Radicals
Radical Expressions
Finding a root of a number is the inverse operation of raising a
number to a power.
This symbol is the radical or the radical sign
n
a
index
radical sign
radicand
The expression under the radical sign is
the radicand.
The index defines the root to be taken.
The symbol represents the negative root of a
number.
The above symbol represents the
positive or principal root of a number.

Radicals
Square Roots
If a is a positive number, then
a is the positive square root of a and
a
 is the negative square root of a.
A square root of any positive number has
two roots – one is positive and the other is
negative.
Radicals
Rdicals
Cube Roots
3
27 
A cube root of any positive number is positive.
Examples:
3
5
4
3
125
64

3
8
  2

A cube root of any negative number is negative.
3
a

3 3
x x 
3 12
x 4
x
Radicals
nth
Roots
An nth
root of any number a is a number whose
nth
power is a.
Examples:
2
4
81  3
4
16 
5
32
  2

4
3 81
4
2 16
 
5
2
  32

Radicals
nth
Roots
4
16
 
An nth
root of any number a is a number whose
nth
power is a.
Examples:
1

5
1
 
Non-real number
6
1
  Non-real number
3
27
  3

7.1 – Radicals
Rational Exponents to Radical Expression
The value of the numerator represents
the power of the radicand.
:
n
m
a
of
Definition
The value of the denominator represents
the index or root of the expression.
n m
a or  m
n
a
n
m
a
Rational Exponents to Radical Expression
Examples:
3
1
27
25
2
1
25
3
27
  7
2
1
2 
x
3
4
2
3
4
 
7 2
1
2 
x
Rational Exponents
More Examples:
3
2
3
2
27
1
3
2
27
1






3 2
3 2
27
1
9
1
3
3
729
1
3
2
3
2
27
1
3
2
27
1





  
 2
3
2
3
27
1
9
1
 
 2
2
3
1
or
Rational Exponents to Radical Expression
Write each radical expression into
exponential form.
1. 4.
2. 3.
5.
6.
7.
8.
9.
10.
11.
12. 7
40 
Examples:
4 10
 
If and are real numbers, then a b
a b a b
  
Product Rule for Square Roots
2 10
7 75  7 25 3
  7 5 3
  35 3
Simplifying Rational Expressions

17
16x 
x
x16
16 x
x8
4

3 17
16x 

3 2
15
2
8 x
x 3 2
5
2
2 x
x

10
4

3
25
7
A radical expression is in its
simplest form when three conditions
are met:
1. No radicands have perfect square
factors other than 1
2. No radicand contains a fraction
3. No radicals appear in the
denominator of a fraction.
16
81

Examples:
2
5
4
9
45
49

a
If and are real numbers and 0,then
b
a
a b b
b
 
Quotient Rule for Square Roots
2
25

9 5
7


3 5
7
16
81

2
25

45
49

7.3 – Simplifying Rational Expressions
15
3

90
2

a
If and are real numbers and 0,then
b
a
a b b
b
 
3 5
3


3 5
3

 5
9 10
2


9 2 5
2
 

9 2 5
2
 
 3 5
7.3 – Simplifying Rational Expressions
11
x 
Examples:
7
7
25
y

8
27
x

6
7
25
y y


3
7
5
y y
10
x x
 
5
x x
4
18x  4
9 2x
  2
3 2
x
8
9 3
x

 4
3 3
x
8
27
x

7.3 – Simplifying Rational Expressions
3
88 
Examples:
3
81
8

3
10
27

3
3
81
8

3
27 3
2


3
8 11
  3
2 11
3
10
3
3
3
10
27

3
3 3
2
7.3 – Simplifying Rational Expressions
3 3 7
27m n  3 3 6
3 m n n  2 3
3mn n
One Big Final Example
12 4 18
5
64x y z 
10 2 4 15 3
5
32 2x x y z z
 
2 3 2 4 3
5
2 2
x z x y z
7.3 – Simplifying Rational Expressions
5 3
x x
 
Review and Examples:
6 11 9 11
 
8x
15 11
12 7
y y
  5y
7 3 7
  2 7

7.4 – Adding, Subtracting, Multiplying Radical
Expressions
27 75
 
Simplifying Radicals Prior to Adding or Subtracting
3 20 7 45
 
9 3 25 3
   
3 4 5 7 9 5
   
3 3 5 3
  8 3
3 2 5 7 3 5
   
6 5 21 5
  15 5

36 48 4 3 9
    6 16 3 4 3 3
    
6 4 3 4 3 3
    3 8 3

7.4 – Adding, Subtracting, Multiplying Radical
Expressions
4 3 3
9 36
x x x
  
Simplifying Radicals Prior to Adding or Subtracting
6 6
3 3
10 81 24
p p
 
2 2 2
3 6
x x x x x
  
2
3 6
x x x x x
  
2
3 5
x x x

6 6
3 3
10 27 3 8 3
p p
   
2 2
3 3
10 3 3 2 3
p p
  
2 3
28 3
p
2 2
3 3
30 3 2 3
p p
 
7.4 – Adding, Subtracting, Multiplying Radical
Expressions
5 2
 
7 7
 
10 2
x x
 
If and are real numbers, then a b
a b a b
  
10
49  7
6 3
  18  9 2
  3 2
2
20x  2
4 5x
  2 5
x
7.4 – Adding, Subtracting, Multiplying Radical
Expressions
 
7 7 3
  7 7 7 3
    49 21
 
 
5 3 5
x x  
  
5 3
x x
  
7 21

2
5 3 25
x x
  5 3 5
x x
  
5 15
x x

2
3 5 15
x x x
   
2
3 5 15
x x x
  
7.4 – Adding, Subtracting, Multiplying Radical
Expressions
  
3 6 3 6
  
 
2
5 4
x  
9 6 3 6 3 36
    3 36
 
33

  
5 4 5 4
x x
  
2
25 4 5 4 5 16
x x x
   
5 8 5 16
x x
 
7.4 – Adding, Subtracting, Multiplying Radical
Expressions

Radical and Rational exponents PPT (1).pptx

  • 1.
    Radicals Radical Expressions Finding aroot of a number is the inverse operation of raising a number to a power. This symbol is the radical or the radical sign n a index radical sign radicand The expression under the radical sign is the radicand. The index defines the root to be taken.
  • 2.
    The symbol representsthe negative root of a number. The above symbol represents the positive or principal root of a number.  Radicals
  • 3.
    Square Roots If ais a positive number, then a is the positive square root of a and a  is the negative square root of a. A square root of any positive number has two roots – one is positive and the other is negative. Radicals
  • 4.
    Rdicals Cube Roots 3 27  Acube root of any positive number is positive. Examples: 3 5 4 3 125 64  3 8   2  A cube root of any negative number is negative. 3 a  3 3 x x  3 12 x 4 x Radicals
  • 5.
    nth Roots An nth root ofany number a is a number whose nth power is a. Examples: 2 4 81  3 4 16  5 32   2  4 3 81 4 2 16   5 2   32  Radicals
  • 6.
    nth Roots 4 16   An nth rootof any number a is a number whose nth power is a. Examples: 1  5 1   Non-real number 6 1   Non-real number 3 27   3  7.1 – Radicals
  • 8.
    Rational Exponents toRadical Expression The value of the numerator represents the power of the radicand. : n m a of Definition The value of the denominator represents the index or root of the expression. n m a or  m n a n m a
  • 9.
    Rational Exponents toRadical Expression Examples: 3 1 27 25 2 1 25 3 27   7 2 1 2  x 3 4 2 3 4   7 2 1 2  x
  • 10.
    Rational Exponents More Examples: 3 2 3 2 27 1 3 2 27 1       32 3 2 27 1 9 1 3 3 729 1 3 2 3 2 27 1 3 2 27 1          2 3 2 3 27 1 9 1    2 2 3 1 or Rational Exponents to Radical Expression
  • 11.
    Write each radicalexpression into exponential form. 1. 4. 2. 3. 5.
  • 12.
  • 13.
  • 14.
    40  Examples: 4 10  If and are real numbers, then a b a b a b    Product Rule for Square Roots 2 10 7 75  7 25 3   7 5 3   35 3 Simplifying Rational Expressions  17 16x  x x16 16 x x8 4  3 17 16x   3 2 15 2 8 x x 3 2 5 2 2 x x  10 4  3 25 7
  • 15.
    A radical expressionis in its simplest form when three conditions are met: 1. No radicands have perfect square factors other than 1 2. No radicand contains a fraction 3. No radicals appear in the denominator of a fraction.
  • 16.
    16 81  Examples: 2 5 4 9 45 49  a If and arereal numbers and 0,then b a a b b b   Quotient Rule for Square Roots 2 25  9 5 7   3 5 7 16 81  2 25  45 49  7.3 – Simplifying Rational Expressions
  • 17.
    15 3  90 2  a If and arereal numbers and 0,then b a a b b b   3 5 3   3 5 3   5 9 10 2   9 2 5 2    9 2 5 2    3 5 7.3 – Simplifying Rational Expressions
  • 18.
    11 x  Examples: 7 7 25 y  8 27 x  6 7 25 y y   3 7 5 yy 10 x x   5 x x 4 18x  4 9 2x   2 3 2 x 8 9 3 x   4 3 3 x 8 27 x  7.3 – Simplifying Rational Expressions
  • 19.
    3 88  Examples: 3 81 8  3 10 27  3 3 81 8  3 27 3 2   3 811   3 2 11 3 10 3 3 3 10 27  3 3 3 2 7.3 – Simplifying Rational Expressions 3 3 7 27m n  3 3 6 3 m n n  2 3 3mn n
  • 20.
    One Big FinalExample 12 4 18 5 64x y z  10 2 4 15 3 5 32 2x x y z z   2 3 2 4 3 5 2 2 x z x y z 7.3 – Simplifying Rational Expressions
  • 21.
    5 3 x x  Review and Examples: 6 11 9 11   8x 15 11 12 7 y y   5y 7 3 7   2 7  7.4 – Adding, Subtracting, Multiplying Radical Expressions
  • 22.
    27 75   SimplifyingRadicals Prior to Adding or Subtracting 3 20 7 45   9 3 25 3     3 4 5 7 9 5     3 3 5 3   8 3 3 2 5 7 3 5     6 5 21 5   15 5  36 48 4 3 9     6 16 3 4 3 3      6 4 3 4 3 3     3 8 3  7.4 – Adding, Subtracting, Multiplying Radical Expressions
  • 23.
    4 3 3 936 x x x    Simplifying Radicals Prior to Adding or Subtracting 6 6 3 3 10 81 24 p p   2 2 2 3 6 x x x x x    2 3 6 x x x x x    2 3 5 x x x  6 6 3 3 10 27 3 8 3 p p     2 2 3 3 10 3 3 2 3 p p    2 3 28 3 p 2 2 3 3 30 3 2 3 p p   7.4 – Adding, Subtracting, Multiplying Radical Expressions
  • 24.
    5 2   77   10 2 x x   If and are real numbers, then a b a b a b    10 49  7 6 3   18  9 2   3 2 2 20x  2 4 5x   2 5 x 7.4 – Adding, Subtracting, Multiplying Radical Expressions
  • 25.
      7 73   7 7 7 3     49 21     5 3 5 x x      5 3 x x    7 21  2 5 3 25 x x   5 3 5 x x    5 15 x x  2 3 5 15 x x x     2 3 5 15 x x x    7.4 – Adding, Subtracting, Multiplying Radical Expressions
  • 26.
       36 3 6      2 5 4 x   9 6 3 6 3 36     3 36   33     5 4 5 4 x x    2 25 4 5 4 5 16 x x x     5 8 5 16 x x   7.4 – Adding, Subtracting, Multiplying Radical Expressions