Quantum Numbers and Electron
Configuration
Understanding the Language of
Electrons
Introduction
• Electrons determine chemical properties of atoms.
• To describe electrons, we use quantum numbers and electron
configurations.
• These concepts explain why elements behave differently.
• [Visual: Periodic table with electron shells highlighted]
Quantum Numbers
• Quantum numbers are a set of four numbers used to describe the location
and behavior of an electron in an atom.
Principal Quantum Number (n)
• Describes the main energy level (shell).
• Values: n = 1, 2, 3, …
• Larger n → electron is farther from nucleus, higher energy.
• Example: Hydrogen electron → n = 1
Angular Momentum Quantum
Number (l)
• Describes the shape of orbital (subshell).
• Values: l = 0 → s, 1 → p, 2 → d, 3 → f
• Shapes: s = spherical, p = dumbbell, d = clover, f = complex
Magnetic Quantum Number (m )
ₗ
• Describes orientation of orbital in space.
• Range: –l → +l
• Example: For l = 1 (p orbital), m = –1, 0, +1 (3 orientations: px, py, pz)
ₗ
Spin Quantum Number (m )
ₛ
• Describes spin of electron.
• Values: +½ (↑) or –½ (↓).
• Explains why orbitals can hold max 2 electrons with opposite spins.
• [Diagram suggestion: A table of quantum numbers with values and
examples.]
Electron Configuration
• Electron configuration = distribution of electrons in orbitals of an atom.
• Example: Oxygen → 1s² 2s² 2p⁴
• Explains valence electrons → chemical bonding & reactivity.
Aufbau Principle
• Electrons fill orbitals from lowest energy to highest.
• Order: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → …
• Rule shown by Aufbau diagram (diagonal arrows).
• Example: Carbon (Z = 6) → 1s² 2s² 2p²
• [Diagram suggestion: Aufbau filling diagram with arrows.]
Pauli Exclusion Principle
• No two electrons in the same atom can have the same four quantum
numbers.
• Each orbital can hold a maximum of 2 electrons with opposite spins.
• Example: 1s orbital → holds 2 electrons, one ↑ and one ↓
• [Diagram suggestion: 1s orbital with two opposite spins.]
Hund’s Rule
• When filling orbitals of the same energy (degenerate orbitals), electrons
occupy empty orbitals singly first before pairing.
• This minimizes electron repulsion and stabilizes the atom.
• Example: Nitrogen (Z = 7) → 2p³ → ↑ ↑ ↑ instead of ↑↓ ↑ _
• [Diagram suggestion: p orbital boxes with arrows.]
Diamagnetism & Paramagnetism
• Diamagnetic atoms → all electrons paired → weakly repelled by a
magnetic field.
• Paramagnetic atoms → have unpaired electrons → attracted to a magnetic
field.
• Examples:
• Neon (1s² 2s² 2p⁶) → all paired → diamagnetic.
• Oxygen (1s² 2s² 2p⁴) → 2 unpaired → paramagnetic.
• [Diagram suggestion: Oxygen orbital diagram showing unpaired spins.]
Orbital Diagrams
• Visual representation of electron configuration using boxes and arrows.
• Each box = one orbital; each arrow = one electron.
• Example: Carbon (Z = 6):
• 1s: ↑↓ , 2s: ↑↓ , 2p: ↑ _ _
• [Diagram suggestion: Show Carbon, Nitrogen, Oxygen orbital diagrams.]
Applications in Chemistry
• Explains valence electrons → reactivity.
• Predicts bonding & molecular structure.
• Basis of periodic table arrangement.
• Example: Alkali metals all end in ns¹ → highly reactive.
Practice Problems
• 1. Write the electron configuration of Magnesium (Z = 12).
• 2. How many unpaired electrons does Sulfur have?
• 3. Identify whether Iron (Z = 26) is paramagnetic or diamagnetic.
• 4. What are the 4 quantum numbers for the last electron in Chlorine (Z =
17)?
Answer Key
• 1. Mg: 1s² 2s² 2p⁶ 3s²
• 2. Sulfur → 2 unpaired electrons.
• 3. Iron → paramagnetic (unpaired 3d electrons).
• 4. Chlorine (last electron in 3p⁵): n = 3, l = 1, m = –1/0/+1, m = –½
ₗ ₛ
Summary & Conclusion
• Quantum Numbers → address system for electrons.
• Electron Configuration → how electrons fill orbitals.
• Aufbau, Pauli, Hund → rules that govern electron arrangement.
• Magnetism depends on paired/unpaired electrons.
• Orbital diagrams visualize electron distribution.
• 👉 These concepts explain the chemical behavior of every element!
• [Closing visual: Periodic table with electron shells highlighted.]

Quantum_Numbers_Electron___Config_Presentation.pptx

  • 1.
    Quantum Numbers andElectron Configuration Understanding the Language of Electrons
  • 2.
    Introduction • Electrons determinechemical properties of atoms. • To describe electrons, we use quantum numbers and electron configurations. • These concepts explain why elements behave differently. • [Visual: Periodic table with electron shells highlighted]
  • 3.
    Quantum Numbers • Quantumnumbers are a set of four numbers used to describe the location and behavior of an electron in an atom.
  • 4.
    Principal Quantum Number(n) • Describes the main energy level (shell). • Values: n = 1, 2, 3, … • Larger n → electron is farther from nucleus, higher energy. • Example: Hydrogen electron → n = 1
  • 5.
    Angular Momentum Quantum Number(l) • Describes the shape of orbital (subshell). • Values: l = 0 → s, 1 → p, 2 → d, 3 → f • Shapes: s = spherical, p = dumbbell, d = clover, f = complex
  • 6.
    Magnetic Quantum Number(m ) ₗ • Describes orientation of orbital in space. • Range: –l → +l • Example: For l = 1 (p orbital), m = –1, 0, +1 (3 orientations: px, py, pz) ₗ
  • 7.
    Spin Quantum Number(m ) ₛ • Describes spin of electron. • Values: +½ (↑) or –½ (↓). • Explains why orbitals can hold max 2 electrons with opposite spins. • [Diagram suggestion: A table of quantum numbers with values and examples.]
  • 8.
    Electron Configuration • Electronconfiguration = distribution of electrons in orbitals of an atom. • Example: Oxygen → 1s² 2s² 2p⁴ • Explains valence electrons → chemical bonding & reactivity.
  • 9.
    Aufbau Principle • Electronsfill orbitals from lowest energy to highest. • Order: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → … • Rule shown by Aufbau diagram (diagonal arrows). • Example: Carbon (Z = 6) → 1s² 2s² 2p² • [Diagram suggestion: Aufbau filling diagram with arrows.]
  • 10.
    Pauli Exclusion Principle •No two electrons in the same atom can have the same four quantum numbers. • Each orbital can hold a maximum of 2 electrons with opposite spins. • Example: 1s orbital → holds 2 electrons, one ↑ and one ↓ • [Diagram suggestion: 1s orbital with two opposite spins.]
  • 11.
    Hund’s Rule • Whenfilling orbitals of the same energy (degenerate orbitals), electrons occupy empty orbitals singly first before pairing. • This minimizes electron repulsion and stabilizes the atom. • Example: Nitrogen (Z = 7) → 2p³ → ↑ ↑ ↑ instead of ↑↓ ↑ _ • [Diagram suggestion: p orbital boxes with arrows.]
  • 12.
    Diamagnetism & Paramagnetism •Diamagnetic atoms → all electrons paired → weakly repelled by a magnetic field. • Paramagnetic atoms → have unpaired electrons → attracted to a magnetic field. • Examples: • Neon (1s² 2s² 2p⁶) → all paired → diamagnetic. • Oxygen (1s² 2s² 2p⁴) → 2 unpaired → paramagnetic. • [Diagram suggestion: Oxygen orbital diagram showing unpaired spins.]
  • 13.
    Orbital Diagrams • Visualrepresentation of electron configuration using boxes and arrows. • Each box = one orbital; each arrow = one electron. • Example: Carbon (Z = 6): • 1s: ↑↓ , 2s: ↑↓ , 2p: ↑ _ _ • [Diagram suggestion: Show Carbon, Nitrogen, Oxygen orbital diagrams.]
  • 14.
    Applications in Chemistry •Explains valence electrons → reactivity. • Predicts bonding & molecular structure. • Basis of periodic table arrangement. • Example: Alkali metals all end in ns¹ → highly reactive.
  • 15.
    Practice Problems • 1.Write the electron configuration of Magnesium (Z = 12). • 2. How many unpaired electrons does Sulfur have? • 3. Identify whether Iron (Z = 26) is paramagnetic or diamagnetic. • 4. What are the 4 quantum numbers for the last electron in Chlorine (Z = 17)?
  • 16.
    Answer Key • 1.Mg: 1s² 2s² 2p⁶ 3s² • 2. Sulfur → 2 unpaired electrons. • 3. Iron → paramagnetic (unpaired 3d electrons). • 4. Chlorine (last electron in 3p⁵): n = 3, l = 1, m = –1/0/+1, m = –½ ₗ ₛ
  • 17.
    Summary & Conclusion •Quantum Numbers → address system for electrons. • Electron Configuration → how electrons fill orbitals. • Aufbau, Pauli, Hund → rules that govern electron arrangement. • Magnetism depends on paired/unpaired electrons. • Orbital diagrams visualize electron distribution. • 👉 These concepts explain the chemical behavior of every element! • [Closing visual: Periodic table with electron shells highlighted.]