1) In log Multiply change into Addition
2) In log Divide change into subtraction
3) In log we never find power
4) Characteristics = value – 1
5) log 1 = 0
6) log 10 = 1
Key point of logarithm
LOGARITHM
EXERCISE 3.6
 Find the value of the following by using logarithms:
8)
(𝟕𝟖𝟎.𝟔)
𝟏
𝟐 𝑿 𝟑.𝟎𝟎𝟎
𝟒.𝟎𝟎𝟎
EXERCISE 3.6
 Find the value of the following by using logarithms:
8)
(𝟕𝟖𝟎.𝟔)
𝟏
𝟐 𝑿 𝟑.𝟎𝟎𝟎
𝟒.𝟎𝟎𝟎
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎)
EXERCISE 3.6
 Find the value of the following by using logarithms:
8)
(𝟕𝟖𝟎.𝟔)
𝟏
𝟐 𝑿 𝟑.𝟎𝟎𝟎
𝟒.𝟎𝟎𝟎
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎)
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log (𝟑. 𝟎𝟎𝟎)
𝟏
𝟐 – log (𝟒. 𝟎𝟎𝟎)
In this step
We know that the
square root is
equal to the half
power means ½.
So we remove
square root in
addition of ½.
EXERCISE 3.6
 Find the value of the following by using logarithms:
8)
(𝟕𝟖𝟎.𝟔)
𝟏
𝟐 𝑿 𝟑.𝟎𝟎𝟎
𝟒.𝟎𝟎𝟎
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎)
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log (𝟑. 𝟎𝟎𝟎)
𝟏
𝟐 – log (𝟒. 𝟎𝟎𝟎)
𝟏
𝟐
Log (780.6) +
𝟏
𝟐
log (3.000) – log (𝟒. 𝟎𝟎𝟎)
EXERCISE 3.6
 Find the value of the following by using logarithms:
8)
(𝟕𝟖𝟎.𝟔)
𝟏
𝟐 𝑿 𝟑.𝟎𝟎𝟎
𝟒.𝟎𝟎𝟎
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎)
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log (𝟑. 𝟎𝟎𝟎)
𝟏
𝟐 – log (𝟒. 𝟎𝟎𝟎)
𝟏
𝟐
Log (780.6) +
𝟏
𝟐
log (3.000) – log (𝟒. 𝟎𝟎𝟎)
𝟏
𝟐
(2.8921 + 3) +
𝟏
𝟐
(0.4771 + 0) – (0.6021 + 0)
EXERCISE 3.6
 Find the value of the following by using logarithms:
8)
(𝟕𝟖𝟎.𝟔)
𝟏
𝟐 𝑿 𝟑.𝟎𝟎𝟎
𝟒.𝟎𝟎𝟎
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎)
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log (𝟑. 𝟎𝟎𝟎)
𝟏
𝟐 – log (𝟒. 𝟎𝟎𝟎)
𝟏
𝟐
Log (780.6) +
𝟏
𝟐
log (3.000) – log (𝟒. 𝟎𝟎𝟎)
𝟏
𝟐
(2.8921 + 3) +
𝟏
𝟐
(0.4771 + 0) – (0.6021 + 0)
𝟏
𝟐
(2.8924) +
𝟏
𝟐
(0.4771) – (0.6021)
EXERCISE 3.6
 Find the value of the following by using logarithms:
8)
(𝟕𝟖𝟎.𝟔)
𝟏
𝟐 𝑿 𝟑.𝟎𝟎𝟎
𝟒.𝟎𝟎𝟎
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎)
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log (𝟑. 𝟎𝟎𝟎)
𝟏
𝟐 – log (𝟒. 𝟎𝟎𝟎)
𝟏
𝟐
Log (780.6) +
𝟏
𝟐
log (3.000) – log (𝟒. 𝟎𝟎𝟎)
𝟏
𝟐
(2.8921 + 3) +
𝟏
𝟐
(0.4771 + 0) – (0.6021 + 0)
𝟏
𝟐
(2.8924) +
𝟏
𝟐
(0.4771) – (0.6021)
1.4462 + 0.2385 – 0.6021
1.0826
EXERCISE 3.6
 Find the value of the following by using logarithms:
8)
(𝟕𝟖𝟎.𝟔)
𝟏
𝟐 𝑿 𝟑.𝟎𝟎𝟎
𝟒.𝟎𝟎𝟎
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎)
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log (𝟑. 𝟎𝟎𝟎)
𝟏
𝟐 – log (𝟒. 𝟎𝟎𝟎)
𝟏
𝟐
Log (780.6) +
𝟏
𝟐
log (3.000) – log (𝟒. 𝟎𝟎𝟎)
𝟏
𝟐
(2.8921 + 3) +
𝟏
𝟐
(0.4771 + 0) – (0.6021 + 0)
𝟏
𝟐
(2.8924) +
𝟏
𝟐
(0.4771) – (0.6021)
1.4462 + 0.2385 – 0.6021
1.0826
For Antilog
0826
EXERCISE 3.6
 Find the value of the following by using logarithms:
8)
(𝟕𝟖𝟎.𝟔)
𝟏
𝟐 𝑿 𝟑.𝟎𝟎𝟎
𝟒.𝟎𝟎𝟎
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎)
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log (𝟑. 𝟎𝟎𝟎)
𝟏
𝟐 – log (𝟒. 𝟎𝟎𝟎)
𝟏
𝟐
Log (780.6) +
𝟏
𝟐
log (3.000) – log (𝟒. 𝟎𝟎𝟎)
𝟏
𝟐
(2.8921 + 3) +
𝟏
𝟐
(0.4771 + 0) – (0.6021 + 0)
𝟏
𝟐
(2.8924) +
𝟏
𝟐
(0.4771) – (0.6021)
1.4462 + 0.2385 – 0.6021
1.0826
For Antilog
0826
1208 + 2
1210
EXERCISE 3.6
 Find the value of the following by using logarithms:
8)
(𝟕𝟖𝟎.𝟔)
𝟏
𝟐 𝑿 𝟑.𝟎𝟎𝟎
𝟒.𝟎𝟎𝟎
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎)
Log (𝟕𝟖𝟎. 𝟔)
𝟏
𝟐 + log (𝟑. 𝟎𝟎𝟎)
𝟏
𝟐 – log (𝟒. 𝟎𝟎𝟎)
𝟏
𝟐
Log (780.6) +
𝟏
𝟐
log (3.000) – log (𝟒. 𝟎𝟎𝟎)
𝟏
𝟐
(2.8921 + 3) +
𝟏
𝟐
(0.4771 + 0) – (0.6021 + 0)
𝟏
𝟐
(2.8924) +
𝟏
𝟐
(0.4771) – (0.6021)
1.4462 + 0.2385 – 0.6021
1.0826
For Antilog
0826
1208 + 2
12.10

Q#8

  • 1.
    1) In logMultiply change into Addition 2) In log Divide change into subtraction 3) In log we never find power 4) Characteristics = value – 1 5) log 1 = 0 6) log 10 = 1 Key point of logarithm LOGARITHM
  • 2.
    EXERCISE 3.6  Findthe value of the following by using logarithms: 8) (𝟕𝟖𝟎.𝟔) 𝟏 𝟐 𝑿 𝟑.𝟎𝟎𝟎 𝟒.𝟎𝟎𝟎
  • 3.
    EXERCISE 3.6  Findthe value of the following by using logarithms: 8) (𝟕𝟖𝟎.𝟔) 𝟏 𝟐 𝑿 𝟑.𝟎𝟎𝟎 𝟒.𝟎𝟎𝟎 Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎)
  • 4.
    EXERCISE 3.6  Findthe value of the following by using logarithms: 8) (𝟕𝟖𝟎.𝟔) 𝟏 𝟐 𝑿 𝟑.𝟎𝟎𝟎 𝟒.𝟎𝟎𝟎 Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎) Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log (𝟑. 𝟎𝟎𝟎) 𝟏 𝟐 – log (𝟒. 𝟎𝟎𝟎) In this step We know that the square root is equal to the half power means ½. So we remove square root in addition of ½.
  • 5.
    EXERCISE 3.6  Findthe value of the following by using logarithms: 8) (𝟕𝟖𝟎.𝟔) 𝟏 𝟐 𝑿 𝟑.𝟎𝟎𝟎 𝟒.𝟎𝟎𝟎 Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎) Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log (𝟑. 𝟎𝟎𝟎) 𝟏 𝟐 – log (𝟒. 𝟎𝟎𝟎) 𝟏 𝟐 Log (780.6) + 𝟏 𝟐 log (3.000) – log (𝟒. 𝟎𝟎𝟎)
  • 7.
    EXERCISE 3.6  Findthe value of the following by using logarithms: 8) (𝟕𝟖𝟎.𝟔) 𝟏 𝟐 𝑿 𝟑.𝟎𝟎𝟎 𝟒.𝟎𝟎𝟎 Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎) Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log (𝟑. 𝟎𝟎𝟎) 𝟏 𝟐 – log (𝟒. 𝟎𝟎𝟎) 𝟏 𝟐 Log (780.6) + 𝟏 𝟐 log (3.000) – log (𝟒. 𝟎𝟎𝟎) 𝟏 𝟐 (2.8921 + 3) + 𝟏 𝟐 (0.4771 + 0) – (0.6021 + 0)
  • 8.
    EXERCISE 3.6  Findthe value of the following by using logarithms: 8) (𝟕𝟖𝟎.𝟔) 𝟏 𝟐 𝑿 𝟑.𝟎𝟎𝟎 𝟒.𝟎𝟎𝟎 Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎) Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log (𝟑. 𝟎𝟎𝟎) 𝟏 𝟐 – log (𝟒. 𝟎𝟎𝟎) 𝟏 𝟐 Log (780.6) + 𝟏 𝟐 log (3.000) – log (𝟒. 𝟎𝟎𝟎) 𝟏 𝟐 (2.8921 + 3) + 𝟏 𝟐 (0.4771 + 0) – (0.6021 + 0) 𝟏 𝟐 (2.8924) + 𝟏 𝟐 (0.4771) – (0.6021)
  • 9.
    EXERCISE 3.6  Findthe value of the following by using logarithms: 8) (𝟕𝟖𝟎.𝟔) 𝟏 𝟐 𝑿 𝟑.𝟎𝟎𝟎 𝟒.𝟎𝟎𝟎 Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎) Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log (𝟑. 𝟎𝟎𝟎) 𝟏 𝟐 – log (𝟒. 𝟎𝟎𝟎) 𝟏 𝟐 Log (780.6) + 𝟏 𝟐 log (3.000) – log (𝟒. 𝟎𝟎𝟎) 𝟏 𝟐 (2.8921 + 3) + 𝟏 𝟐 (0.4771 + 0) – (0.6021 + 0) 𝟏 𝟐 (2.8924) + 𝟏 𝟐 (0.4771) – (0.6021) 1.4462 + 0.2385 – 0.6021 1.0826
  • 10.
    EXERCISE 3.6  Findthe value of the following by using logarithms: 8) (𝟕𝟖𝟎.𝟔) 𝟏 𝟐 𝑿 𝟑.𝟎𝟎𝟎 𝟒.𝟎𝟎𝟎 Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎) Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log (𝟑. 𝟎𝟎𝟎) 𝟏 𝟐 – log (𝟒. 𝟎𝟎𝟎) 𝟏 𝟐 Log (780.6) + 𝟏 𝟐 log (3.000) – log (𝟒. 𝟎𝟎𝟎) 𝟏 𝟐 (2.8921 + 3) + 𝟏 𝟐 (0.4771 + 0) – (0.6021 + 0) 𝟏 𝟐 (2.8924) + 𝟏 𝟐 (0.4771) – (0.6021) 1.4462 + 0.2385 – 0.6021 1.0826 For Antilog 0826
  • 12.
    EXERCISE 3.6  Findthe value of the following by using logarithms: 8) (𝟕𝟖𝟎.𝟔) 𝟏 𝟐 𝑿 𝟑.𝟎𝟎𝟎 𝟒.𝟎𝟎𝟎 Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎) Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log (𝟑. 𝟎𝟎𝟎) 𝟏 𝟐 – log (𝟒. 𝟎𝟎𝟎) 𝟏 𝟐 Log (780.6) + 𝟏 𝟐 log (3.000) – log (𝟒. 𝟎𝟎𝟎) 𝟏 𝟐 (2.8921 + 3) + 𝟏 𝟐 (0.4771 + 0) – (0.6021 + 0) 𝟏 𝟐 (2.8924) + 𝟏 𝟐 (0.4771) – (0.6021) 1.4462 + 0.2385 – 0.6021 1.0826 For Antilog 0826 1208 + 2 1210
  • 13.
    EXERCISE 3.6  Findthe value of the following by using logarithms: 8) (𝟕𝟖𝟎.𝟔) 𝟏 𝟐 𝑿 𝟑.𝟎𝟎𝟎 𝟒.𝟎𝟎𝟎 Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log ( 𝟑. 𝟎𝟎𝟎) – log (𝟒. 𝟎𝟎𝟎) Log (𝟕𝟖𝟎. 𝟔) 𝟏 𝟐 + log (𝟑. 𝟎𝟎𝟎) 𝟏 𝟐 – log (𝟒. 𝟎𝟎𝟎) 𝟏 𝟐 Log (780.6) + 𝟏 𝟐 log (3.000) – log (𝟒. 𝟎𝟎𝟎) 𝟏 𝟐 (2.8921 + 3) + 𝟏 𝟐 (0.4771 + 0) – (0.6021 + 0) 𝟏 𝟐 (2.8924) + 𝟏 𝟐 (0.4771) – (0.6021) 1.4462 + 0.2385 – 0.6021 1.0826 For Antilog 0826 1208 + 2 12.10