20 0.28 0.27 0.19 C.D. at 5 62.14 71.07 45.73 0.76 0.92 0.58 0.82 0.78 0.55 CV% 13.14 15.64 14.40 7.41 8.87 8.18 12.35 12.06 12.21 Junagadh 42 Thumar et al., (2013)
  • 43. Table 19: Effect of different INM treatments on quality parameters of wheat in black calcareous soil. Junagadh 43 Vinotha & Parmar (2016) Treatments Protein content (%) Protein yield (kg ha-1) Test weight (1000 grains) (g) T1 Absolute control 9.98 223 40.64 T2 RDF (120:60:60 kg N: P2O5: K2O ha-1) 10.09 302 41.14 T3 T2 + 40 kg S ha-1 10.97 330 42.85 T4 T3 + ZnSO4 @ 25 kg ha-1 11.86 399 43.70 T5 T4 + FYM @ 5 t ha-1 12.41 441 44.37 T6 75% N + full PK of RDF + S + ZnSO4 + FYM + Azatobacter @ 10 ml kg-1 seed 12.90 500 45.21 T7 75% NP + full K of RDF + S + ZnSO4 + FYM + Azatobacter + PSB @ 10 ml kg-1 seed 13.30 550 47.57 T8 75% NPK of RDF + S + ZnSO4 + FYM + Azatobacter + PSB + KSB @ 10 ml kg-1 seed 13.96 527 46.36 CD at 5% 1.44 109 4.23
  • 44.
  • 46. Role of Soil Organics PHYSICAL Dark brown to black color Granulation & aggregate stability Reduced plasticity, cohesion & stickiness Increase infiltration and water holding capacity Climate buffering CHEMICAL Increased CEC pH buffering Slow release of NPS & Micronutrients Chelation of Fe, Cu, Zn & Mn Decrease Al toxicity via binding in acid soils BIOLOGICAL Organism food Increased activity Increased biomass Increased biodiversity 46
  • 47.
  • 48. Treatment Organic matter (g/kg) Available water % Bulk density (Mg m-3) 1 100 % NPK 2.61 14.5 1.32 2 100 % NPK+ Zn 2.80 14.7 1.31 3 100 % NPK+ FYM 2.92 19.0 1.30 4 100 % NPK+ S 2.55 14.3 1.33 Control 2.32 17.9 1.33 Table 20: Changes in soil bulk density and water retention due to continuous cropping and fertilization (after 9 years) Rice - Wheat - Cowpea cropping sequence, Initial OM% = 2.5 Nainital 48 Bharadwaj and Omanwar (1992)
  • 49. Table 21: Long term effect of organics and inorganic on physical properties of soil (0 – 15 cm) under ragi-maize- cowpea cropping sequence Treatment BD ( g cc-1) TP (%) WHC HC 1 50 % NPK 1.48 50.69 46.00 0.80 2 100 % NPK 1.51 52.81 45.50 0.77 3 150 % NPK 1.52 54.59 47.50 0.78 4 100 % NPK+ FYM 1.47 57.59 48.75 2.06 Control 1.58 53.21 42.00 0.68 Coimbatore 49 Sheeba and Chellamuthu (1996)
  • 50. Table 22: The physical properties of the soil as influenced by different manure fertilizer schedules in rice Treatments BD (g cc-1) Pore space (%) WHC (%) Control (NPK) 1.25 46.0 41.1 NPK + FYM 1.18 51.5 47.2 NPK + GLM 1.21 47.8 43.9 NPK + UC 1.20 51.0 44.6 CD at 5% 0.10 0.6 0.9 GLM – Green leaf manure, UC- Urban compost , Green manure @ 12 t ha-1,120-60-60 NPK kg ha-1 Madurai 50 Sheeba and Kumarasamy (2001)
  • 51. Treatment Bulk density (g cc-1) Particle density (g cc-1) % pore space T1 – Absolute control 1.48 2.40 40.0 T2 – RD of inorganic fertilizer 1.54 3.08 49.8 T3 – FYM 1.44 2.40 43.3 T4 – Vermicompost 1.44 2.16 35.7 T5 – RD of inorganic fertilizers + FYM 1.48 2.40 40.0 T6– RD of inorganic fertilizers+ Vermicompost 1.44 2.71 54.1 S.Em. 0.003 0.02 0.5 CD at 5% 0.01 0.05 1.0 Table 23.: Effect of integrated nutrient management practices on physical properties of soil in Maize Pollachi (Tamil Nadu) 51 Lalit et al., (2013)
  • 52. Treatment Combination BD (g cc-1) PD (g cc-1) Pore space (%) T0 = L0F0 0% NPK & S + 0% FYM 1.27 2.65 39.76 T1 = L0F1 0% NPK & S + 50% FYM 1.25 2.76 42.70 T2 = L0F2 0% NPK & S + 100% FYM 1.20 2.65 40.83 T3 = L1F0 50% NPK & S + 0% FYM 1.30 2.55 39.36 T4 = L1F1 50% NPK & S + 50% FYM 1.17 2.45 42.80 T5 = L1F2 50% NPK & S + 100% FYM 1.19 2.55 41.20 T6 = L2F0 100% NPK & S + 0% FYM 1.22 2.62 42.20 T7 = L2F1 100% NPK & S + 50% FYM 1.30 2.63 40.20 T8 = L2F2 100% NPK & S + 100% FYM 1.22 2.75 39.70 S. Em () 0.01 0.01 0.36 C. D. at 5% 0.02 0.03 0.76 Table 24: Response of inorganic fertilizers and FYM on post harvest properties of soil of Yellow Mustard (Brassica campestris L.) cv. Ulhas. Allahabad (UP) 52 Akash et al., (2017)
  • 53.
  • 54. Table 25: Changes in available nutrient and organic carbon status of soil after wheat Treatment OC (g/kg) Available Nutrient (kg ha-1) N P K S 100 % NPK 8.0 258 30.57 290 27.70 100 % NPK+ Zn 7.6 272 30.25 275 24.90 100 % NPK+FYM 9.6 290 39.40 310 38.15 100 % NPK+ S 7.3 258 29.65 255 12.15 Control 6.1 209 10.20 225 11.85 CD at 5% 1.0 31 4.6 34 3.7 Initial (1972) 5.7 193 7.6 370 16.00 RDF- Soybean- 20:80: 20 and Wheat- 120:80:40, FYM @ 15 t h-1 and Zn: @ 20 kg ZnSO4 Jabalpur 54 Tiwari et al., (2002)
  • 55. Table 26 : Influence of long- term use of fertilizers and manures in groundnut on important soil properties and available nutrients of soil ( Average of 18 years) Treatments pH OC (g kg-1) Available nutrients (kg ha-1) N P K T1 Control 6.9 1.9 112 14 103 T2 RDF 6.4 2.3 110 54 140 T3 Half of RDF 6.6 2.0 101 41 106 T4 FYM @ 4 t ha-1 7.6 2.5 120 18 188 T5 Half of RDF + FYM @ 4 t ha-1 7.4 3.4 128 45 174 T6 RDF + ZnSO4 @ 50 kg ha-1 (once in 3 Year) 6.3 2.6 102 58 108 CD at 5% 0.57 0.1 NS 8.4 43 Initial (1985) 6.6 2.5 139 20 155 RDF=20-17.5-33 kg NPK ha-1 Anantapur (A.P.) 55 Balaguravaiah et al., (2005)
  • 56. Table 27 : Effect of INM practices on available nutrients in Pigeonpea + Pearl Millet (2:2) intercropping system Treatment Available (kg ha-1) OC (%) N P K 1 50 % RDF 150.00 14.92 436.10 0.60 2 100 % RDF 160.40 15.67 453.80 0.61 3 50 % RDF+ FYM @ 5 t ha-1 158.80 15.91 453.37 0.61 4 50 % RDF+ VC @ 3 t ha-1 159.83 15.90 454.41 0.62 5 50 % RDF+Biofertilizer 150.20 14.91 447.79 0.59 6 50 % RDF+ FYM @ 5 t ha-1 +Biofertilizer 163.85 17.00 459.40 0.63 7 50 % RDF+ VC @ 3 t ha-1 +Biofertilizer 164.00 17.16 455.00 0.65 CD at 5% 5.94 NS 12.68 0.017 Initial soil status 140.15 15.10 415.90 0.61 RDF: Pigeonpea: 25:50:0 and pearl millet 60:30:30 Rahuri (MH) 56 Gholve et al., (2005)
  • 57. Table 28: Effect of continuous application of organic manures on chemical properties of soil in maize-wheat rotation Characteristics Organic manures CD at 5% Fallow Cowpea Dhaincha Guar FYM OC (%) 0.38 0.45 0.46 0.45 0.54 0.01 Avail. N (kg ha-1) 115 146 153 143 156 11.89 Avail. P 39.7 48.2 44.8 47.5 66.3 3.66 Avail. K 147 155 152 168 169 8.45 Zn ( mg kg –1) 1.00 1.95 1.86 1.96 2.25 0.25 Cu 0.41 0.57 0.51 0.60 0.61 0.09 Fe 9.29 11.58 11.79 11.82 13.41 2.05 Mn 14.87 19.85 19.61 20.05 21.93 3.80 Average over N levels Ludhiana 57 Thind et al., (2002)
  • 58. Table 28: Effect of different INM treatments on soil available micro nutrients (Fe, Zn, Mn & Cu) after harvest of wheat in black calcareous soil. Junagadh 58 Vinotha & Parmar (2016) Treatments Avilable soil micronutrients (mg kg-1) Fe Zn Mn Cu Initial 9.94 0.41 16.40 3.64 T1 Absolute control 9.87 0.36 17.16 2.43 T2 RDF (120:60:60 kg N: P2O5: K2O ha-1) 10.40 0.38 17.38 2.46 T3 T2 + 40 kg S ha-1 10.51 0.45 17.65 2.48 T4 T3 + ZnSO4 @ 25 kg ha-1 10.68 0.47 18.32 2.54 T5 T4 + FYM @ 5 t ha-1 11.30 0.52 18.34 2.56 T6 75% N + full PK of RDF + S + ZnSO4 + FYM + Azatobacter @ 10 ml kg-1 seed 11.35 0.56 18.67 2.65 T7 75% NP + full K of RDF + S + ZnSO4 + FYM + Azatobacter + PSB @ 10 ml kg-1 seed 11.67 0.61 19.46 2.72 T8 75% NPK of RDF + S + ZnSO4 + FYM + Azatobacter + PSB + KSB @ 10 ml kg-1 seed 11.43 0.59 18.97 2.69 CD at 5% NS 0.09 NS NS
  • 59. Table 29: Effect if INM in Garlic on soil chemical properties and available nutrient after Harvest. Tr. No. Treatments Soil chemical Properties Available nutrient (kg ha-1) EC (dS m-1) pH ESP N P2O5 K2O S T1 Control (Ab) 2.12 8.2 16.0 210 38.8 475 14.2 T2 100% RDF (50:50:50) 1.98 8.2 15.4 237 43.5 512 16.5 T3 100% RDF + FYM 5 t ha-1 1.70 8.2 14.7 247 78.7 536 19.8 T4 50% RDF + FYM 10 t ha-1 1.65 8.2 14.6 253 86.4 640 21.8 T5 100% RDF + PM 2 t ha-1 1.70 8.2 14.9 219 66.6 628 17.6 T6 50% RDF + PM 4 t ha-1 1.69 8.1 15.2 220 54.4 580 16.6 T7 FYM @ 10 t ha-1 1.48 8.1 14.5 229 64.0 594 17.7 T8 PM @ 4 t ha-1 1.58 8.1 15.0 226 58.9 578 17.2 S. Em. (±) 0.11 0.04 0.24 6.6 4.8 17.9 1.01 C. D. at 5% 0.33 NS 0.72 19.5 14.0 43.8 2.97 Mahuva, JAU 59 Anon. (2013)
  • 60. Treatments Available N (kg/ha) Available P (kg/ha) Available K (kg/ha) Soil Depth (cm) 0-15 15-30 0-15 15-30 0-15 15-30 T1 = Control (without Manure and Fertilizer) 142.2 135.4 20.2 19.3 128.2 122.7 T2 = 100% RDF 166.1 155.8 25.6 22.2 143.4 135.3 T3 = 50% RDF + VC @ 2.5 ton/ha 172.4 161.3 26.1 23.7 145.7 137.5 T4= VC @ 5 ton/ha 148.9 142.6 22.8 21.5 138.6 130.6 CD at 5% 5.8 6.2 1.3 0.9 2.7 4.1 Table.30: Available N, P and K contents at two depths of soil profile as influenced by integrated nutrient management on Gladiolus hybrids. Nadia (WB) 60 Rubina et al., (2017)
  • 61.
  • 62. Table 31: Effect of long- term fertilizer use on nitrifers and azotobactor population (x 104 g-1 soil) under soybean- wheat- maize sequence Treatments At 50 days incubation period Nitrosomonas Nitrobactor Azotobactor 100 % NPK 0.46 0.74 65.00 100 % NPK+ Zn 0.53 1.00 72.00 100 % NPK+ FYM 1.00 4.43 110.00 100 % NPK+ S 0.35 1.30 65.00 Control 0.14 0.23 29.00 CD at 5% 0.04 0.12 8.66 FYM @ 15 t ha-1 Jabalpur 62 Jain et al., (2003)
  • 63. Treatment Microbial population (0-15 cm) Fungi (x 105 g-1) Actinomycetes (106g-1) Bacteria (106g-1) 100 % NPK 52.7 5.6 2.1 100 % NPK+ Zn 73.1 8.2 1.8 100 % NPK+ FYM 87.3 6.1 2.5 Control 69.2 4.9 1.7 Table 32: Changes in Microbiological population due to under rice – wheat - cowpea sequence (after 9 years) Nainital 63 Bharadwaj and Omanwar (1992)
  • 64. Table 33: Effect of integrated use of lime and organic, inorganic, and biological nutrient sources on soil microbial indicators. Treatments Microbial biomass C (mg kg−1) Microbial biomass N (mg kg−1) Microbial biomass P (mg kg−1) T0 Control without any fertilizer 189.25 16.59 5.56 T1 50% NPK 218.62 22.55 8.68 T2 100% NPK 266.78 38.66 9.12 T3 50% NPK + lime + Biofertilizer 254.26 26.36 7.99 T4 100% NPK + lime + Biofertilizer 291.08 37.58 9.51 T5 50% NPK + lime + FYM 287.00 37.19 9.04 T6 100% NPK + lime + FYM 317.02 45.69 11.47 T7 50% NPK + FYM + Biofertilizer 283.74 40.10 9.50 T8 100% NPK + FYM + Biofertilizer 344.32 45.43 9.92 T9 50% NPK + lime + Biofertilizer + FYM 342.54 43.29 10.43 T10 100% NPK + lime + Biofertilizer + FYM 373.02 49.14 13.82 CD at 5% 9.22 2.02 1.43 Umiam, Meghalaya 64 Saha et al. (2010)
  • 65. Table 34: Soil microbial population (x 105 g-1) in soil as influenced by FYM under bajri- mustard- cowpea continuous cropping Treatment Bacteria Fungi Actinomycetes Total (0-15 cm) F0 131 38.6 8.9 179 F1 195 18.8 8.1 197 (15-30 cm) F0 121 30.6 5.7 160 F1 150 26.6 5.6 172 Anand 65 Patel (2002)
  • 66. Table 34: Effect of different INM treatments on soil available micro nutrients (Fe, Zn, Mn & Cu) after harvest of wheat in black calcareous soil. Junagadh 66 Vinotha & Parmar (2016) Treatments Soil Bacterial population (× 10-7 CFU g-1 soil) Azatobacter PSB KSB T1 Absolute control 1.33 2.22 2.27 T2 RDF (120:60:60 kg N: P2O5: K2O ha-1) 2.74 4.31 2.53 T3 T2 + 40 kg S ha-1 1.15 1.57 1.98 T4 T3 + ZnSO4 @ 25 kg ha-1 3.48 2.30 2.30 T5 T4 + FYM @ 5 t ha-1 5.39 8.65 7.81 T6 75% N + full PK of RDF + S + ZnSO4 + FYM + Azatobacter @ 10 ml kg-1 seed 12.00 7.07 7.09 T7 75% NP + full K of RDF + S + ZnSO4 + FYM + Azatobacter + PSB @ 10 ml kg-1 seed 10.67 11.17 8.03 T8 75% NPK of RDF + S + ZnSO4 + FYM + Azatobacter + PSB + KSB @ 10 ml kg-1 seed 13.00 10.93 12.28 CD at 5% 1.05 0.90 0.92
  • 67. T1 : 100% RDF (200:200:200 NPK kg/ha) T2 : 50% RDF + FYM @ 15 t/ha T3 : 75% RDF + FYM @ 7.5 t/ha T4 : 100% RDF + FYM @ 7.5 t/ha T5 : 50% RDF + FYM @ 15 t/ha + Azotobacter + PSB + KMB T6 : 75% RDF + FYM @ 7.5 t/ha +Azotobacter + PSB + KMB T7 : 100% RDF + FYM @ 7.5 t/ha + Azotobacter + PSB + KMB T8 : T1 + Azotobacter + PSB + KMB T9 : T1 + 1% foliar spray of Nauroji Novel Organic Liquid Fertilizer T10 : T7 + 1% foliar spray of Nauroji Novel Organic Liquid Fertilizer Table.35 Effect of integrated nutrient management on physic- chemical & Bioligical properties of soil in Gladiolus (Gladiolus grandiflorus L.) cv. American beauty Conti…67
  • 68. Treatments EC (dSm-1) Available N, P & K in soil Organic carbon (%) Microbial population (CFU/g soil) Colonies × 10-7N (kg/ha) P (kg/ha) K (kg/ha) T1 1.07 188.27 15.60 256.77 0.50 58.00 T2 1.03 151.00 16.77 259.00 0.60 61.67 T3 0.97 152.27 16.73 260.33 0.63 63.33 T4 0.90 152.83 15.07 268.00 0.67 65.00 T5 0.83 157.00 16.70 270.90 0.70 69.00 T6 0.73 165.70 17.27 304.67 0.63 79.00 T7 0.80 167.85 18.94 307.00 0.73 82.67 T8 0.90 155.53 17.00 272.33 0.60 73.67 T9 1.00 155.10 17.06 266.67 0.57 72.00 T10 0.67 178.73 19.48 314.13 0.80 90.67 S.Em.± 0.05 6.26 0.79 11.65 0.03 5.48 C.D. at 5 % 0.14 18.61 2.34 34.34 0.09 16.29 Navsari 68 Sathyanarayana et al. (2017) Table.35 Effect of INM on physic- chemical & Biological properties of soil in Gladiolus
  • 69. Table.36. Effect of different nutrient management changes in biological properties of soil in Rice based cropping system 2007 08 Treatment Fungi (104/g) Bacteria (106/g) Azatobacter (106/g) PSB (106/g) Actinomycities (106/g) Initial 33.7 35.7 17.5 9.7 5.9 100% Organic 49.3 60.0 31.7 20.5 14.5 100% Inorganic 38.8 36.1 20.7 12.4 7.9 50% organic + 50% Inorganic 41.7 44.2 25.4 15.5 11.6 Jabalpur (MP) 69 Rajiv et al., (2014)
  • 70. From the foregoing results it can be conclude that nether the chemical fertilizers alone nor the organic sources exclusively can sustain the productivity. Organics is an important component of INM which helps to restore and sustain Soil Heath as well as soil fertility and crop productivity. Organics along with inorganic fertilizers provides balanced nutrition to crops which increases crop yield and quality. It also improves physical, chemical and biological properties of soil on sustainable basis. The application of fertilizers in conjunction with organics in a balanced form is necessary for maintaining soil fertility and crop productivity under intensive cropping. CONCLUSION 70
  • 71.  Need to identify limiting nutrients in a order of priority for important crops under different agro-ec regions.  Need for studies on bio- chemical changes due to imbalanced / balanced nutrition in physiology of different crops.  Need for development of suitable technology involving different organics to improve nutrient use efficiency by crops under intensive cropping.  Need for development of location and crop specific multi-nutrients enriched organics for balanced nutrition of different crops. FUTURE NEEDS 71

Editor's Notes

  1. Balanced nutrition is required for normal growth, physiological functions as well as reproduction for every organisms including plant. For balanced plant nutrition requires variety of elements from various sources including chemical fertilizers as well as organic sources.
  2. Non symbiotic (free living): BGA, Anabaena, Nostoc, Azatobacter, Beijerinckia, Clostridium Symbiotic : Rhizobium, Azospirillum
  3. Organic matter is also essential for microbial activity in soils as a source of energy, but too much of it may reduce extracellular enzyme activity by inducing its adsorption by the organic particulates.
  4. Synergic effect of NPK + Fertilizer
  5. T11 (FYM @ 5 t/ha + castor cake @ 250 kg/ha+ vermicompost @ 750 kg/ha) which were 50.00 and 43.29 per cent higher over control T1 (No organic manure), respectively. This may be due to greater availability of phosphorus and its efficient absorption by the roots.
  6. Significantly increased in yield attributes viz., length of spike, length of spikelets and number of spikelets per spike, grain and stover yields per plant, test weight were recorded with the application of FYM @ 6t haˉ1 over control. The beneficial effect of organic manures on yield attributes could be due to the fact that after proper decomposition and mineralization, the manure supplied available nutrients directly to the plant and also had solubilising effect on fixed forms of nutrients in soil having medium status of nutrient might have increased availability of macro and micro nutrients by improving root rhizophere which ultimately enhance removal of N, P and k as well as crop yield.
  7. Improvement in fruit quality might be due to increased continuous supply of nutrients, higher concentration of soil enzymes, soil micro organism, rapid mineralization and transformation of plant nutrients in soil and also growth promoting substances produced by microorganism.